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Abstract. Let (εi)i∈Z be i.i.d. random elements in the separable Banach space E and (ai)i∈Z be continuous linear
operators from E to the Banach space F, such that

∑
i∈Z ‖ai‖ is finite. We prove that the linear process (Xn)n∈Z defined

by Xn :=
∑

i∈Z ai(εn−i) inherits from (εi)i∈Z the central limit theorem as well as functional central limit theorems in
various Banach spaces of F valued functions, including Hölder spaces.
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1 INTRODUCTION

Linear process (
∑

j∈Z ajεk−j , k ∈ Z), where the innovations εi are random variables is an intensively studied
model in statistics. In the context of the recent and quick expansion of the field of functional data analysis, it
seems useful to consider extensions of this model to the case where the innovations are random elements in
an infinite dimensional space, replacing then the coefficients aj by linear operators. This paper is devoted to
the study of central limit theorems and functional central limit theorems for such Banach space valued linear
processes. To avoid measurability complications, all the Banach space considered in this paper are supposed
to be separable. For a Banach space E with a norm ‖ · ‖, E′ denotes its topological dual. The notations E,
F, . . . with indexes or without are reserved for Banach spaces. We write L(E, F) for the space of bounded
linear operators a : E → F endowed with the norm ‖a‖ = sup‖x‖≤1 ‖a(x)‖. For a ∈ L(E, F), a∗ denotes its
conjugate.

We study a stationary linear process

Xk =
∑
j∈Z

aj(εk−j), k ∈ Z, (1.1)

where (εk, k ∈ Z) are E-valued innovations and (ak, k ∈ Z) ⊂ L(E, F) is a set of bounded linear oper-
ators called linear filter. When for each k ∈ Z, the series (1.1) converge a.s. in the norm topology of F,
(Xk, k ∈ Z) constitutes a set of F-valued random elements. A recent reference for Banach space valued
linear processes is Bosq [4]. Roughly speaking our aim is to obtain a way to transfer some functional con-
vergence of partial sum process built on the innovations to a similar result (with the same normalisation)
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for the partial sum process built on the linear process. A motivating work for this problem is the paper
by Phillips and Solo [13], where it is established that the validity of the purely algebraic Beveridge-Nelson
decomposition of the linear filter into long-run and transistory components preserves the limit behavior of
innovations for the corresponding linear process. Moreover in this paper, a large class of real valued inno-
vations including independent identically distributed random variables and a class of martingale differences
is considered. Also a wide spectrum of limit results including strong law of large numbers, law of iterated
logarithm, central limit theorem and invariance principles is presented.

We consider functional limit behavior for innovations that can be formulated as follows. Let {(ξ(ε)
n (t), t ∈

[0, 1]), n ∈ N}, be a sequence of stochastic processes constructed from partial sums of innovations ε =
(εk, k ∈ Z) (polygonal line process). Next we choose a suitable separable Banach space of E-valued func-
tions, say F(E) as paths space for (ξn(t), t ∈ [0, 1]), n ∈ N and assume that the sequence (ξ(ε)

n ) converges
in distribution in this space. We define the corresponding partial sum process ξ

(X)
n just by substituting the

εk’s by the Xk’s in the definition of ξ
(ε)
n and consider ξ

(X)
n as a random element in some separable function

space F(F) corresponding to F(E). To be more precise, the norm endowing F(F) is obtained by substitut-
ing ‖ ‖F to ‖ ‖E whenever this one appears in the definition of the norm endowing F(E). This can be done
e.g. with the Lp spaces, spaces of continuous functions, spaces of Hölderian functions, . . .

Now the question is: Assuming that ε = (εk, k ∈ Z) is any sequence of random elements from a given
class and that b−1

n ξ
(ε)
n converges in distribution inF(E), under what conditions on the linear filter (ak, k ∈ Z),

does b−1
n ξ

(X)
n converges in distribution in F(F) ? In case of positive answer, we shall say that the linear

process (Xk, k ∈ Z) “inherits” its functional limit behavior from the innovations (εk, k ∈ Z). Examples
of paths spaces F(E) considered in this paper include Hölder spaces Ho

ρ(E) (precise definitions of these
spaces are given in subsequent sections) as well as more classical function spaces such as the space C(E) of
continuous functions with values in E. Our main result (Th.4 below) establishes that under some restrictions
on the space F(E), the condition ∑

k

‖ak‖ < ∞, (1.2)

is sufficient for the linear process (Xk, k ∈ Z) to inherit functional limit behavior from independent identi-
cally distributed innovations (εk, k ∈ Z).

Beyond the theoretical interest, there is also some practical motivation for investigating functional limit
theorems in non classical paths spaces like Hölder ones. For instance some test statistics based on Hölder
norms of partial sum process were recently shown to be very useful in the problem of detecting short
epidemic changes [17, 18].

A recent survey of functional central limit theorems in C[0, 1] or D[0, 1] for linear processes may be
found in [11]. The central limit theorem for Hilbert space valued linear processes was studied in 1997 by
Merlevède, Peligrad and Utev [10] in the case of i.i.d. innovations. This was completed in 2003 by Dedecker
and Merlevède [5] who obtained a conditional CLT and FCLT for Hilbert space valued linear processes built
on strictly stationary sequences of innovations. The first Hölderian FCLT for linear processes are given
in [7] where the innovations are real valued. Depending on the rate of convergence of the series of the filter
coefficients, the linear processes obtained has short or long memory and the limiting processes is either
standard or fractional Brownian motion. The first Hölderian FCLT for Hilbert space valued linear processes
appears in [14].

The paper is organized as follows. In Section 2 we present a key lemma which is in a sense an analogue
to Beveridge-Nelson decomposition. In section 3 we give some central limit like theorems for Banach space
valued linear processes. In section 4, the convergence of partial sum processes is investigated for a class of
abstract Banach function spaces with applications to some classical function spaces.

