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Abstract

Let �sen be the adaptive polygonal process of self-normalized partial sums Sk =
∑

16i6k Xi of11
i.i.d. random variables de4ned by linear interpolation between the points (V 2

k =V
2
n ; Sk =Vn); k 6 n,

where V 2
k =

∑
i6k X 2

i . We investigate the weak H7older convergence of �sen to the Brownian motion13
W . We prove particularly that when X1 is symmetric, �sen converges to W in each H7older space
supporting W if and only if X1 belongs to the domain of attraction of the normal distribution.15
This contrasts strongly with Lamperti’s FCLT where a moment of X1 of order p¿ 2 is requested
for some H7older weak convergence of the classical partial sums process. We also present some17
partial extension to the nonsymmetric case. c© 2001 Published by Elsevier Science B.V.

MSC: 60F05; 60B05; 60G17; 60E1019
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1. Introduction and results21

Various partial sums processes can be built from the sums Sn = X1 + · · · + Xn of
independent identically distributed mean zero random variables. In this paper we focus23
attention on what we call the adaptive self-normalized partial sums process, denoted
�sen . We investigate its weak convergence to the Brownian motion, trying to obtain25
it under the mildest integrability assumptions on X1 and in the strongest topological
framework. We basically show that in both respects, �sen behaves better than the classical27
Donsker–Prohorov partial sum processes 
srn . Self-normalized means here that the clas-
sical normalization by

√
n is replaced by29

Vn = (X 2
1 + · · ·+ X 2

n )
1=2:

Adaptive means that the vertices of the corresponding random polygonal line have
their abscissas at the random points V 2

k =V
2
n (06 k6 n) instead of the deterministic31
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equispaced points k=n. By this construction the slope of each line adapts itself to the1
value of the corresponding random variable.
As a lot of diGerent partial sums processes will appear throughout the paper, we3

need to explain our typographical conventions and 4x notations.
By �n (respectively 
n) we denote the random polygonal partial sums process5

de4ned on [0; 1] by linear interpolation between the vertices (V 2
k =V

2
n ; Sk); k=0; 1; : : : ; n

(respectively (k=n; Sk); k = 0; 1; : : : ; n), where7

Sk = X1 + · · ·+ Xk; V 2
k = X 2

1 + · · ·+ X 2
k :

For the special case k = 0, we put S0 = 0; V0 = 0.
The upper scripts sr or se mean, respectively, normalization by square root of n or9

self-normalization. Hence,


srn =

n√
n
; 
sen =


n

Vn
; �srn =

�n√
n
; �sen =

�n
Vn

:

By convention the random functions 
sen and �sen are de4ned to be the null function11
on the event {Vn = 0}. Finally, the step partial sums processes �n; Zn; �se

n , etc., are
the piecewise constant random cJadlJag functions whose jump points are vertices for the13
polygonal process denoted by the corresponding lowercase Greek letter.
Classical Donsker–Prohorov invariance principle states, that if EX 2

1 = 1; then15


srn
D→W; (1)

in C[0; 1], where (W (t); t ∈ [0; 1]) is a standard Wiener process and D→ denotes con-
vergence in distribution. Since (1) yields the central limit theorem, the 4niteness of17
the second moment of X1 therefore is necessary.
Lamperti (1962) considered the convergence (1) with respect to a stronger topology.19

He proved that if E|X1|p ¡∞, where p¿ 2, then (1) takes place in the H7older space
H�[0; 1], where 0¡�¡ 1=2 − 1=p. This result was derived again by Kerkyacharian21
and Roynette (1991) by another method using Ciesielski (1960) analysis of H7older
spaces by triangular functions. Further generalizations were given by Erickson (1981),23
Hamadouche (1998), Ra#ckauskas and Suquet (1999c).
Considering a symmetric random variable X1 such that P(X1 ¿ u)=1=(2up); u¿ 1,25

Lamperti (1962) noticed that the corresponding sequence (
srn ) is not tight in H�[0; 1]
for � = 1=2 − 1=p. It is then hopeless in general to look for an invariance principle27
in H�[0; 1] without some moment assumption beyond the square integrability of X1.
Recently, Ra#ckauskas and Suquet (1999c) proved more precisely that if (
srn ) satis4es29
the invariance principle in H�[0; 1] for some 0¡�¡ 1=2, then necessarily

sup
t¿0

tpP(|X1|¿t)¡∞ (2)

for any p¡ 1=(1=2− �).31
Let us see now, how self-normalization and adaptiveness help to improve this situ-

ation. Recall that “X1 belongs to the domain of attraction of the normal distribution”33
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(denoted by X1 ∈ DAN ) means that there exists a sequence bn ↑ ∞ such that1

b−1
n Sn

D→N (0; 1): (3)

According to O’Brien’s (1980) result: X1 ∈DAN if and only if

V−1
n max

16k6n
|Xk | P→ 0; (4)

where P→ denotes convergence in probability. In the classical framework of C[0; 1], we3
obtain the following improvements of the Donsker–Prohorov theorem.

Theorem 1. The convergence5


sen
D→W (5)

holds in the space C[0; 1] if and only if X1 ∈DAN .

Theorem 2. The convergence7

�sen
D→W (6)

holds in the space C[0; 1] if and only if X1 ∈DAN .

