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Abstract

We prove that a necessary and sufficient condition for the weak L2[0, 1] con-

vergence of the empirical process of a stationary associated sequence (Xk) of

uniform random variables is simply
∑

(2/3 − IE max(X0, Xk)) < ∞. This con-

dition is more natural in this setting than the classical covariance summability

conditions. In the same spirit, we discuss the weak convergence in the Besov

spaces Bs,2
2 (s < 1/2).
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1 Introduction

Let (Xn, n ∈ Z) be a stationary sequence of uniform random variables on [0, 1]. We

denote by ξn the corresponding uniform empirical process:

ξn(t) = n−1/2
n∑

i=1

(
1(Xi ≤ t)− t

)
, t ∈ [0, 1], (1)

where 1(A) is the indicator function of the event A. When the Xi are independent,

(ξn, n ≥ 1) is well known to converge weakly in the Skorohod space D(0, 1) to the

Brownian bridge. The theoretical importance of this result has motivated many

investigations to extend it to the case of non independent observations Xi. Roughly

speaking, the extensions have the following form. If the dependence structure of the

sequence (Xn, n ∈ Z) is close enough to independence, then ξn converges weakly in

D(0, 1) to a centered Gaussian process ξ with covariance:

Γ(s, t) =
∑
k∈Z

(
P (X0 ≤ s,Xk ≤ t)− st

)
, 0 ≤ s, t ≤ 1. (2)

Observe that the term indexed by k = 0 in the above series is equal to s ∧ t − st,

which is the covariance of the classical Brownian bridge. The sum of the other

terms represents the perturbation of the limiting process induced by the lack of

independence. The closeness to independence is expressed by the rate of convergence

to zero of some quantity like the various mixing coefficients (see for instance [17],

[2] and the references therein) or the non negative covariances Cov(X0, Xk) when

(Xn, n ∈ Z) is an associated sequence. In this paper we shall focus on this type

of positive dependence. Recall that the sequence (Xn, n ∈ Z) is said associated if

for each finite choice of indexes i1, . . . , im in Z and for each pair of coordinatewise

nondecreasing functions f, g defined on Rm, we have

Cov
(
f(Xi1 , . . . , Xim), g(Xi1 , . . . , Xim)

)
≥ 0,
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whenever this covariance exists. For the basic properties of association, we re-

fer to Esary, Proschan and Walkup [3]. The first results on asymptotic behav-

ior of empirical distribution function of an associated sequence were obtained by

Yu [22]. He proved the weak D(0, 1) convergence of ξn, assuming the convergence of∑
n≥1 n13/2+ε Cov(X0, Xn). This assumption has been much improved by Shao and

Yu [17] into Cov(X0, Xn) = O(n−a) with a > (3 +
√

33)/2 ' 4.373 and more relaxed

by Louhichi [9] who only requires a > 4. The relative severity of these conditions is

due to the necessity to have an uniform bound of Hi,j(s, t) = Cov
(
1(Xi ≤ s),1(Xj ≤

t)
)

in terms of Cov(Xi, Xj) (the estimate ‖Hi,j‖∞ = O
(
Cov1/3(Xi, Xj)

)
is the best

known up today) and to the use of some generalized Rosenthal inequality of order 4

to control the increments of ξn.

However, the weak convergence of some useful functionals of paths of ξn does

not require the D(0, 1)-continuity of these functionals. An important example is the

case of quadratic statistics like Cramér-von Mises test statistics, Watson statistics,

which only need the L2[0, 1] functional framework (for more examples, see [13] and

the references therein). With this motivation, Oliveira and Suquet [12] obtained the

weak L2[0, 1] convergence of ξn to the Gaussian process ξ under the condition
∞∑

n=1

Cov1/3(X0, Xn) < ∞. (3)

A statistical application of this result was proposed by Suquet and Viano [20] in

a problem of change point detection for the marginal distribution of an associated

sequence.

The present contribution improves on [12] by establishing that a necessary and

sufficient condition for the weak L2[0, 1] convergence of ξn to a Gaussian random

element ξ in L2[0, 1] with covariance kernel given by (2) is
∞∑

n=1

(2
3
− IE max(X0, Xn)

)
< ∞. (4)
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According to Lemma 11 below, equivalent conditions are obtained replacing the

general term of the above series by IE min(X0, Xn) − 1/3 or 1/3 − IE |X0 − Xn|.

Condition (4) is intermediate between the convergences of
∑

n≥1 Cov(X0, Xn) and∑
n≥1 Cov1/2(X0, Xn), see Lemmas 12 and 14. We think that this unusual coeffi-

cient 2/3 − IE max(X0, Xk) is the natural one in the L2[0, 1] framework. Indeed let

us assume, just for heuristic convenience, that Γ is continuous. Then obviously the

finiteness of
∫ 1
0 Γ(t, t) dt =

∫ 1
0 IE ξ(t)2 dt = IE ‖ ξ ‖2

2 is necessary. This leads to (4), via

the following elementary computation where X, Y , denote uniform [0, 1] distributed

random variables:∫ 1

0
Cov

(
1(X ≤ t),1(Y ≤ t)

)
dt =

∫ 1

0

{
P
(
max(X, Y ) ≤ t

)
− t2

}
dt

=
∫ 1

0

{
1− P

(
max(X, Y ) > t

)}
dt− 1

3

=
2
3
− IE max(X, Y ). (5)

The above optimal result in L2[0, 1] rely on variance estimates while in the D[0, 1]

setting, controlling the fourth moments of the ξn’s increments is the main difficulty.