Throughout the paper a lot of various norms are used. We shall often take the freedom to denote them
simply by ‖x‖, if the context is clear enough to dispel doubts on the precise meaning. This way, various
occurences of the notation ‖ ‖ in the same formula may have different meanings.
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2 BASIC AUXILIARY RESULT

The following key lemma is essentially an adaptation of Lemma 1 of Peligrad and Utev [12]. For our aim
and for possible future applications to random fields it is convenient to state it in the setting of summable
collections of vectors indexed by an infinite set I . We recall here the basic facts about such a summability
theory and refer to L. Schwartz [19, Chap. XIV] for more information. A collection (xi, i ∈ I) of elements
in the normed vector space (V, ‖ ‖) is said to be summable in V with sum S if, for every ε > 0, there exists
a finite set J ⊂ I such that for every finite set K ⊂ I containing J , ‖SK − S‖ < ε, where SK :=

∑
i∈K xi.

When it exists, such a S is unique and one define
∑

i∈I xi := S. If (xi, i ∈ I) is summable, the set I ′ of
indexes i ∈ I for which xi 6= 0 is at most countable (so we could restrict without loss of generality to the
case where I is countable, but this provide no real simplification in fact). In the special case where V = R
and the xi’s are non negative real numbers, (xi, i ∈ I) is summable if and only if M < ∞, where M is
the supremum of the SK’s over all finite subsets K of I; in this case S = M . Note that we can always
define

∑
i∈I xi as the supremum M , finite or not, in the case of non negative xi’s. When the vector space

(V, ‖ ‖) is complete, the summability of (‖xi‖, i ∈ I) in R implies the summability of (xi, i ∈ I) in the
space (V, ‖ ‖).

Lemma 1. Let E1 and E2 be two separable Banach spaces and let (ai)i∈I be a collection of continuous linear
operators ai : E1 → E2, satisfying for some 0 < p ≤ 1∑

i∈I

‖ai‖p < ∞. (2.1)

Then (ai)i∈I is summable in L(E1, E2) and

A :=
∑
i∈I

ai (2.2)

defines a continuous linear operator E1 → E2.
Let (Ω,A, P ) be a probability space and assume that (Un,i, n ∈ N, i ∈ I) is a collection of random

elements Ω → E1 satisfying

sup
n∈N,i∈I

E ‖Un,i‖p < ∞, (2.3)

with the same p as in (2.1). Then one can define for n ∈ N a random element Yn : Ω → E2 such that

Yn =
∑
i∈I

ai(Un,i) almost surely. (2.4)

Assume moreover that for every fixed i, j in I ,

‖Un,i − Un,j‖
Pr−−−→

n→∞
0. (2.5)

Then for every index e ∈ I , the following convergence

‖Yn −A(Un,e)‖
Pr−−−→

n→∞
0 (2.6)

holds.

Proof. As 0 < p ≤ 1, (2.1) gives
∑

i∈I‖ai‖ < ∞ which entails the summability of (ai)i∈I in L(E1, E2)
and justifies the definition of A. Moreover, the set I ′ of indexes i ∈ I for which ai 6= 0 is at most countable,
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so all the sums over I involving the ai’s in this proof are reduced to sums over I ′, avoiding measurability
concerns.

We legitimate the existence of Yn by noting that from (2.1) and (2.3), for 0 < p ≤ 1,

E
∑
i∈I

‖ai‖p‖Un,i‖p =
∑
i∈I

‖ai‖pE ‖Un,i‖p < ∞,

whence
∑

i∈I‖ai‖p‖Un,i‖p as well as
∑

i∈I‖ai‖‖Un,i‖ are almost surely finite, so
∑

i∈I ai(Un,i) is almost
surely convergent in E2.

Now let us prove the convergence to zero of Pn,ε := P (‖Yn − AUn,e‖ > ε) for arbitrary ε > 0. Once
fixed such an ε, the summability of

∑
i∈I‖ai‖p combined with (2.3) provides for any positive δ a finite

subset K of I , such that for every n ≥ 1,∑
i∈I\K

‖ai‖pE ‖Un,i − Un,e‖p < δεp.

Starting from the splitting

Yn −AUn,e =
∑
i∈I

ai(Un,i − Un,e) =
∑

i∈I\K
ai(Un,i − Un,e) +

∑
i∈K

ai(Un,i − Un,e),

we easily obtain

Pn,ε ≤
2p

εp

∑
i∈I\K

‖ai‖pE ‖Un,i − Un,e‖p + P

(∑
i∈K

‖ai‖p‖Un,i − Un,e‖p >
εp

2p

)

≤ 2pδ + P

(∑
i∈K

‖ai‖p max
j∈K

‖Un,j − Un,e‖p >
εp

2p

)

≤ 2pδ +
∑
j∈K

P

(
‖Un,j − Un,e‖ >

ε

21/pτ

)
,

where we put τp :=
∑

i∈I‖ai‖p, recalling that τ > 0. Now from (2.5) and the finiteness of K we obtain :

lim sup
n→∞

Pn,ε ≤ 2pδ.

As this limsup does not depend on the arbitrary positive δ, it is in fact a null limit, which was to be
proved.

3 LIMIT THEOREMS FOR SUMS

We discuss now the asymptotic distributional behavior of sums of Banach space valued linear processes.
Proposition 1 below provides the general scheme leading to central limit theorem or convergence to α-
stable distribution.

Consider innovations (εk, k ∈ Z) consisting of random elements with values in a separable Banach
space E and corresponding linear processes (Xk, k ∈ Z) defined by (1.1) where (ak, k ∈ Z) ⊂ L(E, F),
the Banach space F being also separable. For p > 0, we shall write (ak, k ∈ Z) ∈ `p(E, F) provided∑

k∈Z
‖ak‖p < ∞. (3.1)



Banach space valued linear processes 5

As already observed above, the membership of (ak, k ∈ Z) in `p(E, F) with 0 < p ≤ 1 yields the
convergence in L(E, F) of

∑
k∈Z ak, legitimating the definition of the operator

A :=
∑
k∈Z

ak (3.2)

as an element of L(E, F).
By the argument already used at the begining of Lemma’s 1 proof, a sufficient condition on the

innovations for the existence of the linear process (Xk, k ∈ Z) associated to a filter in `p(E, F) is that

sup
j∈Z

E ‖εj‖p < ∞. (3.3)

In what follows, we put for k ≤ l,

S
(X)
k,l :=

l∑
i=k

Xi, S
(ε)
k,l :=

l∑
i=k

εi

and abbreviate S
(X)
1,n in S

(X)
n , S

(ε)
1,n in S

(ε)
n for n ≥ 1. We also set S

(ε)
0 = S

(X)
0 = 0.

