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1 Introduction

In the following we will consider a Hilbert space H with inner product (., .) and
induced norm ||.||, an invertible bounded linear operator A : H → H, and a
vector b ∈ H. The aim is to find a good approximation of the solution of the
system Ax = b.

In the literature on Krylov subspace techniques for solving linear systems of
equations, two principal methods have emerged as the basis for most algorithms:
the minimal residual (MR) and the orthogonal residual (OR) approaches. Both
methods select an approximation from a Krylov space, the former does this in
such a way that the resulting residual norm is minimized, whereas the latter
chooses the approximation such that the associated residual is orthogonal to the
Krylov space. The most popular algorithms are GMRES for the MR method
and CG (Conjugate gradients) for the OR method.

In this paper, we will see those two methods as abstract approximation
problems (not necessarily related to an operator equation) and use the notion
of canonical angles between Hilbert spaces to obtain relations among the iterates
and residuals of OR and MR methods. This work is mainly based on the paper
[1] (we do not pretend originality with respect to this paper) and is the basis of
a three hours lecture for the work group of functional analysis in Lille.

In the second section, we explain the two methods and give the principal
notations.

In the third section we speak about geometry in Hilbert spaces.
In section four we specialize to geometry of Krylov spaces.
In the fifth section we give an application to an operator A = λI +K where

K is a compact operator.
The last section consists of final remarks and openings.
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2 Preliminaries

2.1 Krylov spaces

There exists a large litterature on Krylov spaces, we have for example the excel-
lent book [3], where we can find a lot of information concerning computational
apsects. In this subsection we will only give the definition and the main prop-
erties we will need later.

Definition 2.1 Krylov spaces are subspaces of H defined by

Km(A, b) = span{b, Ab, . . . , Am−1b},

which will be denoted simply by Km if there is no ambiguity.

In the following, we will need those important properties of Krylov spaces.

Proposition 2.1 Krylov spaces verify

i) K0 = {0} ⊂ K1 ⊂ K2 ⊂ · · · ⊂ H

ii) Km = 〈b〉+AKm−1

iii) There exists an M such that dimKm = m, for m ≤M

iv) If M is finite KM = KM+1 = . . . .

v) If M =∞ the Krylov spaces from a sequence of strictly nested spaces.

Definition 2.2 M is called the invariance index.

2.2 MR and OR methods

Let us sum up the principles of the two methods for an initial guess x0 and
an initial reidual r0 = b − Ax0. We set the notations Vm = Km(A, r0) and
Wm = AKm(A, r0), where m denotes the dimension of the subspaces which will
be usefull later.

2.2.1 MR

We denote by xMR
m and rMR

m the approximation and the residual of the minimum
residual method at step m:{

xMR
m = x0 + vMR

m ∈ x0 + Vm
rMR
m = r0 −AvMR

m = r0 − hMR
m ⊥ Wm.

The name minimum residual methods comes from the following fact.

Lemma 2.2

||rMR
m || = min

x∈Vm
||r0 −Ax|| ⇐⇒ rMR

m ⊥ Wm.
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This is a direct consequence of the Hilbert projection theorem.

||rMR
m || = min

x∈Vm
||r0 −Ax||

= min
y∈Wm

||r0 − y||

= ||r0 − PWmr0||.

So
hMR
m = PWm

r0

is the orthogonal projection of r0 onto Wm. The MR approximation is always
defines and unique.

2.2.2 OR

We denote by xOR
m and rOR

m the approximation and the residual of the orthogonal
method at step m: {

xOR
m = x0 + vOR

m ∈ x0 + Vm
rOR
m = r0 −AvOR

m = r0 − hOR
m ⊥ Vm

As hOR
m ∈ Wm and r0 − hOR

m ⊥ Vm, we can write

hOR
m = PVmWm

r0,

i.e. it is the oblique projection of r0 onto Wm orthogonal to Vm (the name of
this method comes from this fact). The OR approximation may not exist or
may not be uniquely determined.

2.3 Two abstract problems of approximation

Here we will see the two methods for a pair of finite dimensional abstract sub-
spaces V and W without reference to an operator, but we should keep in mind
for our purpose that Vm = Km andWm = AKm, where m denotes the dimension
of the subspaces.

Given r0 ∈ H, we define its MR approximation as the best approximation
from W and denote by rMR the associated error:{

hMR = PWr0

rMR = r0 − hMR = (I − PW)r0 ⊥ W.

