Eigenvalues and eigenvectors

Exercise 1 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by

$$f\left(\begin{array}{c}x\\y\end{array}\right) = \frac{1}{5}\left(\begin{array}{c}3x+4y\\4x-3y\end{array}\right).$$

- (a) Write the matrix A of f in the canonical basis of \mathbb{R}^2 .
- (b) Show that the vector $\vec{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is an eigenvector of f. What is the associated eigenvalue?
- (c) Show that the vector $\vec{v}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ is also an eigenvector of f. What is the associated eigenvalue?
- (d) Using a picture, determine the image of the vector $\vec{v}_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Recover this result by a computation.
- (e) Show that the family $\{\vec{v}_1, \vec{v}_2\}$ forms a basis of \mathbb{R}^2 .
- (f) What is the matrix of f in the basis $\{\vec{v}_1, \vec{v}_2\}$? Denote it by D.
- (g) Let P be the matrix whose first column is the vector \vec{v}_1 and whose second column is the vector \vec{v}_2 , expressed in the canonical basis of \mathbb{R}^2 . Compute P^{-1} .
- (h) What is the relationship between A, P, P^{-1} and D?
- (i) Compute A^n , for $n \in \mathbb{N}$.

2. Do the same exercise with $A = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ and the vectors $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\vec{v}_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

Solution of Exercise 1 :

1. (a) The matrix of $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5}\begin{pmatrix} 3x+4y \\ 4x-3y \end{pmatrix}$ in the canonical basis of \mathbb{R}^2 is

$$A = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{pmatrix}.$$

(b) Apply f to $\vec{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. One has

$$f(\vec{v_1}) = \frac{1}{5} \begin{pmatrix} 10\\5 \end{pmatrix} = \begin{pmatrix} 2\\1 \end{pmatrix} = \vec{v_1}.$$

Consequently $\vec{v_1}$ is an eigenvector of f associated to the eigenvalue $\lambda_1 = 1$. (c) One has

$$f(\vec{v}_2) = A \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} = -\vec{v_2}.$$

Hence \vec{v}_2 is an eigenvector of f with eigenvalue $\lambda_2 = -1$.

(d) One has $\vec{v}_3 = \vec{v}_1 + \vec{v}_2$. Therefore the image of \vec{v}_3 by the linear map f is the sum of the images of \vec{v}_1 and \vec{v}_2 :

$$f(\vec{v}_3) = f(\vec{v}_1) + f(\vec{v}_2) = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 = \vec{v}_1 - \vec{v}_2$$

One obtains $f(\vec{v}_3) = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

(e) One has

det
$$(\vec{v}_1, \vec{v}_2) = det \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = 5.$$

Since det $(\vec{v}_1, \vec{v}_2) \neq 0$, the family $\{\vec{v}_1, \vec{v}_2\}$ forms a basis of \mathbb{R}^2 .

(f) The matrix of f in the basis $\{\vec{v}_1, \vec{v}_2\}$ is

$$D = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right).$$

Note that f is the reflection (or axial symmetry) with respect to $\mathbb{R}\vec{v_1}$ parallel to $\mathbb{R}\vec{v_2}$. Moreover one can check that $\vec{v_1} \perp \vec{v_2}$, hence f is an *orthogonal* reflection.

(g) The inverse of the matrix

$$P = \left(\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array}\right)$$

is the matrix

$$P^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}.$$

- (h) The relationship between A, P, P^{-1} and D is $D = P^{-1}AP$.
- (i) One has $A^n = I$, for *n* even, and $A^n = A$ for *n* odd (here *I* denotes the identity matrix). This is coherent with the fact that *f* is a reflection.

2. (a) Let us apply
$$A$$
 to $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. One has
$$A\vec{v}_1 = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2\vec{v}_1.$$

Consequently $\vec{v_1}$ is an eigenvector of A associated to the eigenvalue $\lambda_1 = 2$.