Let Ista(E) be the set of stationary Z-indexed sequences of E-valued innovations (εk, k ∈ Z) and let
I iid(E) denotes its subset of sequences of independent identically distributed innovations.

Proposition 1. Assume that (εk, k ∈ Z) ∈ Ista(E) and (ak, k ∈ Z) ∈ `p(E, F) for some p ∈ (0, 1]. If for a
norming sequence of positive numbers (bn, n ≥ 1) going to infinity and a centering sequence (cn, n ≥ 1) ⊂ E
one has

b−1
n S(ε)

n − cn
E−−−→

n→∞
Y (3.4)

and

sup
n

E ‖b−1
n S(ε)

n ‖p < ∞, (3.5)

then the linear process (Xk, k ∈ Z) defined by (1.1) satisfies

b−1
n S(X)

n −A(cn) F−−−→
n→∞

A(Y ).

Proof. It follows from (3.5) that E ‖ε1‖p < ∞. By stationarity (3.3) is hence satisfied, which insures
here the existence of the linear process (Xk, k ∈ Z). The continuity of A and continuous mapping
theorem provides the following convergence in distribution:

A
(
b−1
n S(ε)

n − cn
) F−−−→

n→∞
A(Y ).

Now writing

b−1
n S(X)

n −A(cn) =
∑
i∈Z

ai
(
b−1
n S

(ε)
1−i,n−i

)
−A(cn)

= Rn + A
(
b−1
n S(ε)

n − cn
)
,

where

Rn =
∑
i∈Z

ai
(
b−1
n S

(ε)
1−i,n−i

)
−A

(
b−1
n S(ε)

n

)
Lith. Math. J., X(x), 20xx, December 4, 2009,Author’s Version.
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and using the extension to Banach space of Slutsky lemma (see Th.4.1 in [2]), we just have to check that
Rn converges in probability to zero.

To this end we apply Lemma 1 with E1 = E, E2 = F, Un,i = b−1
n S

(ε)
1−i,n−i. The assumption (2.3) is

satisfied in view of (3.5) and the stationarity of
(
S

(ε)
1−i,n−i

)
i∈Z. The elementary estimate

E
∥∥b−1

n S
(ε)
1−i,n−i − b−1

n S
(ε)
1−j,n−j

∥∥p ≤ 2|j − i|E ‖ε1‖p

bp
n

enables us to check (2.5) and to complete the proof.

For a random element Y in a separable Banach space E such that for every f ∈ E′, E 〈f, Y 〉 = 0
and E 〈f, Y 〉2 < ∞ its covariance operator Q = Q(Y ) is the linear bounded operator from E′ to E
defined by Qf = E (〈f, Y 〉Y ), f ∈ E′. A random element Y ∈ E (or covariance operator Q) is said to
be pregaussian if there exists a mean zero Gaussian random element G ∈ E with the same covariance
operator as Y , i.e. for all f, g ∈ E′, E 〈f, Y 〉〈g, Y 〉 = E 〈f,G〉〈g,G〉. Since the distribution of a centered
Gaussian random element is defined by its covariance structure, we denote by GQ a zero mean Gaussian
random element with covariance operator Q.

Following the terminology adopted in [9], a random element Y in E is said to satisfy the central limit
theorem in E (denoted Y ∈ CLT(E)) if the sequence n−1/2(Y1+ · · ·+Yn), n ≥ 1 converges in distribution
in E, where the Yi’s, are independent copies of Y .

It is well-known that the central limit theorem in E is not a direct extension of the finite dimensional
case. Depending on the geometry of the space E, one can even find some bounded random element ε1
which does not satisfies the central limit theorem, see e.g. [9]. So in the general case, no integrability
condition on ε1 will ensure that ε1 satisfies the central limit theorem in E. In so called type 2 spaces
(e.g., any Hilbert space, Lp with p ≥ 2) E ‖Y ‖2 < ∞ implies Y ∈ CLT(E).

If Y ∈ CLT(E), then (see Ledoux and Talagrand [9]) Y is necessarily pregaussian; the limit G is a
Gaussian random element in E with the same covariance structure as Y ; Y has mean zero and satisfy

lim
t→∞

t2P (‖Y ‖ > t) = 0, (3.6)

in particular E ‖Y ‖p < ∞ for every 0 < p < 2. Moreover for every 0 < p < 2,

sup
n≥1

E ‖n−1/2(Y1 + · · ·+ Yn)‖p < ∞. (3.7)

Next we prove that independent on the geometry of the Banach space E, any linear filter (ai, i ∈ Z) ∈
`1(E, F) generates linear processes inheriting central limit property from i.i.d. innovations.

Theorem 1. Assume that (εk, k ∈ Z) ∈ I iid and (ak, k ∈ Z) ∈ `1(E, F). Then

n−1/2(ε1 + · · ·+ εn) E−−−→
n→∞

Gε (3.8)

yields

n−1/2(X1 + · · ·+ Xn) F−−−→
n→∞

GX . (3.9)

Moreover Gε and GX are mean zero Gaussian random elements with covariances respectively Q(ε1) and
AQ(ε1)A∗.
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Proof. The convergence (3.9) follows from proposition 1 since condition (3.5) is satisfied by (3.7). As
discussed above the random element Gε in (3.8) is necessarily Gaussian and its covariance operator is
Q(Gε) = Q(ε1). As A is also linear, A(Gε) is a Gaussian random element in F. It is classical to check
that covariance operator of A(X) is AQ(ε1)A∗.

An example provided by Merlevède, Peligrad and Utev [10] shows also, that the condition (ak, k ∈
Z) ∈ `1(E, F) cannot be relaxed. They constructed an example of i.i.d. innovations (εk, k ∈ Z) in a
separable Hilbert space H and a linear filter (ak, k ∈ Z) ⊂ L(H, H) such that ε1 satisfies the central limit
theorem,

∑
k ‖ak‖ = ∞ and n−1/2S

(X)
n is not tight.

Let us remark that, if the space E is of type 2 (respect. of cotype 2) (we refer to Ledoux and
Talagrand [9] for definitions) then E ‖ε1‖2 < ∞ (respect. ε1 is pregaussian) yields the central limit
theorem for innovations and therefore for linear processes (Xk, k ∈ Z) with absolutely summable linear
filters. This was established first by Denis’evskiı̆ [6] for the type 2 case.

