
University of Lille I
PC first year list of exercises n◦ 4

Matrix calculus

Exercise 1 Let us consider the following matrices :

A =

 1 2 −1
2 3 −2
0 0 0

 ; B =

 1 0 −1
2 0 4
1 0 −2

 ; C =

 2 −2
1 1
3 1

 ; D =

 2
1
3

 ; E =
(

0 1 2
)
.

Compute, when they make sense, the following products : AB, BA, AC, CA, AD, AE, BC, BD, BE,
CD, DE.

Solution of Exercise 1 :
Let us first recall that a product AB of two matrices A and B is well-defined if and only if the number of
columns in A is equal to the number of lines in B. Therefore, the products CA, AE, BE and CD are not
defined.

The general formula for the product of a matrix A = (aij)1≤i≤p,1≤j≤n with a matrix B = (bkl)1≤k≤n,1≤l≤m
is the following : C = AB is a matrix of size (p, m) whose coefficients are : cil =

∑n
k=1 aikbkl (the first

index i is for the lines, 1 ≤ i ≤ p, the second is for the columns, 1 ≤ l ≤ m).

For example, with the matrices A and B given in the exercise, we have p = 3 (the number of lines in A),
n = 3 (the numbers of columns in A and the number of lines in B), m = 3 (the numbers of columns in
B), and the third coefficient on the first line of the product AB is

c13 =
3∑

k=1

a1kbk3 = a11b13 + a12b23 + a13b33 = 1× (−1) + 2× 4 + (−1)× (−2) = 9.

One obtains the following results :

AB =

 4 0 9
6 0 14
0 0 0

 BA =

 1 2 −1
2 4 −2
1 2 −1

 AC =

 1 −1
1 −3
0 0

 AD =

 1
1
0



BC =

 −1 −3
16 0
−4 −4

 BD =

 −1
16
−4

 DE =

 0 2 4
0 1 2
0 3 6

 .

Moreover ED = 7.

Exercise 2 Consider the following matrices :

A =

 2 5 −1
0 1 3
0 −2 4

 ; B =

 1 7 −1
2 3 4
0 0 0

 ; C =

 1 2
0 4
−1 0

 .

Compute : (A− 2B)C, CTA, CTB, CT (AT − 2BT ), where MT denotes the transpose of M .
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Solution of Exercise 2 : One has :

A− 2B =

 0 −9 1
−4 −5 −5
0 −2 4

 (A− 2B)C =

 −1 −36
1 −28
−4 −8

 .

CT =
(

1 0 −1
2 4 0

)
CTA =

(
2 7 −5
4 14 10

)
CTB =

(
1 7 −1
10 26 14

)

AT − 2BT = (A− 2B)T =

 0 −4 0
−9 −5 −2
1 −5 4

 CT (AT − 2BT ) =
(
−1 1 −4
−36 −28 −8

)

As expected, we verify that CT (AT − 2BT ) =
(
(A− 2B)C

)T
Exercise 3 Compute An for all n ∈ Z, with successively

A =
(

cos(a) − sin(a)
sin(a) cos(a)

)
,

(
cosh(a) sinh(a)
sinh(a) cosh(a)

)
.

Solution of Exercise 3 : Using the trigonometric formulas

cos(a + b) = cos(a) cos(b)− sin(a) sin(b)
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)

(which we can recover by considering the real and imaginary parts of the equality ei(a+b) = eiaeib), we
obtain by induction on n :

An =
(

cos(na) − sin(na)
sin(na) cos(na)

)
.

Another way to obtain this result is the following : the matrix A is the matrix of the rotation of angle a
in the plane. Composing A with itself n-times gives the rotation of angle na.

Consider now the second matrix. Recall that cosh(a) = ea+ea

2 and sinh(a) = ea−e−a

2 ; in other words, cosh
is the even part of the exponential, and sinh is the odd part of the exponential. In particular, one has
cosh2(a)− sinh2(a) = 1. Using the formulas

cosh(a + b) = cosh(a) cosh(b) + sinh(a) sinh(b)
sinh(a + b) = sinh(a) cosh(b) + cosh(a) sinh(b)

(which we can recover by writing out everything in terms of the exponential function ), we obtain, again
by induction on n :

An =
(

cosh(na) sinh(na)
sinh(na) cosh(na)

)
.

