Groups - Permutations

Exercise 1 Endow the set $G=\{a, b, c, d\}$ with the inner composition law given by the following table

$\boldsymbol{*}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	c	a	c	a
\mathbf{b}	a	d	c	b
\mathbf{c}	c	c	c	c
\mathbf{d}	a	b	c	d

1. Does this law \star admit a neutral element?
2. Is this law \star commutative?
3. Is this law \star associative ?
4. Does G, endowed with this law \star, form a group?

Solution of Exercise 1:

1. We are looking for an element $e \in\{a, b, c, d\}$ such that $x \star e=e \star x=e$ for all $x \in G$. In particular $e \star e=e$. The only element which satisfies this last equation is d, and it is easy to see that $x \star d=d \star x=d$ (read the right column and the bottom line of the table). Hence the law \star admits d as a neutral element.
2. Since the table of the law \star is symmetric with respect to the diagonal, the law \star is commutative, i.e. for any x, y in $G, x \star y=y \star x$.
3. One has to check whether, for any $x, y, z \in G,(x \star y) \star z=x \star(y \star z)$. All in all, there are $4 \times 4 \times 4=64$ possibilities! However, if one of x, y, z is equal to the neutral d, we are done : indeed,

$$
\begin{aligned}
& (d \star y) \star z=y \star z=d \star(y \star z) \\
& (x \star d) \star z=x \star z=x \star(d \star z) \\
& (x \star y) \star d=x \star y=x \star(y \star d) .
\end{aligned}
$$

Since $c \star x=c$ for all $x \in G$, if one of x, y, z is equal to c, then $(x \star y) \star z=c=x \star(y \star z)$.
The only cases left are when $\{x, y, z\} \subset\{a, b\}$. By commutativity, $(a \star x) \star a=a \star(a \star x)=a \star(x \star a)$ and the same goes for b. Only four cases remain to be checked by hand :

$$
\begin{aligned}
& (a \star a) \star b=c \star b=c \quad \text { and } \quad a \star(a \star b)=a \star a=c ; \\
& (a \star b) \star b=a \star b=a \quad \text { and } \quad a \star(b \star b)=a \star d=a ; \\
& (b \star a) \star a=a \star a=c \quad \text { and } \quad b \star(a \star a)=b \star c=c ; \\
& (b \star b) \star a=d \star a=a \quad \text { and } \quad b \star(b \star a)=b \star a=a .
\end{aligned}
$$

4. To get a group structure, it remains to check whether every $x \in G$ admits an inverse, that is, an element y such that $x \star y=y \star x=d$. This is not the case since the first (and third) lines of the table do not contain any d. In other words a and c do not have inverses.

Exercise 2 One defines the permutation σ of the set $\{1,2, \ldots, 15\}$ by the sequence of integers $\sigma(1)$, $\sigma(2), \ldots, \sigma(15)$. For instance

$$
\sigma_{1}=\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
2 & 7 & 1 & 14 & 3 & 12 & 8 & 9 & 6 & 15 & 13 & 4 & 10 & 5 & 11
\end{array}\right)
$$

means $\sigma(1)=2, \sigma(2)=7$, etc. . Let

$$
\begin{aligned}
\sigma_{2} & =\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
7 & 6 & 5 & 8 & 9 & 3 & 2 & 15 & 4 & 11 & 13 & 10 & 12 & 14 & 1
\end{array}\right) \\
\sigma_{3} & =\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
1 & 15 & 2 & 14 & 3 & 13 & 4 & 12 & 5 & 11 & 6 & 10 & 7 & 9 & 8
\end{array}\right) \\
\sigma_{4} & =\left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 15 & 13 & 11 & 9 & 7 & 5 & 3 \\
1
\end{array}\right)
\end{aligned}
$$

1. For $i=1, \ldots, 4$,

- Decompose σ_{i} in a product of cycles with disjoint supports.
- Determine the order of σ_{i}.
- Determine the signature of σ_{i}.

