Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions $f(A) b$

Laboratoire
Paul Painlevé
Bernhard Beckermann (bbecker@math.univ-lille1.fr), and Stefan Güttel (Manchester)

Introduction

- Given: Large sparse matrix $\mathrm{A} \in \mathbb{C}^{N \times N}$, vector $\mathrm{b} \in \mathbb{C}^{N}$ function $f(z)$ analytic on the eigenvalues $\Lambda(A)$.
- Task: Compute $f(\mathrm{~A}) \mathrm{b}$ without forming $f(\mathrm{~A})$ explicitly.

- Applications:

$A^{-1} b$ is the solution of $A x=b$
$>\exp (t \mathrm{~A}) \mathrm{b}$ is the solution of $\mathrm{u}^{\prime}(t)=\mathrm{Au}(t), \mathrm{u}(0)=\mathrm{b}$, $>\cosh (t \sqrt{\mathrm{~A}}) \mathrm{b}$ solves $\mathrm{u}^{\prime \prime}(t)=\mathrm{Au}(t), \mathrm{u}(0)=\mathrm{b}, \mathrm{u}^{\prime}(0)=0$, $>\exp (t \sqrt{\mathrm{~A}}) \mathrm{b}, \operatorname{sgn}(\mathrm{A}) \mathrm{b}, \log (\mathrm{A}) \mathrm{b}$ (see also [9]), $>A^{-1 / 2} b$ for Neumann-to-Dirichlet maps.

The rational Arnoldi method [7, 10]

- Principle: Implicitly compute a low-order rational function $r_{n}(\mathrm{~A}) \mathrm{b} \approx f(\mathrm{~A}) \mathrm{b}$ with prescribed poles $\xi_{1}, \ldots, \xi_{n-1} \in \mathbb{C}$.
- Implementation: Use Ruhe's rational Arnoldi process [10]

Set $\mathrm{v}_{1}:=\mathrm{b} /\|\mathrm{b}\|$
For $j=1, \ldots, n$
Compute $x_{j}:=\left(A-\xi_{j}\right)^{-1} v_{j}$.
Orthogonalize $\mathrm{w}_{j}:=\mathrm{x}_{j}-\mathrm{V}_{j} \mathrm{~V}_{j}^{H} \mathrm{x}_{j}$.
Set $\mathrm{v}_{\mathrm{j}+1}:=\mathrm{w}_{j} /\left\|\mathrm{w}_{j}\right\|$

- Output: Rational Krylov basis $\mathrm{V}_{n+1}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{n+1}\right]$, $\mathrm{V}_{n+1}^{H} \mathrm{~V}_{n+1}=\mathrm{I}_{n+1}$, and rational Arnoldi decomposition

$$
\mathrm{AV}_{n+1} \underline{\mathrm{~K}_{n}}=\mathrm{V}_{n+1} \underline{\mathrm{H}_{n}}, \text { with }\left\{\underline{\mathrm{K}_{n}}, \underline{\mathrm{H}_{n}}\right\} \subset \mathbb{C}^{(n+1) \times n}
$$

- Rational Arnoldi approximation of order n is

$$
\mathrm{f}_{n}:=\mathrm{V}_{n} f\left(\mathrm{~A}_{n}\right) \mathrm{V}_{n}^{H} \mathrm{~b}, \quad \mathrm{~A}_{n}:=\mathrm{V}_{n}^{H} \mathrm{AV}_{n}
$$

(Note that $f\left(\mathrm{~A}_{n}\right)$ is a function of a small $n \times n$ matrix.)

- Special or limiting cases (need to solve shifted systems) polynomial Arnoldi: $\xi_{1}=\xi_{2}=\xi_{3}=\ldots=\infty$
$>$ shifted and inverted Arnoldi: $\xi_{1}=\xi_{2}=\xi_{3}=$
extended Krylov (EK): $\xi_{1}=\xi_{3}=\ldots=0$
$\xi_{2}=\xi_{4}=\ldots=\infty$.

Our problem

How large is the error $\left\|f(\mathrm{~A}) \mathrm{b}-\mathrm{f}_{n}\right\|$?

- we want a priori estimates:
- a priori versus adaptive choice of poles ξ_{1}, ξ_{2},
- linear versus superlinear convergence behavior?
error should depend on f and A
- in general no "residual" available

Set $\mathcal{P}_{n}\left(\xi_{1}, . ., \xi_{n-1}\right)$ the set of rational functions with numerator of degree $\leq n$ and prescribed poles $\xi_{1}, . ., \xi_{n-1}$.

