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1. Introduction

Long memory phenomenon have played an important role since the 50’s when dis-
covered by Hurst in certain hydrologycal data sets. Historically this paradigm has
been associated with slow decay of long-lag autocorrelation of a stochastic process
and certain type of scaling properties embodied in a concept of self-similarity. The-
oretical investigations go back to Mandelbrot and his co-authors (see [17], [18]). In
the past two decades, the interest in long memory (equally named as long-range
dependence) has increased especially in financial mathematics and econometrics,
mostly due to the availability of precise empirical measurements such as tick-by-
tick observations in stock markets for example.

For multivariate data, the theory of long range dependence and self-similarity
of processes are studied through operator scaling almost in parallel with the theory
of operator stable distributions and their generalized domain of attraction. We
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refer to Doukhan et al. [8], Jurek and Mason [12], Marinucci and Robinson [19],
Dolado and Marmol [7], Meerschaert and Scheffler [21] and references therein for a
state-of-the-art of this field of research. This paper is devoted to the long memory
phenomenon in connection with functional data analysis. We consider a stationary
process (Xk), where each Xk takes values in a real separable Hilbert space (finite
or infinite dimensional), say H. Different criteria exist to define long memory of
univariate time series. The most used are related to the asymptotic decay of the
autocovariance function: (i) lack of summability of autocovariance function, (ii)
regular variation of the autocovariance function at infinity with an exponent of
variation −1 < d ≤ 0. Following this classical scheme we consider a space varying
decay of the autocovariance operators (Qk) of (Xk) in a sense that there exist a
nuclear operator Q and a self-adjoint operator D on H such that Qk ∼ kDQ and
−I < D ≤ 0, where I denotes the identity. In this case we say that the process (Xk)
has a space varying memory. We discuss this phenomenon together with limiting
properties of partial sums.

In Section 2 we introduce a continuous time model with space varying memory,
namely an operator fractional Brownian motion which is defined via an operator
valued Hurst exponent. In section 3 we consider linear processes in Hilbert space
with regularly varying filters that are not summable. These processes have space
varying long memory. Polygonal lines build from their partial sums converge in
distribution to an operator fractional Brownian motion. The proof is exposed in
Section 5, after providing in Section 4 an auxiliary result, which may be of indepen-
dent interest, on the convergence of some Hilbert space valued stochastic processes
build from linear processes whose coefficients are operators.

2. Operator fractional Brownian motion

Fractional Brownian motion is a Gaussian process with stationary but dependent
increments. The dependence structure is modeled by its Hurst parameter H ∈ (0, 1)
via the covariance function RH defined by

RH(s, t) =
1
2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0.

The fractional Brownian motion originated by Kolmogorov [13], has been studied in
connection with many applications, e.g., financial time series, hydrology, telecom-
munications to name a few. Moreover a number of generalizations was suggested,
from stable fractional motion to that one with time varying Hurst index. The ex-
istence of a fractional Brownian motion with values in a separable Hilbert space
H is proved in [9]. Namely it is shown that for any self-adjoint nuclear operator
Q on H, and a Hurst index H ∈ (1/2, 1) there exists a Gaussian H-valued process
(BH,Q(t), t ≥ 0) on a probability space (Ω,F , P ) that satisfies

(i) EBH,Q(t) = 0 for all t ≥ 0;
(ii) RH,Q(s, t) := cov(BH,Q(t), BH,Q(t)) = 2−1(t2H + s2H − |t− s|2H)Q, for all

s, t ≥ 0;
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(iii) (BH,Q(t), t ≥ 0) has H-valued continuous paths P -a.s.

In this section we consider a Hilbert space valued fractional Brownian motion with
space varying Hurst parameter. The main aim of introducing such a process is to
understand a space varying long memory phenomenon of infinite dimensional time
series. Empirical evidences show a big interest in such models, see e.g., [4], [2], [22].

To be more precise we need to introduce some notations. Let H be a real sepa-
rable Hilbert space of infinite or finite dimension with the inner product 〈 . , . 〉 and
the corresponding norm || · ||, ||x||2 = 〈x, x〉. The space of bounded linear operators
u : H → H is denoted by L(H). We consider L(H) as a Banach space with the usual
uniform norm ||u|| = sup||x||≤1 ||ux||. The adjoint operator of an operator u ∈ L(H)
is u∗ and tr(u) means the trace of u. Let L0(H) denote the space of compact oper-
ators u : H → H, endowed with the usual operator norm. For the definition and the
main algebraic and analytic properties of L0(H) we refer to Dunford-Schwartz [10].
For T ∈ L0(H) let λk(T ∗T ) be the k’th positive eigenvalue of T ∗T . Set µk =

√
λk,

the k’th singular value of operator T . Then define:

L1(H) =
{
T ∈ L0(H) :

∑
k

µk <∞
}
.

The nuclear norm ν1 on L1(H) is defined by ν1(T ) =
∑∞

k=1 µk. Several properties
of L1(H) are presented in [10].

For an operator T ∈ L(H) we set eT = exp(T ) =
∑∞

k=0 T
k/k! provided the

series converge in L(H) and we set λT = exp(T log λ), for λ > 0. We also denote

mT = inf
||x||=1

〈Tx, x〉, MT = sup
||x||=1

〈Tx, x〉.

We refer to [1] for all information concerning the spectral theory of linear operators
on Hilbert spaces. For a self-adjoint operator T ∈ L(H) let (ET

λ , λ ∈ R) be a spectral
decomposition of T , that is a family of orthoprojectors such that

(i) ET
λ = 0 for λ < mT , Eλ = I for λ ≥MT ;

(ii) the function λ→ ET
λ is left continuous in strong topology;

(iii) T =
∫∞
−∞ λ dET

λ .