2. Compute the different powers of the cycle $\sigma=\left(\begin{array}{llll}10 & 15 & 11 & 13\end{array}\right)$. What is the inverse of σ_{1} ?
3. Compute σ_{2}^{2008}.
4. Determine the signature of

$$
\sigma_{3} \circ \sigma_{4} \circ \sigma_{3}^{-4} \circ \sigma_{4}^{3} \circ \sigma_{3} \circ \sigma_{4} \circ \sigma_{3} \circ \sigma_{4} \circ \sigma_{3}^{-1} \circ \sigma_{4}^{-6}
$$

5. How many permutations g of $\{1, \ldots, 15\}$ are such that $\sigma_{1} \circ g=g \circ \sigma_{1}$?

Solution of Exercise 2 :

1. (a) - First consider the orbit of 1 under σ_{1} :

$$
1 \stackrel{\sigma_{1}}{\longmapsto} 2 \stackrel{\sigma_{1}}{\longmapsto} 7 \stackrel{\sigma_{1}}{\longmapsto} 8 \stackrel{\sigma_{1}}{\longmapsto} 9 \stackrel{\sigma_{1}}{\longmapsto} 6 \stackrel{\sigma_{1}}{\longmapsto} 12 \stackrel{\sigma_{1}}{\longmapsto} 4 \stackrel{\sigma_{1}}{\longmapsto} 14 \stackrel{\sigma_{1}}{\longmapsto} 5 \stackrel{\sigma_{1}}{\longmapsto} 3 \stackrel{\sigma_{1}}{\longmapsto} 1 .
$$

Then let us choose an element which does not appear in the orbit of 1 , for example 10 . The orbit of 10 is

$$
10 \stackrel{\sigma_{1}}{\longmapsto} 15 \stackrel{\sigma_{1}}{\longmapsto} 11 \stackrel{\sigma_{1}}{\longmapsto} 13 \stackrel{\sigma_{1}}{\longmapsto} 10 .
$$

The union of these two orbits is the whole set $\{1, \ldots, 15\}$, hence σ_{1} decomposes as the product of two cycles with disjoint supports

$$
\sigma_{1}=\left(\begin{array}{lllllllllllll}
1 & 2 & 7 & 8 & 9 & 6 & 12 & 4 & 14 & 5 & 3
\end{array}\right)\left(\begin{array}{llll}
10 & 15 & 11 & 13
\end{array}\right)
$$

- The order of a cycle of length n is n. The order of a product of cycles is the least common multiple of the orders of the cycles. Consequently the order of σ_{1} is the least common multiple of 11 and 4 , that is, 44 .
- The signature of a n-cycle is $(-1)^{n-1}$. Since the signature ε is a group morphism, $\varepsilon\left(\sigma_{1}\right)=$ $(-1)^{10}(-1)^{3}=-1$. One may also want to compute the signature of σ_{1} by computing the number of inversions, that is, the number of pairs $\{i, j\}$ such that $i<j$ and $f(i)>f(j)$. One finds 41 inversions. The signature of σ_{1} is also $\varepsilon\left(\sigma_{1}\right)=(-1)^{41}=-1$.
(b) For σ_{2}, one finds :

$$
\sigma_{2}=\left(\begin{array}{llllllllll}
1 & 7 & 2 & 6 & 3 & 5 & 9 & 4 & 8 & 15
\end{array}\right)\left(\begin{array}{lllll}
10 & 11 & 13 & 12
\end{array}\right)(14),
$$

the order of σ_{2} is the least common multiple of 10 and 4, i.e. 20 , and the signature of σ_{2} is $\varepsilon\left(\sigma_{2}\right)=(-1)^{9}(-1)^{3}=1$.
(c) For σ_{3}, one finds :

$$
\sigma_{3}=(1)\left(\begin{array}{llllllllllll}
2 & 15 & 8 & 12 & 10 & 11 & 6 & 13 & 7 & 4 & 14 & 9
\end{array} 5 \quad 3\right)
$$