The OR approximation hOR and its associated error are denoted by{
hOR = PVWr0

rOR = r0 − hOR = (I − PVW)r0 ⊥ V.

Choosing V = W yields the MR approximation, which is just a special case
of the OR approximation, but we will distinguish the two methods for ease of
exposition.

Existence and uniqueness of those approximations are summarized in
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Lemma 2.3 If V and W are subspaces of an Hilbert space H and r0 ∈ H, we
have the following properties:

1) ∃h ∈ W/r0 − h ⊥ V ⇐⇒ r0 ∈ W + V⊥

2) ∃h ∈ W/r0 − h ⊥ V ⇐⇒

{
r0 ∈ W + V⊥

W ∩ V⊥ = {0}

Proof: For the first property we have

∃h ∈ W/r0 − h ⊥ V ⇐⇒ ∃h ∈ W/r0 − h ∈ V⊥

⇐⇒ ∃h ∈ W/r0 ∈ h+ V⊥

⇐⇒ r0 ∈ W + V⊥

For the second we have

∃!h ∈ W/r0 − h ⊥ V ⇐⇒ ∃!h ∈ W/r0 ∈ h+ V⊥

⇐⇒

{
r0 ∈ W + V⊥

W ∩ V⊥ = {0}

�
From this proposition, we conclude that the MR approximation always exists

and is unique. When we speak of the OR approximation in the following, we
will implicitely suppose that it is well defined and unique.

3 Geometry in Hilbert spaces

In this section we will give the definitions of angles we need and some direct
properties related to the two abstracts methods.

First we define the angle between two nonzero elements

Definition 3.1 For x and y non zero vectors in H, we define their angle

cos∠(x, y) =
|(x, y)|
||x|| ||y||

with ∠(x, y) ∈ [0, π/2].

The sine is defined by sin∠(x, y) =
√

1− cos2∠(x, y).
Then we define the angle between a vector and a subspace

Definition 3.2 For x ∈ H \ {0} and U a non zero subspace of H, we define
their angle

∠(x,U) = inf
u∈U\{0}

∠(x, u)
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So we have cos∠(x,U) = supu∈U\{0} cos∠(x, u) (cos is decreasing on [0, π/2]).

The sine is defined by sin∠(x,U) =
√

1− cos2∠(x,U).
Those two definitions are sufficient to treat the MR approximation but for

the OR method we will need the notion of angle between subspaces.

Definition 3.3 For V andW two non zero subspaces of H, we define the canon-
ical angles θj

cos θj = max
v∈V\{0}

max
w∈W\{0}

|(v, w)|
||v|| ||w||

:=
|(vj , wj)|
||vj || ||wj ||

subject to v ⊥ {v1, . . . , vj−1} and w ⊥ {w1, . . . , wj−1}. The angle between the
two subspaces is defined by ∠(V,W) = θm

There are several other definitions of angles between subspaces in a Hilbert
space like the Dixmier angle or the Friedrichs angle which can be very usefull
for different problems like for example the rate of convergence for the method
of alternating projections.

The following lemma gives a connection between angles and orthogonal pro-
jections.

Lemma 3.1 For x ∈ H and U a finite dimensional subspace of H we have

1. ∠(x,U) = ∠(x, PUx)

2. ||PUx|| = ||x|| cos∠(x,U)

3. ||(I − PU )x|| = ||x|| sin∠(x,U)

Proof:

1. If x ⊥ U , the first assertion is clear. So let us suppose that x 6⊥ U and let
u ∈ U \ {0}.

cos∠(x, u) =
|(x, u)|
||x|| ||u||

=
|(PUx, u)|
||x|| ||u||

≤ ||PUx||
||x||

=
|(PUx, PUx)|
||x|| ||PUx||

(PUx 6= 0)

=
|(x, PUx)|
||x|| ||PUx||

= cos∠(x, PUx)

As it is true for every u ∈ U \ {0}, we obtain

cos∠(x,U) = sup
u∈U\{0}

cos∠(x, u) ≤ cos∠(x, PUx),

and as PUx ∈ U we obtain equality.