(b) One has

$$A\vec{v}_2 = A\left(\begin{array}{c}0\\1\end{array}\right) = \left(\begin{array}{c}0\\1\end{array}\right) = \vec{v}_2$$

Hence \vec{v}_2 is an eigenvector of A with eigenvalue $\lambda_2 = 1$.

(c) One has $\vec{v}_3 = -\vec{v}_1 + \vec{v}_2$. Therefore

$$f(\vec{v}_3) = -f(\vec{v}_1) + f(\vec{v}_2) = -\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 = -2\vec{v}_1 + \vec{v}_2.$$

One obtains $f(\vec{v}_3) = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$.

- (d) One has det $(\vec{v}_1, \vec{v}_2) = \det \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = 1$. Since det $(\vec{v}_1, \vec{v}_2) \neq 0$, the family $\{\vec{v}_1, \vec{v}_2\}$ forms a basis of \mathbb{R}^2 .
- (e) The matrix of the linear map f associated to A, written in the basis $\{\vec{v}_1, \vec{v}_2\}$, is

$$D = \left(\begin{array}{cc} 2 & 0\\ 0 & 1 \end{array}\right).$$

(f) The inverse of the matrix

$$P = \left(\begin{array}{rr} 1 & 0\\ 1 & 1 \end{array}\right)$$

is the matrix

$$P^{-1} = \left(\begin{array}{cc} 1 & 0\\ -1 & 0 \end{array}\right).$$

(g) The relationship between A, P, P^{-1} and D is $D = P^{-1}AP$, which is equivalent to $A = PDP^{-1}$.

(h) One has

$$D^n = \left(\begin{array}{cc} 2^n & 0\\ 0 & 1 \end{array}\right).$$

Moreover, for $n \in \mathbb{N}$, one has $A^n = PD^nP^{-1}$. Hence for $n \in \mathbb{N}$,

$$A^{n} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2^{n} & 0 \\ 2^{n} - 1 & 1 \end{pmatrix}.$$

Exercise 2 Determine the characteristic polynomial of the following matrices

$$\left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right), \quad \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right).$$

Solution of Exercise 2 :

1. For the matrix

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right),$$

one has

2. For the matrix

$$\det (A - \lambda I) = \lambda^2 - 1.$$

$$B = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right),$$

one has

$$\det (B - \lambda I) = -\lambda^3 + 3\lambda + 2.$$

3. For the matrix

$$C = \left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right),$$

one has

$$\det (C - \lambda I) = \lambda^4 - 6\lambda^2 - 8\lambda - 3.$$

Exercise 3 Find the eigenvalues and a basis of eigenvectors of the following matrices :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 4 \\ 0 & 7 & -2 \\ 4 & -2 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & -1 \\ -1 & a^2 & 0 \\ -1 & 0 & a^2 \end{pmatrix} \quad (a \neq 0).$$

Solution of Exercise 3 :

1. Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{array} \right).$$

One has

$$\det (A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 1 & -1 - \lambda \end{vmatrix} = (1 - \lambda) \left((1 - \lambda)(-1 - \lambda) - 1 \right) = (1 - \lambda)(\lambda - \sqrt{2})(\lambda + \sqrt{2}).$$

It follows that the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = \sqrt{2}$ and $\lambda_3 = -\sqrt{2}$. An eigenvector associated to the eigenvalue $\lambda_1 = 1$ is a nonzero element of the kernel of $A - \lambda_1 I$. One has

$$A - \lambda_1 I = A - I = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & -2 \end{array}\right)$$

Therefore the vector $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector of A associated to the eigenvalue $\lambda_1 = 1$.

