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Abstract

Let {;° be the adaptive polygonal process of self-normalized partial sums Sy =3, ., X; of
i.i.d. random variables defined by linear interpolation between the points (VZ/V2,Si/Vy), k < n,
where V2= i<k X?. We investigate the weak Holder convergence of {° to the Brownian motion
W. We prove particularly that when X, is symmetric, {}° converges to W in each Hélder space
supporting W if and only if X belongs to the domain of attraction of the normal distribution.
This contrasts strongly with Lamperti’s FCLT where a moment of X; of order p > 2 is requested
for some Holder weak convergence of the classical partial sums process. We also present some
partial extension to the nonsymmetric case. (¢) 2001 Published by Elsevier Science B.V.

MSC: 60F05; 60B05; 60G17; 60E10

Keywords.: Functional central limit theorem; Domain of attraction; Holder space; Randomization

1. Introduction and results

Various partial sums processes can be built from the sums S, =X; + --- + X, of
independent identically distributed mean zero random variables. In this paper we focus
attention on what we call the adaptive self-normalized partial sums process, denoted
{5, We investigate its weak convergence to the Brownian motion, trying to obtain
it under the mildest integrability assumptions on X; and in the strongest topological
framework. We basically show that in both respects, {;° behaves better than the classical
Donsker—Prohorov partial sum processes . Self-normalized means here that the clas-
sical normalization by \/n is replaced by

Vo= (X[ 4+ X))
Adaptive means that the vertices of the corresponding random polygonal line have

their abscissas at the random points V72/V? (0 < k < n) instead of the deterministic
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equispaced points k/n. By this construction the slope of each line adapts itself to the
value of the corresponding random variable.

As a lot of different partial sums processes will appear throughout the paper, we
need to explain our typographical conventions and fix notations.

By {, (respectively &,) we denote the random polygonal partial sums process
defined on [0, 1] by linear interpolation between the vertices (VZ/V2, Sk), k=0,1,...,n
(respectively (k/n,S;), k=0,1,...,n), where

Sc=X+-+ X, VP=X}+ - +X

For the special case k£ =0, we put So =0, Vp=0.
The upper scripts " or *° mean, respectively, normalization by square root of n or
self-normalization. Hence,

Sn Sn Cn

> ése ) CSY = H

YZE
By convention the random functions &° and (§° are defined to be the null function
on the event {V, = 0}. Finally, the step partial sums processes =,, Z,, Z5, etc., are
the piecewise constant random cadlag functions whose jump points are vertices for the
polygonal process denoted by the corresponding lowercase Greek letter.

Classical Donsker—Prohorov invariance principle states, that if EX? = 1, then

(o=t

V,

& =

G, ()

in C[0, 1], where (W (¢),t € [0,1]) is a standard Wiener process and Z, denotes con-
vergence in distribution. Since (1) yields the central limit theorem, the finiteness of
the second moment of X; therefore is necessary.

Lamperti (1962) considered the convergence (1) with respect to a stronger topology.
He proved that if E|X;|? < oo, where p > 2, then (1) takes place in the Holder space
H,[0,1], where 0 <o < 1/2 — 1/p. This result was derived again by Kerkyacharian
and Roynette (1991) by another method using Ciesielski (1960) analysis of Holder
spaces by triangular functions. Further generalizations were given by Erickson (1981),
Hamadouche (1998), Rackauskas and Suquet (1999c¢).

Considering a symmetric random variable X such that P(X, = u)=1/2u?), u > 1,
Lamperti (1962) noticed that the corresponding sequence (") is not tight in H,[0, 1]
for « = 1/2 — 1/p. It is then hopeless in general to look for an invariance principle
in H,[0, 1] without some moment assumption beyond the square integrability of Xj.
Recently, Rackauskas and Suquet (1999c) proved more precisely that if (&) satisfies
the invariance principle in H,[0, 1] for some 0 < o < 1/2, then necessarily

supt?P(|X1| > t) < o0 (2)
t>0

for any p < 1/(1/2 — o).
Let us see now, how self-normalization and adaptiveness help to improve this situ-
ation. Recall that “X; belongs to the domain of attraction of the normal distribution”
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(denoted by X; € DAN') means that there exists a sequence b, T co such that

b'8, 5 N(O,1). (3)
According to O’Brien’s (1980) result: X; € DAN if and only if
v, max |X| 50, (4)
1<k<n

where — denotes convergence in probability. In the classical framework of C[0, 1], we
obtain the following improvements of the Donsker—Prohorov theorem.