Let us remark that the necessity of X1 ∈ DAN in both Theorems 1 and 2 follows9
from GinQe, et al. (1997). Let us notice also that (5) or (6) both exclude the degenerated
case P(X1 = 0) = 1, so that almost surely Vn ¿ 0 for large enough n. We have similar11
results (Ra#ckauskas and Suquet, 2000) for the step processes �se

n and Zse
n within the

Skorohod space D(0; 1).13
For a modulus of continuity � : [0; 1] → R, denote by H�[0; 1] the set of continuous

functions x : [0; 1] → R such that !�(x; 1)¡∞; where15

!�(x; �):= sup
t; s∈[0;1];

0¡|t−s|¡�

|x(t)− x(s)|
�(|s− t|) :

The set H�[0; 1] is a Banach space when endowed with the norm

‖x‖�:= |x(0)|+ !�(x; 1):

De4ne17

Ho
� [0; 1] = {x ∈ H�[0; 1]: lim

�→0
!�(x; �) = 0}:

Then Ho
� [0; 1] is a closed separable subspace of H�[0; 1]. In what follows we assume

that the function � satis4es technical conditions (12) to (16) (see Section 2). These19
assumptions are ful4lled particularly when �= ��;"; 0¡�¡ 1; " ∈ R, de4ned by

��;"(h):= h� ln"(c=h); 0¡h6 1

for a suitable constant c. We write H�;" and Ho
�;" for H�[0; 1] and Ho

� [0; 1], respectively,21
when �= ��;" and we abbreviate H�;0 in H�.
With respect to this H7older scale H�;", we obtain an optimal result when X1 is23

symmetric.
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Theorem 3. Assume that � satis>es conditions (12)–(16) and1

lim
j→∞

2j�2(2−j)
j

=∞: (7)

If X1 is symmetric and X1 ∈ DAN then

�sen
D→W; (8)

in Ho
� [0; 1].3

Corollary 4. If X1 is symmetric and X1 ∈ DAN then (8) holds in the space Ho
1=2;";

for any "¿ 1=2.5

It is well known that the Wiener process has a version in the space H1=2;1=2 but none
in Ho

1=2;1=2. Hence Corollary 4 gives the best result possible in the scale of the separable7
H7older spaces H�;". In Ra#ckauskas and Suquet (1999c) it is proved that if the classical
partial sums process 
srn converges in Ho

1=2;" for some "¿ 1=2, then ‖X1‖ ' ¡∞, where9
‖X1‖ ' is the Orlicz norm related to the Young function  '(r) = exp(r') − 1 with
' = 1=". This shows the striking improvement of weak H7older convergence due to11
self-normalization and adaptation.
It seems worth noticing here, that without adaptive construction of the polygonal13

process, the existence of moments of order bigger than 2 is necessary for H7older weak

convergence. Indeed, if 
sen
D→W in H�, then one can prove that EX 2

1 ¡∞. Therefore15


srn
D→W in H� and the moment restriction (2) is necessary.
Naturally it is very desirable to remove the symmetry assumption in Corollary 4.17

Although the problem remains open, we can propose the following partial results in
this direction.19

Theorem 5. Let "¿ 1=2 and suppose that we have

P
(

max
16k6n

X 2
k

V 2
n
¿ �n

)
−→
n→∞ 0 (9)

and21

P
(

max
16k6n

∣∣∣∣V 2
k

V 2
n
− k

n

∣∣∣∣¿ �n

)
−→
n→∞ 0; (10)

with

�n = c
2−(log n)'

log n
for some

1
2"

¡'¡ 1 and some c¿ 0: (11)

Then23

�sen
D→W in Ho

1=2;":

Observe that n−. = o(�n) for any .¿ 0. This mild convergence rate �n may be
obtained as soon as E|X1|2+mj is 4nite.25

Corollary 6. If for some .¿ 0; E|X1|2+j¡∞; then for any "¿ 1=2; �sen converges
weakly to W in the space Ho

1=2;".27
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This result contrasts strongly with the extension of Lamperti’s invariance principle1
in the same functional framework (Ra#ckauskas and Suquet, 1999c)
The present contribution is a new illustration of the now well established fact, that in3

general, self-normalization improves the asymptotic properties of sums of independent
random variables.5
A rich literature is devoted to limit theorems for self-normalized sums. Logan

et al. (1973) investigate the various possible limit distributions of self-normalized7
sums. GinQe et al. (1997) prove that Sn=Vn converges to the Gaussian standard dis-
tribution if and only if X1 is in the domain of attraction of the normal distribution (the9
symmetric case was previously treated in GriSn and Mason (1991)). Egorov (1997)
investigates the non identically distributed case. Bentkus and G7otze (1996) obtain the11
rate of convergence of Sn=Vn when X1 ∈DAN . GriSn and Kuelbs (1989) prove the
LIL for self-normalized sums when X1 ∈DAN . Moderate deviations (of Linnik’s type)13
are studied in Shao (1999) and Christiakov and G7otze (1999). Large deviations (of
CramQer–ChernoG type) are investigated in Shao (1997) without moment conditions.15
Chuprunov (1997) gives invariance principles for various partial sums processes under
self-normalization in C[0; 1] or D[0; 1]. Our Theorems 1 and 2 improve on Chuprunov’s17
results in the i.i.d. case.

