Linear maps - subvectorspaces of \mathbb{R}^{n}

Exercise 1 1. Endow \mathbb{R}^{2} with an orthonormal frame (O, \vec{i}, \vec{j}). Show that a linear map from \mathbb{R}^{2} to \mathbb{R}^{2} is uniquely determined by its values on the vectors \vec{i} and \vec{j}.
2. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the orthogonal symmetry with respect to the horizontal axis?
3. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the orthogonal projection to the horizontal axis?
4. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the rotation of angle θ and center O ?
5. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the homothety of center O and ratio k ?
6. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the symmetry of center O ?
7. Is a translation a linear map?

Solution of Exercise 1:

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map. Consider any vector \vec{v} in \mathbb{R}^{2}. Since $\{\vec{i}, \vec{j}\}$ is a basis of \mathbb{R}^{2}, \vec{v} can be uniquely written as: $\vec{v}=x \vec{i}+y \vec{j}$. By linearity of f, one has: $f(\vec{v})=f(x \vec{i}+y \vec{j})=x f(\vec{i})+y f(\vec{j})$. Therefore the values of f on the vectors \vec{i} and \vec{j}, determine the value of f on any vector of \mathbb{R}^{2}. Two linear maps taking the same values on \vec{i} and \vec{j} will coincide on \mathbb{R}^{2}.
2. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the orthogonal symmetry with respect to the horizontal axis is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
3. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the orthogonal projection to the horizontal axis is $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
4. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the rotation of angle θ and center O is $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
5. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the homothety of center O and ratio k is $\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right)$.
6. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the symmetry of center O is $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
7. A linear map f from \mathbb{R}^{n} into \mathbb{R}^{p} necessarily maps $\overrightarrow{0} \in \mathbb{R}^{n}$ onto $\overrightarrow{0} \in \mathbb{R}^{p}$. The translation by a given vector $\vec{u} \in \mathbb{R}^{2}$ takes $\vec{v} \in \mathbb{R}^{2}$ to $\vec{v}+\vec{u} \in \mathbb{R}^{2}$. In particular, the translation of vector \vec{u} takes $\overrightarrow{0} \in \mathbb{R}^{2}$ to $\vec{u} \in \mathbb{R}^{2}$. Therefore, if $\vec{u} \neq \overrightarrow{0}$, the translation of vector \vec{u} is not a linear map.

Exercise 2 Let f be the map from \mathbb{R}^{4} to \mathbb{R}^{4} defined by:

$$
f(x, y, z, t)=(x+y+z+t, x+y+z+t, x+y+z+t, 2 x+2 y+2 z+2 t) .
$$

1. Show that f is linear and write down its matrix in the canonical basis of \mathbb{R}^{4}.
2. Check that the vectors $\vec{a}=(1,-1,0,0), \vec{b}=(0,1,-1,0)$ and $\vec{c}=(0,0,1,-1)$ all belong to ker f.
3. Check that the vector $\vec{d}=(5,5,5,10)$ belongs to $\operatorname{Im} f$.

Solution of Exercise 2:

1. One has to verify that, for any vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ in \mathbb{R}^{4} and any $\lambda \in \mathbb{R}$, one has $f\left(\overrightarrow{v_{1}}+\lambda \overrightarrow{v_{2}}\right)=$ $f\left(\overrightarrow{v_{1}}\right)+\lambda f\left(\overrightarrow{v_{2}}\right)$. Denote by $\left(x_{1}, y_{1}, z_{1}, t_{1}\right)$ (resp. $\left.\left(x_{2}, y_{2}, z_{2}, t_{2}\right)\right)$ the coordinates of the vector $\overrightarrow{v_{1}}$ (resp. $\left.\overrightarrow{v_{2}}\right)$ in the canonical basis of \mathbb{R}^{4}. The coordinates of the vector $\overrightarrow{v_{1}}+\lambda \overrightarrow{v_{2}}$ are $\left(x_{1}+\lambda x_{2}, y_{1}+\lambda y_{2}, z_{1}+\right.$ $\left.\lambda z_{2}, t_{1}+\lambda t_{2}\right)$. Therefore, using the formula that defines the map f, one has:

$$
\begin{aligned}
f\left(\overrightarrow{v_{1}}+\lambda \overrightarrow{v_{2}}\right) & =f\left(x_{1}+\lambda x_{2}, y_{1}+\lambda y_{2}, z_{1}+\lambda z_{2}, t_{1}+\lambda t_{2}\right) \\
& =\left(\begin{array}{c}
x_{1}+\lambda x_{2}+y_{1}+\lambda y_{2}+z_{1}+\lambda z_{2}+t_{1}+\lambda t_{2} \\
x_{1}+\lambda x_{2}+y_{1}+\lambda y_{2}+z_{1}+\lambda z_{2}+t_{1}+\lambda t_{2} \\
x_{1}+\lambda x_{2}+y_{1}+\lambda y_{2}+z_{1}+\lambda z_{2}+t_{1}+\lambda t_{2} \\
2\left(x_{1}+\lambda x_{2}\right)+2\left(y_{1}+\lambda y_{2}\right)+2\left(z_{1}+\lambda z_{2}\right)+2\left(t_{1}+\lambda t_{2}\right)
\end{array}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
f\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{c}
x_{1}+y_{1}+z_{1}+t_{1} \\
x_{1}+y_{1}+z_{1}+t_{1} \\
x_{1}+y_{1}+z_{1}+t_{1} \\
2 x_{1}+2 y_{1}+2 z_{1}+2 t_{1}
\end{array}\right) ; \quad f\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{c}
x_{2}+y_{2}+z_{2}+t_{2} \\
x_{2}+y_{2}+z_{2}+t_{2} \\
x_{2}+y_{2}+z_{2}+t_{2} \\
2 x_{2}+2 y_{2}+2 z_{2}+2 t_{2}
\end{array}\right) ; \\
\lambda f\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{c}
\lambda\left(x_{2}+y_{2}+z_{2}+t_{2}\right) \\
\lambda\left(x_{2}+y_{2}+z_{2}+t_{2}\right) \\
\lambda\left(x_{2}+y_{2}+z_{2}+t_{2}\right) \\
\lambda\left(2 x_{2}+2 y_{2}+2 z_{2}+2 t_{2}\right)
\end{array}\right)
\end{gathered}
$$

and

$$
f\left(\overrightarrow{v_{1}}\right)+\lambda f\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{c}
x_{1}+y_{1}+z_{1}+t_{1}+\lambda\left(x_{2}+y_{2}+z_{2}+t_{2}\right) \\
x_{1}+y_{1}+z_{1}+t_{1}+\lambda\left(x_{2}+y_{2}+z_{2}+t_{2}\right) \\
x_{1}+y_{1}+z_{1}+t_{1}+\lambda\left(x_{2}+y_{2}+z_{2}+t_{2}\right) \\
2 x_{2}+2 y_{2}+2 z_{2}+2 t_{2}+\lambda\left(2 x_{2}+2 y_{2}+2 z_{2}+2 t_{2}\right)
\end{array}\right)
$$

By commutativity of the reals, one obtains $f\left(\overrightarrow{v_{1}}+\lambda \overrightarrow{v_{2}}\right)=f\left(\overrightarrow{v_{1}}\right)+\lambda f\left(\overrightarrow{v_{2}}\right)$.
The matrix of f in the canonical basis of \mathbb{R}^{4} is

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2
\end{array}\right)
$$

2. Let us compute the images of the vectors $\vec{a}=(1,-1,0,0), \vec{b}=(0,1,-1,0)$ and $\vec{c}=(0,0,1,-1)$. One has

$$
\begin{aligned}
& f(\vec{a})=f(1,-1,0,0)=(1-1,1-1,1-1,2-2)=(0,0,0,0) \\
& f(\vec{b})=f(0,1,-1,0)=(1-1,1-1,1-1,2-2)=(0,0,0,0) \\
& f(\vec{c})=f(0,0,1,-1)=(1-1,1-1,1-1,2-2)=(0,0,0,0)
\end{aligned}
$$

Therefore \vec{a}, \vec{b} and \vec{c} belong to $\operatorname{ker} f$.
3. Since the vector $\vec{d}=(5,5,5,10)$ is the image of the vector $(5,0,0,0), \vec{d}$ belongs to $\operatorname{Im} f$.

