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H�OLDER VERSIONS OF BANACH SPACE VALUEDRANDOM FIELDSALFREDAS RA�CKAUSKAS AND CHARLES SUQUETAbstract. For rather general moduli of smoothness �, like �(h)=h� ln�(c=h),we consider the H�older spaces H�(B) of functions [0; 1]d ! B where B is aseparable Banach space. We establish an isomorphism between H�(B) andsome sequence Banach space. With this analytical tool, we follow a very nat-ural way to study, in terms of second di�erences, the existence of a versionin H�(B) for a given random �eld.2000 Mathematics Subject Classi�cation: 60F05, 60G05, 60G17,60G15.Key words and phrases: Banach valued Brownian motion, central limittheorem, Schauder decomposition, second di�erence, skew pyramidal basis.1. IntroductionLet �(�), 0 � � � 1 be a modulus of smoothness and B a separable Banachspace. Denote by H�(B) = H�([0; 1]d;B) the space of all functions x : [0; 1]d !B such that kx(t+ h)� x(t)kB = O��(jhj)� (1.1)uniformly in t 2 [0; 1)d. Ho�(B) = Ho�([0; 1]d;B) is the subspace of functions forwhich O��(jhj)� can be replaced by o��(jhj)� in (1.1). Equipped with the re-lated H�older norm (precise de�nitions are given in Section 2), H�(B) becomes anon-separable Banach space withHo�(B) as a closed separable subspace. Lettingthe modulus � vary gives a very natural scale of spaces allowing us to classifyby their global regularity the functions more than continuous. This functionalframework is interesting in the theory of stochastic processes since very oftenthe continuous stochastic process under study has a better regularity than thebare continuity. Moreover, for obvious topological reasons, weak convergencein H�older spaces is stronger than in the classical space C([0; 1]d;B) of B valuedcontinuous functions on [0; 1]d.In the previous papers [11], [10], the authors discussed the following problemin the special case B = R:(I) For a given real valued random �eld indexed by [0; 1]d; �nd su�cientconditions for the existence of a version with sample paths in Ho�(B).ISSN 1072-947X / $8.00 / c
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2 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUETThe present contribution studies (I) in the general case of a separable Banachspace B. The history of this problem began with the well known Kolmogorov'scondition: if the real valued stochastic process ��(t), t 2 [0; 1]� satis�esP�j�(t+ h)� �(t)j > �� � c��
h1+"; (1.2)where c; " > 0 and 
 > 1 are constants, then it has a version with almost surelycontinuous paths. This was the root of successive generalizations leading toprocesses indexed by an abstract parameter set T . The modern theory expressescondition for the existence of a continuous version in terms of the geometry ofT , i.e., some metric entropy or majorizing measure condition which estimatesthe size of T with respect to a pseudo metric related to �. The study of H�olderregularity is another branch stemming from Kolmogorov's condition. Indeed,(1.2) is su�cient for � to have a version with sample paths in the H�older spaceHo�([0; 1];R) with �(h) = jhj� for any 0 < � < "=
. Ciesielski [3] gave su�cientconditions for a Gaussian process to have a version with �-H�olderian paths.Using the method of triangular functions, Delporte [4] established su�cientconditions for the existence of a version of � in Ho�([0; 1];R) for general moduliof smoothness �. Ibragimov [6] and Nobelis [9] studied the problem (I) forgeneral � and B = R.The method of triangular functions used by Ciesielski [2, 3], Delporte [4],Kerkyacharian and Roynette [7] relies on the following well known decomposi-tion of a real valued continuous function x:x(t) = 1Xj=0 Xv2Vj �j;v(x)�j;v(t); t 2 T; (1.3)where �j;v's are the Faber{Schauder triangular functions and Vj is the set ofdyadic numbers of level j in T = [0; 1]. In fact the triangular functions forma basis (in Schauder's sense) of Ho�([0; 1];R) when �(h) = jhj�. Moreover theH�older regularity of a continuous function is characterized by the rate of de-creasing of its coe�cients �j;v(x) in this basis. This provides the Ciesielski [2]isomorphisms between these H�older spaces and some sequence spaces. Theseisomorphisms give a very convenient discretization procedure in [10] to study(I). In [11] we use the same method, replacing the basis of triangular functionsby the basis of skew pyramidal functions de�ned on T = [0; 1]d, denoted againby �j;v and indexed by the dyadic points v of level j in [0; 1]d. The scalarcoe�cients �j;v(x) are some dyadic second di�erences of x. In the present con-tribution, we keep formally the same decomposition (1.3) of B-valued H�olderfunctions into series of pyramidal functions. But now the pyramidal functionsare scalar while their coe�cients are vectors lying in B. The important factis the preservation in this new setting of the equivalence between the initialH�older norm kxk� with the sequential normkxkseq� := supj�0 1�(2�j) maxv2Vj k�j;v(x)kB : (1.4)