2. Thanks to the first point we have

cos∠(x,U) = cos∠(x, PUx) =
|(x, PUx)|
||x|| ||PUx||

=
||PUx||
||x||

.
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3. Using ||x||2 = ||PUx||2 + ||(I − PU )x||2, we obtain

sin∠(x,U) =
√

1− cos2∠(x,U)

=

√
1− ||PUx||

2

||x||2
=
||(I − PU )x||
||x||

�
This lemma gives a direct consequence for the MR method in terms of angles:

||rMR|| = ||r0 − hMR|| = ||(I − PW)r0|| = ||r0|| sin∠(r0,W). (1)

For the OR method, we cite theorem 2.9 in [1]

Theorem 3.2 Given two finite dimensional subspaces V and W of a Hilbert
space H such that H =W ⊕V⊥, there holds

||I − PVW || =
1

cos∠(V,W)

This theorem implies the following two corollaries

Corollary 3.3

||rOR|| = ||(I − PVW)r0|| ≤
||r0||

cos∠(V,W)
.

Corollary 3.4

cos∠(V,W)||rOR|| ≤ ||rMR|| ≤ ||rOR||.

Proof: Using the fact that rOR = (I − PVW)r0 = (I − PVW)(r0 − w) for all
w ∈ W, we obtain

||rOR|| ≤ ||I − PVW || inf
w∈W

||r0 − w|| = ||I − PVW ||||rMR||.

This implies what we want. �

4 Geometry in Krylov spaces

Up to now, nothing was assumed on the subspaces V and W. By imposing
specific properties on our subspaces (which are verified by Krylov spaces), we
will obtain more interesting results. Let us make the following hypotheses

1. We have a sequence of nested subspaces

W0 = {0} ⊂ W1 ⊂ W2 ⊂ · · · ⊂ H

2. Moreover we suppose that dim(Wm) = m.
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3. Vm = 〈r0〉+Wm−1.

Those hypothesis correspond exactly to the properties we give at the beginning
on the Krylov subspaces with Wm = AKm, Vm = Km and m ≤ M . So what
we will said will be general enough to contain all (polynomial) Krylov subspace
methods.

Throughout this section, {w1, . . . , wm} will always denote an orthonormal
basis of Wm such that {w1, . . . , wm−1} forms a basis of Wm−1.

4.1 MR method

The MR approximation can be expressed as the truncated Fourier expansion

hMR
m = PWm

r0 =
m∑
j=1

(r0, wj)wj = hMR
m−1 + (r0, wm)wm

which leads to
rMR
m = r0 − hMR

m = rMR
m−1 − (r0, wm)wm.

This implies that
PWm

rMR
m−1 = (r0, wm)wm, (2)

and
rMR
m = rMR

m−1 − PWm
rMR
m−1 = (I − PWm

)rMR
m−1.

So by Pythagoras’ theorem we obtain for the MR method the following
relation

||rMR
m ||2 = ||rMR

m−1||2 − |(r0, wm)|2. (3)

A direct consequence of lemma 3.1 allows us to express successive approxi-
mation errors in terms of angles:

||rMR
m || = ||rMR

m−1|| sin∠(rMR
m−1,Wm). (4)

Let us set sm = sin∠(rMR
m−1,Wm). Using an obvious induction, we obtain the

following relations.

Proposition 4.1 For the MR method and the notations used before we have

||rMR
m || = sm||rMR

m−1||,

and

||rMR
m || =

m∏
j=1

sj ||r0||.

So the sequence of approximations will converge if and only if the product of
the sines tends to zero.

The cosine cm = cos∠(rMR
m−1,Wm) =

√
1− s2m can be expressed by

cm =
|(r0, wm)|
||rMR

m−1||
. (5)
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We note that this expression is correct if ||rMR
m−1|| 6= 0. If not, the problem is

solved in Wm−1, and so we do not need to go further. In the particular case of
(polynomial) Krylov spaces, this is the case by assumptions on the dimension
of the subspaces.

Remark: The relations (2) and (5) shows that

||rMR
m || < ||rMR

m−1|| ⇐⇒ (r0, wm) 6= 0

⇐⇒ cm 6= 0.

So we have an improvement with the MR method if and only if the direction in
which Wm−1 is enlarged is not orthogonal to r0.

Remark: Up to now we did not use the third hypothesis on our subspaces
and so all we said is true for more general subspaces.

4.2 Main theorem

The OR method uses two subspaces in its definition and its analysis is more
subtle. We will need to know a relation between Vm and Wm, this is where the
third assumption comes into play. In this subsection we will prove an important
theorem for our analysis of the methods and to make links between them. We
will come back to our goal in the next subsection.