the order of σ_{3} is 14 , and the signature is $\varepsilon\left(\sigma_{3}\right)=(-1)^{13}=-1$.
(d) For σ_{4}, one finds

$$
\sigma_{4}=\left(\begin{array}{lllll}
1 & 2 & 4 & 8 & 15
\end{array}\right)\left(\begin{array}{lllll}
3 & 6 & 12 & 7 & 14
\end{array}\right)\left(\begin{array}{llll}
5 & 10 & 11 & 9
\end{array}\right)
$$

the order of σ_{4} is 5 , and $\varepsilon\left(\sigma_{4}\right)=(-1)^{4}(-1)^{4}(-1)^{4}=1$.
2. One has $\sigma^{2}=\left(\begin{array}{ll}10 & 11\end{array}\right)\left(\begin{array}{ll}15 & 13\end{array}\right), \sigma^{3}=\sigma^{-1}=\left(\begin{array}{lll}13 & 11 & 15\end{array}\right)$ 10 $), \sigma^{4}=e, \sigma^{4 n}=e, \sigma^{4 n+1}=\left(\begin{array}{ll}10 & 15 \\ 11\end{array} 13\right.$), $\sigma^{4 n+2}=\left(\begin{array}{ll}10 & 11\end{array}\right)\left(\begin{array}{ll}15 & 13\end{array}\right), \sigma^{4 n+3}=\left(\begin{array}{lll}13 & 11 & 15 \\ 10\end{array}\right), n \in \mathbb{Z}$. The inverse of σ_{1} is

$$
\begin{aligned}
& \sigma_{1}^{-1}=\left(\begin{array}{lllllllllllll}
1 & 2 & 7 & 8 & 9 & 6 & 12 & 4 & 14 & 5 & 3
\end{array}\right)^{-1}\left(\begin{array}{lllllll}
10 & 15 & 11 & 13
\end{array}\right)^{-1} \\
&=\left(\begin{array}{lllllllllllllll}
3 & 5 & 14 & 4 & 12 & 6 & 9 & 8 & 7 & 2 & 1
\end{array}\right)\left(\begin{array}{llllllllllll}
13 & 11 & 15 & 10
\end{array}\right) \\
&=\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
3 & 1 & 5 & 12 & 14 & 9 & 2 & 7 & 8 & 13 & 15 & 6 & 11 & 4 & 10
\end{array}\right)
\end{aligned}
$$

3. Since the order of σ_{2} is 20 , i.e. $\sigma_{2}^{20}=e$, one has :

$$
\sigma_{2}^{2008}=\sigma_{2}^{2000+8}=\sigma_{2}^{2000} \sigma_{2}^{8}=\left(\sigma_{2}^{20}\right)^{100} \sigma_{2}^{8}=\sigma_{2}^{8}
$$

Moreover $\left(\begin{array}{llll}10 & 11 & 13 & 12\end{array}\right)^{8}=e$. At last, one uses

$$
\begin{aligned}
& \left.\left.=\left[\begin{array}{lllllllll}
(1 & 7 & 2 & 6 & 3 & 5 & 9 & 4 & 8
\end{array} 1_{5}^{2}\right)^{2}\right]^{-1}=\left[\begin{array}{llllllll}
1 & 2 & 3 & 9 & 8
\end{array}\right)\left(\begin{array}{lllll}
4 & 15 & 7 & 6
\end{array}\right)\right]^{-1}=\left(\begin{array}{llllll}
4 & 15 & 7 & 6 & 5
\end{array}\right)^{-1}\left(\begin{array}{lllll}
1 & 2 & 3 & 9 & 8
\end{array}\right)^{-1} \text {. }
\end{aligned}
$$