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 3Of course, this cannot be the question of any Schauder basis for Ho�(B) in thegeneral case since B itself does not necessarily possess such a basis.From (1.3) and (1.4) it should be clear that the control of the coe�cients�j;v(x) is the key tool in our study. It is then relevant to state the basic asump-tions in problem (I) in terms of the second di�erences�2h�(t) := �(t+ h) + �(t� h)� 2�(t) (1.5)of the random �elds considered. This brings more 
exibility than the classicaluse of �rst increments (for more argumentation see [10]).The paper is organized as follows. Section 2 exposes the analytical prelim-inaries: expansion in a series of pyramidal functions, equivalence of norms,Schauder decomposability. In Section 3, we discuss problem (I) of the exis-tence of H�olderian versions. The systematic use of the sequential norm (1.4)enables us to provide su�cient conditions whose general form may be sketchedas follows. Assuming some uniform control of second di�erences likeP�


�2h�(t)


B > r�(jhj)� � 	(r); r > 0; (1.6)we consider the series R(u) := 1Xj=0 2jd	�u�� (2�j)�: (1.7)Then the convergence of R(u0) for some u0 > 0 gives the existence of a versionof � in H�(B), while the convergence for every u > 0 gives a version in Ho�(B).When (1.6) is obtained through weak p-moments, the corresponding result im-proves the Ibragimov's classical result for the case B = R by a logarithmic factorin the modulus � [6]. When (1.6) is veri�ed through exponential Orlicz norms,we have practical conditions precise enough to discriminate between H�(B) andHo�(B). For instance our conditions detect the optimal H�older regularity ofB-valued Brownian motions. Examples of Ornstein{Uhlenbeck processes in c0and of p-stable processes in `r illustrate our general results.2. Analytical BackgroundThroughout T = [0; 1]d and Rd is endowed with the norm jtj := max1�i�d jtij,t = (t1; : : : ; td) 2 Rd : Denote by B a Banach space with the norm jj � jjB and byH�(B) = H�(T ;B) the set of B-valued continuous functions x : T ! B suchthat !�(x; 1) <1; where!�(x; �) := supt;s2T;0<jt�sj<� kx(t)� x(s)kB�(js� tj)and � is a modulus of smoothness satisfying conditions (2.1) to (2.5) below.The technical conditions required for � are the following, where c1; c2 and c3are positive constants:�(0) = 0; �(�) > 0; 0 < � � 1; (2.1)



4 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUET� is non-decreasing on [0; 1]; (2.2)�(2�) � c1�(�); 0 � � � 1=2; (2.3)�Z0 �(u)u du � c2�(�); 0 < � � 1; (2.4)� 1Z� �(u)u2 du � c3�(�); 0 < � � 1: (2.5)To show a concrete class of functions satisfying the conditions (2.1) { (2.5), letus de�ne inductively the sequence of functions `k on (uk;1) by `1(u) = lnu;u1 = 1 and, for k � 2, `k(u) = ln(`k�1(u)); and uk such that `k�1(uk) = 1:Elementary computations show that for any � 2 (0; 1) and any �nite sequence�1; : : : ; �m 2 R there exists a set of positive constants b1; : : : ; bm such that thefunctions �(h) = h� mYk=1 `�kk (bk=h); 0 < h � 1;satisfy conditions (2.1) to (2.5).The set H�(B) is a Banach space when endowed with the normkxk� := kx(0)kB + !�(x; 1):Obviously, an equivalent norm is obtained by replacing kx(0)kB in the aboveformula by kxk1 := supfkx(t)kB ; t 2 Tg: De�neHo�(B) = Ho�(T ;B) := fx 2 H�(B) : lim�!0!�(x; �) = 0g:Then Ho�(B) is a closed subspace of H�(B): Now let us remark that for anyfunction � satisfying (2.1) and (2.5) there is a positive constant c4 such that�(�) � c4�; 0 � � � 1: (2.6)Hence the spaces Ho�(B) always contain all the Lipschitz B-valued functionsand in particular the (continuous) piecewise a�ne functions. When B is itselfseparable, the separability of the spaces Ho�(B) follows by interpolation argu-ments.Since we are interested in the analysis of these spaces in terms of seconddi�erences of the functions x; our �rst task is to establish the equivalence of thenorm kxk� with some sequential norm involving the dyadic second di�erencesof x. Our main reference for this part is Semadeni [14].The so-called skew pyramidal basis was introduced by Bonic, Frampton andTromba [1] and, independently, by Ciesielski and Geba (see the historical notesin [14, p. 72]). The reader is referred also to our previous contribution [11] fora more detailed explanation.If A is a convex subset of T , the function f : T ! B is said to be a�ne on A ifit preserves the barycenter, i.e., for any �nite sequence u1; : : : ; um in A and non-negative scalars r1; : : : ; rm such that Pmi=1 ri = 1, f(Pmi=1 riui) = Pmi=1 rif(ui).



