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A. Račkauskas

Institute of Mathematics and Informatics, Akademijos 4, LT-08663, Vilnius;
Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

(e-mail: alfredas.rackauskas@maf.vu.lt)

Ch. Suquet

Laboratoire P. Painlevé (UMR 8524 CNRS), Bât. M2 U.F.R. de Mathématiques
Université des Sciences et Technologies de Lille F-59655 Villeneuve d’Ascq Cedex France

(e-mail: charles.suquet@univ-lille1.fr)

Abstract. We consider the epidemic change of the distribution of a real-valued sample and of the mean of Banach-space-valued
random elements. For these two models, we propose consistent procedures for estimating the location and length of epidemic
change.
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1. INTRODUCTION

Let X1, . . . ,Xn be independent observations in a measurable space with the corresponding parameters of interest
θ1, . . . , θn. The parameters are said to have an epidemic change at points 1 < k∗ < m∗ < n if

θ1 = · · · = θk∗ = θm∗+1 = · · · = θn = θ ′

and

θk = θ ′′ �= θ ′ for k∗ + 1 � k � m∗.
In the case where m∗ = n, we have a model with a single abrupt change. They are intensively studied in the
literature (see, e.g., Csörgő and Horváth [4] for a comprehensive review). Models with epidemic changes of pa-
rameters appear in neurophysiology (see Commenges et al. [3] and references therein), in the desoxyribonucleic
acid (DNA) sequences context (Avery and Henderson [1]), in econometrics via bubbles phenomenon (see Kirman
and Teyssière [5] and references therein), etc. In all these applications, testing for epidemic change and estimating
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its length �∗ = m∗ − k∗ as well as the location (k∗,m∗] undoubtedly are very important problems. Several tests
are discussed in the above-mentioned papers and in, e.g., Yao [11], Csörgő and Horváth [4], and Račkauskas and
Suquet [7, 8]. In this paper, we propose procedures to estimate the location and length of epidemic change. Our
results apply to a very short epidemic duration which, roughly speaking, can be of order lnβ n with some β > 1.
Two models are investigated. In Section 2, we deal with real-valued observations and distribution functions as pa-
rameters. In Section 3, we consider infinite dimensional observations (taking values in a separable Banach space)
and the mean as parameter of interest. For both models, we prove the consistency of estimators of the length and
location of epidemic change.

2. EPIDEMIC OF DISTRIBUTION FUNCTIONS

Let X1, . . . ,Xn be real-valued random variables with continuous distribution functions F1, . . . ,Fn. Consider the
epidemic model

(HE): there are integers 1 < k∗ < m∗ < n such that

F1 = F2 = · · · = Fk∗ = Fm∗+1 = · · · = Fn = F,

Fk∗+1 = · · · = Fm∗ = G, and F �= G.

We denote by �∗ = m∗ − k∗ the length of epidemic. In this section, we consider estimators for the length �∗ as
well as for the locations k∗, m∗.

For simplicity, we denote by (j, k] the set of integers {j + 1, . . . , k}. For i ∈ (0, n] we set

Vi := F(Xi)

and

V ′
i :=

{
F(Xi) if i �∈ (k∗, k∗ + �∗],
G(Xi) if i ∈ (k∗, k∗ + �∗].

So, V ′
1, . . . ,V

′
n are uniformly on [0,1] distributed independent random variables. Introduce the partial sums

processes

ν(k, j) :=
k+j∑

i=k+1

Yi, ν′(k, j) :=
k+j∑

i=k+1

Y ′
i ,

where

Yi(t) := 1{Vi � t} − t, Y ′
i (t) := 1{V ′

i � t} − t, t ∈ [0,1], i = 1, . . . , n.

For some weight function ρ: [0,1] → [0,∞), we define

Tρ(j) := 1

ρ(j/n)
max

0�k�n−j
‖ν(k, j)‖ (1)

and similarly, T ′
ρ(j) with ν′ instead of ν. For a function f : [0,1] → R, we denote by ‖f ‖ either the uniform

norm

‖f ‖ = ‖f ‖∞ = sup
0�t�1

|f (t)|

or the L2 norm

‖f ‖ = ‖f ‖2 =
( 1∫

0

f 2(t)dt

)1/2

.
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Depending on the norm ‖ · ‖ considered in (1), we use different distances between distributions F and G. By
d(F,G) we denote the Kolmogorov–Smirnov distance

d(F,G) = d∞(F,G) = sup
x∈R

|F(x) − G(x)|

if the uniform norm ‖ · ‖ = ‖ · ‖∞ is used in (1), whereas

d(F,G) = d2(F,G) =
( ∞∫

−∞
|F(x) − G(x)|2 dF(x)

)1/2

if ‖ · ‖ = ‖ · ‖2. Throughout, we allow F and G to depend on n and d(F,G) to converge to zero as n → ∞.
The weight function ρ in (1) aims to control the duration of epidemic change. Our assumptions on ρ are

summarized by its belonging to the following class R.