For $\lambda_2 = \sqrt{2}$, one has

$$A - \lambda_2 I = A - \sqrt{2}I = \begin{pmatrix} 1 - \sqrt{2} & 0 & 0\\ 0 & 1 - \sqrt{2} & 1\\ 0 & 1 & -1 - \sqrt{2} \end{pmatrix}.$$

Denoting by C_1 , C_2 , C_3 the columns of the above matrix, one sees that $-C_2 + (1 - \sqrt{2})C_3$ is the null-vector. Therefore the vector $\vec{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 - \sqrt{2} \end{pmatrix}$ is an eigenvector of A associated to the eigenvalue $\lambda_2 = \sqrt{2}$.

For $\lambda_3 = -\sqrt{2}$, one has

$$A - \lambda_3 I = A + \sqrt{2}I = \begin{pmatrix} 1 + \sqrt{2} & 0 & 0\\ 0 & 1 + \sqrt{2} & 1\\ 0 & 1 & -1 + \sqrt{2} \end{pmatrix}.$$

Denoting by C_1, C_2, C_3 the columns of the above matrix, one sees that $-C_2 + (1+\sqrt{2})C_3$ is the null-vector. Therefore the vector $\vec{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 1+\sqrt{2} \end{pmatrix}$ is an eigenvector of A associated to the eigenvalue $\lambda_3 = -\sqrt{2}$.

2. Consider the matrix

$$B = \left(\begin{array}{rrrr} 1 & 0 & 4 \\ 0 & 7 & -2 \\ 4 & -2 & 0 \end{array}\right)$$

Let us compute

$$\det (B - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 4 \\ 0 & 7 - \lambda & -2 \\ 4 & -2 & -\lambda \end{vmatrix} = (1 - \lambda)(7 - \lambda)(-\lambda) - 16(7 - \lambda) + 4(1 - \lambda)$$
$$= -\lambda^3 - 8\lambda^2 + 13\lambda - 116 = (\lambda - 4)(-\lambda^2 + 4\lambda + 29) = -(\lambda - 4)(\lambda - 2 - \sqrt{33})(\lambda - 2 + \sqrt{33}).$$

It follows that the eigenvalues of B are $\lambda_1 = 4$, $\lambda_2 = 2 - \sqrt{33}$ and $\lambda_3 = 2 + \sqrt{33}$.

For $\lambda_1 = 4$, one has

$$\begin{pmatrix} A - \lambda_1 I \\ I \end{pmatrix} = \begin{pmatrix} -3 & 0 & 4 \\ 0 & 3 & -2 \\ 4 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} C_3 \leftarrow 3C_3 + 4C_1 & C_3 \leftarrow C_3 + 2C_2 \\ -3 & 0 & 0 \\ 0 & 3 & -6 \\ 4 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 4 & -2 & 0 \end{pmatrix} \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 4 & -2 & 0 \end{pmatrix} \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 4 & -2 & 0 \end{pmatrix}$$

It follows that the vector $\vec{v}_1 = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$ is an eigenvector of *B* associated to the eigenvalue $\lambda_1 = 4$. For $\lambda_2 = 2 - \sqrt{33}$, one has

$$\begin{pmatrix} A - \lambda_2 I \\ I \end{pmatrix} = \begin{pmatrix} -1 + \sqrt{33} & 0 & 4 \\ 0 & 5 + \sqrt{33} & -2 \\ 4 & -2 & -2 + \sqrt{33} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} C_3 \leftarrow (-1 + \sqrt{33})C_3 - 4C_1 \\ -1 + \sqrt{33} & 0 & 0 \\ 0 & 5 + \sqrt{33} & 2 - 2\sqrt{33} \\ 4 & -2 & 19 - 3\sqrt{33} \\ 1 & 0 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & (-1 + \sqrt{33}) \end{pmatrix}$$