For any continuous function φ on [mT ,MT ], we have φ(T ) =
∫
φ(λ) dET

λ and for
any x, y ∈ H, 〈φ(T )x, y〉 =

∫
φ(λ) d〈ET

λ x, y〉. An operator A ∈ L(H) is called non-
negative (briefly A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ H. An operator A ∈ L(H) is
positive (denoted A > 0) provided A ≥ 0 and A 6= 0. For operators A,B ∈ L(H)
the notation A > B (A < B) means that A−B > 0 (B −A > 0).

If x and y are two vectors in H, we denote by x ⊗ y the rank one operator
defined for all u ∈ H by (x ⊗ y)(u) = 〈x, u〉y. If X, Y are zero mean random
elements in H with E ||X||2 < ∞,E ||Y ||2 < ∞ then the covariance operator is
cov(X,Y ) := EX ⊗ Y ∈ L1(H) (we refer to Vakhania, Tarieladze, Chobanyan [26]
for probability distributions on Banach spaces).
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Now we are prepared to define the operator fractional Brownian motion which
is considered in this paper.

Definition 2.1. Let Q ∈ L1(H), Q ≥ 0 and H ∈ L(H),H ≥ 0. A H-valued Gaus-
sian process (BH,Q(t), t ≥ 0) on probability space (Ω,F , P ) is called an operator
fractional Q-Brownian motion with Hurst parameter H (shortly ofBm with param-
eters (H,Q)), if this process satisfies

(i) EBH,Q(t) = 0 for all t ≥ 0;
(ii) RH,Q(s, t) := cov

(
BH,Q(s), BH,Q(t)

)
= 2−1(t2H + s2H − |t− s|2H)Q, for all

s, t ≥ 0.

In the rest of the paper we shall frequently use the notation

rA(s, t) :=
1
2

(
t2A + s2A − |t− s|2A

)
for an operator A as well as for a real number A. The meaning of A in rA(s, t)
should be everytime clear from the context.

The important question now is the existence of ofBm with parameters (H,Q).
A partial answer is given in the following proposition.

Proposition 2.1. Let the operator H ∈ L(H), be self-adjoint and satisfy 1
2I < H <

I (equivalently 1/2 < mH ,MH < 1). Let Q ∈ L1(H) be a non-negative operator
commuting with H. Then there exists a fractional Q-Brownian motion with Hurst
parameter H.

Proof. For any s, t ≥ 0, RH,Q(s, t) is a linear bounded operator. Since H

and Q commute, it is a nonnegative operator. Indeed, consider the spec-
tral measure EH

λ , λ ∈ R. As H =
∫∞
−∞ λ dEH

λ we have 〈rH(s, t)Qx, x〉 =∫∞
−∞ rλ(s, t) d〈EH

λ Q
1/2x,Q1/2x〉 ≥ 0 for each x ∈ H, since rλ(s, t) > [min{s, t}]2λ ≥

0 for all s, t ∈ [0, 1] and λ ∈ R. Moreover the operator RH(s, t) is nuclear as the
product of the bounded operator rH(s, t) by the nuclear operator Q. Hence, for any
s, t ≥ 0, RH,Q(s, t) is the covariance operator of some mean zero H valued random
element. As any non-negative definite function (s, t) 7→ T (s, t), with values in the
set of self-adjoint nuclear operators on H defines uniquely the distribution of a zero
mean Gaussian process, we have now to check that (s, t) 7→ RH,Q(s, t) is positive
definite, that is

n∑
i=1

n∑
j=1

〈RQ,H(ti, tj)xi, xj〉 ≥ 0, (2.1)

for any t1, . . . , tn ≥ 0, x1, . . . , xn ∈ H, n ∈ N. Since rH(s, t) =
∫∞
−∞ rλ(s, t) dEH

λ , we
have

rH(s, t) = lim
N→∞

N∑
k=1

rλk
(s, t)(EH

λk
− EH

λk−1
)
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for any partition (λk) of the interval [mH − ε,MH ] with diameter tending to zero.
Then (2.1) follows from

n∑
i=1

n∑
j=1

rλk
(ti, tj)〈(EH

λk
− EH

λk−1
)Qxi, xj〉 ≥ 0, (2.2)

for any t1, . . . , tn ≥ 0, x1, . . . , xn ∈ H, n ∈ N. Since the operator EH
λk
−EH

λk−1
: H →

H is a projector and commutes with Q, the left-hand side of (2.2) is equal to
n∑

i=1

n∑
j=1

rλk
(ti, tj)〈Qyk,i, yk,j〉,

where yk,j = (EH
λk
− EH

λk−1
)xj . From the existence of the fractional Q-Brownian

motion with values in Hilbert space and Hurst index λk ∈ (1/2, 1) as proved in [9],
Prop. 2.1, it follows that

n∑
i=1

n∑
j=1

rλk
(ti, tj)〈Qzi, zj〉 ≥ 0, (2.3)

for any t1, . . . , tn ≥ 0, z1, . . . , zn ∈ H, n ∈ N. Hence, (2.1) is proved.

Throughout we consider only operator fractional Brownian motions BH,Q with
commuting operators H and Q and we shall assume that 1

2I < H < I.
As mentioned in the introduction, self-similarity of processes introduced by Lam-

perti [16] is one of the sources of long memory. Operator self-similar processes
appeared later in the paper by Laha and Rohatgi [15] and were investigated by
Matache and Matache [20]. Let us recall that a stochastic process {X(t), t > 0}
with values in a Banach space E is operator self-similar if there exists a family of
linear bounded operators {A(a), a > 0} on E such that for each a > 0,

{X(at), t > 0} D= {A(a)X(t), a > 0},

where D= means equality in distribution. The family {A(a), a > 0} is refered to as
the scaling family of operators.

Proposition 2.2. The ofBm with parameters (H,Q) is operator self-similar with
the scaling family {aH , a > 0}.