Definition 1. Let R be the class of nondecreasing functions ρ : [0,1] → [0,∞) satisfying the following
conditions:

(i) for some 0 < α � 1/2 and some function L, positive on [1,∞) and normalized slowly varying at
infinity,

ρ(h) = hαL(1/h), 0 < h � 1;
(ii) t1/2ρ(1/t) is C1 on [1,∞);

(iii) there exist β > 1/2 and a > 0 such that t → t1/2ρ(1/t) ln−β(t) is nondecreasing on [a,∞).

Let us recall that L is normalized slowly varying at infinity if and only if, for every δ > 0, tδL(t) is
ultimately increasing and t−δL(t) is ultimately decreasing ([2], Th. 1.5.5). The main practical examples we
have in mind can be parametrized by

ρ(h) = ρ(h,α,β) := hα lnβ(c/h),

where β ∈ R if 0 < α < 1/2 and β > 1/2 if α = 1/2.

Remark 1. If ρ ∈R, then f (h) := h1/2/ρ(h) is nondecreasing on some interval (0, b]. Indeed,

f
(1

t

)
= (

tδL(t)
)−1

with δ = 1/2 − α and tδL(t) is ultimately increasing by slow variation of L when α < 1/2 or because of (iii)
in Definition 1. When α = 1/2, L(t) = t1/2ρ(1/t). The function g(h) := h/ρ(h) is a fortiori increasing in a
neighborhood of zero.

We introduce the following conditions:

�∗ −−−−→
n→+∞ +∞,

�∗

n
−−−−→
n→+∞ 0, (2)

�∗d(F,G)2

ln�∗ −−−−→
n→+∞ +∞, (3)

�∗d(F,G)√
nρ(�∗/n)

−−−−→
n→+∞ +∞. (4)
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Remark 2. Under the mild assumption �∗ = O(na) for some 0 < a < 1, (3) follows from (4). Indeed, we can
write

�∗d(F,G)2

ln�∗ =
(

�∗d(F,G)√
nρ(�∗/n)

)2 ρ(�∗/n)2

(�∗/n) ln(n/�∗)
ln(n/�∗)

ln�∗ ,

where the first two factors on the right-hand side tend to infinity by (4) and (iii) of Definition 1, respectively,
while �∗ = O(na) gives

lim inf
n→∞

ln(n/�∗)
ln�∗ > 0.

Set

�n := max
1<j<n

Tρ(j), �′
n := max

1<j<n
T ′

ρ(j).

The estimation of epidemic length is based on the following result.

THEOREM 1. Let ρ ∈R. Then

n−1/2�′
n = OP (1). (5)

If �∗ → ∞ and (4) is satisfied, then

n−1/2�n
P−−−−→

n→+∞ ∞. (6)

Proof. The stochastic boundedness of n−1/2�′
n follows from Proposition 10 given in Appendix, applied to

the processes Y ′
k(t), t ∈ [0,1], k = 1,2, . . . , and from the Dvoretzky–Kiefer–Wolfowitz inequality (see, e.g.,

Shorack and Wellner [10]).
To check (6) we note that

�n � ‖ν(k∗, �∗)‖
ρ(�∗/n)

and

ν(k∗, �∗) =
∑

k∗<i�m∗
(Yi − Y ′

i ) + ν′(k∗, �∗).

In view of (5), this leads to

n−1/2�n � �∗

n1/2ρ(�∗/n)

∥∥∥∥∥ 1

�∗
∑

k∗<i�m∗
(Yi − Y ′

i )

∥∥∥∥∥ − OP (1). (7)

Put

Ỹi := Yi − EYi and Ỹ ′
i := Y ′

i − EY ′
i .

Computing E (Yi − Y ′
i ) as a Pettis integral, we easily find that

E (Yi − Y ′
i ) = G ◦ F−1 − Id,

where Id denotes the identity function on [0,1]. Moreover,∥∥E (Yi − Y ′
i )

∥∥ = d(F,G).
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Now we get (noting that ‖ · ‖ � ‖ · ‖∞)∥∥∥∥∥ 1

�∗
∑

k∗<i�m∗
(Yi − Y ′

i )

∥∥∥∥∥ =
∥∥∥∥∥E (Yi − Y ′

i ) + 1

�∗
∑

k∗<i�m∗

(
Ỹi − Ỹ ′

i

)∥∥∥∥∥
� d(F,G) −

∥∥∥∥∥ 1

�∗
∑

k∗<i�m∗
Ỹi

∥∥∥∥∥∞
−

∥∥∥∥∥ 1

�∗
∑

k∗<i�m∗
Ỹ ′

i

∥∥∥∥∥∞

The last term has the same distribution as that of (�∗)−1/2‖ε�∗‖∞, where ε�∗ denotes the empirical process
built on independent [0,1]-uniformly distributed Ui’s. The previous term has the same distribution as that
of (�∗)−1/2‖ε�∗(G ◦ F−1)‖∞. Due to the weak convergence of ε�∗ to the Brownian bridge, this leads to the
estimate ∥∥∥∥∥ 1

�∗
∑

k∗<i�m∗
(Yi − Y ′

i )

∥∥∥∥∥ � d(F,G) − OP

( 1√
�∗

)
. (8)

By (7) this gives

n−1/2�n � �∗d(F,G)

n1/2ρ(�∗/n)

[
1 − OP

( 1√
�∗d(F,G)

)]
− OP (1).