$$\begin{array}{l} \begin{array}{c} C_{3} \leftarrow (5+\sqrt{33})C_{3} - (2-2\sqrt{33})C_{2} \\ \begin{pmatrix} -1+\sqrt{33} & 0 & 0 \\ 0 & 5+\sqrt{33} & 0 \\ 4 & -2 & 0 \\ \\ 1 & 0 & -20-4\sqrt{33} \\ 0 & 1 & -2+2\sqrt{33} \\ 0 & 0 & 28+4\sqrt{33} \end{array} \\ \end{array} \right) \\ \\ \begin{array}{c} \end{array} \\ \begin{array}{c} Consequently, \ the \ vector \ \vec{v}_{2} = \left(\begin{array}{c} -20-4\sqrt{33} \\ -2+2\sqrt{33} \\ 28+4\sqrt{33} \end{array} \right) \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} generates \ the \ eigenspace \ associated \ to \ the \ eigen-28+4\sqrt{33} \end{array} \\ \end{array}$$

value $\lambda_2 = 2 - \sqrt{33}$.

The same computations with $\sqrt{33}$ instead of $-\sqrt{33}$ show that the vector $\vec{v}_3 = \begin{pmatrix} -20 + 4\sqrt{33} \\ -2 - 2\sqrt{33} \\ 28 - 4\sqrt{33} \end{pmatrix}$

generates the eigenspace associated to the eigenvalue $\lambda_3 = 2 + \sqrt{33}$.

3. Consider the matrix

$$C = \begin{pmatrix} 1 & -1 & -1 \\ -1 & a^2 & 0 \\ -1 & 0 & a^2 \end{pmatrix} \quad (a \neq 0).$$

One has

det
$$(C - \lambda I) = \begin{vmatrix} 1 - \lambda & -1 & -1 \\ -1 & a^2 - \lambda & 0 \\ -1 & 0 & a^2 - \lambda \end{vmatrix} = (a^2 - \lambda) \left(\lambda^2 - (a^1 + 1)\lambda + a^2 - 2\right)$$

$$= (a^{2} - \lambda) \left(\lambda - \frac{a^{2} + 1 + \sqrt{a^{4} - 2a^{2} + 9}}{2}\right) \left(\lambda - \frac{a^{2} + 1 - \sqrt{a^{4} - 2a^{2} + 9}}{2}\right).$$

Therefore the eigenvalues of C are $\lambda_1 = a^2$, $\lambda_2 = \frac{a^2 + 1 + \sqrt{a^4 - 2a^2 + 9}}{2}$ and $\lambda_3 = \frac{a^2 + 1 - \sqrt{a^4 - 2a^2 + 9}}{2}$

An eigenvector associated to the eigenvalues $\lambda_1 = a^2$ is $\vec{v}_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

For $\lambda_2 = \frac{a^2 + 1 + \sqrt{a^4 - 2a^2 + 9}}{2}$, one has

$$\begin{pmatrix} A - \lambda_2 I \\ I \end{pmatrix} = \begin{pmatrix} \frac{1 - a^2 - \sqrt{a^4 - 2a^2 + 9}}{2} & -1 & -1 \\ -1 & \frac{a^2 - 1 - \sqrt{a^4 - 2a^2 + 9}}{2} & 0 \\ -1 & 0 & \frac{a^2 - 1 - \sqrt{a^4 - 2a^2 + 9}}{2} \\ & & & \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

It follows that an eigenvector associated to the eigenvalue $\lambda_2 = \frac{a^2 + 1 + \sqrt{a^4 - 2a^2 + 9}}{2}$ is

-110

0

$$s \vec{v}_2 = \begin{pmatrix} \frac{2}{1-a^2 - \sqrt{a^4 - 2a^2 + 9}} \\ \frac{1-a^2 - \sqrt{a^4 - 2a^2 + 9}}{2} \end{pmatrix}$$
$$\begin{pmatrix} 2\\ \frac{1-a^2 + \sqrt{a^4 - 2a^2 + 9}}{2} \\ \frac{1-a^2 + \sqrt{a^4 - 2a^2 + 9}}{2} \end{pmatrix}.$$

For $\lambda_3 = \frac{a^2 + 1 - \sqrt{a^4 - 2a^2 + 9}}{2}$, one finds similarly that an eigenvector is given by $\vec{v}_3 =$

