Eigenvalues and eigenvectors

Exercise 1 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map defined by

$$
f\binom{x}{y}=\frac{1}{5}\binom{3 x+4 y}{4 x-3 y} .
$$

(a) Write the matrix A of f in the canonical basis of \mathbb{R}^{2}.
(b) Show that the vector $\vec{v}_{1}=\binom{2}{1}$ is an eigenvector of f. What is the associated eigenvalue?
(c) Show that the vector $\vec{v}_{2}=\binom{-1}{2}$ is also an eigenvector of f. What is the associated eigenvalue?
(d) Using a picture, determine the image of the vector $\vec{v}_{3}=\binom{1}{3}$. Recover this result by a computation.
(e) Show that the family $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ forms a basis of \mathbb{R}^{2}.
(f) What is the matrix of f in the basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$? Denote it by D.
(g) Let P be the matrix whose first column is the vector \vec{v}_{1} and whose second column is the vector \vec{v}_{2}, expressed in the canonical basis of \mathbb{R}^{2}. Compute P^{-1}.
(h) What is the relationship between A, P, P^{-1} and D ?
(i) Compute A^{n}, for $n \in \mathbb{N}$.
2. Do the same exercise with $A=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$ and the vectors $\vec{v}_{1}=\binom{1}{1}, \vec{v}_{2}=\binom{0}{1}$ and $\vec{v}_{3}=$ $\binom{-1}{0}$.

Solution of Exercise 1:

1. (a) The matrix of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f\binom{x}{y}=\frac{1}{5}\binom{3 x+4 y}{4 x-3 y}$ in the canonical basis of \mathbb{R}^{2} is

$$
A=\frac{1}{5}\left(\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & -\frac{3}{5}
\end{array}\right)
$$

(b) Apply f to $\vec{v}_{1}=\binom{2}{1}$. One has

$$
f\left(\overrightarrow{v_{1}}\right)=\frac{1}{5}\binom{10}{5}=\binom{2}{1}=\vec{v}_{1}
$$

Consequently $\overrightarrow{v_{1}}$ is an eigenvector of f associated to the eigenvalue $\lambda_{1}=1$.
(c) One has

$$
f\left(\vec{v}_{2}\right)=A\binom{-1}{2}=\binom{1}{-2}=-\overrightarrow{v_{2}} .
$$

Hence \vec{v}_{2} is an eigenvector of f with eigenvalue $\lambda_{2}=-1$.
(d) One has $\vec{v}_{3}=\vec{v}_{1}+\vec{v}_{2}$. Therefore the image of \vec{v}_{3} by the linear map f is the sum of the images of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$:

$$
f\left(\overrightarrow{v_{3}}\right)=f\left(\overrightarrow{v_{1}}\right)+f\left(\overrightarrow{v_{2}}\right)=\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}=\vec{v}_{1}-\overrightarrow{v_{2}} .
$$

One obtains $f\left(\vec{v}_{3}\right)=\binom{3}{-1}$.
(e) One has

$$
\operatorname{det}\left(\vec{v}_{1}, \vec{v}_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)=5
$$

Since det $\left(\vec{v}_{1}, \vec{v}_{2}\right) \neq 0$, the family $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ forms a basis of \mathbb{R}^{2}.
(f) The matrix of f in the basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is

$$
D=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Note that f is the reflection (or axial symmetry) with respect to $\mathbb{R} \vec{v}_{1}$ parallel to $\mathbb{R} \vec{v}_{2}$. Moreover one can check that $\vec{v}_{1} \perp \vec{v}_{2}$, hence f is an orthogonal reflection.
(g) The inverse of the matrix

$$
P=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)
$$

is the matrix

$$
P^{-1}=\frac{1}{5}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) .
$$

(h) The relationship between A, P, P^{-1} and D is $D=P^{-1} A P$.
(i) One has $A^{n}=I$, for n even, and $A^{n}=A$ for n odd (here I denotes the identity matrix). This is coherent with the fact that f is a reflection.
2. (a) Let us apply A to $\vec{v}_{1}=\binom{1}{1}$. One has

$$
A \overrightarrow{v_{1}}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{2}=2 \vec{v}_{1} .
$$