To prove our theorem we will need the next lemma.

Lemma 4.2 Given any two orthonormal bases {vj}mj=1 and {wj}mj=1 of V and
W, the cosines of the canonical angles are the singular values of the matrix
[(vi, wk)]:

cos(θj) = σj [(vi, wk)].

Proof: By definition

cos θj = max
v∈V,||v||=1

max
w∈W,||w||=1

|(v, w)| := |(vj , wj)|

subject to v ⊥ {v1, . . . , vj−1} and w ⊥ {w1, . . . , wj−1}.
By setting the following notations for any x, y in Km (K = R or C):
V = [v1 . . . vm], vi = V xi, v = V x, and
W = [w1 . . . wm], wi = Wyi, w = Wy,
we have v∗i v = x∗i x and w∗iw = y∗i y. This implies that ||v|| = ||x|| = ||w|| =
||y|| = 1. Now we can write

cos θj = max
x∈Km,||x||=1

max
y∈Km,||y||=1

|(V x,Wy)|

subject to x ⊥ {x1, . . . , xj−1} and y ⊥ {y1, . . . , yj−1},
and then

cos θj = max
x∈Km,||x||=1

max
y∈Km,||y||=1

|(x, V ∗Wy)|

subject to x ⊥ {x1, . . . , xj−1} and y ⊥ {y1, . . . , yj−1}.
This allows to conclude

cos θj = σj(V
∗W ).
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�
In fact this lemma is true even for spaces which do not have same dimension (it
is clear from the proof).

Now we are in position to enunciate and to prove our main theorem.

Theorem 4.3 With the hypothesis we have done on the subspaces Vm andWm,

1. θm = ∠(Vm,Wm) = ∠(rMR
m−1,Wm),

2. θj = 0, for j = 1 : m− 1.

Proof:

• Set ŵm =
rMR
m−1

||rMR
m−1||

. rMR
m−1 is orthogonal to Wm−1 and rMR

m−1 = r0 − hMR
m ∈

〈r0〉 +Wm−1 = Vm implies that {w1, . . . , wm−1, ŵm} is an orthonormal
basis of Vm.

• Setting vj = wj for j = 1 : m− 1 and vm = ŵm, we have

[(vi, wj)] =

(
Im−1 0

0 (ŵm, wm)

)
.

The preceding lemma implies{
cos θj = σj = 1, for j = 1 : m− 1

cos θm = σm = |(ŵm, wm)|

So we have θj = 0, for j = 1 : m− 1 and cos∠(Vm,Wm) = |(ŵm, wm)|.

• Let us calculate

|(ŵm, wm)| =
|(rMR

m−1, wm)|
||rMR

m−1||
=
|(r0, wm)|
||rMR

m−1||
= cm = cos∠(rMR

m−1,Wm) by (5)

which ends the proof.

�
Remark: With the hypothesis we have made on the subspaces, a conse-

quence of this theorem is that the OR approximation is uniquely defined if and
only if (r0, wm) 6= 0. We thus tacitly assume (r0, wm) 6= 0 whenever we speak
abour the OR method. We note that the OR method is uniquely defined if
and only if the MR method improves. We will see it later as the peak/plateau
phenomenon.
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4.3 Formulas and links between OR and MR methods

Let us introduce a new vector

w̃m =
|(wm, r0)|
(wm, r0)

ŵm

with ŵm =
rMR
m−1

||rMR
m−1||

.

The following theorem links the two methods.

Theorem 4.4 With our notations and the hypotheses made on the subspaces,
we have

i) PVmWm
is a rank-one modification of PWm

PVmWm
=

m−1∑
j=1

(., wj)wj +
1

cm
(., w̃m)wm,

ii) hOR
m = hMR

m +
||rMR

m ||2
(wm,r0)

wm.

Proof:

i) (wm, w̃m) = |(wm,r0)|
(wm,r0)

(wm,
rMR
m−1

||rMR
m−1||

) = |(wm,r0)|
||rMR

m−1||
= cm by (5).

So the sets {w1, . . . , wm−1,
1
cm
w̃m} and {w1, . . . , wm−1, wm} form a pair of

biorthonormal bases of Vm and Wm.

ii) We have

hOR
m − hMR

m = PVmWm
r0 − PWm

r0

=

[
1

cm
(r0, w̃m)− (r0, wm)

]
wm.