It was then rather natural to investigate some stronger topologies than the L2[0, 1]

one, allowing the use of variance estimate as basic tool to obtain tightness. With

this motivation we consider the scale of Besov spaces Bs,2
2 [0, 1] obtained (roughly

speaking) by controlling the L2[0, 1] modulus of smoothness. For 0 < s < 1/2, the

corresponding Besov space supports steps functions, while for s > 1/2, Bs,2
2 [0, 1] is

continuously embedded in some Hölder space. We prove that when 0 < s < 1/2, a

sufficient condition for the Bs,2
2 [0, 1] weak convergence of ξn is∑
k≥1

Cov1/2−s(X0, Xk) < ∞. (6)

Due to the classical embeddings in the general scale of Besov spaces Bs,q
p [0, 1], this

result allows us to relax the sufficient condition in [13] for Lp[0, 1] weak convergence
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of ξn under association.

Finally we note that in concrete situations, the covariance Γ is often unknown

and has to be estimated. First steps in this direction may be found in [4] and [6].

2 Invariance principle in L2[0, 1]

Let ξ be a square integrable random element in L2[0, 1] (IE ‖ ξ ‖2
2 is finite). With

the usual identification of L2[0, 1] and its dual, the covariance of ξ is the continuous

bilinear form defined by

Cξ(f1, f2) := IE
(
〈f1, ξ〉〈f2, ξ〉

)
, f1, f2 ∈ L2[0, 1].

Clearly Cξ is symmetric and non negative. Since ξ is square integrable, we have∑
i Cξ(ei, ei) < ∞ for any Hilbertian basis (ei, i ∈ N) of L2[0, 1]. Then there is a

unique element K of L2
(
[0, 1]2

)
such that

Cξ(f1, f2) =
∫

[0,1]2
K(s, t)f1(s)f2(t) dsdt, f1, f2 ∈ L2[0, 1].

We call K the covariance integral kernel of ξ.

The Haar basis (en, n ≥ 0) is a very convenient tool to prove the main results

of this section. Let us recall its definition and fix some notations. Put e0 := 1[0,1]

and write each n ≥ 1 under the form n = 2j + k, with 0 ≤ k < 2j , j ≥ 0. Let

Ij,k :=
[
k2−j−1, (k + 1)2−j−1

)
and

en = ej,k := 2j/2(χj,k − χj,k+1),

where χj,k is the indicator function of Ij,k. Denote by Ej the operator of orthogonal

projection onto the subspace spanned by {en, 0 ≤ n < 2j+1}. For f ∈ L2[0, 1], Ejf

is simply the approximation of f by a step function equal to its mean value over each

Ij,k. Let us write Ej(s, t) for the integral kernel of Ej , that is:(
Ejf

)
(s) =

∫ 1

0
Ej(s, t)f(t) dt, s ∈ [0, 1].
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It is easily verified that Ej(s, t) is the uniform probability density on the union

of diagonal squares Cj,k = I2
j,k (0 ≤ k < 2j). It follows that for any function g

continuous on [0, 1]2,

lim
j→∞

∫
[0,1]2

g(s, t)Ej(s, t) dsdt =
∫ 1

0
g(s, s) ds. (7)

Proposition 1. Let (Xk, k ∈ Z) be a stationary and associated sequence of uniform

random variables on [0, 1] and consider the series

Γ(s, t) =
∑
k∈Z

Cov
(
1(X0 ≤ s),1(Xk ≤ t)

)
, 0 ≤ s, t ≤ 1. (8)

a) Assume that ∑
k≥1

(2
3
− IE max(X0, Xk)

)
< ∞. (9)

Then
∫ 1
0 Γ(s, s) ds is finite and the series in (8) converges almost everywhere

on [0, 1]2 and on its diagonal. Moreover the sequence of kernels

Γn(s, t) := IE ξn(s)ξn(t) =
∑
|k|<n

(
1− |k|

n

)
Cov

(
1(X0 ≤ s),1(Xk ≤ t)

)
,

converges in L2([0, 1]2) to Γ.

b) If Γ defined by (8) is the covariance integral kernel of some square integrable

random element in L2[0, 1], then (9) holds.

Proof of a). First observe that, due to the association of (Xk), Γ defined by (8)

is the limit of a non decreasing sequence of continuous functions and hence is a

nonnegative measurable function (with possibly infinite values). The same holds

true for the restriction of Γ to the diagonal of [0, 1]2. Now recalling (5), the finiteness

of
∫ 1
0 Γ(s, s) ds follows clearly from (9) by Beppo Levi theorem. Hence Γ is finite

almost everywhere on the diagonal of [0, 1]2.
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Next, we note that Γn(s, t)2 ≤ Γn(s, s)Γn(t, t) by Cauchy-Schwarz inequality in

L2(Ω), whence∫
[0,1]2

Γn(s, t)2 dsdt ≤
(∫ 1

0
Γn(s, s) ds

)2

≤
(∫ 1

0
Γ(s, s) ds

)2

< ∞.

By Beppo Levi theorem, it follows that∫
[0,1]2

Γ(s, t)2 dsdt ≤
(∫ 1

0
Γ(s, s) ds

)2

< ∞.