Consequently $\overrightarrow{v_{1}}$ is an eigenvector of A associated to the eigenvalue $\lambda_{1}=2$.
(b) One has

$$
A \vec{v}_{2}=A\binom{0}{1}=\binom{0}{1}=\overrightarrow{v_{2}} .
$$

Hence \vec{v}_{2} is an eigenvector of A with eigenvalue $\lambda_{2}=1$.
(c) One has $\vec{v}_{3}=-\vec{v}_{1}+\vec{v}_{2}$. Therefore

$$
f\left(\vec{v}_{3}\right)=-f\left(\overrightarrow{v_{1}}\right)+f\left(\overrightarrow{v_{2}}\right)=-\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}=-2 \vec{v}_{1}+\overrightarrow{v_{2}} .
$$

One obtains $f\left(\vec{v}_{3}\right)=\binom{-2}{-1}$.
(d) One has det $\left(\vec{v}_{1}, \vec{v}_{2}\right)=\operatorname{det}\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)=1$. Since $\operatorname{det}\left(\vec{v}_{1}, \vec{v}_{2}\right) \neq 0$, the family $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ forms a basis of \mathbb{R}^{2}.
(e) The matrix of the linear map f associated to A, written in the basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, is

$$
D=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) .
$$

(f) The inverse of the matrix

$$
P=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

is the matrix

$$
P^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right)
$$

(g) The relationship between A, P, P^{-1} and D is $D=P^{-1} A P$, which is equivalent to $A=P D P^{-1}$.
(h) One has

$$
D^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 1
\end{array}\right)
$$

Moreover, for $n \in \mathbb{N}$, one has $A^{n}=P D^{n} P^{-1}$. Hence for $n \in \mathbb{N}$,

$$
A^{n}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2^{n} & 0 \\
2^{n}-1 & 1
\end{array}\right)
$$

Exercise 2 Determine the characteristic polynomial of the following matrices

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Solution of Exercise 2:

1. For the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

one has

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-1
$$

2. For the matrix

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

one has

$$
\operatorname{det}(B-\lambda I)=-\lambda^{3}+3 \lambda+2
$$

3. For the matrix

$$
C=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

one has

$$
\operatorname{det}(C-\lambda I)=\lambda^{4}-6 \lambda^{2}-8 \lambda-3
$$

Exercise 3 Find the eigenvalues and a basis of eigenvectors of the following matrices :

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 7 & -2 \\
4 & -2 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & a^{2} & 0 \\
-1 & 0 & a^{2}
\end{array}\right) \quad(a \neq 0)
$$

Solution of Exercise 3:

1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

One has
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & 1 & -1-\lambda\end{array}\right|=(1-\lambda)((1-\lambda)(-1-\lambda)-1)=(1-\lambda)(\lambda-\sqrt{2})(\lambda+\sqrt{2})$.
It follows that the eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=\sqrt{2}$ and $\lambda_{3}=-\sqrt{2}$. An eigenvector associated to the eigenvalue $\lambda_{1}=1$ is a nonzero element of the kernel of $A-\lambda_{1} I$. One has

$$
A-\lambda_{1} I=A-I=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -2
\end{array}\right)
$$

Therefore the vector $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is an eigenvector of A associated to the eigenvalue $\lambda_{1}=1$.
For $\lambda_{2}=\sqrt{2}$, one has

$$
A-\lambda_{2} I=A-\sqrt{2} I=\left(\begin{array}{ccc}
1-\sqrt{2} & 0 & 0 \\
0 & 1-\sqrt{2} & 1 \\
0 & 1 & -1-\sqrt{2}
\end{array}\right)
$$

Denoting by C_{1}, C_{2}, C_{3} the columns of the above matrix, one sees that $-C_{2}+(1-\sqrt{2}) C_{3}$ is the null-vector. Therefore the vector $\vec{v}_{2}=\left(\begin{array}{c}0 \\ -1 \\ 1-\sqrt{2}\end{array}\right)$ is an eigenvector of A associated to the eigenvalue $\lambda_{2}=\sqrt{2}$.

