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REPRODUCING KERNEL HILBERT SPACES AND RANDOMMEASURESChARLES SUQUETLaboratoire P. Painlevé, UMR CNRS 8524,Bât M2, Cité Sienti�que, Université Lille IF59655 Villeneuve d'Asq Cedex, FraneWe show how to use Guilbart's embedding of signed measures into a R.K.H.S. to studysome limit theorems for random measures and stohasti proesses.Key words:Mathematis Subjet Classi�ation:1. R.K.H.S. and metris on signed measuresIn the late seventies, C. Guilbart [4, 5℄ introdued an embedding into a reprodu-ing kernel Hilbert spae (R.K.H.S.) H of the spae M of signed measures on sometopologial spae X. He haraterized the inner produts on M induing the weaktopology on the subspae M+ of bounded positive measures and established in thissetting a Glivenko-Cantelli theorem with appliations to estimation and hypothesistesting. In this ontribution we present a onstrutive approah of Guilbart's em-bedding following [20℄. This embedding provides a Hilbertian framework for signedrandom measures. We shall disuss some appliations of this onstrution to limittheorems for random measures and partial sums proesses.Let X be a metri spae and let M denote the spae of signed measures on theBorel σ-�eld of X. A signed measure µ is the di�erene of two positive boundedmeasures. We denote by (µ+, µ−) its Hahn-Jordan deomposition and by |µ| =

µ+ + µ− its total variation measure. We onsider the lass of reproduing kernelshaving the following representation
K(x, y) =

∫

U

r(x, u)r(y, u)ρ(du), x, y ∈ X, (1)where ρ is a positive measure on some measurable spae (U, U) and the funtion
r : X × U → C satis�es

sup
x∈X

‖r(x, . )‖L2(ρ) < ∞. (2)We denote by H the reproduing kernel Hilbert spae assoiated with K. It is easilyheked (Prop.2 in [20℄) that under (2), r(., u) is µ-integrable over X for ρ-almost
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u ∈ U. We assume moreover thatif µ ∈ M and ∫

X

r(x, u)µ(dx) = 0 for ρ-almost u, then µ = 0. (3)The essential fats about the embeddings of M into H and L2(ρ) are gathered inthe following theorem whih is proved in [20℄.Theorem 1.1. Under (1), (2) and (3), the following properties hold.a) Let E be the losed subspae of L2(ρ) spanned by {r(x, .), x ∈ X}. A funtion
h : X → C belongs to H if and only if there is a unique g ∈ L2(ρ) suh that

h(x) =

∫

U

g(u)r(x, u)ρ(du), x ∈ X. (4)The representation (4) de�nes an isometry of Hilbert spaes Ψ : H → E, h 7→ g.b) K indues an inner produt on M by the formula
〈µ, ν〉K :=

∫

X2

K(x, y)µ ⊗ ν(dx, dy), µ, ν ∈ M. (5)) (M, 〈., .〉K) is isometri to a dense subspae of H by
I : M → H, µ 7−→ Iµ :=

∫

X

K(x, .)µ(dx). (6)Moreover we have
〈h, Iµ〉 =

∫

X

h dµ, 〈Iµ, h〉 =

∫

X

hdµ, h ∈ H, µ ∈ M. (7)d) The isometri embedding ζ = Ψ ◦ I : µ 7→ ζµ of M into L2(ρ) satis�es
ζµ(u) =

∫

X

r(x, u)µ(dx), u ∈ U. (8)Let us examine some examples where Theorem 1.1 applies.Example 1.1. Take for ρ the ounting measure on U = N and de�ne r by r(x, i) :=

fi(x), x ∈ X, i ∈ N, where the sequene of funtions fi : X → R separates themeasures, i.e. the only µ ∈ M suh that ∫
X

fi dµ = 0 for all i ∈ N is the nullmeasure. To have a bounded kernel we also assume that ∑i∈N
‖fi‖2

∞ < ∞. Then
K(x, y) =

∑

i∈N

fi(x)fi(y), x, y ∈ X
2.