Proof. Since {aH , a > 0} is a multiplicative group of operators and Q commutes
with H we have

cov(BH,Q(as), BH,Q(at)) = 2−1((at)2H + (as)2H − |at− as|2H)Q

= a2H2−1((t)2H + (s)2H − |t− s|2H)Q

= cov(aHBH,Q, a
HBH,Q).

This yields self-similarity of the Gaussian process (BH,Q(t), t ≥ 0).
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To investigate the smoothness of the paths of the Gaussian process (BH,Q(t))t≥0,
we use the following estimate of its increments where the parameter mH plays the
main role.

Proposition 2.3. For any s, t > 0 such that |t− s| ≤ 1 it holds

E ||BH,Q(t)−BH,Q(s)||2 ≤ |t− s|2mH tr(Q). (2.4)

Proof. For any x ∈ H we have

E 〈BH,Q(t)−BH,Q(s), x〉2 = 〈RH,Q(t, t)x, x〉 − 2〈RH,Q(t, s)x, x〉+ 〈RH,Q(s, s)x, x〉
= 〈|t− s|2HQx, x〉 (2.5)

=
∫
|t− s|2λ d〈EH

λ Qx, x〉. (2.6)

As |t− s|2HQ is a nuclear operator, choosing any orthonormal basis (xj)j≥1 in H,
we deduce from (2.5) that

E ||BH,Q(t)−BH,Q(s)||2 =
∞∑

j=1

〈|t− s|2HQxj , xj〉 = tr(|t− s|2HQ).

Now recalling that |t − s| ≤ 1 and that EH
λ = 0 for λ < mH we deduce from (2.6)

that

tr(|t− s|2HQ) =
∞∑

j=1

∫
|t− s|2λ d〈EH

λ Qxj , xj〉 ≤ |t− s|2mH

∞∑
j=1

∫
d〈EH

λ Qxj , xj〉

= |t− s|2mH tr(Q),

so (2.4) is established.

The estimate (2.4) enables us to obtain the following.

Theorem 2.1. The space fractional Q-Brownian motion with Hurst index H has
a continuous version which satisfies on every bounded interval [a, b] ⊂ [0,∞)

sup
a≤s<t≤b

||BH,Q(t)−BH,Q(s)||
(t− s)mH | ln(t− s)|1/2

<∞, a.s. (2.7)

Proof. As BH,Q is a Gaussian process with values in the Banach space H and
satisfying by (2.4) an estimate of the form E ‖BH,Q(t+h)−BH,Q(t)‖2 ≤ σ(h)2, we
have for some version of BH,Q :

sup
0<h≤b−a

a≤t≤b

‖BH,Q(t+ h)−BH,Q(t)‖
ρ(h)

<∞, a.s.,

for any ρ(h) = hα`(h) (with 0 < α < 1 and ` slowly varying) such that
lim infh→0 ρ(h)(| lnh|1/2σ(h))−1 > 0, see e.g. Corollary 4 (i) in [24]. Then (2.7)
follows from the choice ρ(h) = σ(h)| lnh|1/2 with σ(h) given by (2.4).
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3. Long memory linear processes

Consider a H-valued linear process (Xk) defined by

Xk =
∞∑

j=0

ujεk−j , (3.1)

where u0 = I is the identity map, (uj , j ≥ 1) ⊂ L(H) is a given sequence of operators
such that

∑
j ||uj ||2 < ∞ and (εj , j ∈ Z) is a sequence of independent identically

distributed (i.i.d.) random elements in H with mean zero and finite second moment
σ2

0 = E ||ε0||2. For simplicity we assume σ2
0 = 1. Let Q denotes the covariance

operator of ε0. From the theoretical point of view, one of the most interesting
features of difference between short and long memory of the linear process (Xk) is
in the limit behavior of the corresponding partial sums process. In this section we
shall consider a polygonal line process. Set S0 = 0 and

Sn =
n∑

k=1

Xk, n ≥ 1. (3.2)

The polygonal line process based on partial sums Sk, k ≥ 1, is defined by

ζn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1].

We consider this process in the space C([0, 1]; H), the Banach space of continuous
functions x : [0, 1] → H endowed with the norm ||x|| = sup0≤t≤1 ||x(t)||.

The following result is proved in [5], see also [23] for a more general approach.

Proposition 3.1. Assume that the filter (uk) is summable, that is
∑

k ||uk|| <∞.
Let A =

∑∞
k=1 uk. Then

n−1/2ζn
D−−−−→

n→∞
WAQA∗ in C([0, 1]; H),

where WAQA∗ = B1/2,AQA∗ is a H valued Brownian motion.

Autocovariance operator of lag k of time series (Xj) is

Qk = EX0 ⊗Xk =
∞∑

j=0

u∗jQuj+k.

Since ||Qk|| ≤ ||Q||
∑∞

j=0 ||uj || · ||uj+k|| absolute summability of the linear filter
(uk) generates short memory of the process (Xk) in a sense that the sequence of
autocovariance operators (Qk) is absolutely summable,

∑∞
k=1 ||Qk|| < ∞. Even

more, it is summable in the nuclear norm. Indeed, since ν1(uTv) ≤ ||u||ν1(T )||v||
for any nuclear operator T and any u, v ∈ L(H), we have∑

k

ν1

( ∞∑
j=0

u∗jQuj+k

)
≤

∑
k

∞∑
j=1

||uj ||ν1(Q)||uj+k||.
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If sumability of autocovariance sequence fails, then the limiting distribution needs
not to be a Wiener process and norming needs not to be a classical

√
n. This phe-

nomenon has been understood long ago. We refer to a survey paper by Samorod-
nitsky [25] for more information on this phenomenon of long memory.