Exercise 4 Are the following matrices invertible ? If so, compute their inverses. 1 2 3
2 3 1
3 1 2

 ,

 1 0 −1
2 0 1
1 1 3

 ,

 2 1 −1
0 3 0
0 2 1

 .

Solution of Exercise 4 : Let us apply the Gauss algorithm to the matrix obtained by juxtaposing to
the first matrix the identity matrix of the same size : 1 2 3 1 0 0

2 3 1 0 1 0
3 1 2 0 0 1

→
 1 2 3 1 0 0

0 −1 −5 −2 1 0
0 −5 −7 −3 0 1

 L1

L2 → L2 − 2L1

L3 → L3 − 3L1
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→

 1 2 3 1 0 0
0 −1 −5 −2 1 0
0 0 18 7 −5 1

 L1

L2

L3 → L3 − 5L2

On the left, we see a triangular matrix with nonzero diagonal coefficients. Hence the initial matrix is
invertible. To compute its inverse, one uses the operations of the Gauss algorithm to obtain the identity
matrix on the left. Once we have the identity matrix on the left, the inverse can be read on the right :

→

 1 2 3 1 0 0
0 1 5 2 −1 0
0 0 1 7

18 − 5
18

1
18

 L1

L2 → −L2

L3 → 1
18L3

→

 1 2 0 − 3
18

15
18 − 3

18
0 1 0 1

18
7
18 − 5

18
0 0 1 7

18 − 5
18

1
18

 L1 → L1 − 3L3

L2 → L2 − 5L3

L3

→

 1 0 0 − 5
18

1
18

7
18

0 1 0 1
18

7
18 − 5

18
0 0 1 7

18 − 5
18

1
18

 L1 → L1 − 2L2

L2

L3

Hence the inverse of the matrix A =

 1 2 3
2 3 1
3 1 2

 is A−1 =

 − 5
18

1
18

7
18

1
18

7
18 − 5

18
7
18 − 5

18
1
18

 = 1
18

 −5 1 7
1 7 −5
7 −5 1

 .

In the same manner, one obtains that the matrix B =

 1 0 −1
2 0 1
1 1 3

 is invertible, with inverse

B−1 =

 1
3

1
3 0

5
3

−4
3 1

−2
3

1
3 0

 =
1
3

 1 1 0
5 −4 3
−2 1 0

 .

The matrix C =

 2 1 −1
0 3 0
0 2 1

 is also invertible, with inverse C−1 =

 1
2 −1

2
1
2

0 1
3 0

0 −2
3 1


Exercise 5 Compute the inverses of the following matrices :

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1

 ,


1 a a2 a3

0 1 a a2

0 0 1 a
0 0 0 1

 ,


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

 .

Solution of Exercise 5 : The inverse of D =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1

 , is

D−1 =


1
2 0 0 1

2
0 1

2 0 −1
2

0 0 1
2 −1

2
1
2 −1

2 −1
2

1
2

 =
1
2


1 0 0 1
0 1 0 −1
0 0 1 −1
1 −1 −1 1

 .

The inverse of E =


1 a a2 a3

0 1 a a2

0 0 1 a
0 0 0 1

 , is E−1 =


1 −a 0 0
0 1 −a 0
0 0 1 −a
0 0 0 1

 .

The inverse of F =


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

 , is F−1 =


1 −2 1 0
0 1 −2 1
0 0 1 −2
0 0 0 1

 .
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Exercise 6 The exponential of a square matrix M is, by definition, the limit of the following sequence

eM = 1 + M +
M2

2!
+ · · · = lim

N→+∞

N∑
k=0

Mk

k!
.

One admits that this limit exists, by a theorem of Analysis.

1. Show that if AB = BA then eA+B = eAeB. One is allowed, to treat this question, to pass to the
limit without justification.

2. Compute eM for the four following matrices : a 0 0
0 b 0
0 0 c

 ,

 0 a b
0 0 c
0 0 0

 ,

(
0 1
−1 0

)
,

(
1 0
0 0

)
.

3. Find a simple example where eA+B 6= eAeB.

Solution of Exercise 6 :

1. Under the hypothesis that AB = BA, one has :

(A + B)n =
n∑
k=0

Ck
nA

kBn−k,

where Ck
n = n!

(n−k)!k! . Therefore

eA+B = limN→+∞
∑N

n=0
(A+B)n

n! = limN→+∞
∑N

n=0
1
n!

∑n
k=0

n!
(n−k)! k!A

kBn−k

= limN→+∞
∑N

n=0

∑n
k=0

Ak

k!
B(n−k)

(n−k)! .