For $\lambda_{3}=-\sqrt{2}$, one has

$$
A-\lambda_{3} I=A+\sqrt{2} I=\left(\begin{array}{ccc}
1+\sqrt{2} & 0 & 0 \\
0 & 1+\sqrt{2} & 1 \\
0 & 1 & -1+\sqrt{2}
\end{array}\right)
$$

Denoting by C_{1}, C_{2}, C_{3} the columns of the above matrix, one sees that $-C_{2}+(1+\sqrt{2}) C_{3}$ is the nullvector. Therefore the vector $\vec{v}_{3}=\left(\begin{array}{c}0 \\ -1 \\ 1+\sqrt{2}\end{array}\right)$ is an eigenvector of A associated to the eigenvalue $\lambda_{3}=-\sqrt{2}$.
2. Consider the matrix

$$
B=\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 7 & -2 \\
4 & -2 & 0
\end{array}\right)
$$

Let us compute

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 0 & 4 \\
0 & 7-\lambda & -2 \\
4 & -2 & -\lambda
\end{array}\right|=(1-\lambda)(7-\lambda)(-\lambda)-16(7-\lambda)+4(1-\lambda) \\
=-\lambda^{3}-8 \lambda^{2}+13 \lambda-116=(\lambda-4)\left(-\lambda^{2}+4 \lambda+29\right)=-(\lambda-4)(\lambda-2-\sqrt{33})(\lambda-2+\sqrt{33}) .
\end{gathered}
$$

It follows that the eigenvalues of B are $\lambda_{1}=4, \lambda_{2}=2-\sqrt{33}$ and $\lambda_{3}=2+\sqrt{33}$.
For $\lambda_{1}=4$, one has

$$
\left.\binom{A-\lambda_{1} I}{I}=\begin{array}{c}
\left(\begin{array}{ccc}
-3 & 0 & 4 \\
0 & 3 & -2 \\
4 & -2 & -4
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \rightarrow \begin{array}{c}
C_{3} \leftarrow 3 C_{3}+4 C_{1} \\
\left(\begin{array}{ccc}
-3 & 0 & 0 \\
0 & 3 & -6 \\
4 & -2 & 4
\end{array}\right)
\end{array} \rightarrow \begin{array}{c}
C_{3} \leftarrow C_{3}+2 C_{2} \\
\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
\end{array} \begin{array}{ccc}
-3 & 0 & 0 \\
0 & 3 & 0 \\
4 & -2 & 0
\end{array}\right)
$$

It follows that the vector $\vec{v}_{1}=\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)$ is an eigenvector of B associated to the eigenvalue $\lambda_{1}=4$.
For $\lambda_{2}=2-\sqrt{33}$, one has

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ccc}
C_{3} \leftarrow(5+\sqrt{33}) C_{3}-(2-2 \sqrt{33}) C_{2} \\
-1+\sqrt{33} & 0 & 0 \\
0 & 5+\sqrt{33} & 0 \\
4 & -2 & 0 \\
& & \\
1 & 0 & -20-4 \sqrt{33} \\
0 & 1 & -2+2 \sqrt{33} \\
0 & 0 & 28+4 \sqrt{33}
\end{array}\right)
\end{aligned}
$$

Consequently, the vector $\vec{v}_{2}=\left(\begin{array}{c}-20-4 \sqrt{33} \\ -2+2 \sqrt{33} \\ 28+4 \sqrt{33}\end{array}\right)$ generates the eigenspace associated to the eigenvalue $\lambda_{2}=2-\sqrt{33}$.