Let α ∈ (0, 2]. Let us recall that an E-valued random element Gα is said to be stable with index α

(α-stable for short) if for every n ≥ 1 there exists cn ∈ E such that n−1/α∑n
j=1 Gα,j − cn has the same

distribution as Gα, where Gα,j , j ≥ 1 are independent copies of Gα. We refer to Araujo and Giné [1] for
details concerning stable laws in Banach spaces and their domains of attraction.

Theorem 2. Let 0 < α ≤ 2. Assume that (εk, k ∈ Z) ∈ I iid and (2.1) is satisfied with some p < min{α, 1}.
Then if for a norming sequence (bn) and a centering sequence (cn) ⊂ E it holds

b−1
n (ε1 + · · ·+ εn)− cn

E−−−→
n→∞

Gα (3.10)

we have also

b−1
n (X1 + · · ·+ Xn)−A(cn) F−−−→

n→∞
A(Gα). (3.11)

Proof. The convergence (3.11) follows from proposition 1 since the condition (3.5) can be easily
checked in the same way as in one dimensional case (see Araujo and Giné [1], Ex.9, Ch.2, Sec.6).
Note in passing that necessarily in (3.10), E ‖ε1‖p is finite and bn goes to infinity.

4 FUNCTIONAL LIMIT THEOREMS

Consider E-valued innovations (εk, k ∈ Z) and corresponding linear processes (Xk, k ∈ Z) defined by
(1.1) where (ak, k ∈ Z) ⊂ L(E, F). In this section, we use polygonal partial sum processes built on the
sequence (εk, k ∈ Z) or on (Xk, k ∈ Z), represented by the following formula defining the partial sum
processes ξ

(ε)
n , n ≥ 1, the processes ξ

(X)
n being defined similarly just substituting the εi’s by the Xi’s :

ξ(ε)
n (t) =

n∑
i=1

εien,i(t), t ∈ [0, 1] (4.1)

where the function en,i is defined on R by

en,i(t) =


0 if t < (i− 1)/n

tn− (i− 1) if (i− 1)/n ≤ t ≤ i/n

1 if t > i/n.

For a reason which will be clarified later, we complete these definitions by putting en,n+1(t) := en,n(t−
1/n), t ∈ R.

Lith. Math. J., X(x), 20xx, December 4, 2009,Author’s Version.
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4.1 General result

For the functional central limit theorems we have in view, the above defined partial sum processes will
be considered as random elements of some function spaces F(G), where G = E for the partial sums
processes built on the εi’s and G = F for those built on the Xi’s. We assume that F(G) is a separable
Banach space of functions f : [0, 1] → G when endowed with the norm ‖f‖F(G). Let us agree here
that the formal definition of the norms ‖f‖F(E) and ‖f‖F(F) are the same up to the substitution of ‖ ‖E
by ‖ ‖F whenever it appears in the definition of ‖f‖F(E). Well known examples of such situation are
the spaces of G-valued continuous function or the spaces of G-valued Hölderian functions built on some
given weight function ρ (see the definition in subsection 4.2.2). All the assumptions made on functions
spaces in this section are stated for F(E) because they appear naturally on this form when trying to
establish our results. Note still that they implicitly induce some restrictions on F(F) due to the above
assumption on the definition of the norms ‖f‖F(E) and ‖f‖F(F).

To insure the membership of ξ
(ε)
n and ξ

(X)
n in the relevant function space F(G) for each n ≥ 1, let

us assume once for all and without further mention that

(A0) the space F(E) contains functions f = eg where e ∈ E and g : [0, 1] → R is any polygonal
function.

Let us note that both versions imply that F(E) contain the constant functions t 7→ e where e is any
fixed element in E. At some places we shall need also the following property.

(A1) There is a constant c1 such that for every constant function e : [0, 1] → E, t 7→ e,

‖e‖E ≤ c1‖e‖F(E).

Now we can ask the following question where (bn)n≥1 is a norming sequence of positive real
numbers.

If
(
b−1
n ξ

(ε)
n
)
n≥1

converge in distribution in F(E), under what conditions does
(
b−1
n ξ

(X)
n
)
n≥1

converge in dis-
tribution in F(F)?

To deal with the filter (ai, i ∈ Z), we shall need the following assumption.

(A2) There is a constant c2 such that for every a ∈ L(E, F) and every f ∈ F(E),

‖a ◦ f‖F(F) ≤ c2‖a‖ · ‖f‖F(E).

Before stating other properties of the function space F(E) involved in this investigation, it is conve-
nient to introduce some definitions.

For any h ∈ (−1, 1) and any function f : [0, 1] → E, define the pseudo-translation Thf : [0, 1] → E
of f by

Thf(t) :=


f(0) if t + h < 0
f(t + h) if 0 ≤ t + h ≤ 1
f(1) if t + h > 1.

For any interval [u, v] ⊂ [0, 1] and any function f : [0, 1] → E, define the pseudo-restriction of f on
the interval [u, v], denoted Rv

uf , by

(
Rv

uf
)
(t) :=


f(u) if t < u

f(t) if u ≤ t ≤ v

f(v) if t > v.
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(A3) F(E) contains all the pseudo-translations of its elements and satisfies for some constant c3,

‖Thf‖F(E) ≤ c3‖f‖F(E), h ∈ (−1, 1), f ∈ F(E).

(A4) F(E) contains all the pseudo-restrictions of its elements and satisfies for some constant c4,

‖Rv
uf‖F(E) ≤ c4‖f‖F(E), 0 ≤ u ≤ v ≤ 1, f ∈ F(E).

It is worth noticing that the special case u = v = s in (A4) provides the control by ‖f‖F(E) of the
pointwise evaluations δsf = f(s) considered as constant functions :

‖δsf‖F(E) ≤ c4‖f‖F(E), s ∈ [0, 1], f ∈ F(E). (4.2)

Combined with (A1), this gives

‖f(s)‖E ≤ c1c4‖f‖F(E), s ∈ [0, 1], f ∈ F(E). (4.3)

With this property the weak convergence in F(E) implies the convergence of finite dimensional distri-
butions.