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 5To explain the construction of the skew pyramidal basis, de�ne �rst the stan-dard triangulation of the unit cube T = [0; 1]d. Write �d for the set of permu-tations of the indexes 1; : : : ; d. For any � = (i1; : : : ; id) 2 �d; let ��(T ) be theconvex hull of d+1 points 0; ei1 ; (ei1+ei2); : : : ; dPk=1 eik ; where ei's are the vectorsof the canonical basis of Rd . So, each simplex ��(T ) corresponds to one pathfrom 0 to (1; : : : ; 1) via the vertices of T and such that along each segment of thepath, only one coordinate increases while the others remain constant. Thus Tis divided into d! simplexes with disjoint interiors. The standard triangulationof T is the family T0 of simplexes f��(T ); � 2 �dg.Next, we divide T into 2jd dyadic cubes with edge 2�j. By dyadic translationsand change of scale, each of them is equipped with a triangulation similar toT0. And Tj is the set of 2jdd! simplexes so constructed.For j � 1 the set Wj := vert(Tj) of vertices of the simplexes in Tj isWj = fk2�j; 0 � k � 2jgd:In what follows we put V0 := W0 and Vj := Wj nWj�1: So Vj is the set of newvertices born with the triangulation Tj. More explicitly, Vj is the set of dyadicpoints v = (k12�j; : : : ; kd2�j) in Wj with at least one ki odd.The Tj-pyramidal function �j;v with peak vertex v 2 Vj is the real valuedfunction de�ned on T by three conditions:i) �j;v(v) = 1;ii) �j;v(w) = 0 if w 2 vert(Tj) and w 6= v;iii) �j;v is a�ne on each simplex � in Tj.Observe that the notation �j;v is somewhat redundant and could be simpli�edin �v since Vj's form a partition of the set of dyadic points of [0; 1]d.It follows clearly from the above de�nition that the support of �j;v is theunion of all simplexes in Tj containing the peak vertex v: By [14, Prop. 3.4.5],the functions �j;v are obtained by dyadic translations and changes of scale:�j;v(t) = �(2j(t� v)); t 2 T; v 2 Vj;from the same function � with support included in [�1; 1]d :�(t) := max�0; 1�maxti<0 jtij �maxti>0 ti�; t = (t1; : : : ; td) 2 Rd :The B-valued coe�cients �j;v(x) are given by�0;v(x) = x(v); v 2 V0;�j;v(x) = x(v)� 12�x(v�) + x(v+)�; v 2 Vj; j � 1;where v� and v+ are de�ned as follows. Each v 2 Vj admits a unique representa-tion v = (v1; : : : ; vd) with vi = ki=2j; (1 � i � d). The points v� = (v�1 ; : : : ; v�d )and v+ = (v+1 ; : : : ; v+d ) are de�ned byv�i = ( vi � 2�j if ki is odd;vi if ki is even; v+i = ( vi + 2�j; if ki is odd;vi if ki is even.