Theorem 1. The convergence
Gelw (5)
holds in the space C[0,1] if and only if X\ € DAN.

Theorem 2. The convergence
e w (6)
holds in the space C[0,1] if and only if X\ € DAN.

Let us remark that the necessity of X; € DAN in both Theorems 1 and 2 follows
from Giné¢, et al. (1997). Let us notice also that (5) or (6) both exclude the degenerated
case P(X; =0)=1, so that almost surely V,, > 0 for large enough n. We have similar
results (Rackauskas and Suquet, 2000) for the step processes Z)° and Z;° within the
Skorohod space D(0,1).

For a modulus of continuity p : [0,1] — R, denote by /7,[0, 1] the set of continuous
functions x:[0,1] — R such that w,(x,1) < oo, where

x(2) — x(s)|

0y plls— 1)

Ls€[0,1],

0<|t—s|<d
The set H,[0,1] is a Banach space when endowed with the norm
[lx[lp:= [x(0)] + wp(x, 1).
Define
HJ[0,1] = {x € H,[0,1]: %iir})w,,(x,é) =0}.

Then HJ[0,1] is a closed separable subspace of H,[0,1]. In what follows we assume
that the function p satisfies technical conditions (12) to (16) (see Section 2). These
assumptions are fulfilled particularly when p = p, 3, 0 <a < 1, f € R, defined by

pup(h):=h*InP(c/h), 0<h <1

for a suitable constant c. We write /, g and HY 5 for H,[0,1] and H, 510,1], respectively,
when p = p, g and we abbreviate H, in H,.

With respect to this Holder scale H, g, we obtain an optimal result when X; is
symmetric.
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Theorem 3. Assume that p satisfies conditions (12)—(16) and

2/ p2(2—J
lim 227G _ (7)
j—oo J
If Xy is symmetric and X, € DAN then
cZw, (8)
in H2[0,1].

Corollary 4. If X, is symmetric and X, € DAN then (8) holds in the space HY), o
for any f > 1/2.

It is well known that the Wiener process has a version in the space H 1> but none
in HY), | ,. Hence Corollary 4 gives the best result possible in the scale of the separable
Holder spaces H, g. In Rackauskas and Suquet (1999c) it is proved that if the classical
partial sums process & converges in /), ; for some > 1/2, then X[y, < oo, where
| Xi]ly, is the Orlicz norm related to the Young function y(r) = exp(r’) — 1 with
y = 1/B. This shows the striking improvement of weak Holder convergence due to
self-normalization and adaptation.

It seems worth noticing here, that without adaptive construction of the polygonal
process, the existence of moments of order bigger than 2 is necessary for Holder weak

convergence. Indeed, if éffg W in H,, then one can prove that EXl2 < 0. Therefore
g’ffﬂ W in H, and the moment restriction (2) is necessary.

Naturally it is very desirable to remove the symmetry assumption in Corollary 4.
Although the problem remains open, we can propose the following partial results in

this direction.

Theorem 5. Let > 1/2 and suppose that we have

X
k>
(s, 5 > 0n) 20 ©
and
2k
k>
P <1r<nkaén V112 n - 5’1) n—>_o>oo’ (10)
with
2—(logny’ 1
op=c—— for some — <y <1 and somec>0. (11)
logn ' 2p
Then
g . 0
CZSH W in H1/2,ﬁ’
Observe that n=¢ = 0(d,) for any ¢ > 0. This mild convergence rate J, may be
obtained as soon as E|X;|>*"¢ is finite.

Corollary 6. If for some ¢ >0, E|X||*"¢ < oo, then for any B> 1/2, {$¢ converges
weakly to W in the space HY), ;.
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This result contrasts strongly with the extension of Lamperti’s invariance principle
in the same functional framework (Rackauskas and Suquet, 1999c)

The present contribution is a new illustration of the now well established fact, that in
general, self-normalization improves the asymptotic properties of sums of independent
random variables.

