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Abstract

We prove that a necessary and sufficient condition for the weak L2[0, 1] con-
vergence of the empirical process of a stationary associated sequence (X}) of
uniform random variables is simply > (2/3 — IE max(Xy, Xx)) < oco. This con-
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spaces By? (s < 1/2).
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1 Introduction

Let (X, n € Z) be a stationary sequence of uniform random variables on [0, 1]. We

denote by &, the corresponding uniform empirical process:
n
&) =n"'PY (LX< t)—t),  te[o1], (1)
i=1

where 1(A) is the indicator function of the event A. When the X; are independent,
(&n, m > 1) is well known to converge weakly in the Skorohod space D(0,1) to the
Brownian bridge. The theoretical importance of this result has motivated many
investigations to extend it to the case of non independent observations X;. Roughly
speaking, the extensions have the following form. If the dependence structure of the
sequence (X, n € Z) is close enough to independence, then &, converges weakly in

D(0,1) to a centered Gaussian process { with covariance:

T(s,t) =Y (P(Xo<s,Xp<t)—st), 0<st<1. (2)
kEZ

Observe that the term indexed by & = 0 in the above series is equal to s At — st,
which is the covariance of the classical Brownian bridge. The sum of the other
terms represents the perturbation of the limiting process induced by the lack of
independence. The closeness to independence is expressed by the rate of convergence
to zero of some quantity like the various mixing coefficients (see for instance [17],
[2] and the references therein) or the non negative covariances Cov(Xp, Xx) when
(Xn,n € Z) is an associated sequence. In this paper we shall focus on this type
of positive dependence. Recall that the sequence (X,,n € Z) is said associated if
for each finite choice of indexes i1,...,%, in Z and for each pair of coordinatewise

nondecreasing functions f, g defined on R"", we have

Cov(f(Xip,-- o Xin)r 9(Xip, ..., Xi)) =0,



whenever this covariance exists. For the basic properties of association, we re-
fer to Esary, Proschan and Walkup [3]. The first results on asymptotic behav-
ior of empirical distribution function of an associated sequence were obtained by
Yu [22]. He proved the weak D(0,1) convergence of &,, assuming the convergence of
> o>t n13/2+¢ Cov(Xp, X,,). This assumption has been much improved by Shao and
Yu [17] into Cov(Xg, X,,) = O(n™?) with a > (34 +/33)/2 ~ 4.373 and more relaxed
by Louhichi [9] who only requires a > 4. The relative severity of these conditions is
due to the necessity to have an uniform bound of H; ;(s,t) = Cov(1(X; < s),1(X; <
t)) in terms of Cov(X;, X;) (the estimate ||H; j|loc = O(Covl/g(Xi,Xj)) is the best
known up today) and to the use of some generalized Rosenthal inequality of order 4
to control the increments of &,.

However, the weak convergence of some useful functionals of paths of &, does
not require the D(0, 1)-continuity of these functionals. An important example is the
case of quadratic statistics like Cramér-von Mises test statistics, Watson statistics,
which only need the L2[0, 1] functional framework (for more examples, see [13] and
the references therein). With this motivation, Oliveira and Suquet [12] obtained the
weak L2[0, 1] convergence of &, to the Gaussian process ¢ under the condition

0o

Z Cov'/3(Xo, X,) < oo. (3)

n=1
A statistical application of this result was proposed by Suquet and Viano [20] in
a problem of change point detection for the marginal distribution of an associated
sequence.

The present contribution improves on [12] by establishing that a necessary and
sufficient condition for the weak L2[0,1] convergence of &, to a Gaussian random
element ¢ in L2[0, 1] with covariance kernel given by (2) is

i(g — IE max (X, Xn)> < 0. (4)

n=1



According to Lemma 11 below, equivalent conditions are obtained replacing the
general term of the above series by IEmin(Xo, X,,) — 1/3 or 1/3 — IE|Xy — X,,|.
Condition (4) is intermediate between the convergences of > -, Cov(Xo, X;) and
> on>1 Cov'/?(Xy, X,,), see Lemmas 12 and 14. We think that this unusual coeffi-
cient 2/3 — IE max(Xy, X},) is the natural one in the L2[0,1] framework. Indeed let
us assume, just for heuristic convenience, that I' is continuous. Then obviously the
finiteness of fol [(t,t)dt = fol E&(t)2dt = B || € || is necessary. This leads to (4), via
the following elementary computation where X, Y, denote uniform [0, 1] distributed

random variables:

/1 Cov(L(X <t),1(Y <t))dt = /1{P(max(X,Y) <t)—t*}dt
0 0

- /1{1 ~ P(max(X,Y) > )} dt — »
0 3

= g — Emax(X,Y). (5)

The above optimal result in L2[0, 1] rely on variance estimates while in the DJ0, 1]
setting, controlling the fourth moments of the £,’s increments is the main difficulty.
It was then rather natural to investigate some stronger topologies than the L2[0, 1]
one, allowing the use of variance estimate as basic tool to obtain tightness. With
this motivation we consider the scale of Besov spaces BS’Z[O, 1] obtained (roughly
speaking) by controlling the L2[0, 1] modulus of smoothness. For 0 < s < 1/2, the
corresponding Besov space supports steps functions, while for s > 1/2, Bg’z[O, 1] is
continuously embedded in some Holder space. We prove that when 0 < s < 1/2; a
sufficient condition for the Bg’z [0, 1] weak convergence of &, is

> Cov'/?7%(Xo, Xp) < oo (6)
E>1
Due to the classical embeddings in the general scale of Besov spaces By[0,1], this

result allows us to relax the sufficient condition in [13] for L”[0, 1] weak convergence



of &, under association.
Finally we note that in concrete situations, the covariance I' is often unknown

and has to be estimated. First steps in this direction may be found in [4] and [6].

2 Invariance principle in L2[0, 1]

Let ¢ be a square integrable random element in L2[0,1] (IE|| £ ||3 is finite). With
the usual identification of L2[0, 1] and its dual, the covariance of ¢ is the continuous

bilinear form defined by

Ce(f1, f2) = B((f1,€)(f2,€)),  f1,f2 € L?[0,1].

Clearly C¢ is symmetric and non negative. Since { is square integrable, we have
> Ce(es,e;) < oo for any Hilbertian basis (e;, ¢ € N) of L2[0,1]. Then there is a
unique element K of L?([0,1]?) such that

Cg(fl, f2) = /[0 " K(S, t)fl(s)fz(t) dsdt, fi,f2€ LQ[O, 1].

We call K the covariance integral kernel of &.

The Haar basis (e,,n > 0) is a very convenient tool to prove the main results
of this section. Let us recall its definition and fix some notations. Put eg := 1o ]
and write each n > 1 under the form n = 2/ + k, with 0 < k < 27, j > 0. Let

Lk :=[k27771 (k+1)27771) and
en = € = 22Xk — Xjkt1);

where X is the indicator function of I; ;. Denote by E; the operator of orthogonal
projection onto the subspace spanned by {e,, 0 <n < 2771}, For f € L2[0,1], E; f
is simply the approximation of f by a step function equal to its mean value over each

I 1. Let us write Ej(s,t) for the integral kernel of E;, that is:
1
(E:f)6) = [ B d se il

5



It is easily verified that FEj(s,t) is the uniform probability density on the union
of diagonal squares Cj; = Iik (0 < k < 27). It follows that for any function g
continuous on [0,1]2,
1
lim g(s,t)Ej(s,t)dsdt = / g(s,s)ds. (7)
J7e0 J10,1]2 0
Proposition 1. Let (X, k € Z) be a stationary and associated sequence of uniform

random variables on [0,1] and consider the series

=> Cov(1(Xg<s),1(X,<t)), 0<st<1. (8)
kEeZ
a) Assume that
Z(; - IEmax(Xo,Xk)) < o0. 9)
E>1

Then fo s,8)ds is finite and the series in (8) converges almost everywhere

on [0,1]? and on its diagonal. Moreover the sequence of kernels

(s, t) = B &,(5)&nl 2(1 >C0V( (Xo < 5),1(X; <1),

|k|<n

converges in L2([0,1]?) to T.

b) If T' defined by (8) is the covariance integral kernel of some square integrable
random element in L2[0,1], then (9) holds.

Proof of a). First observe that, due to the association of (Xj), I' defined by (8)
is the limit of a non decreasing sequence of continuous functions and hence is a
nonnegative measurable function (with possibly infinite values). The same holds
true for the restriction of I to the diagonal of [0, 1]2. Now recalling (5), the finiteness
of fo s,s)ds follows clearly from (9) by Beppo Levi theorem. Hence I' is finite

almost everywhere on the diagonal of [0, 1]2.



