Linear maps – subvectorspaces of \mathbb{R}^n

- **Exercise 1** 1. Endow \mathbb{R}^2 with an orthonormal frame (O, \vec{i}, \vec{j}) . Show that a linear map from \mathbb{R}^2 to \mathbb{R}^2 is uniquely determined by its values on the vectors \vec{i} and \vec{j} .
 - 2. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the orthogonal symmetry with respect to the horizontal axis?
 - 3. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the orthogonal projection to the horizontal axis?
 - 4. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the rotation of angle θ and center O?
 - 5. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the homothety of center O and ratio k?
 - 6. In the basis $\{\vec{i}, \vec{j}\}$, what is the matrix of the symmetry of center O?
 - 7. Is a translation a linear map?

Solution of Exercise 1 :

- 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map. Consider any vector \vec{v} in \mathbb{R}^2 . Since $\{\vec{i}, \vec{j}\}$ is a basis of \mathbb{R}^2 , \vec{v} can be uniquely written as : $\vec{v} = x\vec{i} + y\vec{j}$. By linearity of f, one has : $f(\vec{v}) = f(x\vec{i} + y\vec{j}) = xf(\vec{i}) + yf(\vec{j})$. Therefore the values of f on the vectors \vec{i} and \vec{j} , determine the value of f on any vector of \mathbb{R}^2 . Two linear maps taking the same values on \vec{i} and \vec{j} will coincide on \mathbb{R}^2 .
- 2. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the orthogonal symmetry with respect to the horizontal axis is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 3. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the orthogonal projection to the horizontal axis is $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- 4. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the rotation of angle θ and center O is $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.
- 5. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the homothety of center *O* and ratio *k* is $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$.
- 6. In the basis $\{\vec{i}, \vec{j}\}$, the matrix of the symmetry of center O is $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 7. A linear map f from \mathbb{R}^n into \mathbb{R}^p necessarily maps $\vec{0} \in \mathbb{R}^n$ onto $\vec{0} \in \mathbb{R}^p$. The translation by a given vector $\vec{u} \in \mathbb{R}^2$ takes $\vec{v} \in \mathbb{R}^2$ to $\vec{v} + \vec{u} \in \mathbb{R}^2$. In particular, the translation of vector \vec{u} takes $\vec{0} \in \mathbb{R}^2$ to $\vec{u} \in \mathbb{R}^2$. Therefore, if $\vec{u} \neq \vec{0}$, the translation of vector \vec{u} is not a linear map.

Exercise 2 Let f be the map from \mathbb{R}^4 to \mathbb{R}^4 defined by:

$$f(x, y, z, t) = (x + y + z + t, x + y + z + t, x + y + z + t, 2x + 2y + 2z + 2t).$$

- 1. Show that f is linear and write down its matrix in the canonical basis of \mathbb{R}^4 .
- 2. Check that the vectors $\vec{a} = (1, -1, 0, 0), \vec{b} = (0, 1, -1, 0)$ and $\vec{c} = (0, 0, 1, -1)$ all belong to ker f.

3. Check that the vector $\vec{d} = (5, 5, 5, 10)$ belongs to Im f.

Solution of Exercise 2:

1. One has to verify that, for any vectors $\vec{v_1}$ and $\vec{v_2}$ in \mathbb{R}^4 and any $\lambda \in \mathbb{R}$, one has $f(\vec{v_1} + \lambda \vec{v_2}) = f(\vec{v_1}) + \lambda f(\vec{v_2})$. Denote by (x_1, y_1, z_1, t_1) (resp. (x_2, y_2, z_2, t_2)) the coordinates of the vector $\vec{v_1}$ (resp. $\vec{v_2}$) in the canonical basis of \mathbb{R}^4 . The coordinates of the vector $\vec{v_1} + \lambda \vec{v_2}$ are $(x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2, t_1 + \lambda t_2)$. Therefore, using the formula that defines the map f, one has:

$$f(\vec{v_1} + \lambda \vec{v_2}) = f(x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2, t_1 + \lambda t_2)$$
$$= \begin{pmatrix} x_1 + \lambda x_2 + y_1 + \lambda y_2 + z_1 + \lambda z_2 + t_1 + \lambda t_2 \\ x_1 + \lambda x_2 + y_1 + \lambda y_2 + z_1 + \lambda z_2 + t_1 + \lambda t_2 \\ x_1 + \lambda x_2 + y_1 + \lambda y_2 + z_1 + \lambda z_2 + t_1 + \lambda t_2 \\ 2(x_1 + \lambda x_2) + 2(y_1 + \lambda y_2) + 2(z_1 + \lambda z_2) + 2(t_1 + \lambda t_2) \end{pmatrix}$$