On the other hand,

eAeB =

(
lim

N1→+∞

N1∑
k=0

Ak

k!

)
·

(
lim

N2→+∞

N2∑
l=0

Bl

l!

)
.

Under the hypothesis that these two limits exists, one has :

eAeB = lim
N1→+∞

lim
N2→+∞

N1∑
k=0

N2∑
l=0

AkBl

k! l!

Note that in this last expression the indices (k, l) take all values of N×N. Another way to count all
integers from N× N is to count the integers on the diagonal k + l = n and make this diagonal vary
from n = 0 to n = +∞. This gives rise to the following equalities :

eAeB = lim
N→+∞

N∑
n=0

n∑
k=0

Ak

k!
B(n−k)

(n− k)!
= eA+B.

2. Let A be the first matrix. One has :

An =

 an 0 0
0 bn 0
0 0 cn

 ,

therefore

eA =

 limN→+∞
∑N

n=0
an

n! 0 0
0 limN→+∞

∑N
n=0

bn

n! 0
0 0 limN→+∞

∑N
n=0

cn

n!

 =

 ea 0 0
0 eb 0
0 0 ec

 .
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Let us denote by B the second matrix. One has :

B2 =

 0 a b
0 0 c
0 0 0

2

=

 0 0 ac
0 0 0
0 0 0

 ,

and Bn = 0 for n ≥ 3. Therefore

eB = 1 + B +
B2

2!
=

 1 0 0
0 1 0
0 0 1

+

 0 a b
0 0 c
0 0 0

+
1
2

 0 0 ac
0 0 0
0 0 0

 =

 1 a ac
2 + b

0 1 c
0 0 1

 .

Denote by C the third matrix. It is the matrix of the rotation centered at the origin of angle −π
2 .

Since Cn is the matrix of the rotation centered at the origin of angle n× π
2 , one has :

C4k =
(

1 0
0 1

)
, C4k+1 = C =

(
0 1
−1 0

)
, C4k+2 = C2 =

(
−1 0
0 −1

)
, C4k+3 = C3 =

(
0 −1
1 0

)
.

Therefore

eC =
(

1 0
0 1

)
+

(
0 1
−1 0

)
+ 1

2!

(
−1 0
0 −1

)
+ 1

3!

(
0 −1
1 0

)
+ 1

4!

(
1 0
0 1

)
+ 1

5!

(
0 1
−1 0

)
+ 1

6!

(
−1 0
0 −1

)
+ 1

7!

(
0 −1
1 0

)
+ . . . + . . . + . . . + . . .

+ 1
(4k)!

(
1 0
0 1

)
+ 1

(4k+1)!

(
0 1
−1 0

)
+ 1

(4k+2)!

(
−1 0
0 −1

)
+ 1

(4k+3)!

(
0 −1
1 0

)
+ . . . + . . . + . . . + . . .

eC =

 limN→+∞
∑N

l=0
(−1)l

(2l)! limN→+∞
∑N

l=0
(−1)l

(2l+1)!

− limN→+∞
∑N

l=0
(−1)l

(2l+1)! limN→+∞
∑N

l=0
(−1)l

(2l)!

 =
(

cos 1 sin 1
− sin 1 cos 1

)
,

where we have used the series :

cos x = limN→+∞
∑N

l=0
(−1)lx2l

(2l)!

sin x = limN→+∞
∑N

l=0
(−1)lx2l+1

(2l+1)! .

Denoting by D the fourth matrix, D =
(

1 0
0 0

)
, one has :

eD =
(

e1 0
0 1

)
.

3. Consider the matrix E =
(

0 1
0 0

)
. One has ED =

(
0 0
0 0

)
6= DE =

(
0 1
0 0

)
. Moreover

D + E =
(

1 1
0 0

)
, and

(D + E)n =
(

1 1
0 0

)
.
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Therefore

eD+E =
(

1 0
0 1

)
+
(

1 1
0 0

)
+ 1

2!

(
1 1
0 0

)
+ · · ·+ 1

n!

(
1 1
0 0

)
+ . . .

=
(

e1 e1 − 1
0 1

) .

On the other hand,

eE =
(

1 0
0 1

)
+
(

0 1
0 0

)
=
(

1 1
0 1

)
and eDeE =

(
e1 0
0 1

)(
1 1
0 1

)
=
(

e1 e1

0 1

)
.
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