Next, we note that I',(s,t)? < T',(s,s)['s(t,t) by Cauchy-Schwarz inequality in
L?(9), whence

1 2 1 2
/ Tn(s,t)?dsdt < (/ T(s,s) ds) < (/ ['(s,s) ds) < 0.
[0,1]? 0 0

By Beppo Levi theorem, it follows that

1 2
/ [(s,t)?dsdt < </ [(s,s) ds> < 0.
[0,1]? 0

Hence T belongs to L2([0, 1]?), so I'(s,t) is finite almost everywhere on [0,1]2. By
monotonicity of I'y,, it follows that I', (s, ) converges almost everywhere to I'(s,t) on
[0,1]%. Since f[071]2 Il — I'1|? ds dt is bounded by 4(f01 ['(s, ) ds)Q, we can apply the
monotone convergence theorem to obtain the convergence of f[071]2 Il —T',|?dsdt to

Zero. O

Proof of b). If T is the integral covariance kernel of some square integrable random
element ¢ in L2[0, 1], then I is in L?([0, 1]%) and
E|| B |2 :/ T(s,t) B, (s, 1) ds L.
[

1]2

This together with the inequalities || € ||3 > || E;& ||g, E;(s,t) > 0and 0 <T'(s,t) <
['(s,t) gives for any integers j, n:
co>E| €3 z/ Ty (s, t)Ej(s,t) dsdt.
71]2
Fix n and recall that T',, is continuous. Letting j increase to infinity, we have by (7):

E| ¢ IIS > fol I'n(s,s)ds. When n in turn, goes to infinity, this gives by monotone

convergence
1
[t <)<,
0

from which (9) clearly follows. O



Theorem 2. Let &, defined by (1) be the empirical process of a stationary and associ-
ated sequence (Xi, k € Z) of uniform random variables on [0,1]. Then &, converges
in distribution in L2[0,1] to a Gaussian random element & with covariance integral
kernel I' given by (8) if and only if

Z(% _ IEmax(Xg,Xk)) < .

E>1
Proof. The necessity of Condition (9) is clear from Proposition 1 b). To prove the
convergence in distribution of &, to ¢ in L2[0,1], we have to check the convergence
in distribution of the random variables fol F(t)&(t)dt to fol F()E(t) dt for every f €
L2[0,1] and the tightness of (&,). For the first point, we write

! Cg(X) 4+ g(Xn)
/O F(DEn(t) di = NG ,

where g(X;) = [ )1{1 ft)dt —E [ )1(1 f(t)dt. Then the requested convergence follows

from Newman’s central limit theorem [10, 11] for absolutely continuous mappings of

associated variables, observing that
1 2
B [ rog0ar) = [ 6 ror e dsar
0 [0,1]2

and using the L?([0, 1]?) convergence of I', to T'.
To establish the tightness of (&,), we use the following adaptation of Prohorov’s
theorem [15, Th. 1.13]. Consider an orthonormal basis (f;,i > 1) of L?[0,1] and

define 72 (f) := >isp S fi)]?. Then the sequence (&,) is tight in L2[0, 1] if it satisfies

i) sup E |13 < oo;
n>1

ii) lim sup]Erf)(fn) = 0.
P00 p>1

In the original statement |15, Th. 1.13], Condition i) was missing. It is added here

to avoid situations where the projection of (&,) on the first vectors of the basis is not



tight, which obviously can not be detected by ii), see also the remark after Theorem
5in [19]. It is easy to check that in Condition ii), sup,>; may be replaced by
limsup,,_,,, and that it suffices to take the limit in p along some subsequence. So
choosing for orthonormal basis the Haar basis and the subsequence of rg indexed by

p=2/T1 — 1, we have to check i) and
i) lim limsup(B & [I5 — B || By [3) = 0.
J—00 n—oo
Condition i) is easily satisfied, noting that for every (s,t) € [0,1]?> we have 0 <

(s, t) <T'(s,t) < oo, whence

1 1
Bl&li= [ Tueoas [ e

Recall that by Proposition 1 a), this last integral is finite under (9).

To prove ii’), observe first that

1
E|& |- E| Eié |3 :/ Tn(s,s) ds—/[ ; Ln(s,t)Ej(s,t)dsdt =: Ay ;.
0 0,1
Let us fix for a moment an integer N. As for any (s,t) € [0,1]?, the sequence

(I'u(s,t),n > 1) is non decreasing and Ej(s,t) is non negative, we get

1
limsup 4, ; < / I'(s,s)ds — / In(s,t)E;(s,t)dsdt. (10)
n—00 0 [0,1)2
Due to the continuity of 'y, we have by (7)
1 1
lim sup lim sup A4, ; < / I'(s,s)ds —/ I'n(s,s)ds. (11)
j—)oo n—oo 0 0

Finally letting N go to infinity we get by monotone convergence and finiteness of
fOl F(S, S) dS,

lim sup limsup 4,, ; = 0,
j—00 n— 00

which establishes ii’) and completes the proof. ]

Remark. It follows from Proposition 1b) and Theorem 2 that I' is the covariance

integral kernel of a Gaussian random element in L.2[0, 1] if and only if (9) holds.