A rich literature is devoted to limit theorems for self-normalized sums. Logan
et al. (1973) investigate the various possible limit distributions of self-normalized
sums. Gin¢ et al. (1997) prove that S,/V, converges to the Gaussian standard dis-
tribution if and only if X; is in the domain of attraction of the normal distribution (the
symmetric case was previously treated in Griffin and Mason (1991)). Egorov (1997)
investigates the non identically distributed case. Bentkus and Gotze (1996) obtain the
rate of convergence of S,/V, when X; € DAN. Griffin and Kuelbs (1989) prove the
LIL for self-normalized sums when X; € DAN. Moderate deviations (of Linnik’s type)
are studied in Shao (1999) and Christiakov and Gotze (1999). Large deviations (of
Cramér—Chernoff type) are investigated in Shao (1997) without moment conditions.
Chuprunov (1997) gives invariance principles for various partial sums processes under
self-normalization in C[0, 1] or D[0, 1]. Our Theorems 1 and 2 improve on Chuprunov’s
results in the i.i.d. case.

2. Preliminaries
2.1. Analytical background

In this section we collect some facts about the Holder spaces H,[0,1] including the
tightness criterion for distributions in these spaces. All these facts may be found e.g.
in Rackauskas and Suquet (1999b).

In what follows, we assume that the modulus of smoothness p satisfies the following
technical conditions where ¢;, ¢; and c¢3 are positive constants:

p(0)=0, p(6) >0, 0<d <1, (12)
p is nondecreasing on [0, 1], (13)
p(20) < c1p(9), 0 <90 <1/2, (14)
? pu)
0
' p(u)
5/ —~du < 3p(0), 0<é< 1 (16)
5 u

For instance, elementary computations show that the functions
p(8): =" In? (%) , 0<a<l, peER,

satisfy conditions (12)—(16), for a suitable choice of the constant ¢, namely ¢ > exp(fi/o)
if f>0and ¢ > exp(—p/(1 —a)) if f <O0.
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Write D; for the set of dyadic numbers of level j in [0,1], i.e. Dy ={0,1} and for
j 2 17

D ={Qk+1277; 0<k <2}

For any continuous function x:[0,1] — R, define
Ao (x):=x(t), tE€Dy

and for j > 1,
Ax)=x(t) = 3(x(t +27) +x(t =277)), t€D;

The /;,(x) are the coefficients of the expansion of x in a series of triangular functions.
The jth partial sum E;x of this series is exactly the polygonal line interpolating x
between the dyadic points k£277/(0 < k < 2/). Under (12)—(16), the norm ||x||, is
equivalent to the sequence norm

Hx||seq —sup max| it (X0)].

1
p(277) e
In partlcular, both norms are finite if and only if x belongs to H,. It is easy to check
that

e = Ejx|[57 = sup

(2 l) |)~z t(x)|

Proposition 7. The sequence (Y,) of random elements in Hy is tight if and only if
the following two conditions are satisfied:

(i) For each t € [0,1], the sequence (Y,(t)),>1 is tight on R.

(i1) For each ¢ > 0,

lim sup P(||Y, — E; Y[ > &) = 0.
J70p>1

Remark 8. Condition (ii) in Proposition 7 may be replaced by

11rn limsup P(||Y, — E;Y, |59 > &) =0. (17)

0 p—o0

2.2. Adaptive time and DAN

We establish here the technical results on the adaptive time when X; € DAN which
will be used throughout the paper. These results rely on the common assumption that
X is in the domain of normal attraction. This provides the following properties on the
distribution of X;. Since X; € DAN, there exists a sequence b, | oo such that b, s,
converges weakly to N(0,1). Then Raikov’s theorem yields

b2 (18)
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We have moreover for each t > 0, putting b, = n~"?/,,

nP(|X;| > t/,v/n) — 0, (19)
CTERXE X < tfvn) — 1, (20)
nE(X; [Xi| < t/,/n) — 0, (21)

see for instance Araujo and Giné (1980, Chapter 2, Corollaries 4.8(a) and 6.18(b) and
Theorem 6.17(i)). Here and in all the paper (X; E) means the product of the random
variable X by the indicator function of the event E.