To finish the proof, we only have to check that, under condition (4),

√
�∗d(F,G) −−−−→

n→+∞ ∞. (9)

We reformulate (4) as
√

�∗d(F,G)

(n/�∗)1/2ρ(�∗/n)
−−−−→
n→+∞ +∞. (10)

Since t1/2ρ(1/t) tends to infinity as t does and t 
→ t1/2ρ(1/t) is continuous positive on [1,∞), we have
inf {t1/2ρ(1/t); t � 1} > 0. Hence, (9) follows from (10).

As an estimator of the epidemic length �∗, we consider

�̂∗ = �̂∗(ρ) = min
{
� : Tρ(�) = max

1<j<n
Tρ(j)

}
. (11)

THEOREM 2. Let ρ ∈R. For model (HE), assume that (2), (3), and (4) are satisfied. Then

�̂∗
�∗

P−−−−→
n→+∞ 1.

Proof. The conclusion of Theorem 2 is equivalent to

P
(
�̂∗ � (1 − ε)�∗) −−−−→

n→+∞ 0 and P
(
�̂∗ � (1 + ε)�∗) −−−−→

n→+∞ 0, ∀ε > 0.

We shall detail only the first convergence, the proof of the second one being completely similar. The structure
of the proof is given by the following elementary argument. We first note that, on the event {�̂∗ � (1 − ε)�∗},

max
��(1−ε)�∗ n−1/2Tρ(�) = max

���∗ n−1/2Tρ(�). (12)
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It follows that if Mj is an upper bound for the left-hand side of (12) and Mn a lower bound for its right-hand
side, then

P
(
�̂∗ � (1 − ε)�∗) � P(Mj � Mn). (13)

Next, we find Mj and Mn good enough to obtain the convergence to zero of P(Mj � Mn). Before going into
details, we need to introduce some more notation. Put

A(k, �) := (k, k + �] ∩ (k∗, k∗ + �∗] (14)

and write |A(k, �)| for the number of elements of this set. Now split the processes ν(k, �) = {ν(k, �; t), t ∈
[0,1]} into

ν(k, �) = ν′(k, �) + ν′′(k, �), (15)

where

ν′′(k, �; t) =
∑

i∈A(k,�)

(
1
{
F(Xi) � t

} − 1
{
G(Xi) � t

})
.

For i ∈ (k∗, k∗ + �∗], we have

E
(

1
{
F(Xi) � t

} − 1
{
G(Xi) � t

}) = G(F−1(t)) − t

and, hence,

ν′′(k, �) = ∣∣A(k, �)
∣∣(G ◦ F−1 − Id) +

∑
i∈A(k,�)

ηi, (16)

where

ηi(t) := 1
{
F(Xi) � t

} − 1
{
G(Xi) � t

} − E
(

1
{
F(Xi) � t

} − 1
{
G(Xi) � t

})
.

Evidently,

sup
t∈[0,1]

∣∣G(
F−1(t)

) − t
∣∣ = d∞(F,G)

and
1∫

0

(
G

(
F−1(t)

) − t
)2

dt = d2
2 (F,G).

Clearly, ∥∥ν′′(k, �) − |A(k, �)|(G ◦ F−1 − Id)
∥∥ � δ(k, �), (17)

where

δ(k, �) :=
∥∥∥∥∥ ∑

i∈A(k,�)

ηi

∥∥∥∥∥.

Since A(k∗, �∗) = (k∗, k∗ + �∗], we deduce by the triangular inequality that∥∥ν′′(k∗, �∗)
∥∥ � �∗d(F,G) − δ(k∗, �∗). (18)

Now the desired lower bound Mn for max���∗ Tρ(�) can be obtained as follows:

max
���∗ Tρ(�) � Tρ(�∗)
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= 1

ρ(�∗/n)
max

0�k�n−�∗
∥∥ν(k, �∗)

∥∥
� 1

ρ(�∗/n)

∥∥ν(k∗, �∗)
∥∥ (19)

� 1

ρ(�∗/n)

∥∥ν′′(k∗, �∗)
∥∥ − 1

ρ(�∗/n)

∥∥ν′(k∗, �∗)
∥∥

� 1

ρ(�∗/n)

∥∥ν′′(k∗, �∗)
∥∥ − �′

n.

Hence, from (18) and (20) we get

max
���∗ Tρ(�) � �∗

ρ(�∗/n)
d(F,G) − δ(k∗, �∗)

ρ(�∗/n)
− �′

n. (20)

Let us now look for an upper bound Mj for max��(1−ε)�∗ Tρ(�). We have

Tρ(�) � 1

ρ(�/n)
max

1<k<n−�

(‖ν′(k, �; t)‖ + ‖ν′′(k, �; t)‖)
� �′

n + 1

ρ(�/n)
max

1<k<n−�
δ(k, �) + 1

ρ(�/n)
max

1�k�n−�
|A(k, �)|d(F,G).