3 Invariance principle in B5?[0,1]
For a function f:[0,1] - R, and 0 < h <1, let

Apf(t) = ft+h)—f(t) f0<t<1-h,

0 else.

Definition 3. Let s € (0,1), p and q € [1,00). B[0,1] is the subspace of LP[0,1]
induced by the norm:

/1

psg = I fllp + wp,s,q(f; 1),

where wp s ¢(f, a) is the modulus of smoothness defined by:

a I ALFIS dh\ Y9
(,Up,s,q(f7 Cl) = </0 || ‘h|3q||p h|> y 0<a S 1.

The Besov space B, ?[0, 1] is a separable Banach space (separability holds because
p and ¢ are both finite). Step functions are in (separable) Besov spaces for p,q €
[1,00) and 0 < s < 1/p.

It is not difficult to construct a sequence of step functions which converges in
each By?[0,1] for s < 1/p, but not for Skorohod topology and an other sequence of
step functions which converges in Skorohod sense (and even uniformly), but for none
B;[0,1] with 0 < s < 1/p. Consequently, we can not compare Skorohod topology
with any Besovian topology with 0 < s < 1/p.

In the spirit of Theorem 2, we now give a sufficient condition for membership in

Besov spaces for the limiting process £.

Proposition 4. Let (X, k € Z) be a stationary and associated sequence of uniform
random variables on [0, 1] satisfying (9). As in Proposition 1, denote by & the Gaus-

sian random element of 1L2[0, 1] whose covariance is given by (8). Assume moreover

10



that for a given s € (0,1/2),

2
> (5 - ]Emax(Xo,Xk)l_23> < o0, (12)
3 —2s
k>1
S ( 2 IE(1 — min(X, Xk))HS) < o0 (13)
3—2s ’ ’
k>1
1
 _E[Xo— Xi"¥| < x. (14)
kZZI‘ (3—2s)(1—s)
Then,
]Ewg,s,Z(g: 1) < 00, (15)

and for all a € (0,1)

lim IEWQ )8 2(5”7 ) IEW%,S,Q (57 CL). (16)

n—oo

Proof. By Fubini’s theorem,

9 1 dh 1-h
]EWQ,S,Q(&-,]-) :/0 h1+25/(; E’€t+h | dt.

By reporting (8), we get

1-h
Ewy0(€,1)* = /0 ySEEn / ZIE) (t < Xo, X, <t+h)—h% dt.  (17)
keZ

Our aim is to exchange summations. For fixed h, let Yj(h) be the random variable
defined by:
1-h
Yk(h) Z:/ 1(t<X0,Xk St—i—h)dt
0

Notice first that
Yi(h) == [min(Xo, X, (1= h)) — (max(Xo, Xj) — h)J :

+

where a; := max(a,0). To describe explicitly the random variable Yj(h) let us

11



introduce the spacing random variables Uy, Vi and W:

Uk = min(Xo,Xk),
Vk = ’XO — Xk‘,
Wk = 1- max(Xo, Xk)

These quantities are linked by Uy 4+ Vi + Wi = 1. Now observe that:

.

0 when 0 < h <V,
Vit — h—Vi when Vi < h < Vi + min(Uy, Wy),
min(Ug, Wi)  when Vi + min(Uy, Wy) < h < Vi, + max(Ug, W),
[ 1-h when Vj, + max(Uy, Wy) < h < 1.

Let us define Ji by

1 dh
Jk I:/O Yk(h) m,

and observe that

1

Jp=
P 2s(1 — 2s)

[(Uk + Vk)l_QS + (Vi + Wk)1_2s — Vk1723 — 1] .