Exercise 3 Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by:

$$
f(x, y, z)=(x+2 y+z, 2 x+y+3 z,-x-y-z)
$$

1. Justify that f is linear.
2. Give the matrix of f in the canonical basis of \mathbb{R}^{3}.
3. (a) Determine a basis and the dimension of the kernel of f, denoted by $\operatorname{ker} f$.
(b) Is the map f injective?
4. (a) Give the rank of f and a basis of $\operatorname{Im} f$.
(b) Is the map f surjective?

Solution of Exercise 3:

1. One has to verify that, for any vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ in \mathbb{R}^{3} and any $\lambda \in \mathbb{R}$, one has $f\left(\overrightarrow{v_{1}}+\lambda \overrightarrow{v_{2}}\right)=$ $f\left(\overrightarrow{v_{1}}\right)+\lambda f\left(\overrightarrow{v_{2}}\right)$. It is the same kind of computation as in Exercise 2, question 1.
2. The matrix of f in the canonical basis of \mathbb{R}^{3} is

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 3 \\
-1 & -1 & -1
\end{array}\right)
$$

3. (a) The kernel of f, written ker f, is the set of vectors which are mapped onto $\overrightarrow{0}$ by f. Therefore, a vector $\vec{v}=(x, y, z) \in \mathbb{R}^{3}$ belongs to $\operatorname{ker} f$ if and only if (x, y, z) is a solution of the following system:

$$
\left\{\begin{array}{l}
x+2 y+z=0 \\
2 x+y+3 z=0 \\
-x-y-z=0
\end{array}\right.
$$

Applying the Gauss method, one obtains that the above system is equivalent to

$$
\Leftrightarrow\left\{\begin{array} { l }
{ x + 2 y + z = 0 } \\
{ - 3 y + 2 z = 0 } \\
{ - 3 y - 2 z = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+2 y+z=0 \\
-3 y+2 z=0 \\
4 z=0
\end{array}\right.\right.
$$

Therefore the unique solution of the system is $\vec{v}=\overrightarrow{0}$, and $\operatorname{ker} f=\{\overrightarrow{0}\}$. The dimension of $\operatorname{ker} f$ is therefore 0 . The empty set \emptyset is a basis of $\operatorname{ker} f$.
(b) For a linear map, being injective is equivalent to $\operatorname{ker} f=\{\overrightarrow{0}\}$. Hence, by the previous question, f is injective.
4. (a) There are many ways to answer this question. Recall that a vector $\vec{b} \in \mathbb{R}^{3}$ belongs to $\operatorname{Im} f$ if and only if there exists $\vec{v}=(x, y, z) \in \mathbb{R}^{3}$ such that $f(\vec{v})=\vec{b}$, or equivalently if \vec{b} is a linear combination of the columns of the matrix associated to f. According to the expression of the matrix associated to f given in question 2 ., $\operatorname{Im} f$ is the vector space generated by the vectors $C_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), C_{2}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right), C_{3}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)$.
To find a basis of $\operatorname{Im} f$, one way is to apply Gauss algorithm to the matrix of f in order to trigonalize it. One finds:

$$
\left.\begin{array}{ccc}
C_{1} & C_{2} & C_{3} \\
\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 3 \\
-1 & -1 & -1
\end{array}\right)
\end{array} \quad \begin{array}{c}
C_{2} \leftarrow C_{2}-2 C_{1}
\end{array} \quad \begin{array}{c}
C_{3} \leftarrow C_{3}-C_{1}
\end{array} \quad \rightarrow \begin{array}{ccc}
1 & 0 & 0 \\
2 & -3 & 1 \\
-1 & 1 & 0
\end{array}\right) \quad \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & -3 & 0 \\
-1 & 1 & 1
\end{array}\right) .
$$

Since the vectors $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)$, and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ are column vectors of a triangular matrix, they are linearly independent. Since we applied the Gauss algorithm to the columns of the
matrix associated to f, they generate $\operatorname{Im} f$. Consequently they form a basis of $\operatorname{Im} f$ which is therefore equal to \mathbb{R}^{3}.
Another way to find a basis of $\operatorname{Im} f$, is to compute the determinant of the matrix associated to f. Since