6 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUETSince v is in Vj; at least one of ki's is odd, so v�; v and v+ are really threedistinct points of T . Moreover, we can writev� = v � 2�je(v); v+ = v + 2�je(v) with e(v) := Xki odd ei;so �j;v(x) is a second di�erence directed by the vector e(v). Observe furtherthat if v is in Vj, then v� and v+ are in Wj�1.Note here that the sequences (�j;v) and (�j;v) are biorthogonal in the followingsense.Lemma 1. For j; j 0 � 0 and v 2 Vj, v0 2 Vj0,�j;v(�j0;v0) = �v;v0 ;where �v;v0 = 0 if v 6= v0, �v;v0 = 1 if v = v0 (and then j = j 0).Proof. Suppose �rst j positive, so�j;v(�j0;v0) = �j0;v0(v)� 12��j0;v0(v�) + �j0;v0(v+)�;with v 2 Vj and v+; v� 2 Wj�1.Case 1 : j < j 0. Then v, v+ and v� are the vertices of the triangulation Tjand hence also of Tj0, but none of them can be equal to v0, so �j0;v0 vanishes atv; v+; v�.Case 2 : j > j 0. Then the segment [v�; v+] ( with middle-point v) is containedin some simplex � of Tj0 and �j0;v0 is a�ne on �, so �j;v(�j0;v0) = 0.Case 3 : j = j 0. Then v� and v+ are in Wj0�1, so �j0;v0 vanishes at v� andv+ and �j;v(�j0;v0) = �j0;v0(v) = �v;v0 , by i) and ii) in the de�nition of pyramidalfunctions.To complete the proof, note that in the special case j = 0, �0;v(�j0;v0) =�j0;v0(v) = �v;v0 , since v is a vertex of T0 and hence of Tj0.As usual, the space C(T ;B) of continuous functions x : T ! B is endowedwith the uniform norm jjxjj1 = supt2T jjx(t)jjB: De�ne the operators Ej (j � 0)on the space C(T ;B) byEjx := jXi=0 Xv2Vi �i;v(x)�i;v; x 2 C(T ;B):Lemma 2. The B-valued function Ejx is a�ne on each simplex of Tj andsuch that Ejx(w) = x(w) for each w 2 Wj:Proof. Since each simplex � of Tj is included in one simplex of Ti for i � j, the�rst claim follows clearly from the fact that �i;v's are a�ne on the simplexes ofTi.We check the second claim by induction on j. First, for w 2 W0, we have bythe de�nition of �0;v's and i), ii) of the de�nition of the pyramidal functions,E0x(w) = Xv2V0 x(v)�0;v(w) = x(w):



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 7Next assuming the interpolation property true for j, consider, for w in Wj+1,the decompositionEj+1x(w) = Ej(w) + Xv2Vj+1 �j+1;v(x)�j+1;v(w):Ifw already belongs toWj, then Ejx(w) = x(w) by the induction hypothesis andthe second term in the above decomposition vanishes by ii) since w belongingto vert(Tj+1) n Vj+1 cannot be a peak vertex for one of �j+1;v. To complete theproof, it remains to treat the case w 2 Vj+1. Using again i) and ii) we haveXv2Vj+1 �j+1;v(x)�j+1;v(w) = �j+1;w(x) = x(w)� 12�x(w�) + x(w+)�:Recall that w = 12(w++w�). By [14, Lemma 3.4.8] there is at least one simplex� in Tj having w+ and w� as vertices. Since Ejx is a�ne on � and w� andw+ are in Wj, we haveEjx(w) = 12�Ejx(w�) + Ejx(w+)� = 12�x(w�) + x(w+)�;and so Ej+1x(w) = x(w).Since the pyramidal functions are not B-valued, they cannot form a Schauderbasis of C(T ;B) as in the real valued case. Nevertheless we keep the same typeof decomposition.Proposition 1. Each x in C(T ;B) admits the series expansionx(t) = 1Xj=0 Xv2Vj �j;v(x)�j;v(t); t 2 T;where the convergence holds in the strong topology of B and is uniform withrespect to t on T .Proof. For �xed t there is a simplex � in Tj containing t. Let v0; v1; : : : ; vd bethe vertices of �. Writing !1(�) for the modulus of continuity and recallingthat the diameter of � is 2�j, we havekx(t)� Ejx(t)kB � !1(2�j) + kx(v0)� Ejx(t)kB :Using the barycentric representation t = Pdi=0 rivi and Lemma 2, we getkx(v0)� Ejx(t)kB = 



 dXi=0 ri�x(v0)� x(vi)�



B � dXi=0 ri!1(2�j) = !1(2�j):The conclusion follows.Now we are in the position to state the equivalence of norms we were lookingfor. For any function x : [0; 1]d ! B the (possibly in�nite) sequential seminormis de�ned by kxkseq� := supj�0 1�(2�j) maxv2Vj k�j;v(x)kB :