Hence Γ belongs to L2([0, 1]2), so Γ(s, t) is finite almost everywhere on [0, 1]2. By

monotonicity of Γn, it follows that Γn(s, t) converges almost everywhere to Γ(s, t) on

[0, 1]2. Since
∫
[0,1]2 |Γ − Γ1|2 dsdt is bounded by 4

(∫ 1
0 Γ(s, s) ds

)2, we can apply the

monotone convergence theorem to obtain the convergence of
∫
[0,1]2 |Γ− Γn|2 dsdt to

zero.

Proof of b). If Γ is the integral covariance kernel of some square integrable random

element ξ in L2[0, 1], then Γ is in L2
(
[0, 1]2

)
and

IE ‖ Ejξ ‖2
2 =

∫
[0,1]2

Γ(s, t)Ej(s, t) dsdt.

This together with the inequalities ‖ ξ ‖2
2 ≥ ‖ Ejξ ‖2

2, Ej(s, t) ≥ 0 and 0 ≤ Γn(s, t) ≤

Γ(s, t) gives for any integers j, n:

∞ > IE ‖ ξ ‖2
2 ≥

∫
[0,1]2

Γn(s, t)Ej(s, t) dsdt.

Fix n and recall that Γn is continuous. Letting j increase to infinity, we have by (7):

IE ‖ ξ ‖2
2 ≥

∫ 1
0 Γn(s, s) ds. When n in turn, goes to infinity, this gives by monotone

convergence ∫ 1

0
Γ(s, s) ds ≤ IE ‖ ξ ‖2

2 < ∞,

from which (9) clearly follows.

7



Theorem 2. Let ξn defined by (1) be the empirical process of a stationary and associ-

ated sequence (Xk, k ∈ Z) of uniform random variables on [0, 1]. Then ξn converges

in distribution in L2[0, 1] to a Gaussian random element ξ with covariance integral

kernel Γ given by (8) if and only if

∑
k≥1

(2
3
− IE max(X0, Xk)

)
< ∞.

Proof. The necessity of Condition (9) is clear from Proposition 1 b). To prove the

convergence in distribution of ξn to ξ in L2[0, 1], we have to check the convergence

in distribution of the random variables
∫ 1
0 f(t)ξn(t) dt to

∫ 1
0 f(t)ξ(t) dt for every f ∈

L2[0, 1] and the tightness of (ξn). For the first point, we write∫ 1

0
f(t)ξn(t) dt =

g(X1) + · · ·+ g(Xn)√
n

,

where g(Xi) =
∫ 1
Xi

f(t) dt − IE
∫ 1
Xi

f(t) dt. Then the requested convergence follows

from Newman’s central limit theorem [10, 11] for absolutely continuous mappings of

associated variables, observing that

IE
(∫ 1

0
f(t)ξn(t) dt

)2

=
∫

[0,1]2
f(s)f(t)Γn(s, t) dsdt

and using the L2
(
[0, 1]2

)
convergence of Γn to Γ.

To establish the tightness of (ξn), we use the following adaptation of Prohorov’s

theorem [15, Th. 1.13]. Consider an orthonormal basis (fi, i ≥ 1) of L2[0, 1] and

define r2
p(f) :=

∑
i>p |〈f, fi〉|2. Then the sequence (ξn) is tight in L2[0, 1] if it satisfies

i) sup
n≥1

IE ‖ξn‖2
2 < ∞;

ii) lim
p→∞

sup
n≥1

IE r2
p(ξn) = 0.

In the original statement [15, Th. 1.13], Condition i) was missing. It is added here

to avoid situations where the projection of (ξn) on the first vectors of the basis is not
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tight, which obviously can not be detected by ii), see also the remark after Theorem

5 in [19]. It is easy to check that in Condition ii), supn≥1 may be replaced by

lim supn→∞ and that it suffices to take the limit in p along some subsequence. So

choosing for orthonormal basis the Haar basis and the subsequence of r2
p indexed by

p = 2j+1 − 1, we have to check i) and

ii’) lim
j→∞

lim sup
n→∞

(
IE ‖ ξn ‖2

2 − IE ‖ Ejξn ‖2
2

)
= 0.

Condition i) is easily satisfied, noting that for every (s, t) ∈ [0, 1]2 we have 0 ≤

Γn(s, t) ≤ Γ(s, t) ≤ ∞, whence

IE ‖ξn‖2
2 =

∫ 1

0
Γn(t, t) dt ≤

∫ 1

0
Γ(t, t) dt.

Recall that by Proposition 1 a), this last integral is finite under (9).

To prove ii’), observe first that

IE ‖ ξn ‖2
2 − IE ‖ Ejξn ‖2

2 =
∫ 1

0
Γn(s, s) ds−

∫
[0,1]2

Γn(s, t)Ej(s, t) dsdt =: An,j .

Let us fix for a moment an integer N . As for any (s, t) ∈ [0, 1]2, the sequence

(Γn(s, t), n ≥ 1) is non decreasing and Ej(s, t) is non negative, we get

lim sup
n→∞

An,j ≤
∫ 1

0
Γ(s, s) ds−

∫
[0,1]2

ΓN (s, t)Ej(s, t) dsdt. (10)

Due to the continuity of ΓN , we have by (7)

lim sup
j→∞

lim sup
n→∞

An,j ≤
∫ 1

0
Γ(s, s) ds−

∫ 1

0
ΓN (s, s) ds. (11)

Finally letting N go to infinity we get by monotone convergence and finiteness of∫ 1
0 Γ(s, s) ds,

lim sup
j→∞

lim sup
n→∞

An,j = 0,

which establishes ii’) and completes the proof.