µ is represented in ℓ2(N) by ζµ =
(∫

X
fi dµ

)

i∈N
and in H by Iµ =

∑

i∈N

(∫

X
fi dµ

)

fi.It easily follows from (4) that every fi belongs to H.Example 1.2. Take X = U = Rd, with r(x, u) := exp(i〈x, u〉), x, u ∈ Rd andhoose ρ as a bounded positive measure on Rd. This gives the ontinuous stationarykernels
K(x, y) =

∫

Rd

exp(i〈x − y, u〉)ρ(du), x, y ∈ R
d.
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3Here ζµ(u) =

∫

Rd exp(i〈x, u〉)µ(dx) =: µ̂(u), is the harateristi funtion of µ and
Iµ(x) =

∫

Rd exp(−i〈x, u〉)µ̂(u)ρ(du). These kernels are used in [20℄ to study theonvergene rate in the CLT.Example 1.3. Take X = U = [0, 1], ρ = λ + δ1, where λ is the Lebesgue measureand δ1 the Dira mass at the point 1. With r(x, u) := 1[x,1](u), we obtain K(x, y) =

2 − max(x, y) and ζµ(u) = µ([0, u]).Remark 1.1. The usual topologies on M are generated by funtionals f 7→
∫

X
f dµ,

f ∈ F , where F is some family of ontinuous funtions de�ned on X. When X isloally ompat, F = C(X), the spae of all bounded ontinuous funtions on Xgives the weak topology while restriting to F = C0(X) the spae of ontinuousfuntion onverging to zero at in�nity gives the vague topology. By onvergene tozero at in�nity we mean that for every positive ε there is a ompat subset A of Xsuh that |f(x)| < ε for every x ∈ X \ A. In the speial ase where X is ompat,
C(X) = C0(X). Endowed with the supremum norm, C0(X) is a Banah spae withtopologial dual M (Riesz's theorem). Now if we hoose in Example 1.1 the fi's in
C0(X), a simple Hahn-Banah argument gives the density of H in C0(X). In thissetting, let (µn)n≥1 be a sequene in M suh that supn≥1 |µn|(X) < ∞. Then weakand strong onvergene in H of Iµn

to Iµ are equivalent to the weak onvergene in
M of µn to µ.2. Some limit theorems for random measures2.1. Random measuresA random measure µ• is a random element in a set M of measures equipped withsome σ-�eld G, i.e. a measurable mapping

µ• : (Ω, F, P ) −→ (M, G), ω 7→ µω.Here (Ω, F, P ) is a probability spae and the law or distribution of µ• (under P )is the image measure P ◦ (µ•)−1 on G. Among the well known examples of randommeasures let us mention the empirial proess µ•

n = n−1
∑n

i=1 δXi
, where the Xi'sare random elements in the spae X and the point proesses∑N

i=1 δYi
, where N andthe Yi's are random. In the lassial theory, e.g. Kallenberg [7℄, X is loally ompatwith a ountable basis of neighborhoods, M is the set of positive Radon measureson the Borel σ-�eld of X and M is endowed with the Borel σ-�eld G of the vaguetopology. This framework of positive measures is su�ient to the lassial studyof point proesses and positive random measures. But the above setting does notover the ase of signed measures. Still random signed measures appear naturally byentering of positive ones [6℄. Guilbart's embedding of M in an R.K.H.S. H providesthe bakground for a Hilbertian theory of signed random measures. This way wean exploit the nie probabilisti properties of Hilbert spaes and obtain useful limittheorems like CLT or FCLT.



Otober 19, 2006 18:17 WSPC - Proeedings Trim Size: 9.75in x 6.5in suquet-revision
4 From now on, we assume for simpliity that X is metri loally ompat andthat K is as in Example 1.1 with the fi's in C0(X). Identifying H with a ompletionof M, we all random measure a random element µ• in H suh that P (µ• ∈ M) = 1.The observations of suh a random measure are the random variables 〈h, µ•〉K =
∫

X
h dµ•, h ∈ H, aounting (7). Some natural measurability questions raised byour de�nition of random measures are positively answered in [19℄: M is a Borelsubset of H, |µ•| is also a random measure, the ∫