The same computations with $\sqrt{33}$ instead of $-\sqrt{33}$ show that the vector $\vec{v}_{3}=\left(\begin{array}{c}-20+4 \sqrt{33} \\ -2-2 \sqrt{33} \\ 28-4 \sqrt{33}\end{array}\right)$ generates the eigenspace associated to the eigenvalue $\lambda_{3}=2+\sqrt{33}$.
3. Consider the matrix

$$
C=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & a^{2} & 0 \\
-1 & 0 & a^{2}
\end{array}\right) \quad(a \neq 0)
$$

One has

$$
\operatorname{det}(C-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & -1 & -1 \\
-1 & a^{2}-\lambda & 0 \\
-1 & 0 & a^{2}-\lambda
\end{array}\right|=\left(a^{2}-\lambda\right)\left(\lambda^{2}-\left(a^{1}+1\right) \lambda+a^{2}-2\right)
$$

$$
=\left(a^{2}-\lambda\right)\left(\lambda-\frac{a^{2}+1+\sqrt{a^{4}-2 a^{2}+9}}{2}\right)\left(\lambda-\frac{a^{2}+1-\sqrt{a^{4}-2 a^{2}+9}}{2}\right) .
$$

Therefore the eigenvalues of C are $\lambda_{1}=a^{2}, \lambda_{2}=\frac{a^{2}+1+\sqrt{a^{4}-2 a^{2}+9}}{2}$ and $\lambda_{3}=\frac{a^{2}+1-\sqrt{a^{4}-2 a^{2}+9}}{2}$.
An eigenvector associated to the eigenvalues $\lambda_{1}=a^{2}$ is $\vec{v}_{1}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
For $\lambda_{2}=\frac{a^{2}+1+\sqrt{a^{4}-2 a^{2}+9}}{2}$, one has

$$
\begin{aligned}
& \binom{A-\lambda_{2} I}{I}=\left(\begin{array}{ccc}
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} & -1 & -1 \\
-1 & \frac{a^{2}-1-\sqrt{a^{4}-2 a^{2}+9}}{2} & 0 \\
-1 & 0 & \frac{a^{2}-1-\sqrt{a^{4}-2 a^{2}+9}}{2} \\
& & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& C_{2} \leftarrow \frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} C_{2}+C_{1} \\
& C_{3} \leftarrow \frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} C_{3}+C_{1} \\
& \rightarrow\left(\begin{array}{c}
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} \\
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right. \\
& \begin{array}{l}
0 \\
1 \\
-1 \\
\\
1 \\
\frac{\sqrt{a^{4}-2 a^{2}+9}}{2} \\
0
\end{array} \\
& C_{3} \leftarrow C_{3}+C_{2} \\
& \rightarrow\left(\begin{array}{c}
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} \\
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right. \\
& \begin{array}{c}
1 \\
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} \\
0
\end{array} \\
& \left.\begin{array}{c}
0 \\
-1 \\
1 \\
1 \\
0 \\
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2}
\end{array}\right) \\
& \left.\begin{array}{c}
0 \\
0 \\
0 \\
2 \\
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} \\
\frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2}
\end{array}\right)
\end{aligned}
$$

It follows that an eigenvector associated to the eigenvalue $\lambda_{2}=\frac{a^{2}+1+\sqrt{a^{4}-2 a^{2}+9}}{2}$ is $\vec{v}_{2}=\left(\begin{array}{c}2 \\ \frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2} \\ \frac{1-a^{2}-\sqrt{a^{4}-2 a^{2}+9}}{2}\end{array}\right)$.
For $\lambda_{3}=\frac{a^{2}+1-\sqrt{a^{4}-2 a^{2}+9}}{2}$, one finds similarly that an eigenvector is given by $\vec{v}_{3}=\left(\begin{array}{c}2 \\ \frac{1-a^{2}+\sqrt{a^{4}-2 a^{2}+9}}{2} \\ \frac{1-a^{2}+\sqrt{a^{4}-2 a^{2}+9}}{2}\end{array}\right)$.
Exercise 4 Find an invertible matrix P such that $B=P A P^{-1}$ is diagonal, and write the corresponding matrix B, for the following matrices A :