Lemma 9. If X| € DAN, then

=0. (22)

Proof. Consider the truncated random variables
Xoi=b, " (X X2 < b)), i=1,....n

Define ¥,,0:=0 and V; = X7, +---+ X7, for k=1,...,n. Set
2
Vi
V2

n

—t

v, = sup
0<r<l1

and V,= sup

Then we have for 1 > 0,
P(v, > 2) < P(¥, > J) + nP(X{ > b2).

Due to (19) the proof of (22) reduces to the proof of

7, 20. (23)
Since Vn% 0 < Vn%n for K =0,...,n, the elementary estimate
Viv k Vo k
LA R . P
Vn2,n n Vnz,n | n,n| =+ nk n
leads to
v, < szk+|lfV2\+l 24)
Vo S RRE Tk Ty N (

Noting that V2, = b, *V,’R, with
1 n

Ryi=7 (XHXP < b)),
ni=1

we clearly have R, < 1 a.s. and

PR, <1)=P <lma§ |X:| > b,,) < nP(|X1| > by),
<i<n
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which goes to zero by (19). This together with (18) gives
V2,51 (25)

Hence the proof of (23) reduces to
k
V2, — =
nk n

max 0. (26)

0<k<n

For this convergence we have

2 2 2 2
Jmax [Vop —kin| < max |V, —EV, |+ max [EV,, —k/nl.

Noting that
k_k

EV}, — = = —(nb,"E(X{;X] < b)) — 1)
’ n n
gives
k _
Jmax BV, — n' < [nb, "E(XT X < B2) — 1,

which goes to zero by (20). Hence it remains to prove

max |V,,2,k—EV,ik\i>O. 27

0<k<n
Putting 7, n,k::Vn% P EVH% w» We have by Ottaviani inequality

< P(|Tyul > 2)
Sl —maxy<x<p P(|Tpp — Toi| > 2)

(28)

<n

p ( max [T > 221
1<k

Due to (25), we are left with the control of I:=max;<i<,P(|Tux| > ). By
Chebyshev’s inequality

I < 272 max ET?, < 2 2nEX?
L<k<n nk n,1

and we have to consider I; = nEX;}| = nb, *E(X}'; |X;| < b,). For any 0 <7 <1,

EX}; X | < by) < B X | < 1h,) 4+ E(XT th, < |X0| < by)

<
< PP2E (X |Xa| < thy) + BIP(1X| = ©by).

So

Iy < ©nb, *E(X}; | Xi| < tby) + nP(1X1| = thy).

Choosing t = 4/2 in (19) and (20), we can achieve [ < 1/2 for n large enough and
the proof is complete. [J

Remark 10. If X; € DAN, we also have

2
V[nt]+l .

v

sup 2o. (29)

0<r<l1
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Indeed, recalling (4), it suffices to write

2 2 2

Vieret = Vg X - 1 X2 Vi

5 =—0 < 5— max X; =,
v, v; Vi 1<k<ntl V:
and observe that V,,z+l /V? converges to 1 in probability since by Lemma 9,
V2 n Vi
‘ 5 — sup M —t5o.
Vi ntl 0<r<1 ol

Remark 11. For each ¢ € [0, 1],
2

b[nl]

b2

n

—t. (30)

This is a simple by-product of Lemma 9, writing
2 2 2
by _ V2 D Vi

R 7
and noting that for fixed + >0 and n > ny large enough [nf] <[(n + 1)¢] so the
sequence (b[zm]/V[zm]),,Z,,o is a subsequence of (b2/V?),>,, which converges in prob-
ability to 1 by (18).