Let us now consider Iy := J; — C(s), where

1 dh 1
C(s) = /0 h*(1 — h) plt2s (2 —2s)(3 —2s)’

is a centering term such that IE I}, = 0 when the X,’s are i.i.d. Now, we can rewrite

I as

1-2s

I, = c, (max(Xo, Xk)1_25 + (1 — min(XO,Xk))) — | X0 — Xkll_ZS — c’) ,

s

with ¢s = 1/(1 —25)(2 —2s) and ¢, = (2 —3s)/(1 —2s)(1 — s). Now observe that
IE [}, is a linear combination of the terms of rank k of the series (12), (13), and
(14). Therefore ), IE I}, converges absolutely. By exchanging summations in (17),

we obtain

Ewys2(6,1)? =Y EIj < .
kEZ

12



In order to prove (16), consider

) a dh 1-h 9
]EWQ,s,Q(fma): 0 Bl+2s 0 E‘gn(t'i'h)_fn(t)‘ dt.

By stationarity of the sequence (Xk),
2 @ dh it || 2
]Ew27s72(§n,a) = ) m ) Z 1—? ]E(]_(t<X0,Xk St“‘h)_h ) dt,
|k|<n

whence (16) follows by dominated convergence. O

Theorem 5. Let &, defined by (1) be the empirical process of a stationary and associ-
ated sequence (Xy, k € Z) of uniform random variables on [0,1]. Then &, converges
in distribution in B;’Q[O, 1], with 0 < s < 1/2, to a Gaussian random element & with
covariance integral kernel T' given by (8) if
ZCOV1/2_S(X0,Xk) < 0. (18)
k>1
Proof. By applying Lemma 14 in the case 6 = 1 and by taking account of Lemma 11,
we can deduce from (18) that
Z(% - IEmaX(XO,Xk)) < 00.
k>1
Therefore, Theorem 2 ensures that &, converges in distribution in L2[0, 1] to &.
Observe now that the conclusion of Proposition 4 holds under (18). By Lemma 13,
(18) implies (12). If (X,Y") is PQD with uniform marginals, sois (1 —X,1—Y) and
we get (13) by another application of Lemma 13. Moreover we can deduce (14) from
(18) via Lemma 14.
Then, we apply Lemma 8 to show the tightness of (&,) in B;’Q[O, 1]. Since we
already know that (¢,) is tight in L2[0,1], ) is fulfilled. In order to check i), let us

consider € > 0. By Proposition 4,

. 1
lim SupIP{MQ,S,Q(gna a) > E} < ? ]Ew27872(€7 CL)2,

n—-4o0o

13



and the result follows since the quantity on the right goes to 0 with a. O

Corollary 6. Let &, defined by (1) be the empirical process of a stationary and
associated sequence (Xy, k € Z) of uniform random variables on [0,1]. Then &,
converges in distribution in LP[0, 1], with p € [2,00), to a Gaussian random element

& with covariance integral kernel T given by (8) if Cov(Xo, Xy,) = O(n™7), with 7 > p.

Proof. We use the following embedding of Besov spaces (see e.g. [14] or [21]) which
allows to exchange “smoothness” (s) for “integrability” (p). Let 1 < p; < p2 < o0,

0 <s9<s1,1<¢q<oo, with s; —1/p; = s3 —1/pa. Then
B39[0, 1] — B29[0, 1],

Now choose p1 =2, ¢=2,p2 =p € (2,7) and € > 0 such that 1/p=(1+¢)/7 + <.
Finally choose s1 = s with 1/2 — s = (1 4+ ¢)/7 and sy = . Then the conclusion

follows from the embeddings
B3?[0,1] — B52[0, 1] — LP[0,1].
O

Corollary 6 improves on the similar result in [13], obtained for 7 > 3p/2. This
result has an interest only if 7 < 4, since Louhichi [9] recently obtains the convergence

in D(0,1) for 7 > 4.

4 Some applications to test statistics

One motivation for the study of the weak convergence of the empirical process in the
topology of some function space, is the application to the convergence of statistics
which are continuous functionals of &, in the same topology. Some applications of the

L2]0,1] or LP[0, 1] weak convergence are presented in [12] and [13]. We propose here

14



two applications of the B§’2 [0, 1] weak convergence of &, to the problem of testing uni-
formity on a circle. In all this section, we parametrize the unit circle by ¢ — exp(2int),
the observations X; are interpreted as angular data, the functions f € L2[0,1] are
implicitly extended by 1-periodicity and Ay f(t) := f(t + h) — f(t) for every ¢t € R.
The question is to decide whether the given observations {exp(2irX;),1 < j < n}
indicate any preferred direction or whether these data come from a uniform distribu-
tion on the circumference. Let us observe that the problem of the goodness of fit of
angular data Y; to a completely specified distribution with continuous distribution
function F' may be reduced to the test of uniformity for the F(Y})’s.