8 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUETObserve moreover that when x is continuous, kxkseq� = 0 if and only if x = 0.In this case, kxkseq� is a (possibly in�nite) true norm.Proposition 2. Under conditions (2:1) to (2:5), the norm kxk� is equivalenton C(T ;B) to the sequential norm, i.e., there are positive constants a; b suchthat for every x 2 C(T ;B),a kxkseq� � kxk� � b kxkseq� ;with �nite values of the norms if and only if x 2 H�(B).Proof. The proof is exactly the same as for [11, Prop. 1], replacing jx(t)j bykx(t)kB. Note that in this proof the continuity of x was used through its expan-sion in a series of pyramidal functions which is now replaced by Proposition 1.Conditions (2.4) and (2.5) are not required for the inequality a kxkseq� � kxk�which holds true with a = min�1; �(1)� for the most general moduli of smooth-ness �.Remark. It is worth noticing thatkx� EJxkseq� := supj>J 1�(2�j) maxv2Vj k�j;v(x)kBis non-increasing in J .The next result is the key tool for the problem of existence of H�olderianversions for a given B-valued random �eld.Proposition 3. Let � = (�j;v; j � 0; v 2 Vj) be a B-valued tree and considerthe following conditions.(a) 1Xj=0maxv2Vj k�j;vkB <1.(b) supj�0 1�(2�j) maxv2Vj k�j;vkB <1.(c) limJ!1 supj>J 1�(2�j) maxv2Vj k�j;vkB = 0.De�ne the sequence (SJ)J�0 of continuous piecewise a�ne functions bySJ := JXj=0 Xv2Vj �j;v�j;v:Then under (a), SJ converges in C(T ;B) to some function S. Under (b), thesame convergence holds and S belongs to H�(T ;B). Under (c), SJ converges inHo�(T ;B).Proof. The pyramidal functions being non-negative, we have



Xv2Vj �j;v�j;v(t)



B � maxv2Vj k�j;vkB Xv2Vj �j;v(t)



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 9for every t 2 T . Recalling that 0 � Pv2Vj �j;v(t) � 1 (cf., e.g., Lemma 2 in[11]), we see that (a) entails the uniform convergence on T of SJ .Under (b), the same estimate gives the convergence in C(T ;B) of SJ to afunction S, provided that Pj�0 �(2�j) <1. But this follows from our generalassumption (2.4), comparing series with integral. Observe now that by Lemma1, �j;v(SJ) = �j;v if j � J , so by the continuity on C(T ;B) of �j;v's, �j;v(S) = �j;vfor every j; v. Applying now Proposition 2 to the continuous function S, weobtain kSk� <1.Suppose �nally that � satis�es (c) which is obviously stronger than (b). ThenSJ converges (at least) in C(T ;B) sense to S 2 H�(B) and �j;v(S) = �j;v. Thuscondition (c) means that kS � SJkseq� goes to zero, which gives the convergenceof SJ to S in the H�(B) sense by Proposition 2. Moreover, SJ 's are in Ho�(B)which is a closed subspace of H�(B), and so S 2 Ho�(B).The usefulness of Proposition 3 for the existence of H�olderian versions comesfrom its following obvious corollary.Corollary 1. Let x be any function T ! B and de�ne � = (�j;v(x); j �0; v 2 Vj). Then x coincides at the dyadic points of [0; 1]d with a function Swhich is in C(T ;B) under (a), in H�(B) under (b) and in Ho�(B) under (c).3. Banach Valued Random Fields with H�olderian VersionsWe now consider a given B-valued random �eld � = (�(t); t 2 T ), continuousin probability, and discuss the problem of existence of a version of � with almostall paths inHo�(B). In our setting, a natural candidate for such a version is of theform ~� := PjPv2Vj �j;v(�)�j;v. Indeed, combining Corollary 1 with continuity inprobability reduces the problem to the control of maxima of random coe�cientsk�j;v(�)kB which are norms of dyadic second di�erences of �:We de�ne here thesecond di�erence �2h�(t) in a symmetrical form by�2h�(t) := �(t+ h) + �(t� h)� 2�(t); t 2 T; h 2 Ct;where Ct := fh = (h1; : : : ; hd); 0 � hi � min(ti; 1� ti); 1 � i � dg:Theorem 1. Let � = f�(t); t 2 Tg be a B-valued random �eld, continuousin probability. Assume there exist a function � : [0; 1] ! R+ , �(0) = 0 and afunction 	 : (0;1]! R+ , 	(1) = 0 such that for all r > 0, t 2 T; h 2 Ct,P�


�2h�(t)


B > r�(jhj)� � 	(r): (3.1)Put for 0 < u <1,R(u) = R(	; �; �; u) := 1Xj=0 2jd	�u�� (2�j)�:If R(u0) is �nite for some 0 < u0 <1, then � has a version in H�(B).If R(u) is �nite for every 0 < u <1, then � has a version in Ho�(B).