Define the random variables

(1) =max{k=0,...,n; V¥ <tV?}, tc][0,1], 31)
so that we have 7,(1)=n and for 0 <t < 1,
V2 V2
Tu(t) <it< Tu(t)+1 32
72 o (32)

Lemma 12. If X, € DAN then
sup |n't,(1) — 1|2 0. (33)
te[0,1]

Proof. The result will follow from Remark 10, if we check the inclusion of events
[nu]+1

V2
sup |n't,(t) —t| >ep C < sup —ul =eyp. (34)
r€[0.1] uef0,1]

Vi
The occurrence of the left-hand side in (34) is equivalent to the existence of one
s € [0,1] such that [n~'7,(s) —s| > ¢, i.e. such that

T,(s) > n(s + &) (35)

or
Tu(s) < n(s — ¢). (36)
Observe that under (35), s + ¢ < 1, while under (36), s — ¢ > 0. From the definition
of 7,, (35) gives an integer k > n(s + ¢) such that V2/V;? < s, whence
V2

7["“‘;2"”“ <s. (37)
n
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On the other hand, under (36), we have VZ/V? >s for every k > n(s —¢) and in
particular

V2
[n(s—e)]+1
G > (38)
Recasting (37) and (38) under the form
V%l K 1
“V;n;”* —(s+e) < —¢
V2
[”(SV_;)]'H _ (S _ 6) > ¢,

shows that both (35) and (36) imply the occurrence of the event in the right-hand side
of (34). O

3. Proofs

Proof of Theorem 1. First we prove the convergence of finite dimensional distributions
(f.d.d.) of the process & to the corresponding f.d.d. of the Wiener process W.

To this aim, consider the process Z,=(Sp,¢ € [0,1]). By (4) applied to the obvious
bound

sup ¥V, !|E,(t) — Eu(0)| < V' max [Xil,
0<r<1 1<k<n

the convergence of f.d.d. of &° follows from those of the process =5°.

Let0<t <t < --- <ty <1. From (3), independence of the X;’s and Remark 11,
we get

by (Stun1s Sins) = Sinnr)s - - - »Stata] — Staty—11)
LW (1), W(ta) = W(ty),.., W(ta) — W(ta—1)).
Now (18) and the continuity of the map
(x¥1,%2,...,%g) = (X1,X2 +X1,..., %5 + -+ +X1)

yields the convergence of f.d.d. of Zi°. The convergence of finite dimensional distri-
butions of the process £ is thus established.

To prove the tightness we shall use Theorem 8.3 from Billingsley (1968). Since
&°(0) =0, the proof reduces in showing that for all ¢, # > 0 there exist np > 1 and
9, 0 <6 < 1, such that

\Y

1
P{ sup V, 'Sk — Skl = 6} <n nz=zn (39)

0 1<i<nd

forall 1 <k < n.
Let us introduce the truncated variables

Yi=t7"(X; X2 < b2, i=1,...,n
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with £, =n~12b, as above and t to be chosen later. Denote by S’k and V; the corre-
sponding partial sums with their self-normalizing random variables:

Si=Yi+-+Y, Vi= 4 +YH2 k=1,...,n

Then we have

P{ sup V7 Skii — Sk = s} <A+B+C, (40)

1<i<nd

where

A:P{ sup |Sii — Skl = n/2},

1<i<néd
B:=P{V, < /n/2},
C:=nP{|X1| = t/,V/n}.

Due to (21) we can choose n; such that \/n|EY,| < 1/4 for n > n;. Then with n > n,
and 0 < ¢ we have

k+i
A< PQ max ‘Z (Y; — EY))| + nd|EYy| = /ne/2
J=k+1
k+i
<P mm,| L m-mn) > Vi
=

By Chebyshev’s inequality and Rosenthal inequality with p > 2, we have for each
1<k<n

ko . gp ktno b
—1/2 - . N _ R .

PAn Y (=KX > g0 < onE| S (Y~ EY))

J=k+1 J=k+1

p
/2(F v2\P/2
< o2 [(no)P'“(EY{ )7 + noE|Y|*].
By (20) we can choose n; such that

3/4 <EY{ <3/2 for n=n. (41)

Then we have E|Y;|? < 2n(P=2)/27P=2 and then assuming that T < §'/> we obtain

k+no

{7
PSn~ 2| 3" (Y; —EY))| = g <o [272(nd)P? + onPlcP=2]
j=k+1
2167672
<—.

ep
Now by Ottaviani inequality we find
on
A< —,
3

provided 67> < /(4 -167) and 6?22 < 5eP /(6 - 167).