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & -4 \\
0 & -4 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 7 & -2 \\
4 & -2 & 0
\end{array}\right)
$$

1. Consider the first matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & -4 \\
0 & -4 & 1
\end{array}\right)
$$

One has

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & -4 \\
0 & -4 & 1-\lambda
\end{array}\right|=(2-\lambda)\left((1-\lambda)^{2}-16\right) \\
& =(2-\lambda)\left(\lambda^{2}-2 \lambda-15\right)=(2-\lambda)(\lambda-5)(\lambda+3)
\end{aligned}
$$

It follows that the eigenvalues of the first matrix are $\lambda_{1}=2, \lambda_{2}=5$ and $\lambda_{3}=-3$. An eigenvector associated to $\lambda_{1}=2$ is $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Moreover one has

$$
A-5 I=\left(\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -4 & -4 \\
0 & -4 & -4
\end{array}\right)
$$

hence an eigenvector associated to $\lambda_{2}=5$ is $\vec{v}_{2}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$. Similarly, since

$$
A+3 I=\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & 4 & -4 \\
0 & -4 & 4
\end{array}\right)
$$

an eigenvector associated to $\lambda_{3}=-3$ is $\vec{v}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. The matrix of coordinate change from the canonical basis of \mathbb{R}^{3} to the basis $\left\{\vec{v}_{1}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

Using the change of coordinates formula, one obtains $B=P^{-1} A P$ with $B=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3\end{array}\right)$.
2. Consider the second matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

One has

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right|=(1-\lambda)^{3}-(1-\lambda)=\lambda(1-\lambda)(\lambda-2) .
$$

Hence the eigenvalues of the second matrix are $\lambda_{1}=0, \lambda_{2}=1$ and $\lambda_{3}=2$. A non-trivial vector in the kernel of A is $\vec{v}_{1}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. An eigenvector associated to $\lambda_{2}=1$ is $\vec{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. Finally, an
eigenvector associated to $\lambda_{3}=2$ is $\vec{v}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. The matrix of coordinate change from the canonical basis of \mathbb{R}^{3} to the basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is

$$
P=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) .
$$

Using the change of coordinates formula, one obtains $B=P^{-1} A P$ with $B=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
3. Consider the third matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 7 & -2 \\
4 & -2 & 0
\end{array}\right)
$$

Using Exercise 3, one has $A=P B P^{-1}$ with

$$
P=\left(\begin{array}{ccc}
4 & -20-4 \sqrt{33} & -20+4 \sqrt{33} \\
2 & -2+2 \sqrt{33} & -2-2 \sqrt{33} \\
3 & 28+4 \sqrt{33} & 28-4 \sqrt{33}
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 2-\sqrt{33} & 0 \\
0 & 0 & 2+\sqrt{33}
\end{array}\right) .
$$

Exercise 5 (DS mai 2008) Consider the matrix

$$
A=\left(\begin{array}{ccc}
7 & 3 & -9 \\
-2 & -1 & 2 \\
2 & -1 & -4
\end{array}\right)
$$

which represents an endomorphism f of \mathbb{R}^{3} expressed in the canonical basis $\mathcal{B}=\{\vec{i}, \vec{j}, \vec{k}\}$.

1. (a) Show that the eigenvalues of A are $\lambda_{1}=-2, \lambda_{2}=1$ and $\lambda_{3}=3$.
(b) Why can we diagonalize A ?
2. (a) Determine a basis $\mathcal{B}^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ of eigenvectors such that the matrix of f in the basis \mathcal{B}^{\prime} is

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

(b) Give the matrix P of coordinate change from the basis \mathcal{B} to the basis \mathcal{B}^{\prime}; what is the relation between A, P, P^{-1} and D ?
3. Show that for any integer $n \in \mathbb{N}$, one has $A^{n}=P D^{n} P^{-1}$.
4. After having given D^{n}, compute A^{n} for all $n \in \mathbb{N}$.