10 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUETWhen 	 is non-increasing and � non-decreasing, the same conclusions holdif R(u) is replaced by I(u) := 1Z0 	�u�� (s)� dssd+1 :Proof. By Corollary 1 and continuity in probability, � has a version in H�(B) if(and only if) k�kseq� is �nite almost surely, which is equivalent tolimM!1P (k�kseq� > M) = 0:Using the obvious boundP (k�kseq� > M) � 1Xj=0 Xv2Vj P�k�j;v(�)kB > M�(2�j)�; (3.2)this convergence follows easily from the dominated convergence theorem pro-vided that the right hand side of (3.2) be �nite for someM = M0 > 0. Recallingthat CardVj � (1� 2�d)2jd and using (3.1), this last requirement is satis�ed assoon as R(2M0) is �nite.Invoking again Corollary 1 and continuity in probability, we see that � has aversion in Ho�(B) if and only if k� � EJ�kseq� goes to zero almost surely. But thissequence being decreasing, this is equivalent to its convergence in probability.Clearly, this convergence holds if for every " > 0,1Xj=0 Xv2Vj P�k�j;v(�)kB > "�(2�j)� <1;which in turn follows from R(2") <1.When 	 is non-increasing and � non-decreasing, a comparison between se-ries and integral using (3) allows us to replace R(u) by I(u) in the above esti-mates.Remarks on the optimality. From the very elementary nature of the proof itis easy to understand why the results are optimal in some sense. Indeed theonly gaps in the proof between su�cient and necessary conditions are in theuse of (3.2) and (3.1). But (3.2) is nothing else than the majorization of theprobability of a denumerable union by the sum of probabilities. So if we donot know anything on the dependence structure of these events (which is thecase since assumptions on � involve only its three dimensional distributions)this bound cannot be improved in general. Concerning (3.1), it is clear that forreasonable 	 we can always construct � such that (3:1) becomes an equalitywhen reduced to t 2 [jVj, t� h = t�.Example. Let f�(t); t 2 Rg = f�k(t); t 2 Rg1k=1 be a sequence of independentGaussian stationary processes. For each k � 1, let rk denote the covariancefunction of f�k(t); t 2 Rg. Assume that 1Pk=1 expf�"=rk(0)g <1 for each " > 0.Then for each t 2 R, the sequence �(t) = f�k(t)g1k=1 is a.s. in c0 (see Vakhania



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 11[15]). We consider the problem when for a �xed interval [a; b] the processf�(t); t 2 [a; b]g has a version satisfying certain H�older condition. Set�2k(h) = 2�rk(2h)� 4rk(h) + 3rk(0)�:Assume that for each " > 01Xk=1 1Xj=1 2j�k(2�j) expf�"�2(2�j)=�2k(2�j)g <1: (3.3)Then by Theorem 1 the process f�(t); 0 � t � 1g admits a version inHo�([0; 1]; c0).To prove this claim, we shall check the conditions of Theorem 1. For allr > 0; t 2 [0; 1] and h; 0 � h � 1� t we haveP�jj�2h�(t)jjc0 > r�(h)� � 1Xk=1P�j�2h�k(t)j > r�(h)�: (3.4)Since �2h�k(t) has a normal distribution with mean zero and variance �2k(h), wehave P (j�2h�k(t)j > �) � 2p2� �k(h)� expf��2=2�2kg; � > 0: (3.5)Now the conditions of Theorem 1 are satis�ed by (3.3), (3.4) and (3.5), so theresult follows.As a special case, assume that for each k � 1 the process f�k(t); t 2 Rg is theOrnstein{Uhlenbeck process de�ned as a stationary solution of the stochasticdi�erential equation d�k(t) = ��k�k(t)dt+ (2
k)1=2dWk(t);where fWk(t); t 2 Rg1k=1 are independent Wiener processes. In this case wehave rk(h) = (
k=�k) expf��kjhjg. Hence, if for each " > 0Xk expf�"=
kg <1;then the process f�(t); t 2 [a; b]g has a version in Ho�([a; b]; c0), with �(h) =(hj loghj)1=2). It is easy to consider some weaker conditions like for each " > 0Xk expf�"�1��=
kg <1;where 0 < � � 1, which yields a weaker H�older regularity of the Ornshtein-Uhlenbeck process f�(t); t 2 Rg.The next theorem is a straightforward application of Theorem 1. WhenB = R, it allows a comparison with classical Kolmogorov's and Ibragimov'sresults.