Since ($\left.\begin{array}{llll}4 & 15 & 7 & 6\end{array}\right)^{-1}=\left(\begin{array}{llll}5 & 6 & 7 & 15\end{array}\right)$ and $\left(\begin{array}{lllll}1 & 2 & 3 & 9 & 8\end{array}\right)^{-1}=\left(\begin{array}{llll}8 & 9 & 3 & 2\end{array}\right)$, it follows that

$$
\sigma_{2}^{2008}=\left(\begin{array}{llllllll}
5 & 6 & 7 & 15 & 4
\end{array}\right)\left(\begin{array}{lllll}
8 & 9 & 3 & 2 & 1
\end{array}\right) .
$$

4. Since the signature is a group morphism from the group of permutations into a commutative group, the signature of

$$
\sigma_{3} \circ \sigma_{4} \circ \sigma_{3}^{-4} \circ \sigma_{4}^{3} \circ \sigma_{3} \circ \sigma_{4} \circ \sigma_{3} \circ \sigma_{4} \circ \sigma_{3}^{-1} \circ \sigma_{4}^{-6}
$$

is $\varepsilon\left(\sigma_{3}\right)^{-2} \varepsilon\left(\sigma_{4}\right)^{0}=1$.
5. Any permutation g of $\{1, \ldots, 15\}$ such that $\sigma_{1} \circ g=g \circ \sigma_{1}$ satisfies $g \circ \sigma_{1} \circ g^{-1}=\sigma_{1}$. But, by the conjugation formula,

$$
\begin{gathered}
g \circ \sigma_{1} \circ g^{-1}=g(1278961241453) g^{-1} \circ g(10151113) g^{-1} \\
=(g(1) g(2) g(7) g(8) g(9) g(6) g(12) g(4) g(14) g(5) g(3))(g(10) g(15) g(11) g(13)) .
\end{gathered}
$$

By the uniqueness of the decomposition of a permutation into a product of cycles with disjoint supports, it follows that

$$
(g(1) g(2) g(7) g(8) g(9) g(6) g(12) g(4) g(14) g(5) g(3))=\left(\begin{array}{lll}
1 & 278961241453
\end{array}\right),
$$

and

$$
(g(10) g(15) g(11) g(13))=\left(\begin{array}{llll}
10 & 15 & 11 & 13
\end{array}\right)
$$

(since the two cycles in the decomposition are of different lengths). The last identity implies that g permutes the 4 numbers $10,15,11$ and 13 . We will show that g acts on $\{10,15,11,13\}$ by a power of $\sigma:=\left(\begin{array}{lll}10 & 15 & 11\end{array} 13\right)$:
Since $g(10) \in\{10,15,11,13\}$, we have $g(10)=\sigma^{k}(10)$ for a certain $k \in\{1,2,3,4\}$. Then,

$$
g(\sigma(10))=\sigma(g(10))=\sigma\left(\sigma^{k}(10)\right)=\sigma^{k+1}(10)=\sigma^{k}(\sigma(10))
$$

This shows that g coincides with σ^{k}, not only at the point 10 , but also at $\sigma(10)$, and therefore (applying the same argument to $\sigma(10)$ instead of 10) at $\sigma^{2}(10)$, at $\sigma^{3}(10)$, etc. Eventually, $g(x)=$ $\sigma^{k}(x)$ for all $x \in\{10,15,11,13\}$.
Similarly, one can show that, on the support of the 11-cycle $s:=\left(\begin{array}{lllllllll}1 & 2 & 7 & 8 & 9 & 6 & 12 & 4 & 14\end{array}\right)$ by a power of s. In conclusion, $g=\sigma^{n} \circ s^{m}$ with $n \in\{0,1,2,3\}$ and $m \in\{0,1, \ldots, 10\}$. Thus there are 44 different permutations which commute with σ_{1}.