Or by (5) we have

1

cm
(r0, w̃m) =

||rMR
m−1||

|(wm, r0)|
|(wm, r0)|
(wm, r0)

(r0, ŵm)

=
(r0, r

MR
m−1)

(wm, r0)
=
||rMR

m−1||2

(wm, r0)
.

And then

hOR
m − hMR

m =
||rMR

m−1||2 − |(r0, wm)|2

(wm, r0)
wm

=
||rMR

m ||2

(wm, r0)
wm.
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�
The preceding theorem is an essential ingredient of the proof for the following

well-known relations

Theorem 4.5 With our notations and the hypotheses made on the subspaces,
we have

i) ||rMR
m || = cm||rOR

m ||

ii) ||rOR
m || = s1...sm

cm
||r0||

iii)

{
hMR
m = s2mh

OR
m−1 + c2mh

OR
m

rMR
m = s2mr

OR
m−1 + c2mr

OR
m

iv)


1

||rMR
m ||2h

MR
m =

∑m
j=0

1
||rOR

j ||2h
OR
j

1
||rMR

m ||2 r
MR
m =

∑m
j=0

1
||rOR

j ||2 r
OR
j

v) 1
||rMR

m ||2 =
∑m

j=0
1

||rOR
j ||2 = 1

||rMR
m−1||2

+ 1
||rOR

m ||2

Proof:

i)

||rOR
m ||2 = ||r0 − hOR

m ||2

= ||r0 − hMR
m − ||r

MR
m ||2

(wm, r0)
wm||2 by theorem (4.4)

= ||rMR
m − ||r

MR
m ||2

(wm, r0)
wm||2 = ||rMR

m ||2 +
||rMR

m ||4

|(wm, r0)|2

= ||rMR
m ||2

(
1 +

||rMR
m ||2

|(wm, r0)|2

)
= ||rMR

m ||2
||rMR

m−1||2

|(wm, r0)|2
by (3)

= ||rMR
m ||2 1

c2m
by (5)

ii) ||rOR
m || = 1

cm
||rMR

m || = s1...sm
cm
||r0||

iii) hOR
m = hMR

m +
||rMR

m ||2
(wm,r0)

wm (by theorem (4.4))

or hMR
m = hMR

m−1 + (r0, wm)wm which implies wm = 1
(r0,wm) (h

MR
m − hMR

m−1).

So

hOR
m = hMR

m +
||rMR

m ||2

||rMR
m−1||2

||rMR
m−1||2

|(r0, wm)|2
(hMR

m − hMR
m−1)

= hMR
m +

s2m
c2m

(hMR
m − hMR

m−1) by (5),
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which leads to
c2mh

OR
m = hMR

m − s2mhMR
m−1.

iv) By repeating the preceding formula, we obtain

hMR
m = s2mh

MR
m−1 + c2mh

OR
m

= s2ms
2
m−1h

MR
m−2 + s2mc

2
m−1h

OR
m−1 + c2mh

OR
m

= s2m . . . s21r0 +

m−1∑
j=1

s2m . . . sj+1c
2
jh

OR
j + c2mh

OR
m .

Now we use the equalities sj =
||rMR

j ||
||rMR

j−1 ||
and cj =

||rMR
j ||
||rOR

j || .

v) As the rOR
j are orthogonal, we have

|| 1

||rMR
m ||2

rMR
m ||2 = ||

m∑
j=0

1

||rOR
j ||2

rOR
j ||2 =

m∑
j=0

1

||rOR
j ||2

.

�

4.4 Peak/plateau phenomenon

Recall that we have the formula

||rMR
m || = cm||rOR

m || =

√
1− ||r

MR
m ||2

||rMR
m−1||2

||rOR
m ||.

This formula makes sense if and only if the MR method progress, which is
equivalent to the fact that the OR approximation is well defined. Moreover,

we see that if ||rMR
m || ' ||rMR

m−1||, then the factor

√
1− ||rMR

m ||2
||rMR

m−1||2
will be near

zero, and consequently ||rOR
m || >> ||rMR

m ||. Conversely, if the MR method

makes considerable progress, then

√
1− ||rMR

m ||2
||rMR

m−1||2
' 1, and ||rOR

m || ' ||rMR
m ||. In

the context of Krylov subspace methods, this observation is referred to as the
peak/plateau phenomenon of OR and MR approximations.