Exercise 4 Find an invertible matrix P such that $B = PAP^{-1}$ is diagonal, and write the corresponding matrix B, for the following matrices A:

$$\left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & -4 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 4 \\ 0 & 7 & -2 \\ 4 & -2 & 0 \end{array}\right).$$

Solution of Exercise 4

1. Consider the first matrix

$$A = \left(\begin{array}{rrr} 2 & 0 & 0\\ 0 & 1 & -4\\ 0 & -4 & 1 \end{array}\right).$$

One has

$$\det (A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & -4 \\ 0 & -4 & 1 - \lambda \end{vmatrix} = (2 - \lambda) \left((1 - \lambda)^2 - 16 \right)$$
$$= (2 - \lambda) \left(\lambda^2 - 2\lambda - 15 \right) = (2 - \lambda) (\lambda - 5) (\lambda + 3).$$

It follows that the eigenvalues of the first matrix are $\lambda_1 = 2$, $\lambda_2 = 5$ and $\lambda_3 = -3$. An eigenvector associated to $\lambda_1 = 2$ is $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Moreover one has

$$A - 5I = \left(\begin{array}{rrr} -3 & 0 & 0\\ 0 & -4 & -4\\ 0 & -4 & -4 \end{array}\right),$$

hence an eigenvector associated to $\lambda_2 = 5$ is $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. Similarly, since

$$A + 3I = \left(\begin{array}{rrrr} 5 & 0 & 0 \\ 0 & 4 & -4 \\ 0 & -4 & 4 \end{array}\right),$$

an eigenvector associated to $\lambda_3 = -3$ is $\vec{v}_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$. The matrix of coordinate change from the canonical basis of \mathbb{R}^3 to the basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is

$$P = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 0 & 1 & 1\\ 0 & -1 & 1 \end{array}\right).$$

Using the change of coordinates formula, one obtains $B = P^{-1}AP$ with $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{pmatrix}$.

2. Consider the second matrix

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

One has

det
$$(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 - (1 - \lambda) = \lambda(1 - \lambda)(\lambda - 2).$$

Hence the eigenvalues of the second matrix are $\lambda_1 = 0$, $\lambda_2 = 1$ and $\lambda_3 = 2$. A non-trivial vector in the kernel of A is $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. An eigenvector associated to $\lambda_2 = 1$ is $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Finally, an

eigenvector associated to $\lambda_3 = 2$ is $\vec{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. The matrix of coordinate change from the canonical basis of \mathbb{R}^3 to the basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is

$$P = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right).$$

Using the change of coordinates formula, one obtains $B = P^{-1}AP$ with $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

3. Consider the third matrix

$$\left(\begin{array}{rrrr} 1 & 0 & 4 \\ 0 & 7 & -2 \\ 4 & -2 & 0 \end{array}\right).$$

Using Exercise 3, one has $A = PBP^{-1}$ with

$$P = \begin{pmatrix} 4 & -20 - 4\sqrt{33} & -20 + 4\sqrt{33} \\ 2 & -2 + 2\sqrt{33} & -2 - 2\sqrt{33} \\ 3 & 28 + 4\sqrt{33} & 28 - 4\sqrt{33} \end{pmatrix}$$

and

$$B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 - \sqrt{33} & 0 \\ 0 & 0 & 2 + \sqrt{33} \end{pmatrix}$$

Exercise 5 (DS mai 2008) Consider the matrix

$$A = \left(\begin{array}{rrrr} 7 & 3 & -9 \\ -2 & -1 & 2 \\ 2 & -1 & -4 \end{array}\right)$$

which represents an endomorphism f of \mathbb{R}^3 expressed in the canonical basis $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$.