X
f dµ•'s, f ∈ C0(X), and |µ•|(X)are random variables.2.2. Strong law of large numbersIf E‖µ•‖K is �nite, the random measure µ• is Bohner integrable and Eµ• is de�nedas a deterministi element of H. Then µ• is also Pettis integrable, when

E〈h, µ•〉K = 〈h,Eµ•〉K , h ∈ H. (9)The following theorem is an immediate appliation of the strong law of large num-bers in separable Banah spaes, see e.g. [9℄.Theorem 2.1. Let µ•

1, . . . , µ
•

n, . . . be independent identially distributed opies of
µ•. If E‖µ•‖K is �nite, then

ν•

n :=
1

n

n
∑

i=1

µ•

i
H−−−→
a.s.

Eµ•. (10)Conversely, if ν•

n onverges almost surely in H to some limit ℓ, this limit is deter-ministi, E‖µ•‖K is �nite and ℓ = Eµ•.Although ν•

n is obviously a random measure, it is not lear that the same holdstrue for its a.s. limit Eµ•. When Eµ• belongs to M, we all it the mean measure of
µ•. In this ase, (9) an be reast as

E〈h, µ•〉K =

∫

X

h d(Eµ•), h ∈ H. (11)Here is a simple su�ient ondition for the existene of the mean measure.Proposition 2.1. The membership of Eµ• in M follows from the �niteness of
E|µ•|(X) if X is loally ompat, K is ontinuous on X

2 and K(x, .) ∈ C0(X) forevery x ∈ X.The proof (f. Prop. XI.1.2 in [17℄) relies on the haraterization of measures in Hby
g ∈ I(M) i� sup

f∈H,‖f‖∞≤1

|〈f, g〉| < ∞, (12)using the fat that when �nite, the supremum in (12) equals |µ|(X), where µ :=

I−1(g), together with the elementary estimate
‖µ‖K ≤

(

sup
X2

K
)1/2|µ|(X), µ ∈ M. (13)
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5Corollary 2.1. If E|µ•|(X) < ∞, let µ be the mean measure of µ•. Then the a.s.onvergene of ν•

n to µ holds both in H and in the weak topology on M.The a.s. onvergene in H obviously follows from Theorem 2.1 by applying (13) to
µ•. By Remark 1.1, (10) implies the a.s. weak onvergene in M of ν•

n to µ providedthat supn≥1 |ν•

n|(X) < ∞. This uniform boundedness follows from the estimate
|ν•

n|(X) ≤ n−1
∑n

i=1 |µ•

i |(X) and of the a.s. onvergene of this upper bound to
E|µ•|(X) by the strong law of large numbers applied to the i.i.d. random variables
|µ•

i |(X).2.3. Central limit theorem for i.i.d. summandsIn any separable Hilbert spae H , the entral limit theorem for a sum of i.i.d.random elements is equivalent to the square integrability of the summands. Thisnie property does not extend to general Banah spaes, beause the CLT is deeplyonneted to the geometry of the spae [9℄. A square integrable random element Xin H is always pregaussian, i.e. there is a Gaussian random element in H with thesame ovariane struture as X .Theorem 2.2. Let µ•

1, . . . , µ
•

n, . . . be i.i.d. opies of µ•. If E‖µ•‖2
K < ∞, then

S∗
n :=

1√
n

n
∑

i=1

(µ•

i − Eµ•)
H−−−−−→in law γ•, (14)where γ• is a Gaussian random element in H with Eγ• = 0 and ovariane givenby

Cov(γ•)(f, g) = E

(
∫

X

f dµ•

∫

X

g dµ•

)

−
(

E

∫

X

f dµ•

)(

E

∫

X

g dµ•

)

, (15)for every f, g ∈ H.Conversely, if S∗
n onverges in law in H, its limit is Gaussian and E‖µ•‖2

K < ∞.Corollary 2.2. If X is loally ompat and E|µ•|(X)2 < ∞, then both µ• and µ•⊗µ•have mean measures, say µ and ν and (14) holds. In this ase, (15) an be reast as
Cov(γ•)(f, g) =

∫

X2

f ⊗ g dν −
(∫

X

f dµ

)(∫

X

g dµ

)