On the other hand,

$$f(\vec{v_1}) = \begin{pmatrix} x_1 + y_1 + z_1 + t_1 \\ x_1 + y_1 + z_1 + t_1 \\ x_1 + y_1 + z_1 + t_1 \\ 2x_1 + 2y_1 + 2z_1 + 2t_1 \end{pmatrix}; \quad f(\vec{v_2}) = \begin{pmatrix} x_2 + y_2 + z_2 + t_2 \\ x_2 + y_2 + z_2 + t_2 \\ 2x_2 + 2y_2 + 2z_2 + 2t_2 \\ 2x_2 + 2y_2 + 2z_2 + 2t_2 \end{pmatrix};$$

and

$$f(\vec{v_1}) + \lambda f(\vec{v_2}) = \begin{pmatrix} x_1 + y_1 + z_1 + t_1 + \lambda(x_2 + y_2 + z_2 + t_2) \\ x_1 + y_1 + z_1 + t_1 + \lambda(x_2 + y_2 + z_2 + t_2) \\ x_1 + y_1 + z_1 + t_1 + \lambda(x_2 + y_2 + z_2 + t_2) \\ 2x_2 + 2y_2 + 2z_2 + 2t_2 + \lambda(2x_2 + 2y_2 + 2z_2 + 2t_2) \end{pmatrix}$$

By commutativity of the reals, one obtains $f(\vec{v_1} + \lambda \vec{v_2}) = f(\vec{v_1}) + \lambda f(\vec{v_2})$. The matrix of f in the canonical basis of \mathbb{R}^4 is

2. Let us compute the images of the vectors $\vec{a} = (1, -1, 0, 0), \vec{b} = (0, 1, -1, 0)$ and $\vec{c} = (0, 0, 1, -1)$. One has $f(\vec{a}) = f(1, -1, 0, 0) = (1 - 1, 1 - 1, 1 - 1, 2 - 2) = (0, 0, 0, 0)$:

$$f(a) = f(1, -1, 0, 0) = (1 - 1, 1 - 1, 1 - 1, 2 - 2) = (0, 0, 0, 0);$$

$$f(\vec{b}) = f(0, 1, -1, 0) = (1 - 1, 1 - 1, 1 - 1, 2 - 2) = (0, 0, 0, 0);$$

$$f(\vec{c}) = f(0, 0, 1, -1) = (1 - 1, 1 - 1, 1 - 1, 2 - 2) = (0, 0, 0, 0).$$

Therefore \vec{a} , \vec{b} and \vec{c} belong to ker f.

3. Since the vector $\vec{d} = (5, 5, 5, 10)$ is the image of the vector (5, 0, 0, 0), \vec{d} belongs to Im f.

Exercise 3 Consider the map $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by:

$$f(x, y, z) = (x + 2y + z, 2x + y + 3z, -x - y - z).$$

1. Justify that f is linear.

- 2. Give the matrix of f in the canonical basis of \mathbb{R}^3 .
- 3. (a) Determine a basis and the dimension of the kernel of f, denoted by ker f.
 - (b) Is the map f injective?
- 4. (a) Give the rank of f and a basis of Im f.
 - (b) Is the map f surjective?

Solution of Exercise 3:

- 1. One has to verify that, for any vectors $\vec{v_1}$ and $\vec{v_2}$ in \mathbb{R}^3 and any $\lambda \in \mathbb{R}$, one has $f(\vec{v_1} + \lambda \vec{v_2}) = f(\vec{v_1}) + \lambda f(\vec{v_2})$. It is the same kind of computation as in Exercise 2, question 1.
- 2. The matrix of f in the canonical basis of \mathbb{R}^3 is

$$\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 2 & 1 & 3 \\ -1 & -1 & -1 \end{array}\right).$$

3. (a) The kernel of f, written ker f, is the set of vectors which are mapped onto $\vec{0}$ by f. Therefore, a vector $\vec{v} = (x, y, z) \in \mathbb{R}^3$ belongs to ker f if and only if (x, y, z) is a solution of the following system:

$$\begin{cases} x + 2y + z = 0\\ 2x + y + 3z = 0\\ -x - y - z = 0 \end{cases}$$

Applying the Gauss method, one obtains that the above system is equivalent to

$$\Leftrightarrow \left\{ \begin{array}{l} x+2y+z=0\\ -3y+2z=0\\ -3y-2z=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x+2y+z=0\\ -3y+2z=0\\ 4z=0 \end{array} \right.$$

Therefore the unique solution of the system is $\vec{v} = \vec{0}$, and ker $f = {\vec{0}}$. The dimension of kerf is therefore 0. The empty set \emptyset is a basis of kerf.