Remark. It follows from Proposition 1b) and Theorem 2 that Γ is the covariance

integral kernel of a Gaussian random element in L2[0, 1] if and only if (9) holds.
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3 Invariance principle in Bs,2
2 [0, 1]

For a function f : [0, 1] → R, and 0 ≤ h ≤ 1, let

∆hf(t) :=

 f(t + h)− f(t) if 0 ≤ t ≤ 1− h,

0 else.

Definition 3. Let s ∈ (0, 1), p and q ∈ [1,∞). Bs,q
p [0, 1] is the subspace of Lp[0, 1]

induced by the norm:

‖f‖p,s,q := ‖f‖p + ωp,s,q(f, 1),

where ωp,s,q(f, a) is the modulus of smoothness defined by:

ωp,s,q(f, a) :=
(∫ a

0

‖∆hf‖q
p

|h|sq
dh

|h|

)1/q

, 0 < a ≤ 1.

The Besov space Bs,q
p [0, 1] is a separable Banach space (separability holds because

p and q are both finite). Step functions are in (separable) Besov spaces for p, q ∈

[1,∞) and 0 < s < 1/p.

It is not difficult to construct a sequence of step functions which converges in

each Bs,q
p [0, 1] for s < 1/p, but not for Skorohod topology and an other sequence of

step functions which converges in Skorohod sense (and even uniformly), but for none

Bs,q
p [0, 1] with 0 < s < 1/p. Consequently, we can not compare Skorohod topology

with any Besovian topology with 0 < s < 1/p.

In the spirit of Theorem 2, we now give a sufficient condition for membership in

Besov spaces for the limiting process ξ.

Proposition 4. Let (Xk, k ∈ Z) be a stationary and associated sequence of uniform

random variables on [0, 1] satisfying (9). As in Proposition 1, denote by ξ the Gaus-

sian random element of L2[0, 1] whose covariance is given by (8). Assume moreover
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that for a given s ∈ (0, 1/2),

∑
k≥1

( 2
3− 2s

− IE max(X0, Xk)1−2s
)

< ∞, (12)

∑
k≥1

( 2
3− 2s

− IE
(
1−min(X0, Xk)

)1−2s
)

< ∞, (13)

∑
k≥1

∣∣∣ 1
(3− 2s)(1− s)

− IE |X0 −Xk|1−2s
∣∣∣ < ∞. (14)

Then,

IE ω2
2,s,2(ξ, 1) < ∞, (15)

and for all a ∈ (0, 1)

lim
n→∞

IE ω2
2,s,2(ξn, a) = IE ω2

2,s,2(ξ, a). (16)

Proof. By Fubini’s theorem,

IE ω2,s,2(ξ, 1)2 =
∫ 1

0

dh

h1+2s

∫ 1−h

0
IE
∣∣ξ(t + h)− ξ(t)

∣∣2 dt.

By reporting (8), we get

IE ω2,s,2(ξ, 1)2 =
∫ 1

0

dh

h1+2s

∫ 1−h

0

∑
k∈Z

IE
(
1(t < X0, Xk ≤ t + h)− h2

)
dt. (17)

Our aim is to exchange summations. For fixed h, let Yk(h) be the random variable

defined by:

Yk(h) :=
∫ 1−h

0
1(t < X0, Xk ≤ t + h) dt.

Notice first that

Yk(h) :=
[
min

(
X0, Xk, (1− h)

)
−
(
max(X0, Xk)− h

)
+

]
+

,

where a+ := max(a, 0). To describe explicitly the random variable Yk(h) let us
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introduce the spacing random variables Uk, Vk and Wk:

Uk := min(X0, Xk),

Vk := |X0 −Xk|,

Wk := 1−max(X0, Xk).

These quantities are linked by Uk + Vk + Wk = 1. Now observe that:

Yk(h) =



0 when 0 ≤ h ≤ Vk,

h− Vk when Vk ≤ h ≤ Vk + min(Uk,Wk),

min(Uk,Wk) when Vk + min(Uk,Wk) ≤ h ≤ Vk + max(Uk,Wk),

1− h when Vk + max(Uk,Wk) ≤ h ≤ 1.

Let us define Jk by

Jk :=
∫ 1

0
Yk(h)

dh

h1+2s
,

and observe that

Jk =
1

2s(1− 2s)
[
(Uk + Vk)1−2s + (Vk + Wk)1−2s − V 1−2s

k − 1
]
.

Let us now consider Ik := Jk − C(s), where

C(s) =
∫ 1

0
h2(1− h)

dh

h1+2s
=

1
(2− 2s)(3− 2s)

,

is a centering term such that IE Ik = 0 when the Xj ’s are i.i.d. Now, we can rewrite

Ik as

Ik = cs

(
max(X0, Xk)1−2s +

(
1−min(X0, Xk))

)1−2s − |X0 −Xk|1−2s − c′s

)
,

with cs = 1/(1− 2s)(2− 2s) and c′s = (2− 3s)/(1− 2s)(1− s). Now observe that

IE Ik is a linear combination of the terms of rank k of the series (12), (13), and

(14). Therefore
∑

k IE Ik converges absolutely. By exchanging summations in (17),

we obtain

IE ω2,s,2(ξ, 1)2 =
∑
k∈Z

IE Ik < ∞.
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In order to prove (16), consider

IE ω2
2,s,2(ξn, a) =

∫ a

0

dh

h1+2s

∫ 1−h

0
IE
∣∣ξn(t + h)− ξn(t)

∣∣2 dt.