For any � � �∗, we evidently have |A(k, �)| � �, so, in view of Remark 1, we arrive at

max
��(1−ε)�∗ Tρ(�) � �′

n + (1 − ε)�∗d(F,G)

ρ((1 − ε)�∗/n)
+ Zn, (21)

where

Zn := max
���∗

1

ρ(�/n)
max

1<k<n−�
δ(k, �).

Now applying (13) with the lower bound (20) and upper bound (21), we obtain

P
{
�̂∗ � (1 − ε)�∗} � P

{
�′

n + Zn � d(F,G)

2

(
�∗

ρ(�∗/n)
− (1 − ε)�∗

ρ((1 − ε)�∗/n)

)}
� P{Zn � An} + P

{
n−1/2�′

n � C
}
,

where C > 0 is a constant to be specified later and

An := d(F,G)

2

(
�∗

ρ(�∗/n)
− (1 − ε)�∗

ρ((1 − ε)�∗/n)

)
− Cn1/2

(22)

= d(F,G)

2

�∗

ρ(�∗/n)

(
1 − ρ(�∗/n)(1 − ε)

ρ((1 − ε)�∗/n)
− 2Cn1/2ρ(�∗/n)

�∗d(F,G)

)
.

In view of (5) in Theorem 1, for all ε1 > 0, we can find C = C(ε1) such that

P
{
n−1/2�′

n � C
}

< ε1 for n � n1 = n1(ε1).

Hence, it only remains to prove the convergence to zero of P(Zn � An) for any fixed value of C. From (i) of
Definition 1 we get

lim
n→∞

ρ(�∗/n)(1 − ε)

ρ((1 − ε)�∗/n)
= (1 − ε)1−α. (23)
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Since by (4) we also have that

lim
n→∞

2Cn1/2ρ(�∗/n)

�∗d(F,G)
= 0,

we find n2 such that, for n � n2, the quantity in the parenthesis in (23) is not less than γ := (1 − (1 −
ε)1−α)/2. Now we have

P{Zn � An} �
∑
���∗

∑
1<k<n−�

P
{

δ(k, �)

ρ(�/n)
� γ �∗d(F,G)

2ρ(�∗/n)

}
. (24)

Due to the definition of δ(k, �), only the terms for which A(k, �) is nonempty are to be accounted in the
above sum. In view of the inequality ‖ν(k, �)‖2 � ‖ν(k, �)‖∞, it suffices to consider the case where ‖.‖∞ is
used to compute δ(k, �) in the following inequalities (but still allowing d(F,G) to be interpreted as d2(F,G)

or d∞(F,G)). Then the Dvoretsky–Kiefer–Wolfowitz inequality for the uniform empirical process leads to

P
{
δ(k, �) � γρ(�/n)�∗d(F,G)

2ρ(�∗/n)

}
� c1 exp

(
−c2

ρ(�/n)2(�∗)2d(F,G)2

ρ(�∗/n)2|A(k, �)|
)

, (25)

where c1 and c2 are positive constants. Now writing

ρ(�/n)2(�∗)2

ρ(�∗/n)2 = ρ(�/n)2

(�/n)

(�∗/n)

ρ(�∗/n)2 ��∗

and recalling Remark 1 and (2), we see that if n is large enough, then

ρ(�/n)2

(�/n)

(�∗/n)

ρ(�∗/n)2 � 1, 1 � � � �∗,

whence we have

P
{
δ(k, �) � γρ(�/n)�∗d(F,G)

2ρ(�∗/n)

}
� c1 exp

(
−c2

��∗d(F,G)2

|A(k, l)|
)

. (26)

Noting that, for � � �∗, there are at most 2�∗ indices k for which A(k, �) is nonempty, by (24) we obtain
that, for n large enough,

P{Zn � An} � c1�
∗

�∗∑
�=1

exp
(

−c2
��∗d(F,G)2

|A(k, l)|
)

.

Since � � |A(k, l)|, we finally arrive at

P{Zn � An} � c1(�
∗)2 exp

( − c2�
∗d(F,G)2),

and this upper bound tends to zero by condition (3).

Next we consider estimation of the location of epidemics. Set

k̂∗ = k̂∗(ρ) = min
{
k:

∥∥ν(k, �̂∗)
∥∥ = max

0�i�n−�̂∗

∥∥ν(i, �̂∗)
∥∥}

(27)

and

m̂∗ = m̂∗(ρ) = k̂∗ + �̂∗,
where the length �∗ is estimated by (11), which explains the dependence of k̂∗ and m̂∗ on ρ. When ρ(h) =
ρ(h;α,β), we denote �̂∗(ρ), k̂∗(ρ), and m̂∗(ρ) by �̂∗(α,β), k̂∗(α,β), and m̂∗(α,β), respectively.
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THEOREM 3. Under the conditions of Theorem 2, we have

|̂k∗ − k∗|
�∗

P−−−−→
n→+∞ 0 and

|m̂∗ − m∗|
�∗

P−−−−→
n→+∞ 0.