Near best numerator [3]

We have exactness $\mathrm{f}_{n}=f(A) b$ for all $f \in \mathcal{P}_{n-1}\left(\xi_{1}, . ., \xi_{n-1}\right)$. Thus for all $r \in \mathcal{P}_{n-1}\left(\xi_{1}, . ., \xi_{n-1}\right)$
$(*) \quad\left\|f(\mathrm{~A}) \mathrm{b}-\mathrm{f}_{n}\right\| \leq\left(\|(f-r)(\mathrm{A})\|+\left\|(f-r)\left(\mathrm{A}_{n}\right)\right\|\right)\|\mathrm{b}\|$.
Using the Crouzeix bound [4], we get upper bounds in terms of the best uniform approximation of f on the field of values
$W(\mathrm{~A}) \supseteq W\left(\mathrm{~A}_{n}\right) \not \supset \xi_{j}$ by $\mathcal{P}_{n-1}\left(\xi_{1}, . ., \xi_{n-1}\right)$.
Expected convergence rate for Γ set of singularities of f
$f(z)=\exp (z)$ entire $(\Gamma=\{ \})$: superlinear

- $f(z)=\tanh (z)$ meromorphic (Γ countable): superlinear
$-f(z)=\log (z), f(z)=\sqrt{z}(\Gamma=(-\infty, 0])$ linear

Approach through interpolation in Ritz values [1]

There exists $r_{n} \in \mathcal{P}_{n-1}\left(\xi_{1}, . ., \xi_{n-1}\right)$ such that $\mathrm{f}_{n}=r_{n}(\mathrm{~A}) \mathrm{b}$.

- This function $r_{n}(z)$ is a rational interpolant for $f(z)$ with nodes $\Lambda\left(\mathrm{A}_{n}\right)=\left\{\theta_{1}, \ldots, \theta_{n}\right\}$, called rational Ritz values.
- Define the nodal function

$$
s_{n}(z):=\frac{\left(z-\theta_{1}\right) \cdots\left(z-\theta_{n}\right)}{\left(z-\xi_{1}\right) \cdots\left(z-\xi_{n-1}\right)}
$$

Rational Ritz values $\left\{\theta_{j}\right\}$ are optimal in the sense that $\left\|s_{n}(\mathrm{~A}) \mathrm{b}\right\|$ is minimal among all nodal functions.

- Interpolation error

$$
\left\|f(\mathrm{~A}) \mathrm{b}-\mathrm{f}_{n}\right\| \approx \max _{x \in \Gamma} \frac{1}{\left|s_{n}(x)\right|}\| \| s_{n}(\mathrm{~A}) \mathrm{b} \|,
$$ can be derived more rigorously for Markov functions $f(z)=\int_{\Gamma} \frac{d \gamma(x)}{x-z}$, here $f(z)-r_{n}(z)=\int_{\Gamma} \int_{s_{n}(x)}^{s_{n}(x) \frac{d \gamma}{x-z}}$.

Spectral adaptivity

- Need to understand the (superlinear) decay of $\left\|s_{n}(\mathrm{~A}) \mathrm{b}\right\|$.
- So far only possible for Hermitian A, in which case

$$
\left\|s_{n}(\mathrm{~A}) \mathrm{b}\right\| \leq\|\mathrm{b}\| \max _{z \in \Lambda(\mathrm{~A})}\left|s_{n}(z)\right| .
$$

- Typical linear error bounds obtained by assuming that $s_{n}(z)$ is uniformly small on spectral interval $W(\mathrm{~A})=\left[\lambda_{\min }, \lambda_{\max }\right]$.
- This assumption ignores the fine structure of $\Lambda(A)$!
- Example: $\mathrm{A}=\operatorname{tridiag}(-1,2,-1)$, extended Krylov. $N=100$, iteration $\mathrm{n}=30$

Asymptotic distribution of Ritz values, $A=A^{H}$ [2]

Optimality and interlacing property of rational Ritz values allow for asymptotic description of their distribution
Let $\Lambda(\mathrm{A})$ be described by a probability measure σ, e.g.,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x}=\frac{1}{\pi \sqrt{x(4-x)}}, x \in(0,4) .
$$