In this section we consider linear process (Xk) for which summability of the filter
fails but operators (uk) are regularly varying. More precisely we restrict ourselves
to the case

uk = k−D, k ≥ 1, (3.3)

where D ∈ L(H) satisfies 1
2I < D < I. Moreover we assume that the operators Q

and D commute. Then the condition
∑

k ||uk||2 < ∞ is satisfied but the absolute
summability of autocoavariances operators (Qk, k ≥ 0) fails since for an eigenvector
x0 corresponding to the eigenvalue MD we have

N∑
k=1

||Qk|| =
N∑

k=1

∥∥∥ ∞∑
j=1

j−DQ(j + k)−D
∥∥∥ ≥ N∑

k=1

∞∑
j=1

j−MD (j + k)−MD 〈Qx0, x0〉 → ∞

as N → ∞ since MD < 1. Moreover, since Q and D commute, one can show that
Qk ∼ k−2D+IQ that is k2D−IQk tends to cQ when k tends to infinity.

The main result of this paper is the following theorem.

Theorem 3.1. Assume that the linear filter (uk) satisfies (3.3) and covariance
operator Q commutes with D. Set H = 3

2I −D. Then

c(D)n−Hζn
D−−−−→

n→∞
BH,Q in C([0, 1]; H), (3.4)

where BH,Q is an operator fractional Q-Brownian motion with operator Hurst index
H and the operator c(D) ∈ L(H) is defined by

c2(D) =
∫ ∞

−∞

(3− 2λ)(1− λ)
β((2λ− 1)(1− λ))

dED
λ .

The proof of this result is given in Section 5. It is deduced from more general
functional central limit theorem stated and proved in the next section.

Remark 3.1. In the scalar case (H = R) where the uk’s are real numbers, more
general results are known. Konstantopoulos and Sakhanenko [14] proved the weak
convergence of a step partial sums process build on the Xk’s to a fractional Brown-
ian motion with Hurst index H ∈ (1/2, 1], assuming that VarSn is regularly varying
with exponent 2H, a condition which is also necessary. Recently, Dedecker, Mer-
levède and Peligrad [6] extended this result to a large class of linear processes with
dependent innovations.
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4. Auxiliary result

Assume that the sequence (Zn)n≥1 of random elements in the space C([0, 1]; H),
has a representation

Zn(t) =
∑
k∈Z

ank(t)εk, t ∈ [0, 1], n ≥ 1, (4.1)

where (εj , j ∈ Z) is a sequence of i.i.d. random elements in H with mean zero, finite
second moment σ2

0 = E ||ε0||2 = 1 and covariance operator Q and for each t ∈ [0, 1]
and each n ≥ 1, (ank(t), k ∈ Z) is a sequence in L(H).

Let (ZQ(t), t ∈ [0, 1]) be a C([0, 1]; H)-valued mean zero Gaussian random pro-
cess with covariance kernel KQ(s, t):

EZQ(s)⊗ ZQ(t) = KQ(s, t), s, t ∈ [0, 1].

Set

Kn(s, t) :=
∑
k∈Z

ank(t)Qa∗nk(s), s, t ∈ [0, 1].

We are interested in the convergence in distribution of the sequence (Zn, n ≥ 1) to
the process ZQ.

Theorem 4.1. Assume that the following conditions are satisfied:

(C0) limn→∞ supj∈Z ||anj(t)|| = 0 for each t ∈ [0, 1];
(C1) lim supn→∞

∑
j∈Z ||anj(t)||2 <∞ for each t ∈ [0, 1];

(C2) there are constants β ∈ (1/2, 1] and c > 0 such that

lim sup
n→∞

∑
k∈Z

||ank(t)− ank(s)||2 ≤ c|t− s|2β for all s, t ∈ [0, 1];

(C3) limn→∞ ν1(Kn(s, t)−KQ(s, t)) = 0 for all s, t ∈ [0, 1].

Then

Zn
D−−−−→

n→∞
ZQ in C([0, 1]; H). (4.2)

In the next section we shall apply this theorem with anj satisfying anj(0) = 0,
n ≥ 1, j ∈ Z, in which special case Condition (C1) is an immediate consequence of
(C2).

Classically Zn converges weakly to ZQ in C([0, 1],H) if and only if

a) the “finite dimensional” distributions of Zn converge to those of ZQ;
b) the sequence (Zn)n≥1 is tight in C([0, 1]; H).

It is worth noticing here that the expression “finite dimensional” used to keep the
analogy with the classical setting H = R, may be misleading. The meaning of a) is
that the following convergence holds true for any d ≥ 1 and any choice of d different
real t1, . . . , td ∈ [0, 1]:

(Zn(t1), . . . , Zn(td))
D−−−−→

n→∞
(ZQ(t1), . . . , ZQ(td)) in Hd,
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where Hd is possibly infinite dimensional like H. So to check a), we need a prepara-
tory investigation of some special central limit result in H. Namely, let us consider
an array (bnk, k ∈ Z) ⊂ L(H) and define

Xn =
∑
k∈Z

bnkεk, Yn =
∑
k∈Z

bnkγk,

where (γk) is a sequence of i.i.d. Gaussian random elements in H with mean zero
and covariance operator Q. We shall establish conditions on (bnk) under which the
sequences (Xn) and (Yn) have the same limiting behavior in the sense, that if one
converge in distribution then another does the same and their limits coincide.

To this aim we consider for probability measures µ, ν on Hilbert space H the
distance

ζ3(µ, ν) = sup
f∈F3

∣∣∣ ∫
fdµ−

∫
fdν

∣∣∣,
where F3 is the set of three times Frechet differentiable functions f : H → R such
that

sup
x∈H

|f (j)(x)| ≤ 1, for j = 0, . . . , 3.

For H-valued random elements X,Y we write ζ3(X,Y ) for ζ3(PX , PY ), where PX

is the distribution of X.

Proposition 4.1. If the following two conditions

lim
n→∞

dn := lim
n→∞

sup
j∈Z

∥∥bnj

∥∥ = 0 (4.3)

and

b := lim sup
n→∞

∑
j∈Z

∥∥bnj

∥∥2
<∞ (4.4)

are satisfied, then

lim
n→∞

ζ3(Xn, Yn) = 0. (4.5)

Proof. Since the class F3 is invariant with respect to translations and due to
independence of εi’s and γi’s, we have

ζ3(Xn, Yn) ≤
∑
k∈Z

ζ3(bnkεk, bnkγk).