By stationarity of the sequence (Xk),

IE ω2
2,s,2(ξn, a) =

∫ a

0

dh

h1+2s

∫ 1−h

0

∑
|k|<n

(
1− |k|

n

)
IE
(
1(t < X0, Xk ≤ t + h)− h2

)
dt,

whence (16) follows by dominated convergence.

Theorem 5. Let ξn defined by (1) be the empirical process of a stationary and associ-

ated sequence (Xk, k ∈ Z) of uniform random variables on [0, 1]. Then ξn converges

in distribution in Bs,2
2 [0, 1], with 0 < s < 1/2, to a Gaussian random element ξ with

covariance integral kernel Γ given by (8) if∑
k≥1

Cov1/2−s(X0, Xk) < ∞. (18)

Proof. By applying Lemma 14 in the case β = 1 and by taking account of Lemma 11,

we can deduce from (18) that∑
k≥1

(2
3
− IE max(X0, Xk)

)
< ∞.

Therefore, Theorem 2 ensures that ξn converges in distribution in L2[0, 1] to ξ.

Observe now that the conclusion of Proposition 4 holds under (18). By Lemma 13,

(18) implies (12). If (X, Y ) is PQD with uniform marginals, so is (1−X, 1− Y ) and

we get (13) by another application of Lemma 13. Moreover we can deduce (14) from

(18) via Lemma 14.

Then, we apply Lemma 8 to show the tightness of (ξn) in Bs,2
2 [0, 1]. Since we

already know that (ξn) is tight in L2[0, 1], i) is fulfilled. In order to check ii), let us

consider ε > 0. By Proposition 4,

lim sup
n→+∞

IP{ω2,s,2(ξn, a) > ε} ≤ 1
ε2

IE ω2,s,2(ξ, a)2,
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and the result follows since the quantity on the right goes to 0 with a.

Corollary 6. Let ξn defined by (1) be the empirical process of a stationary and

associated sequence (Xk, k ∈ Z) of uniform random variables on [0, 1]. Then ξn

converges in distribution in Lp[0, 1], with p ∈ [2,∞), to a Gaussian random element

ξ with covariance integral kernel Γ given by (8) if Cov(X0, Xn) = O(n−τ ), with τ > p.

Proof. We use the following embedding of Besov spaces (see e.g. [14] or [21]) which

allows to exchange “smoothness” (s) for “integrability” (p). Let 1 ≤ p1 ≤ p2 < ∞,

0 < s2 ≤ s1, 1 ≤ q < ∞, with s1 − 1/p1 = s2 − 1/p2. Then

Bs1,q
p1

[0, 1] ↪→ Bs2,q
p2

[0, 1].

Now choose p1 = 2, q = 2, p2 = p ∈ (2, τ) and ε > 0 such that 1/p = (1 + ε)/τ + ε.

Finally choose s1 = s with 1/2 − s = (1 + ε)/τ and s2 = ε. Then the conclusion

follows from the embeddings

Bs,2
2 [0, 1] ↪→ Bε,2

p [0, 1] ↪→ Lp[0, 1].

Corollary 6 improves on the similar result in [13], obtained for τ > 3p/2. This

result has an interest only if τ ≤ 4, since Louhichi [9] recently obtains the convergence

in D(0, 1) for τ > 4.

4 Some applications to test statistics

One motivation for the study of the weak convergence of the empirical process in the

topology of some function space, is the application to the convergence of statistics

which are continuous functionals of ξn in the same topology. Some applications of the

L2[0, 1] or Lp[0, 1] weak convergence are presented in [12] and [13]. We propose here
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two applications of the Bs,2
2 [0, 1] weak convergence of ξn to the problem of testing uni-

formity on a circle. In all this section, we parametrize the unit circle by t 7→ exp(2iπt),

the observations Xj are interpreted as angular data, the functions f ∈ L2[0, 1] are

implicitly extended by 1-periodicity and ∆hf(t) := f(t + h) − f(t) for every t ∈ R.

The question is to decide whether the given observations {exp(2iπXj), 1 ≤ j ≤ n}

indicate any preferred direction or whether these data come from a uniform distribu-

tion on the circumference. Let us observe that the problem of the goodness of fit of

angular data Yj to a completely specified distribution with continuous distribution

function F may be reduced to the test of uniformity for the F (Yj)’s.

Giné [5, Section 6] considered the class of Sobolev statistics

Tn({ak}) :=
2
n

∞∑
k=1

a2
k

n∑
j,l=1

cos
(
2πk(Xj −Xl)

)
, (19)

where the sequence (ak)k≥1 satisfies some summability condition. The simplest ex-

ample of statistics of this type is the Rayleigh statistics given by

1
n

[( n∑
j=1

cos(2πXj)
)2

+
( n∑

j=1

sin(2πXj)
)2]

=
1
n

n∑
j,l=1

cos
(
2π(Xj −Xl)

)
,

which corresponds to the choice a1 = 1 and ak = 0 for k ≥ 2. The well known

Watson’s statistics

U2
n =

∫ 1

0

(
ξn(t)−

∫ 1

0
ξn(u) du

)2
dt,

corresponds to the choice ak = c/k (k ≥ 1) for some constant c. Another classical

example is Ajne’s statistics

An =
1
n

∫ 1

0

∣∣∣N(t)− n

2

∣∣∣2 dt,

where N(t) is the number of observations located on the half circle centered at

exp(2πit). The corresponding sequence (ak) is of the form a2k = 0 and a2k+1 =

c(−1)k(2k + 1)−1. Some generalization of Ajne’s statistics is investigated in [7].