- (b) For a linear map, being injective is equivalent to $\ker f = \{\vec{0}\}$. Hence, by the previous question, f is injective.
- 4. (a) There are many ways to answer this question. Recall that a vector $\vec{b} \in \mathbb{R}^3$ belongs to Im f if and only if there exists $\vec{v} = (x, y, z) \in \mathbb{R}^3$ such that $f(\vec{v}) = \vec{b}$, or equivalently if \vec{b} is a linear combination of the columns of the matrix associated to f. According to the expression of the matrix associated to f given in question 2., Imf is the vector space generated by the vectors

$$C_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, C_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, C_3 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}.$$

To find a basis of Im f, one way is to apply Gauss algorithm to the matrix of f in order to trigonalize it. One finds:

$$\begin{pmatrix} C_1 & C_2 & C_3 \\ 1 & 2 & 1 \\ 2 & 1 & 3 \\ -1 & -1 & -1 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} C_2 \leftarrow C_2 - 2C_1 \\ C_3 \leftarrow C_3 - C_1 \\ 1 & 0 & 0 \\ 2 & -3 & 1 \\ -1 & 1 & 0 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} C_3 \leftarrow 3C_3 + C_2 \\ 1 & 0 & 0 \\ 2 & -3 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

Since the vectors $\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$, $\begin{pmatrix} 0\\ -3\\ 1 \end{pmatrix}$, and $\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$ are column vectors of a triangular matrix, they are linearly independent. Since we applied the Gauss algorithm to the *columns* of the

matrix associated to f, they generate Imf. Consequently they form a basis of Imf which is therefore equal to \mathbb{R}^3 .

Another way to find a basis of Imf, is to compute the determinant of the matrix associated to f. Since

$$\det \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 3 \\ -1 & -1 & -1 \end{array} \right) \neq 0,$$

the columns of this matrix are linearly independent. Therefore they form a basis of Im f. A shorter way to answer this question, is to use Rank Theorem. Since f is an injective map from \mathbb{R}^3 into \mathbb{R}^3 , one has

 $\dim \mathbb{R}^3 = \dim \ker f + \dim \operatorname{Im} f \Leftrightarrow 3 = 0 + \dim \operatorname{Im} f.$

Hence $\operatorname{Im} f = \mathbb{R}^3$ since the only subspace of dimension 3 of \mathbb{R}^3 is \mathbb{R}^3 itself. One concludes that the rank of f (which is by definition the dimension of $\operatorname{Im} f$) is 3, and a basis of $\operatorname{Im} f$ is given, for example by $\vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{i} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\vec{k} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

(i) Recall that a map
$$f : E \to F$$
 is surjective if and only if $\operatorname{Im} f = F$. For

- (b) Recall that a map $f : E \to F$ is surjective if and only if Im f = F. For a linear map, this is equivalent to dim $\text{Im} f = \dim F$. By the previous question, the map considered in this exercise is surjective.
- **Exercise 4** 1. Let f be a surjective linear map from \mathbb{R}^4 to \mathbb{R}^2 . What is the dimension of the kernel of f?
 - 2. Let g be an injective map from \mathbb{R}^{26} to \mathbb{R}^{100} . What is the dimension of the image of g?
 - 3. Can there be a bijective linear map from \mathbb{R}^{50} to \mathbb{R}^{72} ?

Solution of Exercise 4:

- 1. By the Rank Theorem, dim ker $f = \dim \mathbb{R}^4 \dim \operatorname{Im} f$. Since f is supposed to be surjective, dim $\operatorname{Im} f = 2$. Therefore dim ker f = 4 2 = 2.
- 2. By the Rank Theorem, dim Im $g = \dim \mathbb{R}^{26} \dim \ker g$. Since g is supposed to be injective, dim ker g = 0. Hence dim Im g = 26.
- 3. By the Rank Theorem, an injective map from \mathbb{R}^{50} to \mathbb{R}^{72} satisfies dim Im f = 50. On the other hand, a surjective map from \mathbb{R}^{50} to \mathbb{R}^{72} satisfies dim Im f = 72. Consequently a map from \mathbb{R}^{50} to \mathbb{R}^{72} can not be injective and surjective. Therefore there exists no bijective map from \mathbb{R}^{50} to \mathbb{R}^{72} .

Exercise 5 Consider the matrix

$$A = \left(\begin{array}{rrrr} 2 & 7 & 1 \\ -1 & 2 & 0 \\ 3 & 5 & 1 \end{array}\right)$$

- 1. Compute a basis of the kernel of A.
- 2. Compute a basis of the image of A.