12 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUETTheorem 2. Let � = f�(t); t 2 Tg be a B-valued random �eld, continuousin probability. Assume there exist a function � : [0; 1] ! R+ , �(0) = 0 and aconstant p > 0 such that for all r > 0, t 2 T; h 2 Ct,P�


�2h�(t)


B > r� � �p(jhj)rp : (3.6)Suppose that R(1) := 1Xj=0 2jd�p(2�j)�p(2�j) <1:Then � has a version ~� in Ho�(B). Moreover, there is a constant C such thatP (k~�k� > u) � Cu�p for each u > 0.Proof. Applying Theorem 1 with 	(r) = r�p, the functional R(u) is writtenhere R(u) := 1Xj=0 2jd�p(2�j)�p(2�j) u�pwhose �niteness does not depend on the value of u > 0. This explains why (3.6)cannot provide a version ~� in H�(B) for some � such that ~� does not belong tothe corresponding Ho�(B).The tail behavior of k~�k� results clearly from the same behavior of k�kseq�which, in turn, follows fromP (k�kseq� > u) � R(2u) = 2�pR(1)u�p:Remark. If (3.6) is replaced by the stronger assumptionE 


�2h�(t)


pB < �p(jhj); (3.7)then a straightforward estimate of E �k�kseq� �p gives E k~�kp� <1.Corollary 2. Suppose � satis�es (3:6) with �p(jhj) = C jhjd+� for some pos-itive constants C > 0, 0 < � < p. Then � has a version ~� in the H�older spaceHo�([0; 1]d;B), where �(jhj) = jhj�=p ln�(a= jhj) and � > 1=p.A comparison with Corollary 2 in the paper [6] by Ibragimov is natural here.He obtained (in the case B = R) the existence of a version in H�(R) under (3.7)with p > 1 and the integral condition1Z0 �(u)�(u)u1+d=p du <1:For the scale of moduli �(jhj) = jhj� ln�(a= jhj) and �p(jhj) = C jhjd+� thisprovides a version of � in Ho�(R), where �(h) = h�=p ln�(a=h)) and � > 1.



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 13Example. Let f�(t); t 2 Rg = f�k(t); t 2 Rg1k=1 be a sequence of indepen-dent symmetric p-stable stationary processes. Let, for each k � 1, the processf�k(t); t 2 Rg has the stochastic representationf�k(t); t 2 Rg = � ZE fk(t; u)Mk(du); t 2 R�;where (E; E) is a measurable space, Mk is a symmetric p-stable random measurewith �-�nite spectral measure mk. If1Xk=1 ZE jfk(t; u)jpmk(du) <1;then (�k(t); k � 1) is a.s. in `r for each r > p: Set�pk(t; h) = ZE jfk(t+ h; x) + fk(t� h; x)� 2fk(t; x)jpmk(dx)and assume that there exists a function � such thatsup0�t�1 1Xk=1 �pk(t; h) � �(h) and 1Xj=0 2j �p(2�j)�p(2�j) <1:Then the process f�(t); t 2 [0; 1]g has a version in Ho�([0; 1]; `r) for r > p.Indeed, since f�2k�k(t)g1k=1 is a stable random element in `r with exponent pand spectral measure m = P1k=1 �ek�k ; where (ek) is the coordinate basis in `r;we have (see, e.g., Samorodnitsky and Taqqu [13])P (jj�2h�(t)jj`r > �) � c�p Z̀r jjxjjp̀rm(dx) = C�p 1Xk=1�pk(h):Hence the result follows by Theorem 1.Recall that a Young function � is a convex increasing function on R+ suchthat �(0) = 0 and limt!1 �(t) =1: If Z is a real valued random variable suchthat E�(jZj =c) <1 for some c > 0, then its �-Orlicz norm is kZk� := inffc >0 : E�(jZj =c) � 1g:When Z is B-valued, its �-Orlicz norm is de�ned similarly,replacing jZj by kZkB. Using the de�nition of the Orlicz norm, the continuityof � and Beppo-Levi's theorem, it is easy to see that E�(kZkB = kZk�) � 1,from which we get P (kZkB > r) � f�(r= kZk�)g�1.Theorem 3. Let � be a Young function. Assume that the B-valued random�eld � = (�t; t 2 T ) is continuous in probability and satis�es the condition: foreach t 2 T and h 2 Ct; jj�2h�(t)jj� � �(jhj): (3.8)If for some u > 0, 1Xj=0 2jd��u ���2�j�� <1; (3.9)