15



After integration by parts, the Sobolev statistics (19) may be recast as

Tn({ak}) = 8π2
∞∑

k=1

k2a2
k

∣∣∣∫ 1

0
ξn(t)e2iπkt dt

∣∣∣2 = 8π2
∞∑

k=1

k2a2
k|ck(ξn)|2,

where we have defined the Fourier coefficients ck(f) of f ∈ L2[0, 1] by

ck(f) :=
∫ 1

0
f(t)e−2iπkt dt, k ∈ Z.

As |ck(∆hf)|2 = 4 sin2(πkh)|ck(f)|2, the Plancherel identity leads to

A
∑
k∈Z

|k|2s|ck(f)|2 ≤ ω2,s,2(f)2 ≤ A′
∑
k∈Z

|k|2s|ck(f)|2,

with A = 4
∫ 1
0 u−1−2s sin2(πu) du and A′ = 4

∫∞
0 u−1−2s sin2(πu) du and 0 < s < 1.

Hence we have the equivalence of norms

‖f‖2
2,s,2 ∼

∑
k∈Z

(1 + |k|2s)|ck(f)|2.

This shows that the statistics (19) are functionals of ξn, continuous in the Bs,2
2 [0, 1]

topology provided that ak = O(ks−1). Here the range of validity for s is of course

0 < s < 1/2, as the Fourier coefficients of ξn are exactly of asymptotic order 1/k.

Another approach using χ2 methods was proposed by Rao [16] to test uniformity

on the circle. The statistic considered by Rao may be defined as follows. First

fix the number of classes m and choose some direction exp(2πiα). Next divide the

unit-circle in m segments of the same width, parametrized by the intervals Ij(α) =(
α + (j − 1)/m,α + j/m

]
(1 ≤ j ≤ m). Denote by nj(α) the number of observations

Xk that fall in Ij(α). The corresponding usual χ2 statistic is then

χ2
n(α) =

m∑
j=1

(
nj(α)− n/m

)2/(n/m).

To have a statistic independent of the starting point α, Rao proposes to use

Rn,m :=
∫ 1

0
χ2

n(α) dα =
m

n

m∑
j=1

∫ 1

0

∣∣∣nj(α)− n

m

∣∣∣2 dα. (20)
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Recalling that ξn has been extended by 1-periodicity we get

nj(α)− n

m
=
√

n
[
ξn

(
α +

j

m

)
− ξn

(
α +

j − 1
m

)]
,

whence

Rn,m = m2

∫ 1

0

∣∣∣ξn

(
α +

1
m

)
− ξn(α)

∣∣∣2 dα = m2‖ ∆1/mξn ‖2
2
.

So Rn,m appears as a functional of ξn, continuous in the L2[0, 1] topology and this

continuity is sufficient to deduce from the mild assumption of Theorem 2 the weak

convergence of this statistic when n goes to infinity and m remains fixed.

To allow more flexibility with respect to m, we may consider the weighted sums

Rn :=
M∑

m=2

bmRn,m, (21)

where M = M(n) ↑ ∞ with n. If we choose the weights bm such that 0 ≤ bm ≤

cm2s−3, then comparison between series and integral gives

Rn ≤ C

∫ 1

1/M
‖ ∆hξn ‖2

2

dh

h1+2s
, (22)

where c, C are positive constants. Now the space Bs,2
2 [0, 1] is the relevant framework

to investigate the existence of a limiting distribution for Rn.

Proposition 7. Let the weights bm (m ≥ 2) satisfy for some constant c, 0 ≤ bm ≤

cm2s−3. Assume that the sequence (Xj) fulfills the conditions of Theorem 5. Then

Rn defined by (21) converges weakly to

R :=
∞∑

m=2

m2bm‖ ∆1/mξ ‖2
2
,

where ξ is a Gaussian random element in Bs,2
2 [0, 1] with covariance kernel given

by (8).
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Proof. Consider the functionals

Tn(f) :=
M(n)∑
m=2

m2bm‖ ∆1/mf ‖2
2
, T (f) :=

∞∑
m=2

m2bm‖ ∆1/mf ‖2
2
.

Both are continuous on Bs,2
2 [0, 1] as squares of seminorms dominated by ω2,s,2(f, 1).

Write

Rn = Tn(ξn) = (Tn − T )(ξn) + T (ξn).

The weak convergence of T (ξn) to T (ξ) = R follows from Theorem 5 and the conti-

nuity of T . So it suffices to check that (Tn − T )(ξn) goes to zero in probability. For

this convergence, a comparison between series and integral gives

∣∣(Tn − T )(ξn)
∣∣ ≤ ∞∑

m=M(n)+1

cm2s−1‖ ∆1/mξn ‖2
2
≤ Cω2

2,s,2

(
ξn,

1
M(n)

)
.