- 1. (a) Show that the eigenvalues of A are $\lambda_1 = -2$, $\lambda_2 = 1$ and $\lambda_3 = 3$.
 - (b) Why can we diagonalize A?
- 2. (a) Determine a basis $\mathcal{B}' = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ of eigenvectors such that the matrix of f in the basis \mathcal{B}' is

$$D = \left(\begin{array}{ccc} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{array}\right).$$

- (b) Give the matrix P of coordinate change from the basis \mathcal{B} to the basis \mathcal{B}' ; what is the relation between A, P, P^{-1} and D?
- 3. Show that for any integer $n \in \mathbb{N}$, one has $A^n = PD^nP^{-1}$.
- 4. After having given D^n , compute A^n for all $n \in \mathbb{N}$.

Solution of Exercise 5

1. (a) Let us compute the eigenvalues of A. One has

det
$$(A - \lambda I) = \begin{vmatrix} 7 - \lambda & 3 & -9 \\ -2 & -1 - \lambda & 2 \\ 2 & -1 & -4 - \lambda \end{vmatrix} = -\lambda^3 + 2\lambda^2 + 5\lambda - 6 = (\lambda + 2)(1 - \lambda)(\lambda - 3).$$

It follows that the eigenvalues of A are $\lambda_1 = -2$, $\lambda_2 = 1$ and $\lambda_3 = 3$.

(b) Since the eigenvalues of A are real and distinct, A is diagonalizable over \mathbb{R} .

2. (a) One has

$$A + 2I = \left(\begin{array}{rrr} 9 & 3 & -9 \\ -2 & 1 & 2 \\ 2 & -1 & -2 \end{array}\right)$$

It follows that the vector $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is an eigenvector associated to the eigenvalue $\lambda_1 = -2$.

For $\lambda_2 = 1$, one has

$$A - I = \begin{pmatrix} 6 & 3 & -9 \\ -2 & -2 & 2 \\ 2 & -1 & -5 \end{pmatrix}$$

One finds that the eigenspace associated to $\lambda_2 = 1$ is generated by $\vec{v}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

Finally, for $\lambda_3 = 3$, one obtains

$$A - 3I = \begin{pmatrix} 4 & 3 & -9 \\ -2 & -4 & 2 \\ 2 & -1 & -7 \end{pmatrix},$$

and one finds $\vec{v}_3 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$ as eigenvector associated to $\lambda_3 = 3$. Consequently, the basis $\mathcal{B}' = \left\{ \vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \right\}$ is a basis of eigenvectors and the matrix

of f in this basis is

$$D = \left(\begin{array}{ccc} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array} \right).$$

(b) The matrix P of coordinate change from the basis \mathcal{B} to the basis \mathcal{B}' is

$$P = \left(\begin{array}{rrrr} 1 & 2 & 3\\ 0 & -1 & -1\\ 1 & 1 & 1 \end{array}\right).$$

The relationship between A, P, P^{-1} and D is $D = P^{-1}AP$.

- 3. We will show by induction that for any integer $n \in \mathbb{N}^*$, one has $A^n = PD^nP^{-1}$.
 - We will initialize the induction with n = 1. By the previous question, one has $D = P^{-1}AP$. Multiplying this identity by P^{-1} to the left and by P to the right, it follows that $PDP^{-1} = PP^{-1}APP^{-1} = A$. Hence the relation is satisfied for n = 0.
 - Suppose that, for a given rank k, the relation $A^k = PD^kP^{-1}$ is satisfied. Let us show that the relation is satisfied for the rank k + 1. One has

$$A^{k+1} = A^k A = P D^k P^{-1} A$$

by the induction hypothesis. Moreover, by the first step, one has $A = PDP^{-1}$. It follows that

$$A^{k+1} = PD^k P^{-1} PDP^{-1}.$$

Using $P^{-1}P = I$ and ID = D, one has

$$A^{k+1} = PD^kDP^{-1} = PD^{k+1}P^{-1}.$$

Consequently, the identity $A^k = PD^kP^{-1}$ for a given k implies the identity $A^{k+1} = PD^{k+1}P^{-1}$ for the rank k + 1.