2. Preliminaries19

2.1. Analytical background

In this section we collect some facts about the H7older spaces H�[0; 1] including the21
tightness criterion for distributions in these spaces. All these facts may be found e.g.
in Ra#ckauskas and Suquet (1999b).23
In what follows, we assume that the modulus of smoothness � satis4es the following

technical conditions where c1; c2 and c3 are positive constants:25

�(0) = 0; �(�)¿ 0; 0¡�6 1; (12)

� is nondecreasing on [0; 1]; (13)

�(2�)6 c1�(�); 06 �6 1=2; (14)

∫ �

0

�(u)
u

du6 c2�(�); 0¡�6 1; (15)

�
∫ 1

�

�(u)
u2

du6 c3�(�); 0¡�6 1: (16)

For instance, elementary computations show that the functions

�(�):=�� ln"
( c
�

)
; 0¡�¡ 1; " ∈ R;

satisfy conditions (12)–(16), for a suitable choice of the constant c, namely c¿ exp("=�)27
if "¿ 0 and c ¿ exp(−"=(1− �)) if "¡ 0.
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Write Dj for the set of dyadic numbers of level j in [0; 1], i.e. D0 = {0; 1} and for1
j¿ 1,

Dj = {(2k + 1)2−j; 06 k ¡ 2j−1}:
For any continuous function x : [0; 1] → R, de4ne3

/0; t(x):= x(t); t ∈D0

and for j ¿ 1,

/j; t(x):= x(t)− 1
2 (x(t + 2−j) + x(t − 2−j)); t ∈Dj:

The /j; t(x) are the coeScients of the expansion of x in a series of triangular functions.5
The jth partial sum Ejx of this series is exactly the polygonal line interpolating x
between the dyadic points k2−j(0 6 k 6 2j). Under (12)–(16), the norm ‖x‖� is7
equivalent to the sequence norm

||x||seq� :=sup
j¿0

1
�(2−j)

max
t∈Dj

|/j; t(x)|:

In particular, both norms are 4nite if and only if x belongs to H�. It is easy to check9
that

‖x − Ejx‖seq� = sup
i¿j

1
�(2−i)

max
t∈Di

|/i; t(x)|:
11

Proposition 7. The sequence (Yn) of random elements in Ho
� is tight if and only if

the following two conditions are satis>ed:13
(i) For each t ∈ [0; 1]; the sequence (Yn(t))n¿1 is tight on R.
(ii) For each .¿ 0,15

lim
j→∞

sup
n¿1

P(‖Yn − EjYn‖seq� ¿ .) = 0:

Remark 8. Condition (ii) in Proposition 7 may be replaced by17

lim
j→∞

lim sup
n→∞

P(‖Yn − EjYn‖seq� ¿ .) = 0: (17)

2.2. Adaptive time and DAN19

We establish here the technical results on the adaptive time when X1 ∈ DAN which
will be used throughout the paper. These results rely on the common assumption that21
X1 is in the domain of normal attraction. This provides the following properties on the
distribution of X1. Since X1 ∈ DAN , there exists a sequence bn ↑ ∞ such that b−1

n Sn23
converges weakly to N (0; 1). Then Raikov’s theorem yields

b−2
n V 2

n
P→ 1: (18)



UNCORRECTED P
ROOF

SPA1047

A. Ra8ckauskas, C. Suquet / Stochastic Processes and their Applications 000 (2001) 000–000 7

We have moreover for each 1¿ 0, putting bn = n−1=2‘n,1

nP(|X1|¿1‘n
√
n) → 0; (19)

‘−2
n E(X 2

1 ; |X1|6 1‘n
√
n) → 1; (20)

nE(X1; |X1|6 1‘n
√
n) → 0; (21)

see for instance Araujo and GinQe (1980, Chapter 2, Corollaries 4:8(a) and 6:18(b) and
Theorem 6:17(i)). Here and in all the paper (X ;E) means the product of the random3
variable X by the indicator function of the event E.

Lemma 9. If X1 ∈ DAN; then5

sup
06t61

∣∣∣∣∣V
2
[nt]

V 2
n

− t

∣∣∣∣∣ P→ 0: (22)

Proof. Consider the truncated random variables

Xn; i:=b−1
n (Xi;X 2

i 6 b2n); i = 1; : : : ; n:

De4ne Vn;0:=0 and V 2
n;k = X 2

n;1 + · · ·+ X 2
n;k for k = 1; : : : ; n. Set7

3n = sup
06t61

∣∣∣∣∣V
2
[nt]

V 2
n

− t

∣∣∣∣∣ and 3̃n = sup
06t61

∣∣∣∣∣V
2
n; [nt]

V 2
n;n

− t

∣∣∣∣∣ :
Then we have for /¿ 0,

P(3n ¿/)6 P(3̃n ¿/) + nP(X 2
1 ¿b2n):

Due to (19) the proof of (22) reduces to the proof of9

3̃n
P→ 0: (23)

Since V 2
n;k 6 V 2

n;n for k = 0; : : : ; n, the elementary estimate∣∣∣∣∣V
2
n;k

V 2
n;n

− k
n

∣∣∣∣∣6 V 2
n;k

V 2
n;n

|1− V 2
n;n|+

∣∣∣∣V 2
n;k −

k
n

∣∣∣∣
leads to11

3̃n 6 max
06k6n

∣∣∣∣V 2
n;k −

k
n

∣∣∣∣+ |1− V 2
n;n|+

1
n
: (24)