Exercise 3 1. Show that the following sets G endowed with the given laws \star form groups. Exhibit the neutral element, and the inverse of $x \in G$.
(a) $G=\mathbb{Z}, \star=$ the addition of numbers;
(b) $G=\mathbb{Q}^{*}$ (the set of non-zero rationals), $\star=$ the multiplication of numbers;
(c) $G=\mathbb{Q}^{+*}$ (the set of positive rationals), $\star=$ the multiplication of numbers;
(d) $G=\mathbb{R}, \star=$ the addition of numbers;
(e) $G=\mathbb{R}^{*}, \star=$ the multiplication of numbers;
(f) $G=\mathbb{R}^{+*}, \star=$ the multiplication of numbers;
(g) $G=\mathbb{C}, \star=$ the addition of numbers;
(h) $G=\mathbb{C}^{*}, \star=$ the multiplication of numbers;
(i) $G=\{z \in \mathbb{C},|z|=1\}, \star=$ the multiplication of numbers;
(j) $G=\left\{e^{i \frac{2 \pi k}{n}}, k=0,1, \ldots, n-1\right\}, \star=$ the multiplication of numbers (n is a fixed integer);
(k) $G=$ the set of bijections of a non-empty set $E, \star=\circ$ (the composition of functions);
(l) $G=$ the set of isometries of the Euclidian space \mathbb{R}^{3} (endowed with the standard scalar product), $\star=0$;
(m) $G=$ the set of isometries of the Euclidian plane \mathbb{R}^{2} (endowed with the usual scalar product) which preserve a given figure, $\star=0$;
2. Give a morphism of groups between $(\mathbb{R},+)$ and $\left(\mathbb{R}^{+*}, \times\right)$;
3. Give a morphism of groups between $\left(\mathbb{R}^{+*}, \times\right)$ and $(\mathbb{R},+)$;
4. Give a surjective morphism of groups between $(\mathbb{C},+)$ and $\left(\mathbb{C}^{*}, \times\right)$;

Solution of Exercise 3:

1. (a) For $G=\mathbb{Z}$ with $\star=+$ (the addition of numbers), the neutral element of the group law is $e=0$, and the inverse of $x \in \mathbb{Z}$ is $-x \in \mathbb{Z}$.
(b) For $G=\mathbb{Q}^{*}$ (the set of non-zero rationals) with $\star=\cdot$ (the multiplication of numbers), the neutral element of the group law is $e=1$. The inverse of $\frac{p}{q} \in \mathbb{Q}^{*}$, is $\frac{q}{p} \in \mathbb{Q}^{*}$.
(c) For $G=\mathbb{Q}^{+*}$ (the set of non-negative rationals) with $\star=\cdot$, one uses that the product of two positive numbers is positive, and that $\frac{q}{p}>0$ whenever $\frac{p}{q}>0$.
(d) For $G=\mathbb{R}$ with $\star=+$, the neutral element of the group law is $e=0$, and the inverse of $x \in \mathbb{R}$ is $-x \in \mathbb{R}$.
(e) For $G=\mathbb{R}^{*}$ with $\star=\cdot$, the neutral element of the group law is $e=1$, and the inverse of $x \in \mathbb{R}^{*}$ is $\frac{1}{x} \in \mathbb{R}$.
(f) For $G=\mathbb{R}^{+*}$ with $\star=\cdot$, ones uses in addition to the previous item that the set of positive numbers is stable by product and inverse.
(g) For $G=\mathbb{C}$ with $\star=+$, the neutral element is 0 , and the inverse of $x=a+i b \in \mathbb{C}$ is $-x=-a-i b \in \mathbb{C}$.
(h) For $G=\mathbb{C}^{*}$ with $\star=\cdot$, the neutral element is $e=1 \in \mathbb{C}$, and the inverse of $x=a+i b \in \mathbb{C}$ is

$$
\frac{1}{x}=\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}
$$

(i) For $G=\{z \in \mathbb{C},|z|=1\}$ with $\star=\cdot$, one uses that $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$, hence the product of two complex numbers of module 1 is a complex number of module 1 . The neutral element is $e=1$, and the inverse of $x=e^{i \theta} \in G$ is $e^{-i \theta} \in G$.
(j) For $G=\left\{e^{i \frac{2 \pi k}{n}}, k=0,1, \ldots, n-1\right\}$ with $\star=\cdot$, where n is a fixed integer, one uses that $e^{i \frac{2 \pi k_{1}}{n}} \cdot e^{i \frac{2 \pi k_{2}}{n}}=e^{i \frac{2 \pi\left(k_{1}+k_{2}\right)}{n}}$, and