Giné [5, Section 6] considered the class of Sobolev statistics
252N
Tn({ar}) == n;akj% cos (2rk(X; — X)), (19)
where the sequence (ay)x>1 satisfies some summability condition. The simplest ex-

ample of statistics of this type is the Rayleigh statistics given by

(S emtomx)”+ (o sntae) ] =2 3 et — ),

which corresponds to the choice a; = 1 and ax = 0 for K > 2. The well known

vi= (e~ [ e a,

corresponds to the choice ap = ¢/k (k > 1) for some constant c. Another classical

Watson’s statistics

example is Ajne’s statistics

1/t n|2
A, =~ ‘Nt——‘ dt,
n/o ®) 2

where N(t) is the number of observations located on the half circle centered at
exp(2mit). The corresponding sequence (ag) is of the form agr = 0 and agry1 =

c(—1)*(2k 4+ 1)~!. Some generalization of Ajne’s statistics is investigated in [7].

15



After integration by parts, the Sobolev statistics (19) may be recast as

To({ar}) = 872 k2a? / &)™ | = 822 Zk%uck &l
k=1
where we have defined the Fourier coefficients ¢ (f) of f € L2[0,1] by

1
= / ft)e 2 at, ke Z.
0

As |er(ARf)|? = 4sin®(nkh)|ci(f)|?, the Plancherel identity leads to
AY B ler(NIP < waa(f)? < A kP len(),
keZ kEZ
with A = 4f01 w2 sin?(ru) du and A’ =4 [(¥ w2 sin?(7u) du and 0 < s < 1.
Hence we have the equivalence of norms
£ 113,52 ~ D1+ [E*)|ex ().
keZ
This shows that the statistics (19) are functionals of &,, continuous in the B§’2[0, 1]
topology provided that ap = O(k*~!). Here the range of validity for s is of course
0 < s < 1/2, as the Fourier coefficients of &, are exactly of asymptotic order 1/k.
Another approach using x? methods was proposed by Rao [16] to test uniformity
on the circle. The statistic considered by Rao may be defined as follows. First
fiz the number of classes m and choose some direction exp(2micr). Next divide the
unit-circle in m segments of the same width, parametrized by the intervals I;(a) =
(a+(j—1)/m,a+ j/m] (1 <j <m). Denote by nj(a) the number of observations
X}, that fall in I;(c). The corresponding usual x? statistic is then
< 2
= Z(nj(a) — n/m) /(n/m)
j=1

To have a statistic independent of the starting point o, Rao proposes to use
1
Rn,m = / Xn Z/ ”TL] - 7‘ da. (20)
0

16



Recalling that &, has been extended by 1-periodicity we get

wie) == vafea(as ) —e(a+ S5

1
Rym = m2/
0

So Ry, appears as a functional of &,, continuous in the L2[0, 1] topology and this

whence

(ot 1) = 6] da =l By 2

continuity is sufficient to deduce from the mild assumption of Theorem 2 the weak
convergence of this statistic when n goes to infinity and m remains fixed.

To allow more flexibility with respect to m, we may consider the weighted sums

M
R, = Z men,ma (21)
m=2

where M = M(n) 1 oo with n. If we choose the weights by, such that 0 < b, <

em?573, then comparison between series and integral gives

1
Ro<C [ | Buta s 22)
1/M hi+=s

where ¢, C' are positive constants. Now the space BS’Q[O7 1] is the relevant framework

to investigate the existence of a limiting distribution for R,.

Proposition 7. Let the weights by, (m > 2) satisfy for some constant ¢, 0 < by, <
em?73. Assume that the sequence (X;) fulfills the conditions of Theorem 5. Then
R, defined by (21) converges weakly to

R:= Z mzbmH Al/mg Hga

m=2

. . . 2 . . .
where € is a Gaussian random element in By7[0,1] with covariance kernel given

by (8).
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Proof. Consider the functionals

M(n) 00

Both are continuous on B;’2[O, 1] as squares of seminorms dominated by wa s 2(f, 1).
Write
R, = Tn(fn) = (Tn - T)(fn) + T(gn)

The weak convergence of T'(&,,) to T(¢) = R follows from Theorem 5 and the conti-
nuity of T'. So it suffices to check that (T, — T)(&,) goes to zero in probability. For

this convergence, a comparison between series and integral gives

o) . 1
(T, — T)(En)| < m:g(%mcm? s < OB (8 570 ):

Now

1 1
Pldoa(6n s7) 2 =) < s Pledia($e 57) 2 2}
wys2(&n Mn)) = er < zgll) w3 52| &k My = €
and this upper bound goes to zero due to the tightness of (£x);>1, according to the

remark following the proof of Lemma 8 below. 0

5 Tools and auxiliary results

We give here a sufficient condition for the tightness in Besov spaces, involving the

moduli of smoothness wy s 4.