Noting that V 2
n;n = b−2

n V 2
n Rn with

Rn:=
1
V 2
n

n∑
i=1

(X 2
i ;X

2
i 6 b2n);

we clearly have Rn6 1 a.s. and13

P(Rn ¡ 1) = P
(

max
16i6n

|Xi|¿bn

)
6 nP(|X1|¿bn);
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which goes to zero by (19). This together with (18) gives1

V 2
n;n

P→ 1: (25)

Hence the proof of (23) reduces to

max
06k6n

∣∣∣∣V 2
n;k −

k
n

∣∣∣∣ P→ 0: (26)

For this convergence we have3

max
06k6n

|V 2
n;k − k=n|6 max

06k6n
|V 2

n;k − EV 2
n;k |+ max

06k6n
|EV 2

n;k − k=n|:

Noting that

EV 2
n;k −

k
n
=

k
n
(nb−2

n E(X 2
1 ;X

2
1 6 b2n)− 1)

gives5

max
06k6n

∣∣∣∣EV 2
n;k −

k
n

∣∣∣∣6 |nb−2
n E(X 2

1 ;X
2
1 6 b2n)− 1|;

which goes to zero by (20). Hence it remains to prove

max
06k6n

|V 2
n;k − EV 2

n;k | P→ 0: (27)

Putting Tn;k :=V 2
n;k − EV 2

n;k , we have by Ottaviani inequality7

P
(

max
16k6n

|Tn;k |¿ 2/
)
6

P(|Tn;n|¿/)
1−max16k6n P(|Tn;n − Tn;k |¿/)

: (28)

Due to (25), we are left with the control of I :=max16k6n P(|Tn;k |¿/). By
Chebyshev’s inequality9

I 6 /−2 max
16k6n

ET 2
n;k 6 /−2nEX 4

n;1

and we have to consider I1 = nEX 4
n;1 = nb−4

n E(X 4
1 ; |X1|6 bn). For any 0¡1¡1,

E(X 4
1 ; |X1|6 bn) 6 E(X 4

1 ; |X1|6 1bn) + E(X 4
1 ; 1bn6 |X1|6 bn)

6 12b2nE (X 2
1 ; |X1|6 1bn) + b4nP(|X1|¿ 1bn):

So11

I16 12nb−2
n E(X 2

1 ; |X1|6 1bn) + nP(|X1|¿ 1bn):

Choosing 1 = /=2 in (19) and (20), we can achieve I 6 1=2 for n large enough and
the proof is complete.13

Remark 10. If X1 ∈ DAN , we also have

sup
06t61

∣∣∣∣∣V
2
[nt]+1

V 2
n

− t

∣∣∣∣∣ P→ 0: (29)
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Indeed, recalling (4), it suSces to write1

V 2
[nt]+1 − V 2

[nt]

V 2
n

=
X 2
[nt]+1

V 2
n

6
(

1
V 2
n+1

max
16k6n+1

X 2
k

)
V 2
n+1

V 2
n

;

and observe that V 2
n+1=V

2
n converges to 1 in probability since by Lemma 9,∣∣∣∣ V 2

n

V 2
n+1

− n
n+ 1

∣∣∣∣6 sup
06t61

∣∣∣∣∣V
2
[(n+1)t]

V 2
n+1

− t

∣∣∣∣∣ P→ 0:

Remark 11. For each t ∈ [0; 1],3

b2[nt]
b2n

→ t: (30)

This is a simple by-product of Lemma 9, writing

b2[nt]
b2n

=
V 2
n

b2n
× b2[nt]

V 2
[nt]

× V 2
[nt]

V 2
n

and noting that for 4xed t ¿ 0 and n¿ n0 large enough [nt]¡ [(n + 1)t] so the5
sequence (b2[nt]=V

2
[nt])n¿n0 is a subsequence of (b2n=V

2
n )n¿n0 which converges in prob-

ability to 1 by (18).7
De4ne the random variables

1n(t) = max{k = 0; : : : ; n; V 2
k 6 tV 2

n }; t ∈ [0; 1]; (31)

so that we have 1n(1) = n and for 06 t ¡ 1,9

V 2
1n(t)

V 2
n
6 t ¡

V 2
1n(t)+1

V 2
n

: (32)

Lemma 12. If X1 ∈ DAN then

sup
t∈[0;1]

|n−11n(t)− t| P→ 0: (33)

Proof. The result will follow from Remark 10, if we check the inclusion of events11 {
sup

t∈[0;1]
|n−11n(t)− t|¿.

}
⊂

{
sup

u∈[0;1]

∣∣∣∣∣V
2
[nu]+1

V 2
n

− u

∣∣∣∣∣¿ .

}
: (34)

The occurrence of the left-hand side in (34) is equivalent to the existence of one
s ∈ [0; 1] such that |n−11n(s)− s|¿., i.e. such that13

1n(s)¿n(s+ .) (35)

or

1n(s)¡n(s− .): (36)

Observe that under (35), s + .¡ 1, while under (36), s − .¿ 0. From the de4nition15
of 1n, (35) gives an integer k ¿n(s+ .) such that V 2

k =V
2
n 6 s, whence

V 2
[n(s+.)]+1

V 2
n

6 s: (37)
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On the other hand, under (36), we have V 2
k =V

2
n ¿ s for every k ¿ n(s − .) and in1

particular

V 2
[n(s−.)]+1

V 2
n

¿ s: (38)

Recasting (37) and (38) under the form3

V 2
[n(s+.)]+1

V 2
n

− (s+ .)6−.