Here we need the following lemma.

Lemma 4.1. Let X,Y be H-valued random elements. If EX = EY = 0, and
cov(X) = cov(Y ) then for each a > 0

ζ3(X,Y ) ≤
(

1 +
1
a

+
2
a2

) (
E ||X||21{||X||>a} + E ||Y ||21{||Y ||>a}

)
+ a

(
E ||X||2 + E ||Y ||2

)
. (4.6)



March 15, 2010 10:46 WSPC/INSTRUCTION FILE OfBm-sd-rev

11

Proof of Lemma 4.1. Let f be an arbitrary element of F3. Putting X ′ =
X1{||X||≤a}, we note that f(X) − f(X ′) = (f(X)− f(0))1{||X||>a}, whence re-
calling the uniform boundedness of the class F3, we obtain

E |f(X)− f(X ′)| ≤ 2
a2

E ||X||21{||X||>a}.

Now applying Taylor’s expansion to f(X ′) gives

E f(X ′) = E f(0) + E f (1)(0)X ′ +
1
2
E f (2)(0)(X ′, X ′) +

1
6
E f (3)(θX ′)(X ′, X ′, X ′),

where θ is a random variable uniformly distributed on [0, 1] independent of X ′. As
the same holds for E f(Y ), with another θ say θ̃, we have

|E f(X)−E f(Y )| ≤ I1 + I2 +
1
2
I3 +

1
6
I4,

where

I1 =
2
a2

(
E ||X||21{||X||>a} + E ||Y ||21{||Y ||>a}

)
,

I2 =
∣∣∣E f (1)(0)X ′ −E f (1)(0)Y ′

∣∣∣ ,
I3 =

∣∣∣E f (2)(0)(X ′, X ′)−E f (2)(0)(Y ′, Y ′)
∣∣∣ ,

I4 =
∣∣∣E f (3)(θX ′)(X ′, X ′, X ′)−E f (3)(θ̃Y ′)(Y ′, Y ′, Y ′)

∣∣∣ .
Since EX = EY we have with X ′′ := X −X ′,

I2 =
∣∣∣E f (1)(0)X ′′ −E f(0)Y ′′

∣∣∣ ≤ E ||X ′′||+ E ||Y ′′|| ≤ 1
a

(
E ||X ′′||2 + E ||Y ′′||2

)
.

Using bilinearity of f (2)(0) and the definition of X ′, X ′′, it is easily seen that
f (2)(0)(X ′, X ′) = f (2)(0)(X,X) − f (2)(0)(X ′′, X ′′) and the same holds true for Y .
Moreover from EX = EY and cov(X) = cov(Y ), it follows that E f (2)(0)(X,X) =
E f (2)(0)(Y, Y ). All this leads to

I3 =
∣∣∣E f (2)(0)(X ′′, X ′′)−E f (2)(0)(Y ′′, Y ′′)

∣∣∣ ≤ E ||X ′′||2 + E ||Y ′′||2.

Finally

I4 ≤ E ||X ′||3 + E ||Y ′||3 ≤ a[E ||X||2 + E ||Y ||2].

Collecting the estimates for I1, . . . , I4, we obtain the result.
Now Lemma 4.1 yields for any a > 0,

ζ3(bnkεk, bnkγk) ≤ (1 + a−1 + 2a−2)||bnk||2νn + 2a||bnk||2

where

νn = E ||ε1||21{||ε1||>a/dn} + E ||γ1||21{||γ1||>a/dn}.

Summing these estimates we get

lim sup
n→∞

ζ3(Xn, Yn) ≤ lim sup
n→∞

[(1 + a−1 + a−2)bνn + 2ab] = 2ab.
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Since a > 0 is arbitrary the limit of ζ3(Xn, Yn) exists and is indeed zero.

Now we are ready to prove the “finite dimensional” convergence in Theorem 4.1.
Let t1, . . . , td ∈ [0, 1]. In order to prove that

(Zn(t1), . . . , Zn(td))
D−−−−→

n→∞
(ZQ(t1), . . . , ZQ(td)), in Hd, (4.7)

we claim that it is enough to check that

Vn :=
d∑

k=1

ckZn(tk) D−−−−→
n→∞

V :=
d∑

k=1

ckZQ(tk), in H, (4.8)

for any collection of operators c1, . . . , cd ∈ L(H). Indeed the choice of all cj null
in (4.8) except for one equal to the identity gives the weak-convergence in H of
each Zn(tk) to the corresponding ZQ(tk), which in turn, implies the tightness of
(Zn(t1), . . . , Zn(td)) in Hd. Next choosing all ck’s with the same one dimensional
range leads easily to the convergence

d∑
k=1

〈hk, Zn(tk)〉 D−−−−→
n→∞

d∑
k=1

〈hk, ZQ(tk)〉, in R, (h1, . . . , hd) ∈ Hd.

Since the left hand side is the image of ((Zn(t1), . . . , Zn(td)) by a general continuous
linear functional on Hd, (4.7) follows.