Proof. We shall prove the first statement only, since the second statement follows from the first one and
Theorem 2.

From the definition of k∗ by (27) we get∥∥ν(̂k∗, �̂∗)
∥∥ − ∥∥ν(k∗, �̂∗)

∥∥ � 0. (28)

Combining (28) with (15) and (17) and noting that |A(k∗, �̂∗)| = �̂∗ ∧ �∗, we obtain

0 �
(∣∣A(̂k∗, �̂∗)

∣∣ − �̂∗ ∧ �∗)d(F,G) + Jn, (29)

where

Jn := δ(̂k∗, �̂∗) + δ(k∗, �̂∗) + ∥∥ν′(̂k∗, �̂∗)
∥∥ + ∥∥ν′(k∗, �̂∗)

∥∥.

To exploit (29) we need some relationship between |A(̂k∗, �̂∗)| and |̂k∗ − k∗|. The following array presents all
possible configurations and the corresponding results.

Case Configuration |A(̂k∗, �̂∗)| =
1 k̂∗ + �̂∗ � k∗ 0

2 k̂∗ < k∗ < k̂∗ + �̂∗ � k∗ + �∗ �̂∗ − |̂k∗ − k∗|
3 k̂∗ < k∗ < k∗ + �∗ < k̂∗ + �̂∗ �∗

4 k∗ � k̂∗ < k∗ + �∗ < k̂∗ + �̂∗ �̂∗ − |̂k∗ − k∗|
5 k∗ + �∗ � k̂∗ 0

Moreover, in Case 3, k∗ + �∗ < k̂∗ + �̂∗, whence

�∗ < k̂∗ − k∗ + �̂∗ = �̂∗ − |̂k∗ − k∗|,
which enables us to unify Cases 2, 3, and 4 under the common estimate

|A(̂k∗, �̂∗)| � �̂∗ − |̂k∗ − k∗| on E2,3,4, (30)

where E2,3,4 is the event which corresponds to the union of Cases 2, 3, and 4. Using (30) with the lower
bound for |A(̂k∗, �̂∗)| provided by (29) leads to

|̂k∗ − k∗| � �̂∗ − �̂∗ ∧ �∗ + Jn

d(F,G)
� |�̂∗ − �∗| + Jn

d(F,G)
on E2,3,4.

On the other hand, denoting by E1,5 the complementary event of E2,3,4, from (29) and Cases 1 and 5 above
we see that

�̂∗ ∧ �∗ � Jn

d(F,G)
on E1,5.

This implies that

P(E1,5) � P
{

�̂∗ ∧ �∗
�∗ � Jn

�∗d(F,G)

}
.
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By Theorem 2, (�̂∗ ∧ �∗)/�∗ tends to one in probability. Thus, if we prove that

Jn

�∗d(F,G)

P−−−−→
n→+∞ 0, (31)

this will give the convergence to 1 of P(E2,3,4) = 1 − P(E1,5). Since

|̂k∗ − k∗|
�∗ � |�̂∗ − �∗|

�∗ + Jn

�∗d(F,G)
on E2,3,4,

the conclusion will follow by a new invocation of Theorem 2.
To check (31), it is easy to verify that

δ(k∗, �̂∗) = OP (
√

�∗) and δ(̂k∗, �̂∗) = OP (
√

�∗).

Since
√

�∗d(F,G) → ∞ by (3), this gives

δ(̂k∗, �̂∗) + δ(k∗, �̂∗)
�∗d(F,G)

P−−−−→
n→+∞ 0.

Finally, bounding ∥∥ν′(̂k∗, �̂∗)
∥∥ + ∥∥ν′(k∗, �̂∗)

∥∥ by 2ρ(�̂∗/n)�′
n,

we can write

‖ν′ (̂k∗, �̂∗)‖ + ‖ν′(k∗, �̂∗)‖
�∗d(F,G)

� 2
√

nρ(�∗/n)

�∗d(F,G)
× �′

n√
n

× ρ(�̂∗/n)

ρ(�∗/n)
.

In this upper bound, the first factor tends to zero by condition (4), the second one is OP (1) by Theorem 1,
and the last one converges to 1 in probability by Theorem 2 and the regular variation of ρ near zero. The
proof is complete.

When the weight function ρ is of the form ρ(h,α,β), Theorems 2 and 3 have the following corollaries.

COROLLARY 4. For model (HE), assume that conditions (2) and (3) are satisfied and that

�∗1−αd(F,G)

n1/2−α
→ ∞ for some 0 < α < 1/2.

Then

�̂∗(α,0)

�∗
P−−−−→

n→+∞ 1,

|̂k∗(α,0) − k∗|
�∗

P−−−−→
n→+∞ 0,

|m̂∗(α,0) − m∗|
�∗

P−−−−→
n→+∞ 0.