V 2
[n(s−.)]+1

V 2
n

− (s− .)¿.;

shows that both (35) and (36) imply the occurrence of the event in the right-hand side
of (34).5

3. Proofs

Proof of Theorem 1. First we prove the convergence of 4nite dimensional distributions7
(f.d.d.) of the process 
sen to the corresponding f.d.d. of the Wiener process W .

To this aim, consider the process �n=(S[nt]; t ∈ [0; 1]). By (4) applied to the obvious9
bound

sup
06t61

V−1
n |
n(t)− �n(t)|6 V−1

n max
16k6n

|Xk |;

the convergence of f.d.d. of 
sen follows from those of the process �se
n .11

Let 06 t1 ¡t2 ¡ · · · ¡td6 1. From (3), independence of the Xi’s and Remark 11,
we get13

b−1
n (S[nt1]; S[nt2] − S[nt1]; : : : ; S[ntd] − S[ntd−1])

D→(W (t1); W (t2)−W (t1); : : : ; W (td)−W (td−1)):

Now (18) and the continuity of the map

(x1; x2; : : : ; xd) �→ (x1; x2 + x1; : : : ; xd + · · ·+ x1)

yields the convergence of f.d.d. of �se
n . The convergence of 4nite dimensional distri-15

butions of the process 
sen is thus established.
To prove the tightness we shall use Theorem 8:3 from Billingsley (1968). Since17


sen (0) = 0, the proof reduces in showing that for all ., 7¿ 0 there exist n0 ¿ 1 and
�, 0¡�¡ 1, such that19

1
�
P
{

sup
16i6n�

V−1
n |Sk+i − Sk |¿ .

}
6 7; n¿ n0 (39)

for all 16 k 6 n.
Let us introduce the truncated variables21

Yi:=‘−1
n (Xi; X 2

i 6 12b2n); i = 1; : : : ; n
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with ‘n = n−1=2bn as above and 1 to be chosen later. Denote by S̃k and Ṽ k the corre-1
sponding partial sums with their self-normalizing random variables:

S̃k = Y1 + · · ·+ Yk ; Ṽ k = (Y 2
1 + · · ·+ Y 2

n )
1=2; k = 1; : : : ; n:

Then we have3

P
{

sup
16i6n�

V−1
n |Sk+i − Sk |¿ .

}
6 A+ B+ C; (40)

where

A := P
{

sup
16i6n�

|S̃k+i − S̃k |¿ .
√

n=2
}

;

B := P{Ṽ n ¡
√
n=2};

C := nP{|X1|¿ 1‘n
√
n}:

Due to (21) we can choose n1 such that
√
n|EY1|6 1=4 for n¿ n1. Then with n¿ n15

and �6 . we have

A6 P


 max

16i6n�

∣∣∣∣∣∣
k+i∑

j=k+1

(Yj − EYj)

∣∣∣∣∣∣+ n�|EY1|¿
√
n.=2




6 P


 max

16i6n�

∣∣∣∣∣∣
k+i∑

j=k+1

(Yj − EYj)

∣∣∣∣∣∣¿
√
n.=4


 :

By Chebyshev’s inequality and Rosenthal inequality with p¿ 2, we have for each7
16 k6 n

P


n−1=2

∣∣∣∣∣∣
k+n�∑
j=k+1

(Yj − EYj)

∣∣∣∣∣∣¿
.
8


6

8p

.pnp=2E

∣∣∣∣∣∣
k+n�∑
j=k+1

(Yj − EYj)

∣∣∣∣∣∣
p

6
8p

.pnp=2 [(n�)
p=2(EY 2

1 )
p=2 + n�E|Y1|p]:

By (20) we can choose n2 such that9

3=46EY 2
1 6 3=2 for n¿ n2: (41)

Then we have E|Y1|p6 2n(p−2)=21p−2 and then assuming that 16 �1=2 we obtain

P


n−1=2

∣∣∣∣∣∣
k+n�∑
j=k+1

(Yj − EYj)

∣∣∣∣∣∣¿
.
8


6

8p

.pnp=2 [2
p=2(n�)p=2 + �np=21p−2]

6
2 · 16p�p=2

.p
:

Now by Ottaviani inequality we 4nd11

A6
�7
3
; (42)

provided �p=26 .p=(4 · 16p) and �(p−2)=26 7.p=(6 · 16p).
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Next we consider B. Since n−1EṼ
2
n = EY 2

1 we have by (41) n−1EṼ
2
n¿ 3=4, for1

n¿ n2. Furthermore,

B6P{n−1|Ṽ 2
n − EṼ

2
n|¿ 1=2}6 4n−1EY 4

1 6 412EY 2
1 6 �7=3; (43)

provided n¿ n2 and 126 �7=18.3
Finally choose n3 such that C6 7�=3 when n¿ n3 and join to that estimates (42)

and (43) to conclude (39). The proof is complete.5

Proof of Theorem 2. Due to Theorem 1, it suSces to check that ‖V−1
n (
n−�n)‖∞ goes

to zero in probability, where ‖f‖∞:= sup06t61|f(t)|. To this end let us introduce the7
random change of time 9n de4ned as follows. When Vn ¿ 0, 9n is the map from [0; 1]
onto [0; 1] which interpolates linearly between the points (k=n; V 2

k =V
2
n ), k = 0; 1; : : : ; n.9

When Vn = 0, we simply take 9n = I , the identity on [0; 1]. With the usual convention
Sk=Vn:=0 for Vn = 0, we always have11