$$
\frac{1}{e^{i \frac{2 \pi k}{n}}}=e^{-i \frac{2 \pi k}{n}}
$$

(k) For $G=$ the set of bijections of a non-empty set E, with $\star=\circ$ (the composition of functions), one uses that the composition of two bijections is a bijection, and that a map which is injective and surjective admits an inverse map. The neutral element is the identity map. The inverse of a bijection f is commonly denoted by f^{-1} but has usually nothing to do with the map $\frac{1}{f}$ (if this ever makes sense) ;
(l) For $G=$ the set of isometries of the Euclidian space \mathbb{R}^{3} (endowed with the standard scalar product), with $\star=0$, first recall that an isometry of \mathbb{R}^{3} is defined as a bijection of \mathbb{R}^{3} which preserves the scalar product. In addition to the previous item, one uses that the composition of two maps that preserve the scalar product is also a map which preserves the scalar product ;
(m) For $G=$ the set of isometries of the Euclidian plan \mathbb{R}^{2} (endowed with the usual scalar product) which preserve a given figure, with $\star=0$, one uses that the property of preserving the scalar product and a figure is stable by product and inverse ;
2. The function exp $: \mathbb{R} \rightarrow \mathbb{R}^{+*}$ satisfies $\exp (a+b)=\exp (a) \cdot \exp (b)$. Hence it is a morphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+*}, \cdot\right)$.
3. The function $\ln : \mathbb{R}^{+*} \rightarrow \mathbb{R}$ satisfies $\ln (a b)=\ln (a)+\ln (b)$, thus it is a morphism of group from $\left(\mathbb{R}^{+*}, \cdot\right)$ to $(\mathbb{R},+)$. In fact, the groups $\left(\mathbb{R}^{+*}, \cdot\right)$ and $(\mathbb{R},+)$ are isomorphic, since exp and ln are inverses of each other.
4. One defines exp $: \mathbb{C} \rightarrow \mathbb{C}^{*}$ by $\exp (a+i b)=\exp (a) \cdot \exp (i b)=\exp (a)(\cos (b)+i \sin (b))$. It is a morphism of groups since the restriction of \exp to \mathbb{R} is a morphism of groups into \mathbb{R}^{+*} and $\exp \left(i b_{1}+i b_{2}\right)=\exp \left(i b_{1}\right) \exp \left(i b_{2}\right)$ follows from (or is equivalent to)

$$
\begin{aligned}
& \cos \left(b_{1}+b_{2}\right)=\cos \left(b_{1}\right) \cos \left(b_{2}\right)-\sin \left(b_{1}\right) \sin \left(b_{2}\right) \\
& \sin \left(b_{1}+b_{2}\right)=\cos \left(b_{1}\right) \sin \left(b_{2}\right)+\sin \left(b_{1}\right) \cos \left(b_{2}\right)
\end{aligned}
$$

Exercise 4 Say for which reason(s) the following operations \star do not endow the given sets G with a group structure.
(a) $G=\mathbb{N}, \star=$ the addition of numbers;
(b) $G=\mathbb{N}^{+*}, \star=$ the multiplication of numbers;
(c) $G=\mathbb{R}, \star=$ the multiplication of numbers.

Solution of Exercise 4 :
(a) For $G=\mathbb{N}$ with $\star=$ the addition of numbers, the point is that the negative of a $n \in \mathbb{N}$ does not belong to \mathbb{N};
(b) For $G=\mathbb{N}^{+*}$ with $\star=$ the multiplication of numbers, the point is that the inverse of an integer is generally no longer an integer ;
(c) For $G=\mathbb{R}$ with $\star=$ the multiplication of numbers, 0 does not admit an inverse.