Solution of Exercise 5

1. (a) Let us compute the eigenvalues of A. One has

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
7-\lambda & 3 & -9 \\
-2 & -1-\lambda & 2 \\
2 & -1 & -4-\lambda
\end{array}\right|=-\lambda^{3}+2 \lambda^{2}+5 \lambda-6=(\lambda+2)(1-\lambda)(\lambda-3) .
$$

It follows that the eigenvalues of A are $\lambda_{1}=-2, \lambda_{2}=1$ and $\lambda_{3}=3$.
(b) Since the eigenvalues of A are real and distinct, A is diagonalizable over \mathbb{R}.
2. (a) One has

$$
A+2 I=\left(\begin{array}{ccc}
9 & 3 & -9 \\
-2 & 1 & 2 \\
2 & -1 & -2
\end{array}\right)
$$

It follows that the vector $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ is an eigenvector associated to the eigenvalue $\lambda_{1}=-2$. For $\lambda_{2}=1$, one has

$$
A-I=\left(\begin{array}{ccc}
6 & 3 & -9 \\
-2 & -2 & 2 \\
2 & -1 & -5
\end{array}\right)
$$

One finds that the eigenspace associated to $\lambda_{2}=1$ is generated by $\vec{v}_{2}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$.
Finally, for $\lambda_{3}=3$, one obtains

$$
A-3 I=\left(\begin{array}{ccc}
4 & 3 & -9 \\
-2 & -4 & 2 \\
2 & -1 & -7
\end{array}\right),
$$

and one finds $\vec{v}_{3}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$ as eigenvector associated to $\lambda_{3}=3$. Consequently, the basis $\mathcal{B}^{\prime}=\left\{\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)\right\}$ is a basis of eigenvectors and the matrix of f in this basis is

$$
D=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(b) The matrix P of coordinate change from the basis \mathcal{B} to the basis \mathcal{B}^{\prime} is

$$
P=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

The relationship between A, P, P^{-1} and D is $D=P^{-1} A P$.
3. We will show by induction that for any integer $n \in \mathbb{N}^{*}$, one has $A^{n}=P D^{n} P^{-1}$.

- We will initialize the induction with $n=1$. By the previous question, one has $D=P^{-1} A P$. Multiplying this identity by P^{-1} to the left and by P to the right, it follows that $P D P^{-1}=$ $P P^{-1} A P P^{-1}=A$. Hence the relation is satisfied for $n=0$.
- Suppose that, for a given rank k, the relation $A^{k}=P D^{k} P^{-1}$ is satisfied. Let us show that the relation is satisfied for the rank $k+1$. One has

$$
A^{k+1}=A^{k} A=P D^{k} P^{-1} A
$$

by the induction hypothesis. Moreover, by the first step, one has $A=P D P^{-1}$. It follows that

$$
A^{k+1}=P D^{k} P^{-1} P D P^{-1} .
$$

Using $P^{-1} P=I$ and $I D=D$, one has

$$
A^{k+1}=P D^{k} D P^{-1}=P D^{k+1} P^{-1}
$$

Consequently, the identity $A^{k}=P D^{k} P^{-1}$ for a given k implies the identity $A^{k+1}=P D^{k+1} P^{-1}$ for the rank $k+1$.

- By induction, the relationship $A^{n}=P D^{n} P^{-1}$ is satisfied for any integer $n \geq 1$.