�sen (9n(t)) = 
sen (t); 06 t6 1: (44)

Clearly for each t ∈ [0; 1],∣∣∣∣∣V
2
[nt]

V 2
n

− 9n(t)

∣∣∣∣∣6 max
16k6n

X 2
k

V 2
n
:

It follows by (4) that13

sup
06t61

∣∣∣∣∣V
2
[nt]

V 2
n

− 9n(t)

∣∣∣∣∣ P→0

and this together with Lemma 9 gives

‖9n − I‖∞ P→0: (45)

Let !(f; �):=sup{|f(t) − f(s)|; |t − s6 �} denote the modulus of continuity of15
f ∈ C[0; 1]. Then recalling (44) we have

‖
sen − �sen ‖∞ = sup
06t61

|
sen (9n(t))− �sen (9n(t))|6 !(
sen ; ‖9n − I‖∞):

It follows that for any /¿ 0 and 0¡�6 1,17

P(‖
sen − �sen ‖∞ ¿ /)6 P(‖9n − I‖∞ ¿�) + P(!(
sen ; �)¿ /): (46)

Now since the Brownian motion has a version in C[0; 1], we can 4nd for each positive
., some � ∈ (0; 1] such that P(!(W ; �)¿ /)¡.. As the functional ! is continuous19
on C[0; 1], it follows from Theorem 1 that

lim sup
n→∞

P(!(
sen ; �)¿ /)6P(!(W ; �)¿ /):

Hence for n¿ n1 we have P(!(
sen ; �)¿ /)¡ 2.. Having in mind (45) and (46) we21
see that the proof is complete.

Proof of Theorem 3. The convergence of 4nite dimensional distributions is already23
established in the proof of Theorem 2.
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It remains to prove tightness of �sen in the space H�[0; 1]. To this aim, we have to1
check the second condition of Proposition 7 only.
Let .1; : : : ; .n; : : : be an independent Rademacher sequence which is independent on3

(Xi). By symmetry of X1, both sequences (Xi) and (.iXi) have the same distribution.
Noting also that .2i = 1 a.s., we have that �sen has the same distribution as the random5
process �̃

se
n which is de4ned linearly between the points(

V 2
k

V 2
n
;
Uk

Vn

)
;

where U0 = 0 and Uk =
∑k

i=1 .iXi; for k ¿ 1. Hence, it suSces to prove that7

lim
J→∞

sup
n

∑
j¿J

2j max
06k¡2j

P(|�̃sen |((k + 1)2−j)− �̃
se
n (k2

−j)|¿.�(2−j)) = 0: (47)

To this aim we shall estimate

�(t; h; r):=P(|�̃sen (t + h)− �̃
se
n (t)|¿r);

uniformly in n. First consider the case, where9

06
V 2
k−1

V 2
n
6 t ¡ t + h6

V 2
k

V 2
n
;

so

06 h6
V 2
k

V 2
n
− V 2

k−1

V 2
n

=
X 2
k

V 2
n
:

We have then by linear interpolation11

|�̃sen (t + h)− �̃
se
n (t)|=

|.kXk |
Vn

V 2
n

X 2
k
h

=
(

Vn

|Xk |
√
h
)√

h6
√
h: (48)

Next consider the following con4guration:

06
V 2
k−1

V 2
n
6 t ¡

V 2
k

V 2
n
6

V 2
l

V 2
n
6 t + h¡

V 2
l+1

V 2
n

:

Then we have13

|�̃sen (t + h)− �̃
se
n (t)|6 �1 + �2 + �3;

where

�1 := |�̃sen (t + h)− �̃
se
n (V

2
l =V

2
n )|6

√
t + h− V 2

l =V
2
n 6

√
h;

�2 := |�̃sen (V 2
l =V

2
n )− �̃

se
n (V

2
k =V

2
n )|= V−1

n |Ul − Uk |6 |Ul − Uk |√
V 2
l − V 2

k

√
h;

�3 := |�̃sen (V 2
k =V

2
n )− �sen (t)|6

√
V 2
k =V

2
n − t 6

√
h:

Hence, for any con4guration we obtain15

|�̃ sen (t + h)− �̃
se
n (t)|6 |Ul − Uk |√

V 2
l − V 2

k

√
h+ 2

√
h; (49)
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if we agree that |Ul − Uk |(V 2
l − V 2

k )
−1=2:= 0 when k = l. Therefore,1

�(t; h; r)6 P(|Ul − Uk |=
√

V 2
l − V 2

k ¿ r=(2
√
h)); (50)

provided r ¿ 4
√
h. Observe that in this formula the indexes l and k are random vari-

ables depending on t, h and the sequence (Xi), but independent of the sequence (.i).3
Thus conditioning on X1; : : : ; Xn and applying the well known HoeGding’s inequality
we obtain5

�(t; h; r)6 c exp{−r2=(8h)}: (51)

Now (47) clearly follows if for every .¿ 0,
∞∑
j=1

2j exp{−.2j�2(2−j)}¡∞; (52)

which is easily seen to be equivalent to our hypothesis (7). The proof is7
completed.

