![]() |
![]() |
|
|
||
Coordonnateur : Mihai Tibar Mardi 25 mai, Salle Duhem, M3 |
||
14:00-14:45 | Chen Ying | |
Polynômes
mixtes et polyèdre de Newton
Résumé On discute une généralisation dans le cas réel analytique d'un théorème de A. Némethi et A. Zaharia. |
||
Pause café | ||
15:00-15:45 | Mihai Tibar | |
|
Déformations des polynômes et nombres de Betti Résumé Vers une classification des polynômes avec le nombre de Betti de plus haut rang proche du maximum. | |
16:00-16:50 | Cezar Joita (Bucuresti) | |
Cohomological q-convexity in top degrees for Zariski open sets in P^n Abstract. We show that if A is a closed analytic subset of P^n of pure codimension q then $H^i(\mathbb{P}^n\setminus A,{\cal F})$ are finite dimensional for every coherent algebraic sheaf ${\cal F}$ and every $i\geq n-\left[\frac{n-1}{q}\right]$. If $n-1\geq 2q$ we show that $H^{n-2}(\mathbb{P}^n\setminus A,{\cal F})=0$. |
||
Pause café | ||
17:10-18:00 | Mihnea Coltoiu (Bucuresti) | |
On the disk
theorem Abstract. We construct an example of a 2 dimensional Stein normal space X with one singular point $x_0$ such that $X \setminus \{x_0\}$ is simply connected and it satisfies the disk condition. This answers a question raised by Fornaess and Narasimhan. We also prove that any increasing union of Stein open sets contained in a Stein space of dimension 2 satisfies the disk condition. Starting from the above example we exhibit, without using deformation theory, a new type of 2 dimensional holes which cannot be filled. |
||
Pot | ||