Lemma 8. Let p,q € [1,00) and s € (0,1). Assume the sequence (§,,n > 1) of

random elements in LP[0, 1] satisfies
i) (&) is tight in LP[0, 1],

it) Ve >0, lim limsupIP{wy s 4(&n,a) > €} = 0.
a—

n—oo

18



Then (&,,n > 1) is tight in Bp9[0,1].

Proof. The proof relies on the following characterization of relative compactness in
By?[0,1]: a subset K of Bp?[0,1] is relatively compact if and only if it is relatively

compact in LP[0, 1] and satisfies:

lim sup wy s 4(f,a) = 0. (23)
a—0 e

The necessity of relative compactness in L?[0, 1] is obvious. To establish the
necessity of (23), suppose K relatively compact and fix &€ > 0. Then we have some
finite e-net (g1,...,9m) in K for || ||,s4. As (23) is obvious for a finite set of functions,

the elementary inequality

Wp,S,q(f: a) < Wp,s,q(ga a)+|If - QHP,s,qa

gives the bound wy, s 4(f, @) < 2¢ uniformly in f € K, for a small enough.
Conversely, assume that K is relatively compact in LP[0, 1] and satisfies (23). Let

e > 0 and b > 0 be such that wy s 4(f,b) < e uniformly in f € K. Put

1
/ 90 an\"’
Cp = —_ .
b<|nj<1 [R5 [R|4

We can cover K with a finite number of balls for || ||,, with radius less than e/(1+cy).

The elementary estimates

[1ARfllp < 2[[flp,
Wp,s,g(f — g:a) < wpsq(f,a) +wpsqlg,a),
lead to

1/q
2™ f —gllp dh
1f = 9llp,s.g < 11— gllp + / hlsa £ hld + Wp,s,q(f30) + wWp s,q(9,0).
b<ini<t |7 Al

So K can be covered by a finite number of balls with radius 3¢ for || ||,,s.4-
Finally by Prohorov theorem and usual techniques (see for instance Billingsley |1,

p. 55] for analogous result in C0, 1]), we obtain a tightness criterion in By?[0, 1] with
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i) Ve >0, limsup P{wp s 4(&n,a) > e} =0,

a—Un>1
instead of i7). A standard argument allows to change the sup into a lim sup to obtain
i1). O
Remark. Condition ii’) is necessary for the tightness of (&,)n>1.

Proof. Indeed by monotony, it suffices to prove that if (&,),>1 is tight, then for every
positive €,

lim sup IP{wp, s 4(&n, 1/1) > €} = 0.

l—0oop>1
As p,q < oo, we have wy s 4(f,1/1) — 0 for any f € Bp?[0,1] by dominated conver-

gence. So the sequence of closed sets

Fj = {f € B0, 1]; wpsq(f,1/1) > 5}

decreases to the empty set when [ increases to infinity. Now the result follows from
the relative compactness of the sequence of distributions IP£,!, see e.g. [19, Lem. 1

p. 206]. O

The following integration by parts formulas for covariances are basic tools through-

out the paper. For notational simplicity, let us write for random variables X, Y.
H(u,v) = Cov(1(X < u),1(Y <)) = Cov(L(X > u),1(Y >v)).

Similarly we write H;; when X and Y are replaced by X;, X; respectively in the

above formula.

Lemma 9. If X and Y are square integrable random variables, then
Cov(X,Y) = H(z,y)dzdy. (24)
R2

For the proof, we refer to [8], see also [22| for an interesting generalization.
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Lemma 10. Let f be a complex valued function defined on R? with second order
partial derivatives continuous and bounded on R%. Let X and Y be square integrable

random variables. Then
0% f
r2 Oudv

/]R? f(x,y)(Pxy — Px ® Py)(dz, dy) = (u,v)H (u,v) dudwv.

A detailed proof can be found for instance in [18]. The adaptation of these results
to the case of random vectors (X, YY) whose distribution is supported by [0, 1]% instead
of R? is straightforward.

The three following lemmas involve the coefficients 2/3 — IEmax(X,Y’) used in
Section 2. Since the full strength of the association property is not required for
their proofs, we prefer to state them in the more general framework of positive quad-
rant dependence. Recall that the sequence (X,,) is said pairwise positive quadrant

dependent (pairwise PQD) if, given any reals s, ¢, for i # 7,
H@j(S,i) > 0.