Properties (A3) and (A4) may be expressed in term of operators by saying that pseudo-translations
Th and pseudo-restrictions Rv

u map F(E) into itself and that the families of pseudo restrictions,
pseudo-translations, viewed as families of linear operators are equicontinuous (or equivalently uniformly
bounded for the relevant operator norm). When (4.2) is satisfied, this equicontinuity holds also for the
family of pointwise evaluations. Among classical spaces of E-valued function sharing these properties,
we can mention the space of continuous functions as well as the Hölder spaces.

Theorem 3. Let the innovations (εk, k ∈ Z) belong to Ista(E) and suppose that for some 0 < p ≤ 1, (3.1)
is satisfied and E ‖ε1‖p is finite. Assume that for some normalizing sequence (bn)n≥1 going to infinity the
following convergence holds

b−1
n ξ(ε)

n
F(E)−−−−→
n→∞

Y, (4.4)

together with

sup
n≥1

E ‖b−1
n ξ(ε)

n ‖p
F(E) < ∞. (4.5)

Futhermore let the function space F(E) possess the properties (A2), (4.2), (A3) and be such that for each
i ≥ 1 and any x ∈ E

‖xen,i‖F(E) = ‖x‖o(bn). (4.6)

Assume finally that the distribution of the limiting process Y is supported by some subspace V of F(E) on
which the pseudo-translations operate continuously, which means

lim
h→0

‖Thf − f‖F(E) = 0, f ∈ V. (4.7)

Then

ξ(X)
n

F(F)−−−−→
n→∞

AY, (4.8)

where A is the operator defined by (3.2).
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Proof. In view of (3.1), we can write for every t ∈ [0, 1] the expansion

ξ(X)
n (t) =

n∑
k=1

Xken,k(t) =
n∑

k=1

∑
i∈Z

ai(εk−i)en,k(t)

=
∑
i∈Z

ai

(
n∑

k=1

εk−ien,k(t)

)
,

which leads naturally to introduce the partial sum processes

ξ
(ε)
n,i(t) :=

n∑
k=1

εk−ien,k, t ∈ [0, 1], i ∈ Z, n ≥ 1.

Then the above pointwise expansion can be rewriten under the functional form

b−1
n ξ(X)

n =
∑
i∈Z

ãi
(
b−1
n ξ

(ε)
n,i

)
, (4.9)

where for each i ∈ Z, ãi is an operator mapping F(E) to F(F) defined by

ãif = ai ◦ f, f ∈ F(E).

A priori the series of functions (4.9) converges pointwise on [0, 1], but this convergence holds also in
the norm topology of F(F), which is usually stronger than the pointwise convergence, at least when
(4.3) is satisfied with F(F) instead of F(E). Indeed according to (A2) we have ‖ãi‖ ≤ c2‖ai‖ for
each i ∈ Z, so the convergence of the series (4.9) holds almost surely in F(E) due to (3.1) and subject
to

sup
n≥1,i∈Z

E ‖b−1
n ξ

(ε)
n,i‖

p
F(E) < ∞, (4.10)

which in turn follows from the assumption (4.5) by stationarity.
Now, on the ground of the functional representation (4.9), we are in a position to prove the

convergence (4.8) for (b−1
n ξ

(X)
n ) through Slutsky’s lemma in F(F) and Lemma 1 applied with E1 =

F(E), E2 = F(F), with the ai’s substituted by the ãi’s and with Un,i = b−1
n ξ

(ε)
n,i.

In view of (4.10), it only remains to check condition (2.5) of Lemma 1, which via an obvious
chaining argument is reduced here in proving that for arbitrarily fixed i,

b−1
n ‖ξ(ε)

n,i − ξ
(ε)
n,i+1‖F(E)

Pr−−−→
n→∞

0. (4.11)

By stationarity, we can as well take i = 0. Now we have

ξ
(ε)
n,0 − ξ

(ε)
n,1 =

n−1∑
k=1

εk(en,k − en,k+1)− ε0en,1 + εnen,n.

Observing that for every t ∈ [0, 1], en,k+1(t + n−1) = en,k(t) and en,n+1(t) = 0, we can recast the
above equality as

ξ
(ε)
n,0 − ξ

(ε)
n,1 = ∆−1/n(ξ(ε)

n )− εoen,1,
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where ∆hf := Thf − f . It follows by (4.6) that

‖ξ(ε)
n,0 − ξ

(ε)
n,1‖F(E) ≤ ‖ε0‖ · o(bn) + ω1/n(ξ(ε)

n ),

where for every 0 < δ < 1 the functional ωδ is defined by

ωδ(f) = sup
|h|≤δ

‖∆hf‖F(E), f ∈ F(E).

At this stage, it only remains to prove the convergence in probability to zero of b−1
n ω1/n(ξ(ε)

n ).
As the functional ωδ is clearly subadditive on F(E), it satisfies |ωδ(f) − ωδ(g)| ≤ ωδ(f − g) ≤
(1 + c3)‖f − g‖F(E), using (A3). Hence ωδ is a continuous functional on F(E). From this and the
convergence assumption (4.4), we deduce that for arbitrary positive δ and τ

lim sup
n→∞

P (b−1
n ω1/n(ξ(ε)

n ) ≥ τ) ≤ lim sup
n→∞

P (b−1
n ωδ(ξ(ε)

n ) ≥ τ) ≤ P (ωδ(Y ) ≥ τ).

By (4.7), the last probability tends to zero with δ, so the proof is complete.

The weak convergence of (b−1
n ξ

(ε)
n ) in F(E) implies its tightness and also the weaker property

of stochastic boundedness in F(E). Let us recall here that a sequence (ζn)n≥1 of random elements
in some vector space (B, ‖ ‖B) is said stochastically bounded if supn≥1 P (‖ζn‖B > r) goes to zero
when r goes to infinity. When the innovations are i.i.d., it is possible to relax the assumptions on
the sequence (b−1

n ξ
(ε)
n ) in Theorem 3 by proving that its stochastic boundedness in F(E) implies (4.5).