4. One has

$$
D^{n}=\left(\begin{array}{ccc}
(-2)^{n} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3^{n}
\end{array}\right)
$$

The inverse matrix of P is

$$
P^{-1}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & -2 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

It follows that

$$
\begin{gathered}
A^{n}=P D^{n} P^{-1}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
(-2)^{n} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3^{n}
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & -2 & 1 \\
1 & 1 & -1
\end{array}\right) \\
=\left(\begin{array}{ccc}
-2+3^{n+1} & (-2)^{n}-4+3^{n+1} & (-2)^{n}+2-3^{n+1} \\
1-3^{n} & 2-3^{n} & -1+3^{n} \\
-1+3^{n} & (-2)^{n}-2+3^{n} & (-2)^{n}+1-3^{n}
\end{array}\right)
\end{gathered}
$$

Exercise 6 (DS mai 2008) Consider the matrix $A=\left(\begin{array}{ccc}-3 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$.

1. Compute the eigenvalues of A.
2. (a) Give a basis and the dimension of each eigenspace of A.
(b) A is diagonalizable; justify this claim and diagonalize A.

Solution of Exercise 6

1. Let us compute the eigenvalues of A. One has

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-3-\lambda & -2 & -2 \\
2 & 1-\lambda & 2 \\
2 & 2 & 1-\lambda
\end{array}\right|=-(\lambda-1)(\lambda+1)^{2}
$$

It follows that $\lambda_{1}=1$ is a simple eigenvalue, and $\lambda_{2}=-1$ is an eigenvalue with multiplicity 2 .
2. (a) Consider

$$
A+I=\left(\begin{array}{ccc}
-2 & -2 & -2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right)
$$

The vectors $\vec{v}_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and $\vec{v}_{3}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ form a basis of the eigenspace associated to $\lambda_{2}=-1$. The dimension of this eigenspace is therefore 2 .

Consider

$$
A-I=\left(\begin{array}{ccc}
-4 & -2 & -2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)
$$

One sees that the vector $\vec{v}_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is an eigenvector associated to $\lambda_{1}=1$. The dimension of the eigenspace associated to $\lambda=1$ is 1 .
(b) Since the vectors $\vec{v}_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and $\vec{v}_{3}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ form a basis of \mathbb{R}^{3} (one can check for instance that $\left.\operatorname{det}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right) \neq 0\right), A$ is diagonalizable. In the basis $\mathcal{B}^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, the matrix of the linear map whose matrix in the canonical basis of \mathbb{R}^{3} is A is the following diagonal matrix

$$
D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Exercise 7 Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
a & 1 & 0 & 0 \\
a^{\prime} & b & 2 & 0 \\
a^{\prime \prime} & b^{\prime} & c & 2
\end{array}\right)
$$

Under which conditions on the unknowns is the matrix A diagonalizable? These conditions being satisfied, give a basis of eigenvectors for A.

Solution of Exercise 7 : The eigenvalues of A are $\lambda_{1}=1$ with multiplicity 2, and $\lambda_{2}=2$ with multiplicity 2. One has

$$
A-I=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
a^{\prime} & b & 1 & 0 \\
a^{\prime \prime} & b^{\prime} & c & 1
\end{array}\right)
$$

The kernel of $A-I$ is of dimension 2 if and only if $a=0$. On the other hand, consider

$$
A-2 I=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
a & -1 & 0 & 0 \\
a^{\prime} & b & 0 & 0 \\
a^{\prime \prime} & b^{\prime} & c & 0
\end{array}\right)
$$

The kernel of $A-2 I$ is of dimension 2 if and only if $c=0$. Consequently, A is diagonalizable if and only if $a=c=0$. The vectors $\vec{v}_{1}=\left(\begin{array}{c}1 \\ 0 \\ -a^{\prime} \\ -a^{\prime \prime}\end{array}\right)$ and $\vec{v}_{2}=\left(\begin{array}{c}0 \\ 1 \\ -b \\ -b^{\prime}\end{array}\right)$ form a basis of the eigenspace associated to the eigenvalue $\lambda_{2}=1$. The vectors $\vec{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $\vec{v}_{4}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$ form a basis of the eigenspace associated to the eigenvalue $\lambda_{2}=2$.