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 3 \\
-1 & -1 & -1
\end{array}\right) \neq 0,
$$

the columns of this matrix are linearly independent. Therefore they form a basis of $\operatorname{Im} f$. A shorter way to answer this question, is to use Rank Theorem. Since f is an injective map from \mathbb{R}^{3} into \mathbb{R}^{3}, one has

$$
\operatorname{dim} \mathbb{R}^{3}=\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{Im} f \Leftrightarrow 3=0+\operatorname{dim} \operatorname{Im} f .
$$

Hence $\operatorname{Im} f=\mathbb{R}^{3}$ since the only subspace of dimension 3 of \mathbb{R}^{3} is \mathbb{R}^{3} itself. One concludes that the rank of f (which is by definition the dimension of $\operatorname{Im} f$) is 3 , and a basis of $\operatorname{Im} f$ is given, for example, by $\vec{i}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \vec{j}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\vec{k}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
(b) Recall that a map $f: E \rightarrow F$ is surjective if and only if $\operatorname{Im} f=F$. For a linear map, this is equivalent to $\operatorname{dim} \operatorname{Im} f=\operatorname{dim} F$. By the previous question, the map considered in this exercise is surjective.

Exercise 4 1. Let f be a surjective linear map from \mathbb{R}^{4} to \mathbb{R}^{2}. What is the dimension of the kernel of f ?
2. Let g be an injective map from \mathbb{R}^{26} to \mathbb{R}^{100}. What is the dimension of the image of g ?
3. Can there be a bijective linear map from \mathbb{R}^{50} to \mathbb{R}^{72} ?

Solution of Exercise 4:

1. By the Rank Theorem, $\operatorname{dim} \operatorname{ker} f=\operatorname{dim} \mathbb{R}^{4}-\operatorname{dim} \operatorname{Im} f$. Since f is supposed to be surjective, $\operatorname{dim} \operatorname{Im} f=2$. Therefore $\operatorname{dim} \operatorname{ker} f=4-2=2$.
2. By the Rank Theorem, $\operatorname{dim} \operatorname{Im} g=\operatorname{dim} \mathbb{R}^{26}-\operatorname{dim} \operatorname{ker} g$. Since g is supposed to be injective, dim ker $g=0$. Hence dim $\operatorname{Im} g=26$.
3. By the Rank Theorem, an injective map from \mathbb{R}^{50} to \mathbb{R}^{72} satisfies $\operatorname{dim} \operatorname{Im} f=50$. On the other hand, a surjective map from \mathbb{R}^{50} to \mathbb{R}^{72} satisfies $\operatorname{dim} \operatorname{Im} f=72$. Consequently a map from \mathbb{R}^{50} to \mathbb{R}^{72} can not be injective and surjective. Therefore there exists no bijective map from \mathbb{R}^{50} to \mathbb{R}^{72}.

Exercise 5 Consider the matrix

$$
A=\left(\begin{array}{rrr}
2 & 7 & 1 \\
-1 & 2 & 0 \\
3 & 5 & 1
\end{array}\right) .
$$

1. Compute a basis of the kernel of A.
2. Compute a basis of the image of A.

Solution of Exercise 5: We will answer both questions at the same time. To do so, we will apply the Gauss algorithm to the columns of the matrix A and I_{3} simultanously (here I_{3} denotes the identity matrix
of size $(3,3)$ having the same number of columns as $A)$.

$$
\begin{gathered}
\begin{array}{c}
C_{2} \leftarrow 2 C_{2}-7 C_{1} \\
C_{3} \leftarrow 2 C_{3}-C_{1}
\end{array} \\
I_{3}=\left(\begin{array}{rrr}
2 & 7 & 1 \\
-1 & 2 & 0 \\
3 & 5 & 1
\end{array}\right)
\end{gathered} \rightarrow\left(\begin{array}{ccc}
C_{3} \leftarrow 11 C_{3}-C_{2} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 11 & 1 \\
3 & -11 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 11 & 0 \\
3 & -11 & 0
\end{array}\right) .
$$