(42)
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Next we consider B. Since n_'EVi = EY}? we have by (41) n_‘EVi > 3/4, for
n = n,. Furthermore,

B<P{n P2 —EV’| = 1/2} <4n~'EY? < 4°EY? < on/3, (43)

provided n > n, and 1% < 6/18.
Finally choose n3 such that C < n6/3 when n > n3 and join to that estimates (42)
and (43) to conclude (39). The proof is complete. [

Proof of Theorem 2. Due to Theorem 1, it suffices to check that ||V, 1(&,—{,)|| goes
to zero in probability, where || f|cc:=supy<,<,|f(¢)|. To this end let us introduce the
random change of time 6, defined as follows. When V,, > 0, 0, is the map from [0, 1]
onto [0,1] which interpolates linearly between the points (k/n, VZ/V?2), k =0,1,...,n.
When V, =0, we simply take 0, =1, the identity on [0, 1]. With the usual convention
Sk/V,:=0 for V, =0, we always have

GrO(0)=&7(), 0<r<L (44)

Clearly for each ¢ € [0, 1],
2

Vi X2

] _ < AL

7 0] < mes e

It follows by (4) that
V2
[nt] P
sup —0,(t)| =0

0<t<1 Vnz

and this together with Lemma 9 gives
10, = ]| 0. (45)
Let w(f;0):=sup{|f(¢) — f(s)|;|t — s < I} denote the modulus of continuity of
f € C[0,1]. Then recalling (44) we have

165 = Gilloo = Osupl\éff((?n(t)) = GO0n()] < (&5 100 — 1] 0)-

SIS

It follows that for any A >0 and 0 < < 1,
P& = Gillse = 4) < P[00 — I]oc > 8) + P(0(&56) = A). (46)

Now since the Brownian motion has a version in C[0, 1], we can find for each positive
g, some 0 € (0,1] such that P(w(W;d) = 1) <e&. As the functional w is continuous
on C[0,1], it follows from Theorem 1 that

lim supP(a(;756) = 4) < P(w(W;0) = 4).

n—o0o

Hence for n > n; we have P(w(&F;0) > A) < 2¢. Having in mind (45) and (46) we
see that the proof is complete. [J

Proof of Theorem 3. The convergence of finite dimensional distributions is already
established in the proof of Theorem 2.
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It remains to prove tightness of ;¢ in the space H,[0,1]. To this aim, we have to
check the second condition of Proposition 7 only.

Let ¢j,...,¢&,,... be an independent Rademacher sequence which is independent on
(X;). By symmetry of Xj, both sequences (X;) and (&:.X;) have the same distribution.
Noting also that &2 = 1 a.s., we have that {$° has the same distribution as the random
process fie which is defined linearly between the points

V,f Uy
Vnz’ Vn >
where Uy =0 and U; = Zle &.X;, for k = 1. Hence, it suffices to prove that
li J 75 =iy B -Jy) = 0.
lim sgpzz Jmax P(E, |(G+127) = & (k27| > ap(27/)) =0 (47)
j>J
To this aim we shall estimate

5t hyr):=P(\C (t +h) = & (1) > ),

uniformly in 7. First consider the case, where

Vi, Vi
0 < 2 <t<t+h<ﬁ,

n
SO

We have then by linear interpolation

>se >se |8ka| V2
|Gy (1 h) =G, ()] = ~3h
" " Vi X7
Va
= |Xk|\/% Vi < Vh (48)
Next consider the following configuration:
V1c2—1 sz Vl2 V12+1

Then we have
85+ ) =80 < 6 +65 + 6,

where
S =+ )= VYD < \Jt+h—VEV2 < Vh,

5 ~ _ U, — U,
5y = [TE 22— T2 = v U - U] < ALY g

NG
0 =5, (EIVE — L) < \JVVE—1t < Vh.

Hence, for any configuration we obtain

e mn - 5ol < = viyavh, 49)

N7
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if we agree that |U; — Ug|(V? — V2)~12:=0 when k = [. Therefore,
8(t,h,r) < P(|U; — Ug|[\/VE = V2 > r/(2Vh)), (50)

provided » > 4v/h. Observe that in this formula the indexes / and & are random vari-
ables depending on ¢, & and the sequence (X;), but independent of the sequence (¢;).
Thus conditioning on Xj,...,X, and applying the well known Hoeffding’s inequality
we obtain

3(t,h,r) < cexp{—r?/(8h)}. (51)
Now (47) clearly follows if for every ¢ > 0,

D 2 exp{—e2/p*(27)} < o, (52)

j=1

which is easily seen to be equivalent to our hypothesis (7). The proof is
completed. [

Proof of Theorem 5. From (9) and the characterization (4) of DAN, X; is clearly in
the domain of normal attraction. So the convergence of finite dimensional distributions
is already given by Theorem 2.