That is the aim of Proposition 2 where we restrict to the normalizing sequence b
1/α
n `(n), 0 < α ≤ 2,

with ` slowly varying. To motivate this choice, let us observe that if F(E) satisfies (A1), the
F(E) convergence (4.4) implies the weak convergence in E of b−1

n ξ
(ε)
n (1) = b−1

n S
(ε)
n to Y (1) and that

normalizing constants bn are necessarily of the above form in such a convergence for i.i.d. εi’s. Let us
recall here that any positive slowly varying function ` admits a representation:

`(t) = κ(t) exp
( ∫ t

1
ε(s)

ds

s

)
, (4.12)

where κ(t) tends to c > 0 and ε(t) tends to zero as t tends to infinity.

Proposition 2. Assume that the innovations (εi, i ∈ Z) are i.i.d. and that the function space F(E) satisfies
(A4) and

(A5) there is some positive constant c5 such that for every g ∈ F(E) and every 0 ≤ u < v ≤ 1, putting
f(t) = g(u + (v − u)t), 0 ≤ t ≤ 1, the function f belongs to F(E) and satisfies

‖f‖F(E) ≤ c5‖Rv
ug‖F(E).

For 0 < α ≤ 2, let b
1/α
n `(n) with ` slowly varying. If the sequence (b−1

n ξ
(ε)
n , n ≥ 1) is stochastically bounded

in the space F(E) then for 0 < p < α,

sup
n≥1

E ‖b−1
n ξ(ε)

n ‖p
F < ∞. (4.13)

Lith. Math. J., X(x), 20xx, December 4, 2009,Author’s Version.
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Proof. For any integers m, n ≥ 1, let us decompose the process ξ
(ε)
mn as

ξ(ε)
nm =

m∑
k=1

(
Rsk

sk−1
ξ(ε)
nm − ξ(ε)

nm(sk−1)
)
, sk =

k

m
,

where the summands are independent random functions in F(E), but not identically distributed (be-
cause the intervals where these random functions are constant are not the same). Denote by ξ

(ε)
n;k,

1 ≤ k ≤ m, the partial sum processes built on the innovations
(
εi, (k − 1)n < i ≤ kn

)
which are i.i.d.

copies of ξ
(ε)
n = ξ

(ε)
n;1. Using (A5) together with the invariance of E-valued constant functions by the

linear operators of pseudo-restriction gives

‖ξ(ε)
n;k‖F(E) ≤ c5

∥∥∥Rsk
sk−1

ξ(ε)
nm − ξ(ε)

nm(sk−1)
∥∥∥
F(E)

, k = 1, . . . ,m,

from which we deduce that

max
1≤k≤m

‖ξ(ε)
n;k‖F(E) ≤ c5 max

1≤k≤m

∥∥∥Rsk
sk−1

ξ(ε)
nm − ξ(ε)

nm(sk−1)
∥∥∥
F(E)

≤ 2c5 max
1≤k≤m

∥∥∥ k∑
j=1

(
Rsj

sj−1
ξ(ε)
nm − ξ(ε)

nm(sj−1)
)∥∥∥

F(E)
.

Observing that
m∑

j=k+1

(
Rsj

sj−1
ξ(ε)
nm − ξ(ε)

nm(sj−1)
)

= R1
sk

ξ(ε)
nm − ξ(ε)

nm(sk)

and applying Ottaviani maximal inequality for the partial sums of independent random elements in the
Banach space F(E), see e.g. Lemma 6.2 p.152 in [9], we obtain

P
(

max
1≤k≤m

‖ξ(ε)
n;k‖F(E) ≥ 4c5u

)
≤

P
(
‖ξ(ε)

nm‖F(E) ≥ u
)

1− max
1≤k<m

P
(
‖R1

sk
ξ(ε)
nm − ξ(ε)

nm(sk)‖F(E) ≥ u
) .

Now recalling that (A4) implies (4.2), we obtain

‖R1
sk

ξ(ε)
nm − ξ(ε)

nm(sk)‖F(E) ≤ 2c4‖ξ(ε)
nm‖F(E),

whence

P
(

max
1≤k≤m

‖ξ(ε)
n;k‖F(E) ≥ 4c5u

)
≤

P
(
‖ξ(ε)

nm‖F(E) ≥ u
)

1− P
(
‖ξ(ε)

nm‖F(E) ≥ u(2c4)−1
) .

Using this last estimate and the stochastic boundedness of (n−1/2ξ
(ε)
n )n≥1 in F(E), we can find a

positive constant c such that

sup
m,n≥1

P
(

max
1≤k≤m

‖b−1
n ξ

(ε)
n;k‖F(E) ≥ c

m1/α`(mn)
`(n)

)
≤ 1− exp(−1). (4.14)
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Here the special choice of the constant 1− exp(−1) is just for convenience, but any 0 < ε < 1 would
suit instead.

From the representation formula (4.12), it is easily seen that with some positive constant c′,

`(mn)
`(n)

≤ c′mδn , m ≥ 1, n ≥ 1,

where δn = supt≥n |ε(t)| goes to 0 as n goes to infinity. Now fixing 0 < p < r < α, there
is an integer n0 depending on r such that for every n ≥ n0, mδn+1/α ≤ m1/r. For n < n0,
using the fact that max1≤n<n0 `(nt) is also slowly varying, one can find a constant c′′ such that
m1/α`(mn)`−1(n) ≤ c′′m1/r for m ≥ 1.

Going back to (4.14) with these estimates, we obtain with a possibly increased constant c:

P
(

max
1≤k≤m

‖b−1
n ξ

(ε)
n;k‖F(E) ≥ cm1/r

)
≤ 1− exp(−1), m ≥ 1, n ≥ 1. (4.15)

Recalling that the ξ
(ε)
n;k, 1 ≤ k ≤ m are i.i.d. copies of ξ

(ε)
n = ξ

(ε)
n;1, (4.15) can be recast after some

elementary work as

P
(
‖b−1

n ξ(ε)
n ‖F(E) ≥ cm1/r

)
≤ 1− exp(−1/m) ≤ 1

m
, m ≥ 1, n ≥ 1.

From this it is easy to see, that trP (‖b−1
n ξn‖F(E) > ct) ≤ 2 for every t ≥ 1, n ≥ 1. A classical

integration by part enables us to bound, E ‖b−1
n ξ

(ε)
n ‖p

F(E) by a constant depending on c, p, r, but not
on n. This yields the result.