It follows that a basis of $\operatorname{Im} A$ is given by the vectors $\overrightarrow{v_{1}}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$ and $\overrightarrow{v_{2}}=\left(\begin{array}{c}0 \\ 11 \\ -11\end{array}\right)$. Indeed, the columns of the upper matrix still generate $\operatorname{Im} A$ since we obtained them by applying the Gauss algorithm to the columns of A. The third column of the upper matrix being equal to the null vector, we only consider the first two columns, namely the vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$. These two vectors are linearly independant since they are two columns of a triangular matrix.
On the other hand the kernel of A is generated by the vector $\vec{u}=\left(\begin{array}{c}-4 \\ -2 \\ 22\end{array}\right)$. Indeed, by the Rank Theorem $\operatorname{dim} \operatorname{ker} f=\operatorname{dim} \mathbb{R}^{3}-\operatorname{dim} \operatorname{Im} f=1$ since $\operatorname{dim} \operatorname{Im} f=2$. Moreover, one can verify that \vec{u} is a non-zero vector of ker f by:

$$
A \vec{u}=\left(\begin{array}{rrr}
2 & 7 & 1 \\
-1 & 2 & 0 \\
3 & 5 & 1
\end{array}\right)\left(\begin{array}{c}
-4 \\
-2 \\
22
\end{array}\right)=\left(\begin{array}{c}
-8-14+22=0 \\
4-4=0 \\
-12-10+22=0
\end{array}\right)
$$

Exercise 6 Consider the matrix

$$
B=\left(\begin{array}{rrrr}
1 & 2 & 3 & 1 \\
-1 & 2 & -1 & -3 \\
-3 & 5 & 2 & -3
\end{array}\right)
$$

1. Compute a basis of the kernel of B.
2. Compute a basis of the image of B.

Solution of Exercise 6: We use the same technique as in the previous exercise: the Gauss algorithm on the columns of the matrix B and I_{4} simultaneously (here I_{4} denotes the identity matrix having as many columns as B, namely 4 columns).

$$
\begin{aligned}
& C_{2} \leftarrow C_{2}-2 C_{1} \\
& C_{3} \leftarrow C_{3}-3 C_{1} \quad C_{3} \leftarrow 2 C_{3}-C_{2}
\end{aligned}
$$

Consequently, a basis of $\operatorname{Im} f$ is given by the three vectors $\overrightarrow{v_{1}}=\left(\begin{array}{c}1 \\ -1 \\ -3\end{array}\right), \overrightarrow{v_{2}}=\left(\begin{array}{c}0 \\ 4 \\ 11\end{array}\right)$ and $\overrightarrow{v_{3}}=\left(\begin{array}{c}0 \\ 0 \\ 11\end{array}\right)$.
A basis of ker f is given by the vector $\vec{u}=\left(\begin{array}{c}0 \\ 2 \\ -2 \\ 2\end{array}\right)$.

Exercise 7 Consider the matrix

$$
C=\left(\begin{array}{rrr}
-1 & 3 & 1 \\
1 & 2 & 0 \\
2 & -1 & -1 \\
2 & 4 & 0 \\
1 & 7 & 1
\end{array}\right)
$$

1. Compute a basis of the kernel of C.
2. Compute a basis of the image of C.

Solution of Exercise 7: One has

$$
\begin{aligned}
& C=\left(\begin{array}{rrr}
C_{2} \leftarrow C_{2}+3 C_{1} \\
C_{3} \leftarrow C_{3}+C_{1} \\
1 & 2 & 0 \\
2 & -1 & -1 \\
2 & 4 & 0 \\
1 & 7 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 5 & 1 \\
2 & 5 & 1 \\
2 & 10 & 2 \\
1 & 10 & 2
\end{array}\right) \quad \rightarrow\left(\begin{array}{l}
C_{3} \leftarrow 5 C_{3}-C_{2} \\
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 5 & 0 \\
2 & 5 & 0 \\
2 & 10 & 0 \\
1 & 10 & 0
\end{array}\right) .
\end{array}\right. \\
& I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 3 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{rrr}
1 & 3 & 2 \\
0 & 1 & -1 \\
0 & 0 & 5
\end{array}\right)
\end{aligned}
$$

Consequently a basis of $\operatorname{Im} f$ is given by the two vectors $\overrightarrow{v_{1}}=\left(\begin{array}{c}-1 \\ 1 \\ 2 \\ 2 \\ 1\end{array}\right)$ and $\overrightarrow{v_{2}}=\left(\begin{array}{c}0 \\ 5 \\ 5 \\ 10 \\ 10\end{array}\right)$. A basis of ker f is given by the vector $\vec{u}=\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)$.