5 Application to a compact perturbation of the
identity

Many applications such as the solution of elliptic boundary value problems by
the integral equation method require the solution of operator equations in which
A has the form A = λI + K with λ 6= 0 and K a compact operator. In this
section, we want to obtain bounds on the residuals of the MR and OR methods
by relating the operator A to the decay of the numbers sm.
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5.1 Superlinear convergence

Let us remark that we have

Lemma 5.1 vm+1 ∈ 〈rMR
m , wm〉.

Proof: rMR
m ∈ 〈r0〉+Wm = Vm+1 and rMR

m ⊥ Wm implies that Vm+1 =Wm+
〈rMR

m 〉 = 〈rMR
m , wm〉 +Wm−1. So (w1, . . . , wm−1, wm, r

MR
m ) is an orthogonal

basis of Vm+1.
Now we recall that vm+1 ∈ Vm+1 and vm+1 ⊥ Vm = 〈r0〉+Wm−1, which implies
that vm+1 ⊥ Wm−1. This ends the proof. �

Now we will prove three lemmas which we will need in the main theorem of
this section, but they are interesting in themselves.

Lemma 5.2 sm = |(vm+1, wm)|.

Proof:

• With ŵm+1 =
rMR
m

||rMR
m || , we have that (wm, ŵm+1) is an orthonormal basis of

〈rMR
m , wm〉. so by the lemma 5.1, vm+1 = αŵm+1 +βwm. As ||vm+1|| = 1,

it is clear that
|α|2 + |β|2 = 1. (*)

• We have by a direct calculus (vm+1, wm) = β.

• By computing

(vm+1, r0) =
α

||rMR
m ||

(rMR
m , r0) + β(wm, r0)

= α||rMR
m ||+ β(wm, r0),

and then

α = −β (wm, r0)

||rMR
m ||

. (**)

• Now (∗) and (∗∗) imply

(∗) and (∗∗) =⇒ |β|2
(

1 +
|(wm, r0)|2

||rMR
m ||2

)
= 1

=⇒ |β|2 =
||rMR

m ||2

||rMR
m ||2 + |(wm, r0)|2

=
||rMR

m ||2

||rMR
m−1||2

by (3)

=⇒ |β| = sm by (4)

=⇒ |(vm+1, wm)| = sm

�
The second lemma is a well-known fact in functional analysis, we just recall

the proof here to be self contained.
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Lemma 5.3 If {xn} is an orthonormal system and K is compact, then

(Kxn, xn+1)→ 0.

Proof: For every x ∈ H, we have∑
|(x, xn)|2 ≤ ||x|2 =⇒ (x, xn)→ 0.

So xn ⇀ 0. Now it suffices to use the fact that K is compact to obtain Kxn → 0,
which is stronger than the conclusion we need. �

The third lemma is due to Moret [2] and gives a bound on sm (in the case
of polynomial Krylov spaces).

Lemma 5.4 If A and A−1 are bounded,we have

(vm+1, wm) = (A−1wm, vm)(vm+1, Avm)

and then
|(vm+1, wm)| ≤ ||A−1|| |(vm+1, Avm)|.

Proof: Using wm ∈ Wm =⇒ A−1wm ∈ Vm, we have

(vm+1, wm) = (vm+1, AA
−1wm)

= (vm+1, A

m∑
j=1

(A−1wm, vj)vj)

=

m∑
j=1

(A−1wm, vj)(vm+1, Avj)

Or Avj ∈ Vm, j = 1 : m− 1 =⇒ (vm+1, Avj) = 0, j = 1 : m− 1.So

(vm+1, wm) = (A−1wm, vm)(vm+1, Avm).

This ends the proof. �
Remark: We can note that the modulus in |(vm+1, Avm)| can be omitted

since (Avm, vm+1) = ||(I − PVm)Avm|| ≥ 0.

Theorem 5.5 For an operator A of the form λI+K, with K compact, we have

i) sm → 0.

ii) ||rMR
m || and ||rMR

m || → 0, and the convergence is superlinear.

Proof:

i) Using the preceding lemma we have

sm = |(vm+1, wm)| by lemma 5.2

≤ ||A−1|| |(vm+1, Avm)| by lemma 5.4.
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And using the particular form of A,

(vm+1, Avm) = (vm+1, λvm) + (vm+1,Kvm)

= (vm+1,Kvm)→ 0 by lemma 5.3.

ii) To prove the second part of the theorem we just recall that

||rMR
m || =

 m∏
j=1

sj

 ||r0||
and

||rOR
m || =

1

cm

 m∏
j=1

sj

 ||r0||.
The term superlinear means that it is not just ||rMR

m || that tends to zero,
but the sequence of sines, and then the product decrease very fast.