Proof of Theorem 5. From (9) and the characterization (4) of DAN , X1 is clearly in9
the domain of normal attraction. So the convergence of 4nite dimensional distributions
is already given by Theorem 2.11
To establish the tightness we have to prove that

lim
J→∞

lim sup
n→∞

P(‖�sen − EJ �sen ‖seq� ¿ 4.) = 0: (53)

To this end, it suSces to prove that with some sequence Jn ↑ ∞ to be precised later,13

lim sup
n→∞

P

(
sup
j¿Jn

max
06k¡2j

1
�(2−j)

|/′j; k(�sen )|¿.

)
= 0 (54)

and

lim
J→∞

lim sup
n→∞

P

(
sup

J6j6Jn
max

06k¡2j

1
�(2−j)

|/′j; k(�sen )|¿ 3.

)
= 0; (55)

where15

/′j; k(�
se
n ):= �sen ((k + 1)2−j)− �sen (k2

−j); 06 k ¡ 2j:

To start with (54), following the same steps which led to (49) we obtain with k, l
such that17

V 2
k−1

V 2
n

¡ t 6
V 2
k

V 2
n
;

V 2
l−1

V 2
n

¡ t + h6
V 2
l

V 2
n
;

the upper bound

|�sen (t + h)− �sen (t)|6
(
2 +

|S(l; k]|
V(l; k]

)√
h;

where we use the notations19

S(i; j]:=
∑

i¡k6j

Xk ; V(i; j]:=


 ∑

i¡k6j

X 2
k




1=2
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with the usual convention of null value for a sum indexed by the empty set. Writing1
Tk;l:= 2 + |S(l; k]|=V(l; k], this gives

|�sen (t + h)− �sen (t)|6
√
h max
16k6l6n

Tk; l: (56)

By GinQe et al. (1997, Theorem 2:5), the Tk;l are uniformly subgaussian. It is worth3
recalling here and for further use, that if the random variables Yi (16 i6N ) are
subgaussian, then so is max16i6N |Yi|, which more precisely satis4es5 ∣∣∣∣

∣∣∣∣ max
16i6N

|Yi|
∣∣∣∣
∣∣∣∣
=2

6 a(logN )1=2 max
16i6N

||Yi||=2 ; (57)

where a is an absolute constant and ‖ ‖=2 denotes the Orlicz norm associated to the
Young function =2(t):= exp(t2)−1. Applying (57) to the n2 random variables Tk;l, we7
obtain (with constants c, C whose value may vary at each occurence)

P

(
sup
j¿Jn

max
06k¡2j

1
�(2−j)

|/′j; k(�sen )|¿.

)
6

∑
j¿Jn

P
(

max
16k6l6n

Tk; l ¿ c.j"
)

6
∑
j¿Jn

C exp
(−cj2"

log n

)
: (58)

Now choose Jn = (log n)' with 1¿'¿ (2")−1. Then 2"− 1=' is strictly positive and9
using

j2" = j1='j2"−1=' ¿ J 1='
n j2"−1=' = j2"−1=' log n;

we see that the right-hand side in (58) is bounded by
∑

j¿Jn C exp(−cj2"−1='), whence11
(54) follows.
To prove (55), we start with13

P
(

max
J6j6Jn

max
06k¡2j

1
�(2−j)

|/′j; k(�sen )|¿ 3.
)
6 P1 + P2 + P3 (59)

with P1, P2 and P3 de4ned below. First introduce the event

An =

{
sup

t∈[0;1]

∣∣∣∣∣V
2
1n(t)

V 2
n

− V 2
[nt]

V 2
n

∣∣∣∣∣6 �n

}
∩
{

sup
t∈[0;1]

∣∣∣∣∣V
2
[nt]

V 2
n

− t

∣∣∣∣∣6 �n

}
:

where �n is chosen as in (11), keeping the freedom of choice of the constant c.15
Now we de4ne

P1 := P(Ac
n);

P2 := P
(
An ∩

{
max

J6j6Jn
max

06k¡2j

1
�(2−j)

|S[(k+1)2−jn] − S[k2−jn]|
Vn

¿.
})

;

P3 := P
(
An ∩

{
max

J6j6Jn
max

06k¡2j

1
�(2−j)

max
|l−[k2−jn]|6n�n[ |Sl − S[k2−jn]|

Vn
+

2
2j=2

]
¿ 2.

})
:
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The following easy estimates1

sup
t∈[0;1]

∣∣∣∣∣V
2
[nt]

V 2
n

− t

∣∣∣∣∣6 max
16k6n

∣∣∣∣V 2
k

V 2
n
− k

n

∣∣∣∣+ 1
n
;

sup
t∈[0;1]

∣∣∣∣∣V
2
1n(t)

V 2
n

− V 2
[nt]

V 2
n

∣∣∣∣∣6 max
16k6n

X 2
k

V 2
n
+ max

16k6n

∣∣∣∣V 2
k

V 2
n
− k

n

∣∣∣∣+ 1
n
;

lead by (9) and (10) to

P(Ac
n) → 0: (60)

So P1 will be killed by taking the lim sup in n.3
To control P2, 4rst write with self-explanatory notations

|S[(k+1)2−jn] − S[k2−jn]|
Vn

=
|S[(k+1)2−jn] − S[k2−jn]|
V([k2−jn]; [(k+1)2−jn]]

× V([k2−jn]; [(k+1)2−jn]]

Vn
:

Observing that on the event An, we have5

V([k2−jn]; [(k+1)2−jn]]