Solution of Exercise 5: We will answer both questions at the same time. To do so, we will apply the Gauss algorithm to the columns of the matrix A and I_3 simultanously (here I_3 denotes the identity matrix

of size (3,3) having the same number of columns as A).

$$\begin{aligned} C_2 \leftarrow 2C_2 - 7C_1 \\ C_3 \leftarrow 2C_3 - C_1 \\ C_3 \leftarrow 2C_3 - C_1 \\ C_3 \leftarrow 2C_3 - C_1 \\ C_3 \leftarrow 11C_3 - C_2 \\ 2 & 0 & 0 \\ -1 & 11 & 1 \\ 3 & -11 & -1 \\ \end{aligned} \\ A = \begin{pmatrix} 2 & 7 & 1 \\ -1 & 2 & 0 \\ 3 & 5 & 1 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ -1 & 11 & 0 \\ 3 & -11 & 0 \\ 3 & -11 & 0 \\ \end{pmatrix} \\ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \qquad \begin{pmatrix} 1 & -7 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ \end{pmatrix} \qquad \begin{pmatrix} 1 & -7 & -4 \\ 0 & 2 & -2 \\ 0 & 0 & 22 \\ \end{pmatrix} \\ It follows that a basis of Im A is given by the vectors $\vec{v_1} = \begin{pmatrix} 2 \\ -1 \\ 3 \\ \end{pmatrix}$ and $\vec{v_2} = \begin{pmatrix} 0 \\ 11 \\ -11 \\ \end{pmatrix}$. Indeed, the$$

columns of the upper matrix still generate Im A since we obtained them by applying the Gauss algorithm to the *columns* of A. The third column of the upper matrix being equal to the null vector, we only consider the first two columns, namely the vectors $\vec{v_1}$ and $\vec{v_2}$. These two vectors are linearly independent since they are two columns of a triangular matrix.

They are two columns of a thangular matrix. On the other hand the kernel of A is generated by the vector $\vec{u} = \begin{pmatrix} -4 \\ -2 \\ 22 \end{pmatrix}$. Indeed, by the Rank Theorem

dim ker $f = \dim \mathbb{R}^3 - \dim \operatorname{Im} f = 1$ since dim Im f = 2. Moreover, one can verify that \vec{u} is a non-zero vector of ker f by:

$$A\vec{u} = \begin{pmatrix} 2 & 7 & 1 \\ -1 & 2 & 0 \\ 3 & 5 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ -2 \\ 22 \end{pmatrix} = \begin{pmatrix} -8 - 14 + 22 = 0 \\ 4 - 4 = 0 \\ -12 - 10 + 22 = 0 \end{pmatrix}.$$

Exercise 6 Consider the matrix

$$B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & -3 \\ -3 & 5 & 2 & -3 \end{pmatrix}.$$

- 1. Compute a basis of the kernel of B.
- 2. Compute a basis of the image of B.

Solution of Exercise 6: We use the same technique as in the previous exercise: the Gauss algorithm on the columns of the matrix B and I_4 simultaneously (here I_4 denotes the identity matrix having as many columns as B, namely 4 columns).

$$B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & -3 \\ -3 & 5 & 2 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 2 & -2 \\ -3 & 11 & 11 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 2 & -2 \\ -3 & 11 & 11 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -4 & -4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -4 & -4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Consequently, a basis of Im f is given by the three vectors $\vec{v_1} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 0 \\ 4 \\ 11 \end{pmatrix}$ and $\vec{v_3} = \begin{pmatrix} 0 \\ 0 \\ 11 \end{pmatrix}$.

A basis of ker f is given by the vector $\vec{u} = \begin{pmatrix} 0 \\ 2 \\ -2 \\ 0 \end{pmatrix}$.

Exercise 7 Consider the matrix

$$C = \begin{pmatrix} -1 & 3 & 1 \\ 1 & 2 & 0 \\ 2 & -1 & -1 \\ 2 & 4 & 0 \\ 1 & 7 & 1 \end{pmatrix}.$$

- 1. Compute a basis of the kernel of C.
- 2. Compute a basis of the image of C.

Solution of Exercise 7: One has

$$C = \begin{pmatrix} -1 & 3 & 1 \\ 1 & 2 & 0 \\ 2 & -1 & -1 \\ 2 & 4 & 0 \\ 1 & 7 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 1 & 5 & 1 \\ 2 & 5 & 1 \\ 2 & 10 & 2 \\ 1 & 10 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 1 & 5 & 1 \\ 2 & 5 & 1 \\ 2 & 10 & 2 \\ 1 & 10 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 1 & 5 & 0 \\ 2 & 5 & 0 \\ 2 & 10 & 0 \\ 1 & 10 & 0 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (1 - 1)$$

Consequently a basis of Im f is given by the two vectors $\vec{v_1} = \begin{pmatrix} -1 \\ 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$ and $\vec{v_2} = \begin{pmatrix} 0 \\ 5 \\ 5 \\ 10 \\ 10 \end{pmatrix}$. A basis of

ker f is given by the vector $\vec{u} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$.