.Example 2.1. (CLT for empirial measure) Let X be a random element
(Ω, F, P ) → (X, BX) with unknown distribution µ = P◦X−1. Denote byX1, . . . , Xn,i.i.d. opies of X and put µ•

i := δXi
, i = 1, . . . , n. Then n−1

∑n
i=1 δXi

is the em-pirial measure assoiated with the sample X1, . . . , Xn. The CLT in H for theempirial measure was obtained by Berlinet [2℄ by a diret approah. It an alsobe seen as a speial ase of Corollary 2.2. Indeed here µ• = δX , so |µ•|(X) = 1,
Eµ• = µ = P ◦ X−1 and E(µ• ⊗ µ•) =: ν is the image measure of P ◦ X−1 by themapping x 7→ (x, x). Hene

√
n

(

1

n

n
∑

i=1

δXi
− µ

)

H−−−−→in law γ•,
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6where the ovariane of the Gaussian entered random element γ• is given by

Cov(γ•)(f, g) =

∫

X

fg dµ −
(∫

X

f dµ

)(∫

X

g dµ

)

.2.4. CLT for Donsker random measure and FCLT in L2[0, 1]It is also possible to obtain entral limit theorems for sums of non i.i.d. randommeasures, like the Donsker random measure
ν•

n :=
1

sn

n
∑

i=1

Xiδ i
n
, n ≥ 1, (16)where the Xi's are mean zero random variables, possibly dependent, with s2

n := ES2
nand Sn =

∑n
i=1 Xi. An appliation of suh CLT is a funtional entral limit theorem(FCLT) in L2[0, 1] for the partial sums proesses

Wn(t) := s−1
n S[nt], t ∈ [0, 1]. (17)This appliation was suggested by P. Jaob to P.E. Oliveira and the author. Theweak onvergene of Wn is lassially studied in the Skorohod spae D(0, 1) whih isontinuously embedded in L2[0, 1]. As many test statistis are funtionals ontinuousin L2[0, 1] sense of Wn or of the empirial proess, see [12℄ and [10℄, the weakertopologial framework of L2[0, 1] has its own interest. This way we an hope torelax the assumptions on the dependene struture of the underlying variables Xi's.Here we just sketh the method and refer to [11, 12℄ for more preise results.Let us hoose X = [0, 1] with the kernel of Example 1.3. Then

ζν•

n
(t) = ν•

n([0, t]) = s−1
n S[nt] = Wn(t), t ∈ [0, 1]. (18)Hene by the isometry between the Hilbert spaes H and L2[0, 1],

ν•

n
H−−−−→in law γ• ⇐⇒ Wn

L2[0,1]−−−−→in law W, (19)where under mild assumptions, the limiting proess W is identi�ed as a Brownianmotion by a simple ovariane omputation. Now the relevant CLT for ν•

n may beestablished by heking the following onditions.a) The inner produts 〈h, ν•

n〉K onverge in law to 〈h, γ•〉K for any �xed h ∈ H.b) The sequene (ν•

n)n≥1 is tight in H, i.e. for any positive ε, there is a ompatsubset Cε of H suh that infn≥1 P (ν•

n ∈ Cε) ≥ 1 − ε.The �rst ondition redues to a CLT in R for triangular arrays beause
〈h, ν•

n〉K =
1

sn

n
∑

i=1

Xi〈h, δ i
n
〉K =

1

sn

n
∑

i=1

h
( i

n

)

Xi. (20)
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7By an adaptation of a lassial Prohorov's result (Th.1.13 in [14℄), su�ient ondi-tions for the tightness of (ν•

n)n≥1 are
sup
n≥1

E‖ν•

n‖2
K < ∞, (21)

lim
n→∞

sup
n≥1

E
∑

i≥N

|〈fi, ν
•

n〉K |2 = 0, (22)for some Hilbertian basis (fi)i∈N of H. Conerning (21) whih does not ome fromTh.1.13 in [14℄, see the remark after Theorem 5 in [21℄.Now the heart of the matter is in the following elementary estimate.
E
∑

i≥N

|〈fi, ν
•

n〉K |2 =
∑

i≥N

E

(∫

fi dν•

n

)2

=
∑

i≥N

1

s2
n

n
∑

j,k=1

E(XjXk)fi

( j

n

)

fi

(k

n

)