Vn
6

√
2−j + �n

and assuming that

�n 6 2−Jn ; (61)

we get7

P2 6
∑

J6j6Jn

P
(

max
06k¡2j

1
�(2−j)

|S[(k+1)2−jn] − S[k2−jn]|
V([k2−jn]; [(k+1)2−jn]]

¿
√
2.2j=2

)
:

Since we are dealing now with the maximum of 2j uniformly subgaussian random vari-
ables (their ’2 norms are bounded by a constant which depends only on the distribution9
of X1), this leads to

P2 6
∑

J6j6Jn

C exp(−cj2"−1)6
∞∑
j=J

C exp(−cj2"−1): (62)

To control P3, we 4rst get rid of the residual term by noting that11

2
�(2−j)2j=2

=
c
j"

¡ . for j ¿ J ¿ J (.);

uniformly in n. So for J ¿ J (.),

P3 6 P
(
An ∩

{
max

J6j6Jn
max

06k¡2j

1
�(2−j)

max
|l−[k2−jn]|6n�n

|Sl − S[k2−jn]|
Vn

¿.
})

:

On the event An we have for any l such that |l− [k2−jn]|6 n�n,13

|V 2
[k2−jn] − V 2

l |
V 2
n

6 2�n:

It follows that

P3 6 P

(
max

J6j6Jn
max

06k¡2j
max

|l−[k2−jn]|6n�n

|Sl − S[k2−jn]|
|V 2

[k2−jn] − V 2
l |1=2

¿
.�(2−j)√

2�n

)
:
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Using the invariance of distributions under translations on k, we get1

P36
∑

J6j6Jn

2jP
(

max
0¡l6[2n�n]

|Sl|
Vl

¿
.�(2−j)√

2�n

)

6
∑

J6j6Jn

2jC exp
(
−c2−jj2"

�n log n

)

6C
∑

J6j6Jn

2j exp
(
− c2−Jn

�n log n
j2"

)
:

Now we see that the following convergence rate (stronger than (61))

�n =
1

2Jn log n
=

2−(log n)'

log n
; with

1
2"

¡'¡ 1;

is suScient to obtain (55). The proof is complete.3

Proof of Corollary 6. As is X1 is square integrable, X1 is in DAN . The convergence
rates (9) and (10) required by Theorem 5 are provided by the two following lemmas,5
recalling that with our choice (11) of �n, we have n−. = o(�n) for any .¿ 0.

Lemma 13. If E|X1|2+� ¡∞ for some �¿ 0; then almost surely7

n−c max
16k6n

∣∣∣∣V 2
k

V 2
n
− k

n

∣∣∣∣ → 0; (63)

where c = �=(2 + 2�).

Proof. By Marcinkiewicz SLLN, if the i.i.d. sequence (Yk) satis4es E|Y1|p ¡∞ for9
some 16 p¡ 2, then n−1=p(

∑
k6n Yk − nEY1) goes to 0 almost surely. Applying this

to Y1 = X 2
1 and p= 1 + �=2 gives11

V 2
n

n
= 1 + n1=p−1.n; n¿ 1;

where the random sequence (.n) goes to zero almost surely. Since we assume P(X1 =
0)¡ 1, we have P(∀n¿ 1; Vn =0)= 0. On each event {V 2

n ¿ 0}, we may write with13
a= 1− 1=p,

V 2
k

V 2
n
− k

n
=

k
n

(
V 2
k

k
n
V 2
n
− 1

)
=

k
n
× k−a.k − n−a.n

1 + n−a.n
:

For each n¿ n0=n0(!) large enough, n−a.n ¿−1=2. Now for an exponent 0¡b¡ 115
to be precised later, we have∣∣∣∣V 2

k

V 2
n
− k

n

∣∣∣∣6 4nb−1sup
i¿1

|.i| for n¿ n0; 16 k 6 nb

and17 ∣∣∣∣V 2
k

V 2
n
− k

n

∣∣∣∣6 4n−ab sup
i¿nb

|.i| for n¿ n0; nb ¡k 6 n:

The optimal choice of b given by 1− b= ab leads to the announced conclusion with
c = a=(a+ 1) = �=(2 + 2�).19
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Lemma 14. If E|X1|2+� ¡∞ for some �¿ 0; then almost surely1

nd max
16k6n

X 2
k

V 2
n
→ 0 (64)

for any d¡�=(2 + �).

Proof. We use the same trick as in O’Brien (1980, p. 542). For any positive . we3
have (noting the key role of i.o. in the following inequalities)

P
(

max
16k6n

X 2
k

V 2
n
¿ .n−d; i:o:

)
6 P

(
V 2
n ¡

n
2
; i:o:

)
+ P

(
max

16k6n
X 2
k ¿

n
2
.n−d; i:o:

)

= 0 + P
(
X 2
n ¿

n
2
.n−d; i:o:

)
:

Now observe that5
∞∑
n=1

P
(
X 2
n ¿

n
2
.n−d

)
6

(
2
.

)1+�=2

E|X1|2+�
∞∑
n=1

1
n(1−d)(1+�=2) :

For any d such that (1− d)(1 + �=2)¿ 1, Borel–Cantelli’s Lemma leads to

P
(

max
16k6n

X 2
k

V 2
n
¿ .n−d; i:o:

)
= 0:

As . is arbitrary, the result is proved.7
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