COROLLARY 5. For model (HE), assume that conditions (2) and (3) are satisfied and that

�∗d2(F,G)

ln2β n
→ ∞ for some β > 1/2.
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Then

�̂∗(1/2, β)

�∗
P−−−−→

n→+∞ 1,

|̂k∗(1/2, β) − k∗|
�∗

P−−−−→
n→+∞ 0,

|m̂∗(1/2, β) − m∗|
�∗

P−−−−→
n→+∞ 0.

3. EPIDEMIC OF THE MEAN

Let B be a separable Banach space with norm ‖x‖. Let ε1, . . . , εn be i.i.d. B-valued random elements with
mean zero and let (µn) ⊂ B. Consider the model

Xk =
{

εk for k = 1, . . . , k∗, m∗ + 1, . . . , n,

µn + εk for k = k∗ + 1, . . . ,m∗.
(32)

For 0 � k < m � n, define

Sn(k,m) :=
∑

k<i�m

(Xi − X) and S′
n(k,m) :=

∑
k<i�m

(εi − ε),

where

X = n−1(X1 + · · · + Xn) and ε = n−1(ε1 + · · · + εn).

Let ρ : [0,1] → R+ be a weight function. Define, for 1 < j < n,

U(j) = max
0�k�n−j

∥∥Sn(k, k + j)
∥∥, Vρ(j) = 1

ρ(j/n)
U(j)

and, similarly, U ′(j), V ′
ρ(j).

As an estimator of length �∗ = m∗ − k∗ for model (32), consider

�̂∗ = �̂∗(ρ) = min
{
�: Vρ(�) = max

1<j<n
Vρ(j)

}
. (33)

When ρ(h) = ρ(h;α,β), we write �̂∗(α,β) for �̂∗(ρ).
The random element ε is said to satisfy the central limit theorem in B (denoted ε ∈ CLT(B)) if the

sequence n−1/2(ε1 + · · · + εn) converges in distribution in B, where ε1, . . . , εn are independent copies of ε.
It is known (see [6]) that, in general, the central limit theorem for ε cannot be characterized only in terms
of the integrability of ε, since the geometry of B is involved in the problem.

THEOREM 6. Let ρ ∈R. For model (32), assume that

ε1 ∈ CLT(B), (34)

lim
t→∞ tP

(‖ε1‖ � At1/2ρ(1/t)
) = 0 for each A > 0, (35)

�∗

n
→ 0 as n → ∞, (36)
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and

n1/2‖µn‖ �∗/n

ρ(�∗/n)
→ ∞ as n → ∞. (37)

Then

�̂∗

�∗
P−−−−→

n→+∞ 1. (38)

Proof. The method of the proof is the same as that of Theorem 2 and relies on the inequality

P
(
�̂∗ � (1 − ε)�∗) � P(Mj � Mn),

where Mj is an upper bound for max��(1−ε)�∗ n−1/2Vρ(�), and Mn a lower bound for max���∗ n−1/2Vρ(�).
As a preliminary step, we establish the stochastic boundedness of n−1/2�′

n, where

�′
n := max

1<j<n
V ′

ρ(j).

Define the process ξ sr
n := n−1/2ξn, where ξn is the polygonal line ([0,1] → B) with vertices (k/n, ε1 + · · · +

εk). Next, introduce the separable Hölder space

Ho
ρ(B) :=

{
x ∈ C(B); lim

δ→0
ωρ(x, δ) = 0

}
equiped with the norm

‖x‖ρ := ‖x(0)‖ + ωρ(x,1),

where

ωρ(x, δ) := sup
s,t∈[0,1],
0<t−s<δ

‖x(t) − x(s)‖
ρ(t − s)

.

One easily sees that

n−1/2�′
n �

∥∥ξ sr
n

∥∥ + sup
0<h�1

h

ρ(h)

∥∥ξ sr
n (1)

∥∥.

Since ρ ∈R, h/ρ(h) can be extended to a continuous function on [0,1]. Hence, sup0<h�1 h/ρ(h) is finite.
Due to (34), ξ sr

n (1) converges in distribution in B. By (34) and (35), ξ sr
n converges in distribution in the

Hölder space (Ho
ρ(B),‖.‖ρ) (see [9], Theorem 8). Therefore, we have

n−1/2�′
n = OP (1) as n → ∞. (39)

Next, let us note that

X = �∗

n
µn + ε

and, for any 1 � � � n and 0 � k � n − �,

Sn(k, k + �) =
(∣∣A(k, �)

∣∣ − ��∗

n

)
µn + S′

n(k, k + �), (40)

where, as before, |A(k, �)| denotes the number of elements in the intersection

{k + 1, . . . , k + �} ∩ {k∗ + 1, . . . , k∗ + �∗}.
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The special choice k = k∗, � = �∗ in (40) gives

Sn(k
∗, k∗ + �∗) = S′

n(k
∗, k∗ + �∗) + �∗µn(1 − �∗/n).