≤





1

s2
n

n
∑

j,k=1

|E(XjXk)|



 sup
x∈[0,1]

∑

i≥N

fi(x)2. (23)The �rst fator in (23) may be bounded uniformly in n, subjet to good ovarianeestimates for the Xj 's. The seond fator goes to zero due to Dini's theorem (the
fi's being ontinous like any element of H). Moreover (21) obviously follows from(23) with N = 0 in the same setting.To sum up, the FCLT in L2[0, 1] for the partial sums proess Wn based on somedependent sequene (Xj)j≥1 is obtained under the estimate ∑n

j,k=1 |E(XjXk)| =

O(s2
n) and a one-dimensional CLT for the triangular arrays (20).2.5. Funtional entral limit theoremsWe disuss now the extension to random measures of the lassial FCLT for randomvariables. First note that polygonal lines in M make sense, due to M's vetor spaestruture. Let µ• be a signed random measure and the µ•

i 's be i.i.d. opies of µ•.We denote by ξ•

n the M-valued stohasti proess indexed by [0, 1], whose paths arepolygonal lines with verties (k/n, n−1/2Sk), k = 0, 1, . . . , n, Sk := µ•

1 + · · · + µ•

k.Combining Theorem 2.2 with Kuelbs FCLT [8℄, we immediately obtain the FCLTfor ξ•

n in the spae C([0, 1], H) of ontinuous funtions [0, 1] → H.Theorem 2.3. The following statements are equivalent.a) E‖µ•‖2
K < ∞ and Eµ• = 0,b) ξ•

n onverges in law in C([0, 1], H) to some H-valued Brownian motion W , i.e.a Gaussian proess with independent inrements suh that W (t)−W (s) has thesame distribution as |t− s|1/2γ•, where γ• is a Gaussian random element in Hwith null expetation and same ovariane struture as µ•.



Otober 19, 2006 18:17 WSPC - Proeedings Trim Size: 9.75in x 6.5in suquet-revision
8 As the paths of ξ•

n are Lipshitz H-valued funtions, it is natural to look for astronger topologial framework than C([0, 1], H) for the FCLT. A lear limitationin this quest omes from the modulus of uniform ontinuity of the limiting proess,
ω(W, u) := sup0≤t−s≤u ‖W (t) − W (s)‖

H
. Indeed by a simple projetion argumentand Lévy's well known result, ω(W, u) annot be better than u1/2 ln(1/u). This for-bids any weak onvergene of ξ•

n in some Hölder topology based on a weight funtionstronger than u1/2 ln(1/u). Introdue the separable Hölder spaes Ho
ρ([0, 1], H) offuntions f : [0, 1] → H, suh that

‖f‖ρ := ‖f(0)‖
H

+ ωρ(f, 1) < ∞ and lim
u→0

ωρ(f, u) = 0,where
ωρ(f, u) := sup

0<t−s≤u

‖f(t) − f(s)‖
H

ρ(t − s)
.We assume moreover that the weight funtions ρ are of the form ρ(u) = uαL(1/u),

0 < α ≤ 1/2, where L is ontinuous normalized slowly varying at in�nity. The
Ho

ρ([0, 1], H) weak onvergene of ξ•

n to W requires stronger integrability of µ• thanCondition a) in Theorem 2.3. Combining Theorem 2.2 with the Hölderian FCLTin [15℄, leads to the FCLT for ξ•

n in the spae Ho
ρ([0, 1], H).Theorem 2.4. Assume that there is a β > 1/2 suh that

t1/2ρ(1/t) ln−β(t) is non dereasing on some [a,∞). (24)Then the following statements are equivalent.a) Eµ• = 0 andfor every A > 0, lim
t→∞

t P
(

‖µ•‖K ≥ At1/2ρ(1/t)
)

= 0. (25)b) ξ•

n onverges in law in Ho
ρ([0, 1], H) to the H-valued Brownian motion W ofTh. 2.3.When α < 1/2, Condition (24) is automatially satis�ed and it is enough to take