Lemma 11. For each random vector (X,Y') with uniform marginals on [0, 1],

1 2 1/1
Emin(X,Y) - 5 = — Emax(X,Y) = §(§ ~E|X —Y|). (25)

If (X,Y) is PQD, all these quantities are non negative.
Proof. The proof relies on integral representations of IEmin(X,Y) —1/3 and 2/3 —
IE max(X,Y) which give also the sign of these quantities when (X,Y’) is PQD. Re-

calling (5), we have

9 1
g—IEmaX(X,Y) = / H(t,t)dt
0

= /1 Cov(1(X > 1),1(Y > t)dt
0

= /1{P(min(X,Y) > t) - P(X > t)2}dt
0

1
= Emin(X,Y) - 3
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it now suffices to write:

~—

To obtain the last equality in (25

2 1/2 1
§—IEmax(X,Y) = 5(5—IEmax(X,Y)+IEmin(X,Y)—§>
1,1
= 55w -vI).

O]

Lemma 12. Let (Xi, k € Z) be a stationary and pairwise PQD sequence of random

variables with Xy, uniformly [0, 1] distributed. Then

0< Y Cov(Xo, Xy) < Z(% ~ Emax(Xp, Xi) ).
kEZ kEZ

Proof. Integrating on [0, 1]? the relation

Bt = 3 (1- Ym0,

|k|<n
gives

Eéy(s)éa(t)dsdt = 3 (1 - fL‘) Cov(Xo, Xy).

2
[071] |k|<n

On the other hand, by Fubini’s theorem and comparison of norms we have

2
[0’1]21135”(3)5” t)dsdt = (/ €n(s s> gIE/Olgn(sVds

Now it follows from (27) that

1 ) B _E
/OIEﬁn(s) ds = Z 1 /Hokss

|k|<n

= 3 (1) - mma ).

|k|<n

(26)

(27)

(28)

(29)

(30)

Under pairwise PQD, Cov(Xy, Xj) and 2/3 — IE max(Xy, X)) are non negative, so

(28), (29) and (30) give for every n > 1:

0< > ( ) Cov(Xo, X3) < ) (1 fb‘) (g - EmaX(XO>Xk))

|k|<n |kl<n

The conclusion follows by letting n increase to infinity in (31).

22
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Lemma 13. Let § € [0,1]. If (X,Y) is a positively quadrant dependent vector with

marginals uniform on [0,1], then

2 5 2 8
0% 5o~ Emax(X,v)’ < 5(5 — Emax(X, Y)) . (32)

Proof. When 3 =0 or § = 1, it is obvious. Assume 3 € (0,1). Observe first that
0 < H(u,u) < u. By integrating by parts, then by Jensen inequality we obtain
successively:

9 1
— = —Emax(X,Y)’ = / (P(X <u,Y <u)— u2)ﬂu”871 du
f+2 0

1
= /H(u,u)ﬁﬂuﬁlH(u,u)lﬁdu
0

IN

ﬂ/l(]P(X Su,Yﬁu)—uQ)ﬁdu
0
B

IA

B</01(1P(X <u,Y <u)—ud) du)

= ﬁ(; — [Emax (X, Y))ﬁ.

O]

Lemma 14. Let § € (0,1]. If (X,Y) is a positively quadrant dependent vector with
marginals uniform on [0,1], then there exists a constant C' = C(3) such that:

2
(B+1)(B+2)

Proof. Let Z be a uniform [0, 1] distributed random variable, independent of X. An

E|X-Y]® - < CCovP?(X,Y). (33)

elementary conputation gives

2

I _ 7|18
CES RS B

Consider the function
lul?,  when |u| > ¢

ge(u) =
fe(uw), when |u| <e,
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with
= {(Z-5)(2) (- P -2 2)

The function g, is of class C? with a second derivative bounded and continuous on

R. It is easy to see that
sup |:(u)] < (1+ g)sﬁ,
so that ‘|u!ﬁ — gg(u)‘ < 5¢7/2. Hence, the left hand side of (33) differs from
[Ege(X -Y) -Eg(X -2)| = A
no more than by 5¢%. We estimate A. by Lemma 10. As [|g” o = B(1 — 8)eP~2,
A, < B(1—p3)eP2 o H(s,t)dsdt = (1 — B)e’ 2 Cov(X,Y).

Using ¢ = /Cov(X,Y), inequality (33) is achieved. O
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