Since

U(�∗) �
∥∥Sn(k

∗, k∗ + �∗)
∥∥,

we get

U(�∗) � �∗(1 − �∗
n

)
‖µn‖ − ∥∥S′

n(k
∗, k∗ + �∗)

∥∥ � �∗(1 − �∗
n

)
‖µn‖ − U ′(�∗),

whence

max
���∗ Vρ(�) � ‖µn‖�∗(1 − �∗/n)

ρ(�∗/n)
− �′

n. (41)

In view of (39), this leads to

n−1/2 max
���∗ Vρ(�) � n1/2‖µn‖(�∗/n)(1 − �∗/n)

ρ(�∗/n)
− OP (1) =: Mn. (42)

Looking now for some Mj, we note that, due to (40), for any � � �∗, we have∥∥Sn(k, k + �)
∥∥ � ‖µn‖�(1 − �∗/n) + ∥∥S′

n(k, k + �)
∥∥,

whence

max
��(1−ε)�∗ Vρ(�) � ‖µn‖ max

��(1−ε)�∗
�(1 − �∗/n)

ρ(�/n)
+ �′

n (43)

Due to Remark 1 and condition (36), we have that, for n large enough,

max
��(1−ε)�∗

�(1 − �∗/n)

ρ(�/n)
= (1 − ε)�∗(1 − �∗/n)

ρ((1 − ε)�∗/n)
,

so by (39) and (43) we obtain

n−1/2 max
��(1−ε)�∗ Vρ(�) � n1/2‖µn‖(1 − ε)(�∗/n)(1 − �∗/n)

ρ((1 − ε)�∗/n)
+ OP (1) =: Mj. (44)

In view of condition (37), we have that, on the event {Mj � Mn},
(1 − ε)ρ(�∗/n)

ρ((1 − ε)�∗/n)
� 1 − oP (1). (45)

The limit of the left-hand side in (45) being (1 − ε)1−α < 1, this implies that P(Mj � Mn) tends to zero as
n tends to infinity. Consequently,

lim
n→∞ P

(
�̂∗ < (1 − ε)�∗) = 0.

Similarly, one gets

lim
n→∞ P

(
�̂∗ > (1 + ε)�∗) = 0,

which completes the proof of the theorem.

Choosing ρ(h) = ρ(h;α,β) provides the following corollaries.
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COROLLARY 7. Let 0 � α < 1/2. For model (32), assume that

lim
t→∞ tP

(‖ε1‖ � t1/2−α
) = 0 (46)

and

�∗

n
→ 0, ‖µn‖�∗(1−α)

n1/2−α
→ ∞ as n → ∞. (47)

Then

�̂∗(α,0)

�∗
P−−−−→

n→+∞ 1.

COROLLARY 8. Let β > 1/2. For model (32), assume that

E exp
(
λ‖ε1‖1/β

)
< ∞ for λ > 0 (48)

and

�∗

n
→ 0, ‖µn‖�∗1/2

lnβ n
→ ∞ as n → ∞. (49)

Then

�̂∗(1/2, β)

�∗
P−−−−→

n→+∞ 1.

As the model allows the convergence µn → 0, condition (37) (as well as either (47) or (49)) impose
constraints on the rate of convergence in relation with the length of epidemic change.

Next we consider the estimation of the location of epidemics. Let the length �∗ be estimated by (33).
Set

k̂∗ = k̂∗(ρ) = min
{
k: U

(
�̂∗(ρ)

) = ∥∥Sn(k, k + �̂∗(ρ))
∥∥}

(50)

and

m̂∗ = m̂∗(ρ) = k̂∗(ρ) + �̂∗. (51)

THEOREM 9. Under the conditions of Theorem 6, the estimators k̂∗ and m̂∗ satisfy∣∣∣ k̂∗
�∗ − k∗

�∗
∣∣∣ P−−−−→

n→+∞ 0 and
∣∣∣m̂∗
�∗ − m∗

�∗
∣∣∣ P−−−−→

n→+∞ 0.

Proof. Due to Theorem 6, it suffices to prove the convergence result for k̂∗ only. The definition of k̂∗
gives ∥∥Sn(k

∗, k∗ + �̂∗)
∥∥ �

∥∥Sn(̂k
∗, k̂∗ + �̂∗)

∥∥.

From this, using (40) and the fact that∣∣A(k∗, �̂∗)
∣∣ = �̂∗ ∧ �∗ � �̂∗�∗/n,

we obtain

0 �
∣∣∣∣∣A(̂k∗, �̂∗)

∣∣ − �̂∗�∗

n

∣∣∣ · ‖µn‖ −
(
�̂∗ ∧ �∗ − �̂∗�∗

n

)
‖µn‖ + 2U ′(�̂∗). (52)

Introduce the complementary events

E′ :=
{∣∣A(̂k∗, �̂∗)

∣∣ <
�̂∗�∗

n

}
, E′′ :=

{∣∣A(̂k∗, �̂∗)
∣∣ � �̂∗�∗

n

}
.
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On the event E′, by (52) we have

0 � −∣∣A(̂k∗, �̂∗)
∣∣ + 2

�̂∗�∗
n

− �̂∗ ∧ �∗ + 2U ′(�̂∗)
‖µn‖ ,

whence

min
( �̂∗

�∗ ,1
)

� 2�̂∗

n
+ 2ρ(�̂∗/n)�′

n

�∗‖µn‖ . (53)

By (36)–(38) the left-hand side of (53) tends to 1 in probability, while its right-hand side tends to 0 in
probability. It follows that

lim
n→∞ P(E′

n) = 0.