A = 1 in (25). To larify Condition (25), let us onsider two important speial ases.When ρ(t) = tα for some 0 < α < 1/2, (25) redues to P
(

‖µ•‖K ≥ t) = o(t−p(α)),with p(α) := (1/2 − α)−1 and this is slightly weaker than E‖µ•‖p(α)
K < ∞. When

ρ(t) = t1/2 lnβ(c/t) for some β > 1/2, then (25) is equivalent to the �niteness of
E exp(d‖µ•‖1/β

K ) for eah d > 0.Following [16℄, we present brie�y a statistial appliation of Theorem 2.4 tothe detetion of epidemi hange in the expetation of a random measure. In whatfollows, µ•

k, k = 1, . . . , n are always i.i.d. opies of the mean zero random measure
µ•. Based on the observation of the random measures ν•

1 , . . . , ν
•

n, we want to testthe null hypothesis
(H0): ν•

k = µ•

k, k = 1, . . . , n,against the so alled epidemi alternative
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(HA) ν•

k =

{

µc + µ•

k if k ∈ In := {k∗ + 1, . . . , m∗}
µ•

k if k ∈ Ic
n := {1, . . . , n} \ Inwhere µc 6= 0 is some deterministi signed measure whih may depend on n. Toahieve this goal, we use some weighted dyadi inrements statistis whih behavelike ontinuous funtionals of ξ•

n in Hölder topology. Consider partial sums
Sn(a, b) =

∑

na<k≤nb

ν•

k, 0 ≤ a < b ≤ 1.Let us denote by Dj the set of dyadi numbers in [0, 1] of level j, i.e. D0 = {0, 1},and Dj =
{

(2l−1)2−j; 1 ≤ l ≤ 2j−1
}, j ≥ 1. Write for r ∈ Dj , j ≥ 0, r− := r−2−jand r+ := r + 2−j. Then de�ne the dyadi inrements statistis DI(n, ρ) by

DI(n, ρ) :=
1

2
max

1≤j≤log n

1

ρ(2−j)
max
r∈Dj

∥

∥Sn(r−, r) − Sn(r, r+)
∥

∥

K
. (26)Here � log� stand for the logarithm with basis 2 (log(2j) = j) while � ln� denotes thenatural logarithm (ln(et) = t).Theorem 2.5. Assume that the weight funtion ρ satis�es (24) and that the meanzero random measure µ• satis�es (25). Then under (H0), n−1/2DI(n, ρ) onvergesin law to a non negative random variable Z with distribution funtion

P (Z ≤ z) =
∞
∏

j=1

(

P (‖γ•‖K ≤ 2(j+1)/2ρ(2−j)z
)2j−1

, z ≥ 0, (27)where γ• is a mean zero Gaussian random element in H with the same ovarianeas µ•. The onvergene of the produt (27) is uniform on any interval [ε,∞), ε > 0.Theorem 2.5 is easily obtained from Theorem 2.2 and from [16℄ Th. 2 and Prop. 3.For general estimates on the onvergene rate in (27), see Prop. 4 in [16℄. Theonsisteny of the sequene of test statistis n−1/2DI(n, ρ) follows from the nextresult whih is an easy adaptation of Th. 5 in [16℄.Theorem 2.6. Let ρ satisfying (24). Under (HA), write l∗ := m∗ − k∗ for thelength of epidemis and assume that
lim

n→∞
n1/2 un‖µc‖K

ρ(un)
= ∞, where un := min

{ l∗

n
; 1 − l∗

n

}

. (28)Then
n−1/2DI(n, ρ)

pr−−−−→
n→∞

∞.To disuss Condition (28), assume for simpliity that µc does not depend on n.When ρ(t) = tα, (28) allows us to detet short epidemis suh that l∗ = o(n) and
l∗n−δ → ∞, where δ = (1−2α)(2−2α)−1. When ρ(t) = t1/2 lnβ(c/t) with β > 1/2,(28) is satis�ed provided that un = n−1 lnγ n, with γ > 2β. This leads to detetionof short epidemis suh that l∗ = o(n) and l∗ ln−γ n → ∞. In both ases one andetet symmetrially long epidemis suh that n − l∗ = o(n) .
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