Let the poles ξ_{1}, \ldots, ξ_{n} be described by a measure ν_{t} $\left\|\nu_{t}\right\|=t=n / N$, e.g., extended Krylov

$$
\nu_{t}=t \cdot\left(\delta_{0}+\delta_{\infty}\right) / 2
$$

- Then the distribution of Ritz values $\Lambda\left(\mathrm{A}_{n}\right)$ is given as the constrained equilibrium measure $\mu_{t} \leq \sigma,\left\|\mu_{t}\right\|=t$, which minimizes the energy $\mu \mapsto I(\mu, \mu)-2 I\left(\nu_{t}, \mu\right)$,

$$
I\left(\mu_{1}, \mu_{2}\right):=\iint \log \frac{1}{|x-y|} \mathrm{d} \mu_{1}(x) \mathrm{d} \mu_{2}(y) .
$$

Moreover, $S(t):=\operatorname{supp}\left(\sigma-\mu_{t}\right) \subseteq\left[\lambda_{\min }, \lambda_{\max }\right]$.

(rigorously: weak* limit of counting measures for sequences of matrices)

Buyarov-Rakhmanov formula [1]

$\left\|f(\mathrm{~A}) \mathrm{b}-\mathrm{f}_{n}\right\| \lesssim \max _{z \in \Gamma} \exp \left(-N \int_{0}^{t} \frac{g_{S(\tau)}(z, 0)+g_{S(\tau)}(z, \infty)}{2} \mathrm{~d} \tau\right)$
(rigorously: \leq after taking N th roots, lim sup for $n, N \rightarrow \infty, n / N \rightarrow t$)

- linear if $S(\tau)=S(0)$, superlinear if $S(\tau)$ strictly decreasing
- similar formulas for other cyclic sequences of poles (here EK). Typical examples: $\quad A=\operatorname{tridiag}(-1,2,-1), f(z)=1 / \sqrt{z}$

Adaptive (greedy) poles for Markov functions [5, 6, 8]

- Rational function $s_{n}(z)$ is explicitly known at iteration n (zeros $\left\{\theta_{j}\right\}$, poles $\left\{\xi_{j}\right\}$), can select the next pole ξ_{n} as

$$
\xi_{n}=\underset{x \in \Gamma}{\arg \max }\left|\frac{1}{s_{n}(x)}\right|
$$

- Feature: So far no assumptions on the matrix A
- Example 1: Compute $\log (\mathrm{A}) \mathrm{b}$ for highly nonnormal A .

- Example 2: Compute $\mathrm{A}^{-1 / 2} \mathrm{~b}$ for 2D-Laplacian, $N=10^{4}$ Error || $\left|\mathrm{f}(\mathrm{A}) \mathrm{b}-\mathrm{f}_{\mathrm{n}}\right| \mid$ for various pole sequences

Conjecture for adaptive (greedy) poles [1, 8]
Converged nth Ritz values are not seen by the "next" poles $\xi_{n}, \xi_{n+1}, \ldots$, which are optimal for $(\Gamma, S(t))$! That is

$$
\mu_{t}=\int_{0}^{t} \widetilde{\mu}_{\tau} \mathrm{d} \tau, \quad \nu_{t}=\int_{0}^{t} \widetilde{\nu}_{\tau} \mathrm{d} \tau
$$

with probability measures $\widetilde{\mu}_{\tau}, \widetilde{\nu}_{\tau}$ equilibrium unit charges on condenser $(\Gamma, S(\tau))$.

[^0]
[^0]: References
 il B. Beccermann and 5 . Gütte, Numer. Math. 121, 205-236 (2012)
 [2] B. Beccermann, S. Guitte and R. Vandefril, S1AM J. Matrix Anal. Appl. 31, 1740-1774 (2010). [3] B. Beckermann and L. Reichel, SIAM J. Numer. Annal. 47, $3849-3883$ (2009). 4] M. Crouzeix, J. Functional Anal. 244, $688-990$ (2007).
 [5] V. Druskin, C. Lieberman and M. Zassavsky, SIAM J. Sci. Comput. 32, 2485-2496 (2010)
 [6] V. Druskin and V. Simoncini, Systems \& Control Leteers $60,546-500$ (2011).
 [7] S. Gittel, Rational Krylov Methods for Operator Functions (PhD thesis, TU Freieerg, 2010 [8] S. Gütele and L. Knizhnerman, , IT Numer. Math. (to appear 2013). 9] N. J. Higham, Functions of Matrices. Theory and Computation (SIAM, Phildedelhia, 2008) 101 A. Rune, IMA Vol. Math. Appl. 60, 149-164 (1994)