As
d∑

k=1

ckZn(tk) =
∑

i

( d∑
k=1

ckani(tk)
)
εi =

∑
i

bniεi,

denoting

bni =
d∑

k=1

ckani(tk)

we are in a position to apply Proposition 4.1. As the conditions (4.3) and (4.4) easily
follows from (C0) and (C1), ζ3

( ∑
i bniεi,

∑
i bniγi

)
→ 0 as n→∞. It is proved by

Giné and León [11], that the distance ζ3 induces the weak topology on the set of
probability measures in any separable Hilbert space. Hence

∑
i bniεi has the same

limit in distribution as
∑

i bniγi whenever this later converges. Since
∑

i bniγi is a
sequence of Gaussian random elements, it is well known that this sequence converge
to a Gaussian random element V if and only if

lim
n→∞

ν1

(
cov

( ∑
i

bniγi

)
− cov(V )

)
= 0. (4.9)

Hence, we have to identify the covariance operator V . Since

cov
( ∑

i

bniγi

)
=

∑
i

bniQb
∗
ni =

∑
i

d∑
k,j=1

ckani(tk)Qani(tj)c∗j =
d∑

j,k=1

ckKn(tj , tk)c∗j
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and

ν1
(
ckKn(tj , tk)c∗j − ckKQ(tj , tk)c∗j

)
≤ ‖ck‖ν1

(
Kn(tj , tk)−KQ(tj , tk)

)
‖c∗j‖

we have (4.9) with cov(V ) =
∑d

j,k=1 ckKQ(tj , tk)c∗j .
Next we investigate tightness. General conditions implying the tightness of a

sequence of random elements in C[0, 1] = C([0, 1]; R) may be found in Billingsley [3].
As Arzela-Ascoli theorem is known to hold in C([0, 1],H) the following tightness
criterion in C([0, 1],H) is a simple adaptation of Th. 12.3 in [3].

Proposition 4.2. The tightness of (Zn)n≥1 in C([0, 1],H) takes place provided that

i) for every t ∈ [0, 1], (Zn(t))n≥1 is tight on H;
ii) there exist γ ≥ 0, a > 1 and a continuous increasing function F : [0, 1] → R

such that

P (‖Zn(s)− Zn(t)‖ > λ) ≤ λ−γ |F (s)− F (t)|a.

We have by condition (C2)

E ‖Zn(t)− Zn(s)‖2 ≤ c2E ||ε0||2
( ∑

j

‖anj(t)− anj(s)‖2
)
≤ c2E ||ε0||2|t− s|2β .

so ii) is satisfied with F (t) = t, since 1/2 < β. The proof is completed.

5. Proof of Theorem 3.1

Denote bn = c(D)n−H . Setting uj = 0 for j < 0 we have

ζn(t) =
∑
j∈Z

anj(t)εj ,

with

anj(t) = bn

 [nt]∑
k=1

uk−j + {nt}u[nt]+1−j

 , t ∈ [0, 1], j ∈ Z,

where for any non negative real number x, [x] denotes its integer part [x] ≤ x <

[x] + 1, [x] ∈ N and {x} = x− [x] its fractional part.
Hence, for each j ∈ Z, anj is a L(H)-valued determistic polygonal line function.

We shall check the assumptions (C0)–(C3) of Theorem 4.1 in order to establish the
claimed convergence of bnζn.

First we note that

n‖bn‖2 = o(1). (5.1)

Indeed we recall that 1
2I < H < I, whence ‖n−H‖ ≤ n−mH with mH > 1

2 .
Now it is easy to see that ‖anj(t)‖2 = O(n‖bn‖2) uniformly in j ∈ Z, since

‖anj(t)‖2 ≤ ‖bn‖2

 [nt]∑
k=1

‖uk−j‖

2

≤ ‖bn‖2n

n∑
k=1

‖uk−j‖2 ≤ n‖bn‖2
∑
i∈Z

‖ui‖2.
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Hence (C0) is satisfied.
Noting that anj(0) = 0, it is enough to check (C2) to have (C1).
To check (C2), we use the simple fact that the norm of any increment of the

operator valued polygonal line anj is dominated by the corresponding increment of
the real valued polygonal line obtained by replacing each ui by its operator norm in
the definition of anj . This way we obtain an increasing polygonal line with maximal
slope ‖bn‖max1≤k≤n ‖uk−j‖ and accounting (5.1), this gives the estimate

‖anj(t)− anj(s)‖2 ≤ c

n
max

1≤k≤n
‖uk−j‖2|t− s|2,

with some positive constant c depending only on B. Summing over j, we obtain∑
j∈Z

‖anj(t)− anj(s)‖2 ≤ c|t− s|2
∑
j∈Z

1
n

max
1≤k≤n

‖uk−j‖2

≤ c|t− s|2
∑
j∈Z

1
n

∑
1≤k≤n

‖uk−j‖2

= c|t− s|2 1
n

∑
1≤k≤n

∑
j∈Z

‖uk−j‖2

= c|t− s|2
∑
i∈Z

‖ui‖2,

so (C2) is fulfilled with β = 1.
To check (C3), we first note that (recalling that D commutes with Q and is

self-adjoint):

Kn(s, t) =
∑
i∈Z

ani(t)Qani(s)∗

=
∑
i∈Z

bn

 [nt]∑
k=1

uk−i + {nt}u[nt]−i+1

Q

[ns]∑
l=1

u∗l−i + {ns}u∗[ns]−i+1

 b∗n

=

bnb∗n [nt]∑
k=1

[ns]∑
l=1

∑
i∈Z

uk−iu
∗
l−i

Q+Rn

= An(s, t)Q+Rn.

Let us check that Rn goes to zero in nuclear norm. From the explicit expression

Rn = b2n
∑
i∈Z

{nt} [ns]∑
l=1

u[nt]−i+1u
∗
l−i + {ns}

[nt]∑
k=1

uk−iu
∗
[ns]−i+1

+ {nt}{ns}u[nt]−i+1u
∗
[ns]−i+1

Q,
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it is easy to deduce the estimate

ν1(Rn) ≤ 3n‖bn‖2
∑
i∈Z

‖ui‖2ν1(Q) = o(1),

according to (5.1). Now as

ν1
(
An(s, t)Q− rH(s, t)Q

)
≤ ‖An(s, t)− rH(s, t)‖ν1(Q),

the problem is reduced to the convergence of An(s, t) to rH(s, t) in operator norm.
The following Laplace transform formula is convenient to compute explicitly the

sum indexed by Z in the expression of An(s, t):

a−D = Γ−1(D)
∫ ∞

0

e−axxD−I dx, a > 0, (5.2)

Concerning the definition of f(D) for various functions f , we refer to section VII.3
in Dunford and Schwartz [10]. As uk = k−D for k ≥ 1, u(0) = I and uk = 0 for
k < 0, this formula enables us to write for k 6= l:∑

j∈Z
uk−ju

∗
l−j =

∑
j<min(k,l)

(k − j)−D(l − j)−D + |k − l|−D

=Γ−2(D)
∫ ∞

0

∫ ∞

0

Fk,l(x, y)xD−IyD−I dxdy

+ Γ−1(D)
∫ ∞

0

e−|k−l|xxD−I dx, (5.3)

where

Fk,l(x, y) =
∑

j<min(k,l)

e−kx−ly+j(x+y) =
exp(−kx− ly + min(k, l)(x+ y))

exp(x+ y)− 1
.