- By induction, the relationship $A^n = PD^nP^{-1}$ is satisfied for any integer $n \ge 1$.
- 4. One has

$$D^{n} = \begin{pmatrix} (-2)^{n} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 3^{n} \end{pmatrix}.$$
$$P^{-1} = \begin{pmatrix} 0 & 1 & 1\\ -1 & -2 & 1\\ 1 & 1 & -1 \end{pmatrix}.$$

It follows that

The inverse matrix of P is

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & -2 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -2 + 3^{n+1} & (-2)^{n} - 4 + 3^{n+1} & (-2)^{n} + 2 - 3^{n+1} \\ 1 - 3^{n} & 2 - 3^{n} & -1 + 3^{n} \\ -1 + 3^{n} & (-2)^{n} - 2 + 3^{n} & (-2)^{n} + 1 - 3^{n} \end{pmatrix}.$$
Exercise 6 (DS mai 2008) Consider the matrix $A = \begin{pmatrix} -3 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$

- 1. Compute the eigenvalues of A.
- 2. (a) Give a basis and the dimension of each eigenspace of A.
 - (b) A is diagonalizable; justify this claim and diagonalize A.

Solution of Exercise 6

1. Let us compute the eigenvalues of A. One has

det
$$(A - \lambda I) = \begin{vmatrix} -3 - \lambda & -2 & -2 \\ 2 & 1 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda + 1)^2.$$

It follows that $\lambda_1 = 1$ is a simple eigenvalue, and $\lambda_2 = -1$ is an eigenvalue with multiplicity 2. 2. (a) Consider

$$A + I = \begin{pmatrix} -2 & -2 & -2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

The vectors $\vec{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ and $\vec{v}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ form a basis of the eigenspace associated to $\lambda_2 = -1$. The dimension of this eigenspace is therefore 2.

Consider

$$A - I = \left(\begin{array}{rrr} -4 & -2 & -2\\ 2 & 0 & 2\\ 2 & 2 & 0 \end{array}\right)$$

One sees that the vector $\vec{v}_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ is an eigenvector associated to $\lambda_1 = 1$. The dimension of the eigenspace associated to $\lambda = 1$ is 1.

(b) Since the vectors $\vec{v}_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ and $\vec{v}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ form a basis of \mathbb{R}^3 (one can check for instance that det $(\vec{v}_1, \vec{v}_2, \vec{v}_3) \neq 0$), A is diagonalizable. In the basis $\mathcal{B}' = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$,

the matrix of the linear map whose matrix in the canonical basis of \mathbb{R}^3 is A is the following diagonal matrix

$$D = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

Exercise 7 Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ a' & b & 2 & 0 \\ a'' & b' & c & 2 \end{pmatrix}.$$

Under which conditions on the unknowns is the matrix A diagonalizable? These conditions being satisfied, give a basis of eigenvectors for A.

Solution of Exercise 7 : The eigenvalues of A are $\lambda_1 = 1$ with multiplicity 2, and $\lambda_2 = 2$ with multiplicity 2. One has

$$A - I = \begin{pmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ a' & b & 1 & 0 \\ a'' & b' & c & 1 \end{pmatrix}$$

The kernel of A - I is of dimension 2 if and only if a = 0. On the other hand, consider

$$A - 2I = \begin{pmatrix} -1 & 0 & 0 & 0\\ a & -1 & 0 & 0\\ a' & b & 0 & 0\\ a'' & b' & c & 0 \end{pmatrix}$$

The kernel of A - 2I is of dimension 2 if and only if c = 0. Consequently, A is diagonalizable if and only if a = c = 0. The vectors $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -a' \\ -a'' \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ -b \\ -b' \end{pmatrix}$ form a basis of the eigenspace associated to the

eigenvalue $\lambda_2 = 1$. The vectors $\vec{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $\vec{v}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ form a basis of the eigenspace associated to the eigenvalue $\lambda_2 = 2$.

the eigenvalue $\lambda_2 = 2$.