Combining Theorem 3 with Proposition 2 gives the following theorem which is the pattern for
all the concrete examples which follow. It seems in order to recall here what we mean by a
E-valued Brownian motion. If ε is a centered pregaussian random element in the Banach space E
with covariance Q(ε), there exists a Gaussian random element G in E with the same covariance.
We denote then by WQ(ε) a E-valued Brownian motion modelled on this covariance structure, i.e. a
centered E-valued Gaussian process with independent increments and such that WQ(ε)(t) − WQ(ε)(s)
has the same distribution as |t − s|1/2G. As the distribution of WQ(εi) depends only on that of εi,
we shall abbreviate in the sequel WQ(εi) in WQ(ε), denoting by ε any random element in E with
the same distribution as the εi’s. We note that if some partial sum process built on i.i.d. innovations
(εi)i≥1 with normalization n1/2 converges weakly to a Gaussian process on some space of E-valued
functions satisfying (4.3), then ε1 ∈ CLT(E), so ε1 is necessarily pregaussian and in particular E ‖ε1‖
is finite.

Theorem 4. For innovations (εk, k ∈ Z) in I iid(E) and a filter (ak, k ∈ Z) in `1(E, F), let us assume that the
following convergence holds

n−1/2ξ(ε)
n

F(E)−−−−→
n→∞

WQε
. (4.16)

If moreover the space F(E) satisfies (A1)–(A5), (4.6) with b
1/2
n and if there exists V such that (4.7) holds with

Y = WQε
, then

n−1/2ξ(X)
n

F(F)−−−−→
n→∞

WAQ(ε)A∗ , (4.17)

where the limiting process WAQ(ε)A∗ is a F valued Brownian motion.
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4.2 Examples

Applying Theorem 4, we obtain functional central limit theorems in some classical function spaces
for linear processes. Let us recall that we consider only separable Banach spaces E, F.

4.2.1 FCLT in the space of continuous functions

We write C(E) for the Banach space of continuous functions f : [0, 1] → E endowed with the
supremum norm

‖f‖∞ := sup
{
‖f(t)‖E; t ∈ [0, 1]

}
. (4.18)

Coupling Theorem 4 with invariance principle due to Kuelbs [8] we obtain the following invariance
principle for partial sum polygonal line processes (ξ(X)

n ).

Theorem 5. Assume that innovations (εi, i ∈ Z) are i.i.d. mean zero E-valued random elements satisfying the
central limit theorem. Then if (ak, k ∈ Z) ∈ `1(E, F) it holds that

n−1/2ξ(X)
n

C(F)−−−→
n→∞

WAQ(ε)A∗ .

Proof. As proved by Kuelbs [8], the assumptions on the innovations yield

n−1/2ξ(ε)
n

C(E)−−−−→
n→∞

WQ(ε).

It is elementary to check the properties (A0)–(A5) for F(E) = C(E). Condition (4.6) is trivially
satisfied since ‖xen,i‖∞ = ‖x‖E does not depend on n. As for (4.7), we can simply choose
V = C(E). Indeed this space inherits its separability from E, supports any E-valued Brownian motion
and since every f ∈ C(E) is uniformly continuous on [0, 1], the translations operate continuously on
C(E). So we conclude by applying Theorem 4.

As far as we know, the above version of FCLT in C(F) for linear processes is new.

4.2.2 FCLT in Hölder spaces

Let ρ be a real valued non decreasing function on [0, 1], null and right continuous at 0, positive on
(0, 1]. Put

ωρ(f, δ) := sup
s,t∈[0,1],
0<t−s<δ

‖f(t)− f(s)‖
ρ(t− s)

.

We associate to ρ the Hölder spaces

Hρ(E) := {f ∈ C(E); ωρ(f, 1) < ∞}

and

Ho
ρ(E) := {f ∈ C(E); lim

δ→0
ωρ(f, δ) = 0},

both equiped with the norm

‖f‖ρ := ‖f(0)‖+ ωρ(f, 1).

To discard triviality, we may assume that ρ(h) ≥ ch for some positive constant c. Then Ho
ρ(E)

contains all the E valued polygonal lines indexed by [0, 1] and inherits the separability of E



Banach space valued linear processes 15

(see [15]). When ρ(h) = hα, 0 < α < 1, the corresponding Hölder spaces Hρ and Ho
ρ will be

denoted simply by Hα and Ho
α. As in [16], we shall restrict our study of the Hölderian FCLT to

the case of weight functions ρ in the class R defined below.

Definition 1. Let R be the class of non decreasing functions ρ : [0, 1] → R, positive on (0, 1], such that
ρ(0) = 0 and satisfying

i) for some 0 < α ≤ 1/2, and some positive function L which is normalized slowly varying at infinity,

ρ(h) = hαL(1/h), 0 < h ≤ 1; (4.19)

ii) θ(t) = t1/2ρ(1/t) is C1 on [1,∞);

iii) there is a β > 1/2 and some a > 1, such that θ(t) ln−β(t) is non decreasing on [a,∞).

We say that a function is ultimately decreasing or increasing or non decreasing or non increasing
if the corresponding monotonicity holds on some interval [c,∞). Let us recall that L(t) is a
positive continuous normalized slowly varying at infinity if and only if it belongs to the Zygmund
class i.e. for every δ > 0, tδL(t) is ultimately increasing and t−δL(t) is ultimately decreasing
(Bojanic and Karamata [3, Th.1.5.5]). It follows that for some 0 < τ ≤ 1, hαL(1/h) is non
decreasing on [0, τ ]. Here we assume for convenience that it is non decreasing on the whole interval
(0, 1]. This is not a real restriction since the Hölder norms generated by ρ(h) and ρ(τh) are easily
seen to be equivalent.

Remark 1. Clearly L(t) ln−β(t) is normalized slowly varying for any β > 0, so when α < 1/2,
t1/2−αL(t) ln−β(t) is ultimately non decreasing and iii) is automatically satisfied.

The assumption ii) of C1 regularity for θ is not a real restriction, since the function ρ(1/t)
being α-regularly varying at infinity is asymptoticaly equivalent to a C∞ α-regularly varying
function ρ̃(1/t) (see [3]). Then the corresponding Hölderian norms are equivalent.

The following proposition is proved in [15].