In the following computation of An(s, t), we can forget the special case k = l since
the corresponding contribution satisfies∥∥∥∥bnb∗n min([ns],[nt])∑

k=1

∑
j∈Z

uk−ju
∗
k−j

∥∥∥∥ ≤ ‖bn‖2n
∑
i∈Z

‖ui‖2,

which tends to zero when n goes to infinity due to (5.1) and the square summability
of (ui)i∈Z.

Now we have to sum over k and l inside the integrals of (5.3). We shall explicit
the computation assuming that s ≤ t. It is convenient to introduce the sets

∆1 := {(k, l) ∈ N2; 1 ≤ l ≤ [ns], 1 ≤ k − l ≤ [nt]− [ns]};
∆2 := {(k, l) ∈ N2; 1 ≤ l ≤ [ns], k ≤ [nt], [nt]− [ns] < k − l};
∆3 := {(k, l) ∈ N2; k ≥ 1, l ≤ [ns], l − k ≥ 1};
∆ := ∆1 ∪∆2 ∪∆3 = {(k, l) ∈ N2; 1 ≤ k ≤ [nt], 1 ≤ l ≤ [ns], k 6= l}.
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To simplify the writing of forthcoming computations it is worth to have at hand
the following elementary formula where a, b, c denote integers.

b∑
j=a

(c− j)e−jx =

(c− a)e(−a+2)x − (c− b− 1)e(−b+1)x − (c− a+ 1)e(−a+1)x + (c− b)e−bx

(ex − 1)2
. (5.4)

Now noting that on ∆1 ∪∆2,

Fk,l(x, y) =
exp

(
− (k − l)x

)
exp(x+ y)− 1

,

we obtain∑
(k,l)∈∆1

Fk,l(x, y) =
[nt]−[ns]∑

j=1

[ns]
e−jx

ex+y − 1
=

[ns]
(
1− e−([nt]−[ns])x

)
(ex − 1)(ex+y − 1)

(5.5)

and using (5.4),

∑
(k,l)∈∆2

Fk,l(x, y) =
[nt]−1∑

j=[nt]−[ns]+1

([nt]− j)
e−jx

ex+y − 1

=
([ns]− 1)e−([nt]−[ns]−1)x − [ns]e−([nt]−[ns])x + e−([nt]−1)x

(ex − 1)2(ex+y − 1)
.

(5.6)

Gathering (5.5) and (5.6) gives∑
(k,l)∈∆1∪∆2

Fk,l(x, y) =
[ns](ex − 1)− e−([nt]−[ns]−1)x + e−([nt]−1)x

(ex − 1)2(ex+y − 1)
=: fn(x, y).

(5.7)
As on ∆3,

Fk,l(x, y) =
exp

(
− (l − k)y

)
exp(x+ y)− 1

,

it is clear that the sum over ∆3 is obtained by exchanging x and y and puting t = s

in (5.6), that is∑
(k,l)∈∆3

Fk,l(x, y) =
([ns]− 1)ey − [ns] + e−([ns]−1)y

(ey − 1)2(ex+y − 1)
=: gn(x, y). (5.8)

Finally, noting that on ∆1 ∪∆2 ∪∆3, exp(−|k − l|x) = (exp(2x)− 1)Fk,l(x, x)
we can exploit the above results to obtain:∑
(k,l)∈∆

e−|k−l|x =
2[ns]ex − 2[ns]− ex − e−([nt]−[ns]−1)x + e−([ns]−1)x + e−([nt]−1)x

(ex − 1)2

=: hn(x). (5.9)
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Going back to (5.3) and recalling that bnb∗n = c2(D)n−3I+2D, we have now the
integral representation

b2n
∑

(k,l)∈∆

∑
j∈Z

uk−ju
∗
l−j =c2(D)Γ−2(D)

∫ ∞

0

∫ ∞

0

1
n
fn(x, y)(nx)D−I(ny)D−I dxdy

+ c2(D)Γ−2(D)
∫ ∞

0

∫ ∞

0

1
n
gn(x, y)(nx)D−I(ny)D−I dxdy

+ c2(D)Γ−2(D)
∫ ∞

0

n−2I+Dhn(x)(nx)D−I dx.

Let us denote the three above integrals by I1(n), I2(n), I3(n). The change of variable
(u, v) = (nx, ny) in I1(n) gives

I1(n) =
∫ ∞

0

∫ ∞

0

[ns](e
u
n − 1)− e−

[nt]−[ns]−1
n u + e−

[nt]−1
n u

n3(e
u
n − 1)2(e

u+v
n − 1)

uD−IvD−I dudv

Postponing the justification of interversion between integral and limit we obtain
then:

lim
n→∞

I1(n) =
∫ ∞

0

∫ ∞

0

su− e−(t−s)u + e−tu

u2(u+ v)
uD−IvD−I du dv =: I1,

where the limit is in the operator norm. The change of variables (u, v) → (u,w)
where w = u+ v gives

I1 =
∫ ∞

0

su− e−(t−s)u + e−tu

u2
uD−I

{∫ ∞

u

(w − u)D−Iw−I dw
}

du

and putting w = u
x , 0 < x ≤ 1 in the inside integral leads to

I1 =
∫ ∞

0

(su− e−(t−s)u + e−tu)u2D−4I

{∫ 1

0

(1− x)D−Ix−D dx
}

du

= β(D, I −D)
∫ ∞

0

(su− e−(t−s)u + e−tu)u2D−4I du =: β(D, I −D)I ′1.