14 ALFREDAS RA�CKAUSKAS AND CHARLES SUQUETthen � admits a version with almost all paths in H�(B). If (3:9) holds for eachu > 0, then � has a version in Ho�(B).Proof. Under (3.8), Theorem 1 applies with 	(r) = 1=�(r).Of course, the scope of Theorem 3 covers the case of strong p-moments (p > 2)with (3.8) replaced by (3.7). But its main practical interest is in the case ofexponential Orlicz norms as in Corollaries 3 and 4 below. Then the convergenceof series (3.9) can be checked through the following routine test.Lemma 3. Let 	 be of the form 	(r) = c exp(�br
) for some positive con-stants b, c, 
. Consider the seriesR(u) = 1Xj=0 2jd	�u�� (2�j)�and put L(j) := �(2�j)j1=
�(2�j) :(i) R(u) converges for some 0 < u0 <1 if and only if lim infj!1L(j) > 0;(ii) R(u) converges for every 0 < u <1 if and only if limj!1L(j) =1.The proof is elementary and shall be omitted. Observe that the qualitativeform of the result does not depend on d. This parameter is involved only in theexplicit determination of u0.Corollary 3. If the B-valued random �eld � is continuous in probabilityand satis�es ( 3.8) for the Young function �
(r) = exp(r
) � 1 (
 > 0) and�(jhj) = jhj� (0 < � < 1), then � has a version in Ho�(T ;B), where �(h) =jhj� ln1=
(a= jhj)�.This improves our previous result [11, Th. 11].The case of Gaussian random �elds is of special interest.Corollary 4. Assume that the Gaussian B-valued random �eld � = (�t; t 2T ) is continuous in probability and satis�es the condition: for each t 2 T andh 2 Ct; E 


�2h�(t)


2B � �2(jhj): (3.10)(i) If lim infj!1 �(2�j)j1=2�(2�j) > 0, then � admits a version in H�(B).(ii) If limj!1 �(2�j)j1=2�(2�j) =1, then � has a version in Ho�(B).If for some u > 0, 1Xj=0 2jd exp��u2 �2�2 (2�j)� <1; (3.11)



H�OLDER VERSIONS OF BANACH SPACE VALUED RANDOM FIELDS 15then � admits a version in H�(B). If (3:11) holds for each u > 0, then � has aversion in Ho�(B).Proof. By (3.10) and the classical estimate of the tail of Gaussian randomelement in the Banach space B (see, e.g., inequality (3.5) p. 59 in LedouxTalagrand (1991)),P (


�2h�(t)


B > r) � 4 exp�� r28�2(jhj)�;from which the result follows.Example. Let B be a separable Banach space and Y a centered Gaussianrandom element in B with distribution �. A B-valued Brownian motion withparameter � is a Gaussian process � indexed by [0; 1], with independent incre-ments such that �(t) � �(s) has the same distribution as jt� sj1=2 Y . Hence(3.10) holds with �(h) = h1=2E 1=2 kY k2B (h � 0). Choosing the modulus ofsmoothness �(h) = qh ln(e=h), we see thatlimj!1 �(2�j)j1=2�(2�j) = 1E 1=2 kY k2B > 0:Hence by Corollary 4 (ii), the B valued Brownian motion � has a version inH�([0; 1];B), where �(h) = qh ln(e=h); h > 0. This result cannot be improvedbecause of L�evy's theorem on the modulus of uniform continuity of the standardBrownian motion.Remark. One may ask what happens with Problem (I) when � is a generalmodulus of smoothness, i.e., simply non-decreasing on [0; 1] and continuousat 0. In this case we can always replace the inequality kxk� � b kxkseq� ofProposition 2 by kxk� � 3 1Xj=0 1�(2�j) maxv2Vj k�j;v(x)kB =: kxk`1� :This approach was adopted in the pioneering paper by Delporte [4] in the cased = 1, B = R. Because the norm kxk`1� is clearly weaker than kxkseq� , theprice paid for this greater generality is the loss of precision in the topology. Forinstance, in the situation of Corollary 2, this gives the same results as in [6].AcknowledgementThis research was supported by the cooperation agreement CNRS/LITHUANIA(4714). References1. R. Bonic, J. Frampton, andA. Tromba, �-manifolds. J. Functional Analysis 3(1969),310{320.2. Z. Ciesielski, On the isomorphisms of the spaces H� and m. Bull. Acad. Pol. Sci. Ser.Sci. Math. Phys. 8(1960), 217{222.
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