Now

IP
{

ω2
2,s,2

(
ξn,

1
M(n)

)
≥ ε
}
≤ sup

k≥1
IP
{

ω2
2,s,2

(
ξk,

1
M(n)

)
≥ ε
}

and this upper bound goes to zero due to the tightness of (ξk)k≥1, according to the

remark following the proof of Lemma 8 below.

5 Tools and auxiliary results

We give here a sufficient condition for the tightness in Besov spaces, involving the

moduli of smoothness ωp,s,q.

Lemma 8. Let p, q ∈ [1,∞) and s ∈ (0, 1). Assume the sequence (ξn, n ≥ 1) of

random elements in Lp[0, 1] satisfies

i) (ξn) is tight in Lp[0, 1],

ii) ∀ε > 0, lim
a→0

lim sup
n→∞

IP{ωp,s,q(ξn, a) > ε} = 0.

18



Then (ξn, n ≥ 1) is tight in Bs,q
p [0, 1].

Proof. The proof relies on the following characterization of relative compactness in

Bs,q
p [0, 1]: a subset K of Bs,q

p [0, 1] is relatively compact if and only if it is relatively

compact in Lp[0, 1] and satisfies:

lim
a→0

sup
f∈K

ωp,s,q(f, a) = 0. (23)

The necessity of relative compactness in Lp[0, 1] is obvious. To establish the

necessity of (23), suppose K relatively compact and fix ε > 0. Then we have some

finite ε-net (g1, . . . , gm) in K for ‖ ‖p,s,q. As (23) is obvious for a finite set of functions,

the elementary inequality

ωp,s,q(f, a) ≤ ωp,s,q(g, a) + ‖f − g‖p,s,q,

gives the bound ωp,s,q(f, a) ≤ 2ε uniformly in f ∈ K, for a small enough.

Conversely, assume that K is relatively compact in Lp[0, 1] and satisfies (23). Let

ε > 0 and b > 0 be such that ωp,s,q(f, b) ≤ ε uniformly in f ∈ K. Put

cb :=

(∫
b≤|h|<1

2q

|h|sq
dh

|h|d

)1/q

.

We can cover K with a finite number of balls for ‖ ‖p, with radius less than ε/(1+cb).

The elementary estimates

‖∆hf‖p ≤ 2‖f‖p,

ωp,s,q(f − g, a) ≤ ωp,s,q(f, a) + ωp,s,q(g, a),

lead to

‖f − g‖p,s,q ≤ ‖f − g‖p +

(∫
b≤|h|<1

2mq‖f − g‖q
p

|h|sq
dh

|h|d

)1/q

+ ωp,s,q(f, b) + ωp,s,q(g, b).

So K can be covered by a finite number of balls with radius 3ε for ‖ ‖p,s,q.

Finally by Prohorov theorem and usual techniques (see for instance Billingsley [1,

p. 55] for analogous result in C[0, 1]), we obtain a tightness criterion in Bs,q
p [0, 1] with
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ii′) ∀ε > 0, lim
a→0

sup
n≥1

IP{ωp,s,q(ξn, a) > ε} = 0,

instead of ii). A standard argument allows to change the sup into a lim sup to obtain

ii).

Remark. Condition ii′) is necessary for the tightness of (ξn)n≥1.

Proof. Indeed by monotony, it suffices to prove that if (ξn)n≥1 is tight, then for every

positive ε,

lim
l→∞

sup
n≥1

IP{ωp,s,q(ξn, 1/l) > ε} = 0.

As p, q < ∞, we have ωp,s,q(f, 1/l) → 0 for any f ∈ Bs,q
p [0, 1] by dominated conver-

gence. So the sequence of closed sets

Fl :=
{
f ∈ Bs,q

p [0, 1]; ωp,s,q(f, 1/l) ≥ ε
}

decreases to the empty set when l increases to infinity. Now the result follows from

the relative compactness of the sequence of distributions IP ξ−1
n , see e.g. [19, Lem. 1

p. 206].

The following integration by parts formulas for covariances are basic tools through-

out the paper. For notational simplicity, let us write for random variables X, Y .

H(u, v) = Cov
(
1(X ≤ u),1(Y ≤ v)

)
= Cov

(
1(X > u),1(Y > v)

)
.

Similarly we write Hi,j when X and Y are replaced by Xi, Xj respectively in the

above formula.

Lemma 9. If X and Y are square integrable random variables, then

Cov(X, Y ) =
∫

R2

H(x, y) dxdy. (24)

For the proof, we refer to [8], see also [22] for an interesting generalization.
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Lemma 10. Let f be a complex valued function defined on R2 with second order

partial derivatives continuous and bounded on R2. Let X and Y be square integrable

random variables. Then∫
R2

f(x, y)
(
PX,Y − PX ⊗ PY

)
( dx, dy) =

∫
R2

∂2f

∂u∂v
(u, v)H(u, v) du dv.

A detailed proof can be found for instance in [18]. The adaptation of these results

to the case of random vectors (X, Y ) whose distribution is supported by [0, 1]2 instead

of R2 is straightforward.

The three following lemmas involve the coefficients 2/3 − IE max(X, Y ) used in

Section 2. Since the full strength of the association property is not required for

their proofs, we prefer to state them in the more general framework of positive quad-

rant dependence. Recall that the sequence (Xn) is said pairwise positive quadrant

dependent (pairwise PQD) if, given any reals s, t, for i 6= j,

Hi,j(s, t) ≥ 0.