�
Remark: The fact sm → 0 implies that for m sufficiently large, the OR

method is always defined, except for a finite number of indices.

5.2 Rate of convergence

In theorem 5.5 we have seen that the methods converge superlinearly for A =
λI + K. In this case, the rate of superlinear convergence is related to the
degree of compactness of K measured by the products of its singular values.
We refer to [2] for this part. In this paper the author did his analysis for the
algorithm GMRES which is a particular algorithm for the MR method, but we
can transport his work to the MR and OR methods. One of the first result that
pointed out the dependence between the speed of convergence and the degree
of compactness of K measured in terms of the decay of its singular values was
given by Winther in [5] for the CG algorithm (a particular case of OR method).
In this paper the convergence was linked to the arithmetic means of powers of
the singular values of K.

Let us use what we have done before

||rMR
m || =

 m∏
j=1

sj

 ||r0||
=

 m∏
j=1

|(vj+1, wj)|

 ||r0|| by lemma 5.2

=

 m∏
j=1

|(A−1wj , vj)(vj+1, Avj)|

 ||r0|| by lemma 5.4

= |det[〈vi, A−1wj〉] det[〈vi+1, Avj〉]| ||r0||.
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The last equality is due to the fact that the two matrices [〈vi, A−1wj〉] and
[〈vi+1, Avj〉] are upper triangular.

Now the next step is to use a lemma that uses the singular values of K.
Recall that we have the following definition for singular values of a bounded
linear operator A:

σj(A) = inf{||A−Rj−1||, rank Rj−1 ≤ j − 1}.

Lemma 5.6 Let {f1, . . . , fm} and {g1, . . . , gm} be any pair of finite orthonor-
mal systems in H, and A : H → H a bounded linear operator. Then

|det[〈fi, Agj〉]| ≤
m∏
l=1

σl(A).

Proof: Consider
F : Cm → H

x 7→ Fx =
∑m

i=1 xifi
and

G : Cm → H
x 7→ Gx =

∑m
j=1 xjgj

.

Then
F ∗ : H → Cm

y 7→ F ∗y = (〈x, fi〉)mi=1
and

G∗ : H → Cm

y 7→ G∗y = (〈x, gj〉)mj=1
.

Now we can write

|det[〈fi, Agj〉]| = |det(F ∗AG)|

=

m∏
l=1

σl(F
∗AG)

≤
m∏
l=1

σl(A)

. �
Now we can prove the following important theorem

Theorem 5.7 For any linear bounded operator A = λI + K, with λ 6= 0 and
K a compact operator in the p-th Schatten class, we have

||rMR
m ||1/m = O(m−1/p).

Proof:

||rMR
m || = |det[〈vi, A−1wj〉] det[〈vi+1, Avj〉]| ||r0||

= |det[〈vi, A−1wj〉] det[〈vi+1,Kvj〉]| ||r0||

≤

(
m∏
l=1

σl(A
−1)

)(
m∏
l=1

σl(K)

)
||r0|| by lemma 5.6
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which leads when we take the m-th root

||rMR
m ||1/m ≤

(
m∏
l=1

σl(A
−1)

m∏
l=1

σl(K)

)1/m

||r0||1/m

≤

(
1

m

m∑
l=1

σl(A
−1)σl(K)

)
||r0||1/m

≤ 1

m

(
m∑
l=1

σl(A
−1)q

)1/q ( m∑
l=1

σl(K)p

)1/p

||r0||1/m

≤ |||K|||p||r0||1/m||A−1||m−1/p,

which ends the proof. �

6 Conclusion and openings

In this presentation we give a unifying framework for describing and analyzing
Krylov methods. All well-known relations between MR and OR methods hold
in a general abstract formulation. In fact for the MR methods some formulas
obtained hold for general subspaces as we do not use the relation Vm = 〈r0〉+
Wm−1, and in particular they hold for rational Krylov subspaces. An interesting
problem is to generalize these geometric aspects to rational Krylov spaces. But
one difference is that, when considering rational Krylov methods, more general
problems than linear systmes (like matrix functions) would be the more relevant
application, since the rational Krylov space generation process already includes
linear equation solving at each step.
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