To establish the tightness we have to prove that

lim lim supP([|(;7 — E; G |74 > 4e) = 0. (53)

J=00 poeo
To this end, it suffices to prove that with some sequence J, | oo to be precised later,

: S€

hrrlrigpP <JSE§)0<k<2/p(2 J)| A GO > s> =0 (54)
and

S€ —

Jlirgoll,fiil.}pp <‘/<S}l£_] OI<I}ca<2fp(2 1)|) WGl > 38) =0, (35)

where

PpC=C((k+ 1)27) = §5(k277), 0<k<?2.

To start with (54), following the same steps which led to (49) we obtain with %, /
such that

= Vi i
Lo A Dl oiing L
Vi vy G

the upper bound

S
Gr+h) = @] < (2+ Baal (”"]') v,
Vim

where we use the notations

Sen= Y X Vag=| DX

i<k<j i<k<j

1/2
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with the usual convention of null value for a sum indexed by the empty set. Writing
Thii=2+ |S(1’k]|/V(1’k], this gives
Gt +h) — 55(1)) < Vh max Ty, (56)

1<k<i<n

By Giné et al. (1997, Theorem 2.5), the T} ; are uniformly subgaussian. It is worth
recalling here and for further use, that if the random variables Y; (1 <i < N) are
subgaussian, then so is max;<;<y|Y;|, which more precisely satisfies

max
1<i<N

< a(log N)'"? max [[Yi[|,, (57)
2 SIS

where a is an absolute constant and || ||4, denotes the Orlicz norm associated to the
Young function ¢(¢):=exp(#*>) — 1. Applying (57) to the n* random variables T} ;, we
obtain (with constants ¢, C whose value may vary at each occurence)

P seyl S, < P T > cotl
<Js3§02nl€a§2 0 j)| k(GO 8) <) <1<r]£1§>1<<n b1 > cej

j>Jn
_ci?P
¢
< E .
Cexp( og ) (58)

Now choose J, = (logn)’ with 1 >y > (28)~!. Then 2 — 1/y is strictly positive and
using

28—\ pB=1f s g1 2BV — 2BV og p,

J J
we see that the right-hand side in (58) is bounded by 3°,_ , Cexp(—cj*~'/7), whence
(54) follows.
To prove (55), we start with
<
P(JI<HJ<J,,O<k<2/p(2 /)| k(C )| >38> <P +P,+ Ps (59)

with Py, P, and P; defined below. First introduce the event

V2 V2 V2
(1) [nt] [ne]
A, =< sup |—=- — < 9, p N sup <O, p.
! {tE[O,l] V2 V2 ! epoa]| V2 =

where 0, is chosen as in (11), keeping the freedom of choice of the constant c.
Now we define

Py :=P(4,),
1 S —in] — Stea—i
Py:=P(4,N<{ max max St 2o w2 =&,
J<j<J0<k<2 p(277) Va
1
P3:=P(A4,N{ max —_— max
J<j<Jn0<k<21p(2_/)|l [k2=in]| <né,

IS1 = Stk 2
|:Vn+2//2 > 2¢ .
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The following easy estimates

Y v2ook| o1
sup [";] —t| < max —"2 — =+ -,
o) | Va Isk<n| V2 n| n
2 2
sup Vawy _ Vi X2 + gk + 1
ey | V? V2 I<k<nVE i<k<n|VZ2  on| n

lead by (9) and (10) to
P(45) — 0.