Lemma 11. For each random vector (X, Y ) with uniform marginals on [0, 1],

IE min(X, Y )− 1
3

=
2
3
− IE max(X, Y ) =

1
2

(1
3
− IE |X − Y |

)
. (25)

If (X, Y ) is PQD, all these quantities are non negative.

Proof. The proof relies on integral representations of IE min(X, Y )− 1/3 and 2/3−

IE max(X, Y ) which give also the sign of these quantities when (X, Y ) is PQD. Re-

calling (5), we have

2
3
− IE max(X, Y ) =

∫ 1

0
H(t, t) dt

=
∫ 1

0
Cov

(
1(X > t),1(Y > t) dt

=
∫ 1

0

{
P
(
min(X, Y ) > t

)
− P (X > t)2

}
dt

= IE min(X, Y )− 1
3
.
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To obtain the last equality in (25), it now suffices to write:

2
3
− IE max(X, Y ) =

1
2

(2
3
− IE max(X, Y ) + IE min(X, Y )− 1

3

)
=

1
2

(1
3
− IE |X − Y |

)
.

Lemma 12. Let (Xk, k ∈ Z) be a stationary and pairwise PQD sequence of random

variables with Xk uniformly [0, 1] distributed. Then

0 ≤
∑
k∈Z

Cov(X0, Xk) ≤
∑
k∈Z

(2
3
− IE max(X0, Xk)

)
. (26)

Proof. Integrating on [0, 1]2 the relation

IE ξn(s)ξn(t) =
∑
|k|<n

(
1− |k|

n

)
H0,k(s, t), (27)

gives ∫
[0,1]2

IE ξn(s)ξn(t) dsdt =
∑
|k|<n

(
1− |k|

n

)
Cov(X0, Xk). (28)

On the other hand, by Fubini’s theorem and comparison of norms we have∫
[0,1]2

IE ξn(s)ξn(t) dsdt = IE
(∫ 1

0
ξn(s) ds

)2

≤ IE
∫ 1

0
ξn(s)2 ds. (29)

Now it follows from (27) that∫ 1

0
IE ξn(s)2 ds =

∑
|k|<n

(
1− |k|

n

)∫ 1

0
H0,k(s, s) ds

=
∑
|k|<n

(
1− |k|

n

)(2
3
− IE max(X0, Xk)

)
. (30)

Under pairwise PQD, Cov(X0, Xk) and 2/3 − IE max(X0, Xk) are non negative, so

(28), (29) and (30) give for every n ≥ 1:

0 ≤
∑
|k|<n

(
1− |k|

n

)
Cov(X0, Xk) ≤

∑
|k|<n

(
1− |k|

n

)(2
3
− IE max(X0, Xk)

)
. (31)

The conclusion follows by letting n increase to infinity in (31).
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Lemma 13. Let β ∈ [0, 1]. If (X, Y ) is a positively quadrant dependent vector with

marginals uniform on [0, 1], then

0 ≤ 2
β + 2

− IE max(X, Y )β ≤ β
(2

3
− IE max(X, Y )

)β
. (32)

Proof. When β = 0 or β = 1, it is obvious. Assume β ∈ (0, 1). Observe first that

0 ≤ H(u, u) ≤ u. By integrating by parts, then by Jensen inequality we obtain

successively:

2
β + 2

− IE max(X, Y )β =
∫ 1

0

(
IP(X ≤ u, Y ≤ u)− u2

)
βuβ−1 du

=
∫ 1

0
H(u, u)ββuβ−1H(u, u)1−β du

≤ β

∫ 1

0

(
IP(X ≤ u, Y ≤ u)− u2

)β du

≤ β

(∫ 1

0

(
IP(X ≤ u, Y ≤ u)− u2

)
du

)β

= β
(2

3
− IE max(X, Y )

)β
.

Lemma 14. Let β ∈ (0, 1]. If (X, Y ) is a positively quadrant dependent vector with

marginals uniform on [0, 1], then there exists a constant C = C(β) such that:∣∣∣IE |X − Y |β − 2
(β + 1)(β + 2)

∣∣∣ ≤ C Covβ/2(X, Y ). (33)

Proof. Let Z be a uniform [0, 1] distributed random variable, independent of X. An

elementary conputation gives

2
(β + 1)(β + 2)

= IE |X − Z|β.

Consider the function

gε(u) =

 |u|β, when |u| ≥ ε

fε(u), when |u| < ε,
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with

fε(u) := εβ

{(β2

8
− β

4

)(u

ε

)4
+
(
β − β2

4

)(u

ε

)2
+ 1− 3β

4
+

β2

8

}
.

The function gε is of class C2 with a second derivative bounded and continuous on

R. It is easy to see that

sup
|u|≤ε

|fε(u)| ≤
(
1 +

β

2

)
εβ ,

so that
∣∣∣|u|β − gε(u)

∣∣∣ ≤ 5εβ/2. Hence, the left hand side of (33) differs from

| IE gε(X − Y )− IE gε(X − Z)| =: Aε

no more than by 5εβ . We estimate Aε by Lemma 10. As ‖g′′ε‖∞ = β(1− β)εβ−2,

Aε ≤ β(1− β)εβ−2

∫
[0,1]2

H(s, t) dsdt = β(1− β)εβ−2 Cov(X, Y ).

Using ε =
√

Cov(X, Y ), inequality (33) is achieved.
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