Proposition 3. For any ρ in R, the space Ho
ρ(E) supports any E-valued Brownian motion WQ.

In what follows, the weight function ρ belongs to R and we recall that

θ(t) = t1/2ρ(1/t), t ≥ 1.

Next we consider partial sum polygonal line processes ξ
(X)
n , n ≥ 1.

Theorem 6. Assume that innovations (εk, k ∈ Z) are i.i.d. and that ε1 ∈ CLT(E). Assume moreover that for
every positive δ,

lim
t→∞

tP
(
‖ε1‖ > δθ(t)

)
= 0. (4.20)

If (ai, i ∈ Z) ∈ `1(E, F) then

n−1/2ξ(X)
n (t)

Ho
ρ(F)

−−−−→
n→∞

WAQ(ε)A∗ . (4.21)

Proof. As proved in [16], the condition ε1 ∈ CLT(E) together with (4.20) gives

n−1/2ξ(ε)
n

Ho
ρ(E)

−−−−→
n→∞

WQ(ε). (4.22)
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This enables us to obtain the convergence (4.21) by checking that the relevant assumptions of
Theorem 4 are satisfied by F(E) = Ho

ρ(E). Condition (A0) is satisfied since ρ(h) ≥ ch for some
positive constant c. Conditions (A1) and (A2) are obviously satisfied with c1 = c2 = 1. Next we
observe that for f ∈ Ho

ρ(E),

‖f(t′)− f(s′)‖E ≤ ρ(t′ − s′)ωρ(f, t− s), 0 ≤ s ≤ s′ ≤ t′ ≤ t ≤ 1. (4.23)

In particular, choosing s = s′ = 0 and t′ = t and recalling that ρ is non decreasing on [0, 1] gives

‖f(t)‖E ≤ ‖f(0)‖E + ρ(1)ωρ(f, 1) ≤ max(1, ρ(1))‖f‖ρ, 0 ≤ t ≤ 1. (4.24)

Now using (4.23) and (4.24), it is easy to see that (A3) and (A4) are satisfied with c3 = c4 =
2 max(1, ρ(1)). Condition (4.6) is satisfied since

‖xen,i‖ρ =
‖x‖E

ρ(1/n)
= ‖x‖E o

(
n1/2 ln−1/2 n

)
,

in view of condition iii) in Definition 1. To check (4.7), Proposition 3 allows us to take
V = Ho

ρ(E). To see that translations operate continuously on Ho
ρ(E), first we deduce from (4.23)

that

‖∆hf(0)‖E ≤ ρ(|h|)ωρ(f, 1). (4.25)

Next to control ωρ(∆hf, 1) we use (4.23) to bound differently the increment ‖∆hf(t) − ∆hf(s)‖E
according to the comparison of t− s with |h|. If |h| ≤ t− s,

‖∆hf(t)−∆hf(s)‖E ≤ ‖Thf(t)− f(t)‖E + ‖Thf(s)− f(s)‖E

≤ 2ρ(h)ωρ(f, |h|),

whence by monotonicity of ρ,

‖∆hf(t)−∆hf(s)‖E

ρ(t− s)
≤ 2ωρ(f, |h|), |h| ≤ t− s. (4.26)

If 0 ≤ t− s < |h|,

‖∆hf(t)−∆hf(s)‖E ≤ ‖Thf(t)− Thf(s)‖E + ‖f(t)− f(s)‖E

≤ 2ρ(t− s)ωρ(f, |h|),

whence
‖∆hf(t)−∆hf(s)‖E

ρ(t− s)
≤ 2ωρ(f, |h|), 0 < t− s < |h|. (4.27)

Gathering (4.25), (4.26) and (4.27) gives

‖∆hf‖ρ ≤ ωρ(f, 1)ρ(h) + 2ωρ(f, |h|).

As f belongs to Ho
ρ(E) this upper bound goes to zero with h and this achieves the verification

of (4.7). It is worth noticing that the same argument would fail with f in Hρ(E) but not in
Ho

ρ(E).
To complete the proof it remains to check (A5). To this end, let g be any function in Ho

ρ(E),
fix an arbitrary pair 0 ≤ u ≤ v ≤ 1 and define f : [0, 1] → E by f(t) = g(u + (v − u)t). Then we
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have f(0) = g(u) = Rv
ug(0) and the problem is reduced to bounding ωρ(f, 1) by ωρ(Rv

ug, 1), where
Rv

ug is the pseudo-restriction of g to [u, v]. We note here that since Rv
ug is constant on each

interval [0, u] and [v, 1] and ρ is non decreasing,

ωρ(Rv
ug, 1) = sup

u≤x<y≤v

‖g(y)− g(x)‖E

ρ(y − x)
.

Now we have for 0 ≤ s < t ≤ 1,

‖f(t)− f(s)‖E = ‖g(u + (v − u)t)− g(u + (v − u)s)‖E

≤ ρ
(
(v − u)(t− s)

)
sup

u≤x<y≤v

‖g(y)− g(x)‖E

ρ(y − x)
≤ ρ(t− s)ωρ(Rv

ug, 1),

which gives ωρ(f, 1) ≤ ωρ(Rv
ug, 1). Recalling the value of f(0) we conclude that (A5) is satisfied

with c5 = 1.

When E = H is a separable Hilbert space, F being still any separable Banach space, we obtain
the following simple corollary, extending the main result of [14] which was proved by another
method in the special case E = F = H.

Corollary 1. Assume that E = H is a separable Hilbert space and that the innovations (εk, k ∈ Z)
are i.i.d. and satisfy (4.20). If (ai, i ∈ Z) ∈ `1(E, F) then the polygonal partial sum process ξ

(X)
n (t)

converges weakly in Ho
ρ(F) to the Brownian motion WAQ(ε)A∗ .

Proof. Applying Theorem 6, we just have to check that ε1 ∈ CLT(E). Due to the Hilbertian
structure of E, this follows from the square integrability of ε1, which in turm follows from (4.20).
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16. A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the Hölderian functional central limit theorem,
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18. A. Račkauskas and Ch. Suquet, Testing epidemic changes of infinite dimensional parameters, Statistical Inference
for Stochastic Processes, 9:111–134, 2006.

19. L. Schwartz, Topologie générale et analyse fonctionnelle, Hermann, Paris, 1970.