The integral I ′1 can be computed integrating twice by parts, noting that su −
e−(t−s)u + e−tu = O(u2) when u goes to zero. This leads to

I ′1 =
∫ ∞

0

(−(t− s)2e−(t−s)u + t2e−tu)u2D−2I(2D − 3I)−1(2D − 2I)−1 du.

Now it is easy to check that for every positive number a,∫ ∞

0

a2e−axx2D−2I dx = Γ(2D − I)a2H ,

which enables us to see that

I1 = β(D, I −D)Γ(2D − I)(2D − 3I)−1(2D − 2I)−1(t2H − (t− s)2H),

which can be recast (using the relation between β and Γ functions) as

I1 = 2−1Γ(
3
2
I −H)Γ(2I − 2H)Γ(H − 1

2
I)H−1(2H − I)−1(t2H − (t− s)2H).
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As already observed for the sumation over ∆3, we have a similar result for the
limit of I2(n), just by putting t = s and exchanging the roles of x and y. Then clearly
I2 = s2H up to the same operator constant as I1. Postponing the verification of the
convergence to zero of I3(n), we finally arrive at:

lim
n→∞

An(s, t) = c2(D)Γ−2(D)Γ(
3
2
I−H)Γ(2I−2H)Γ(H−1

2
I)H−1(2H−I)−1rH(t, s).

As D = 3
2I −H, the above operator constant may be rewritten as

2−1c2(D)Γ(2I − 2H)Γ(H − 1
2
I)H−1(2H − I)−1Γ−1(

3
2
I −H) =

2−1c2(D)β(2I − 2H,H − 1
2
I)H−1(2H − I)−1 = 2−1I

by the definition of the operator c(D). Hence we obtain the desired limit, that is

lim
n→∞

An(s, t) = rH(t, s).

To complete the proof, it remains to justify the convergences in operator norm
of I1(n), I2(n), I3(n) respectively to I1, I2 and 0. In fact the problem is reduced
to a problem of convergence of integrals of real valued functions, since the three
integrals can be viewed as Bochner integrals of L(H) valued functions of the form∫
ψn(z)T (z) dz where the function ψn(z) is real valued and the function T (z) is

operator valued. Then to prove the convergence
∫
ψnT to

∫
ψT in operator norm,

we can just write∥∥∥∥∫
ψn(z)T (z) dz −

∫
ψ(z)T (z) dz

∥∥∥∥ ≤ ∫
|ψn(z)− ψ(z)|‖T (z)‖dz

and then prove the convergence to zero of the right hand side.
Let us start with I1(n) which can be recast for convenience as:

I1(n) =
∫

R2
+

[ns](1− e−
u
n )− e−

[nt]−[ns]
n u + e−

[nt]
n u

4n3 sinh2( u
2n )(e

u+v
n − 1)

uD−IvD−I du dv.

Denoting by ψn(u, v) the fraction inside this integral, the problem is clearly reduced
via Lebesgue bounded convergence theorem to finding a function φ(u, v) such that
ψn(u, v) ≤ φ(u, v) (note that ψn is non negative) and∫

R2
+

φ(u, v)um(u)−1vm(v)−1 du dv <∞, (5.10)

where m(u) = mD for 0 < u < 1 and m(u) = MD for u ≥ 1. Looking at their power
series expansions, it is obvious that the positive functions t 7→ t(exp(c/t) − 1) and
t 7→ t sinh(c/t) are decreasing (c being any positive constant), from which we see
that the denominator in ψn is decreasing in n and hence we can replace it by its
limit to obtain an upper bound for ψn(u, v):

ψn(u, v) ≤ [ns](1− e−
u
n )− e−

[nt]−[ns]
n u + e−

[nt]
n u

u2(u+ v)
.
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Now, using the bound 1−e−x ≤ x for x ≥ 0, writing [ns] = s−{ns} and introducing
the function

r(s, t, u) := su− e−(t−s)u + e−tu,

we obtain

ψn(u, v) ≤
r(s− {ns}

n , t− {nt}
n , u)

u2(u+ v)
.

Then it is elementary to check that r is non decreasing in each variable s and t

(when the two others are fixed), which leads finally to

ψn(u, v) ≤ r(s, t, u)
u2(u+ v)

=
su− e−(t−s)u + e−tu

u2(u+ v)
=: φ(u, v)

and with this choice of φ it is easy to see that (5.10) is satisfied. Hence the con-
vergence in operator norm of I1(n) to I1 is established. Clearly the corresponding
result for I2 holds by choosing t = s and exchanging the roles of u and v.

Concerning I3(n), we have

I3(n) = nD−I

∫ ∞

0

2[ns](1− e−
u
n )− 1− e−

[nt]−[ns]
n u + e−

[nt]
n u + e−

[ns]
n u

4n2 sinh2( u
2n )

uD−I du

(5.11)
and as ‖nD−I‖ ≤ nMD−1 and MD < 1, we just have to show the convergence

nI−DI3(n) −−−−→
n→∞

∫ ∞

0

2su− 1− e−(t−s)u + e−tu + e−su

u2
uD−I du.

Using the same method as above, this reduce to finding an upper bound Ψ(u) for
the fraction in (5.11) such that∫ ∞

0

Ψ(u)um(u)−1 du <∞. (5.12)

Exploiting the work already done with I1(n), it is immediate to see that

Ψ(u) =
r(s, t, u) + r(s, s, u)

u2

is a suitable choice. The proof is complete.
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