So P; will be killed by taking the limsup in n.
To control P,, first write with self-explanatory notations

[Stgr12-1m = Szl _ |Siernz=im = Swa-ml | Viga-imyier o

Va Vtk2 =i, [(k+1)2-7n]] Va

Observing that on the event 4,, we have

Vi . :
([k2—7n],[(k+1)2—/n]] < /271 +5n

Va

and assuming that

Sy <277,

we get

1 S in1 — Stk2—i ;
P, < Z P< max |[(k+1)2 nl [k2— 1‘ >\ﬁ82]/2>.

J<<J, 0<k<2 p(277)  Vigkaing, {412 1]

(60)

(61)

Since we are dealing now with the maximum of 2/ uniformly subgaussian random vari-
ables (their ¢, norms are bounded by a constant which depends only on the distribution

of X1), this leads to
< ) Cexp(=¢7!) < ZCexp( ).
J<j<, i

To control P3, we first get rid of the residual term by noting that

2 c .
W:ﬁ<g fOl‘]}J?J(S),

uniformly in n. So for J = J(¢),

1 S; — Siia-s
Py < P(4,Nq{ max max . max m>&
JSI<h0<k< P27 =2l <ne, Vi
On the event 4, we have for any / such that |/ — [k2’fn]| < né,,
2
M <25
V2 S ne
n

It follows that

P; < P( max max
J

IS1 — Sty - ep(277)
<J<0<k<2|i— [k2 rn\<n(> |v2 '

[k2=in] — V12|1/2 2517

(62)
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Using the invariance of distributions under translations on k, we get

. 1S, _ ep27)
P; < 2P — >
} Z (o <?§E(nan] Vi V26,

J<j<y
SiC —Jj ]213
Z xp < Onlogn )
J<j<In
<C 2J " 2ﬁ
Z exp( On 10gn )
J<j<I,
Now we see that the following convergence rate (stronger than (61))
1 2 (log n)’ 1
n , ith — <y<l,
~ 2 logn logn W 2B /

is sufficient to obtain (55). The proof is complete. [

Proof of Corollary 6. As is X; is square integrable, X; is in DAN. The convergence
rates (9) and (10) required by Theorem 5 are provided by the two following lemmas,
recalling that with our choice (11) of J,, we have n=* = 0(J,) for any ¢ > 0. [J

Lemma 13. If E|X;|*™ < co for some & > 0, then almost surely
V2 ok

V2 n
where ¢ = 0/(2 + 29).

n*C
1<k<n

— 0, (63)

Proof. By Marcinkiewicz SLLN, if the i.i.d. sequence (Yj) satisfies E|Y;|? < co for
some | < p <2, then n*”P(Zk <n Ye —nEY1) goes to 0 almost surely. Applying this
to ¥ =X? and p=1+ 3/2 gives

V2

n
where the random sequence (g,) goes to zero almost surely. Since we assume P(X; =
0) < 1, we have P(Vn > 1, ¥,=0)=0. On each event {V? > 0}, we may write with
a=1-1/p,

=14+n"7"e, n>1,

Vi k_k(Vin D) ok K,
0 k V? n 1 +nag,
For each n > ny=ny(w) large enough, n —1/2. Now for an exponent 0 < b < 1
to be precised later, we have
V: ok
k2| < 4n’ lsuplei| for n=mp, 1 <k <nb
Vnz n i>1
and
V: ok
—k_Zl < dnPsuple| for n = mg,n’ <k <n
Vn2 n i=nb

The optimal choice of b given by 1 — b = ab leads to the announced conclusion with
c=al/(a+1)=0/2+20). O
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Lemma 14. If E|X;|>™ < co for some & > 0, then almost surely

X2
ndlrél]?én—kz — 0 (64)

n

for any d < /(2 + ).

Proof. We use the same trick as in O’Brien (1980, p. 542). For any positive ¢ we
have (noting the key role of i.o. in the following inequalities)
X2
P ( max —£ > en~?, i.o.> <P (Vn2 < ﬁ, i.o.) +P < max X7 > gsn_d, i.o.)

I<k<n V}? 2 1<k<n

—04P (an > gsn*d, i.o.) .

Now observe that

> n 2\ - 1

) —d 246
EIP(X,, > Jen ) < <8> ELX; | Elm
n= n=

For any d such that (1 —d)(1 + 6/2) > 1, Borel-Cantelli’s Lemma leads to

X2
P | max —"2 > en_d, 0. | =0.
1<k<n P

As ¢ is arbitrary, the result is proved. [J
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