On the event E′′, the inequality ∣∣A(̂k∗, �̂∗)
∣∣ � �̂∗�∗/n

excludes Cases 1 and 5 (cf. the proof of Theorem 3), where |A(̂k∗, �̂∗)| = 0, since both �̂∗ and �∗ are
positive. Hence, E′′ is included in E2,3,4, and (30) holds on E′′. In view of (52), we then have that, on
E′′,

0 � �̂∗ − �̂∗ ∧ �∗ − |̂k∗ − k∗| + 2ρ(�̂∗/n)�′
n

‖µn‖ ,

whence

|̂k∗ − k∗|
�∗ � �̂∗

�∗ − min
( �̂∗

�∗ ,1
)

+ 2ρ(�̂∗/n)�′
n

�∗‖µn‖ . (54)

By (36)–(38) the right-hand side of (54) tends to 0 in probability, which leads to the conclusion, since

lim
n→∞ P(E′′

n) = 1.

4. AUXILIARY RESULT

For a stochastic process X = {X(t), t ∈ T } indexed by some arbitrary index set T , define

‖X‖ := sup
t∈T

|X(t)|.

This stochastic process is not necessarily measurable map into a Banach space. Independence of stochastic
processes is understood in the usual sense. By P ∗ we denote the outer probability.

PROPOSITION 10. Let X1, . . . ,Xn be independent identically distributed stochastic processes indexed by
an arbitrary set, and let S0 := 0, Sn := X1 + · · · + Xn, n � 1. Assume that there exist constants c and a such
that, for each k � 1,

P ∗(‖k−1/2Sk‖ � t
)
� c exp(−at2) for t > 0. (55)

Define

Tn := n−1/2 max
0�i<j�n

‖Sj − Si‖
ρ((j − i)/n)

, n � 1. (56)
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Then the sequence (Tn)n�1 is stochastically bounded, provided that

+∞∑
j=1

2j exp(−τθ2(2j )) < ∞ (57)

for each τ > 0.

Proof. Rewriting (56) in the form

n1/2Tn = max
1���n

1

ρ(�/n)
max

0�k�n−�
‖Sk+� − Sk‖,

we shall use a dyadic splitting of the �’s and k’s indexation ranges. Defining the integer Jn by

2Jn � n < 2Jn+1,

we get

n1/2Tn = max
1�j�Jn+1

max
n2−j <��n2−j+1

1

ρ(�/n)
max

1�k�n−�
‖Sk+� − Sk‖

� max
1�j�Jn+1

max
n2−j <��n2−j+1

1

ρ(2−j )
max

0�k<n−n2−j
‖Sk+� − Sk‖

� max
1�j�Jn+1

max
n2−j <��n2−j+1

1

ρ(2−j )
max

1�i<2j
max

(i−1)n2−j�k<in2−j
‖Sk+� − Sk‖.

For n2−j < � � n2−(j−1) and (i − 1)n2−j � k < in2−j , we have

‖Sk+� − Sk‖ �
∥∥Sk+� − S[in2−j ]

∥∥ + ∥∥S[in2−j ] − Sk

∥∥
� max

in2−j<u<(i+2)n2−j

∥∥Su − S[in2−j ]
∥∥

+ max
(i−1)n2−j �k<in2−j

∥∥S[in2−j ] − Sk

∥∥,

where [t] denotes the integer part of a real number t . Therefore,

Tn � T ′
n + T ′′

n ,

where

T ′
n = n−1/2 max

1�j�Jn+1

1

ρ(2−j )
max

1�i<2j
max

in2−j <u<(i+2)n2−j

∥∥Su − S[in2−j ]
∥∥

and

T ′′
n = n−1/2 max

1�j�Jn+1

1

ρ(2−j )
max

1�i<2j
max

(i−1)n2−j�k<in2−j

∥∥S[in2−j ] − Sk

∥∥.

Due to the stationarity, for each λ > 0, we have

P ∗{T ′
n > λ

}
�

Jn+1∑
j=1

P ∗{ max
1�i<2j

max
in2−j <u<(i+2)n2−j

∥∥Su − S[in2−j ]
∥∥ > λn1/2ρ(2−j )

}
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�
Jn+1∑
j=1

2jP ∗{ max
u�2n2−j

‖Su‖ > λn1/2ρ(2−j )
}
.

Applying Ottaviani’s inequality (Ledoux and Talagrand [6], Lemma 6.2) and condition (55), we obtain

P ∗(T ′
n > λ) �

Jn+1∑
j=1

2j c exp(−aλ22j−3ρ2(2−j ))

1 − c exp(−aλ22j−3ρ2(2−j ))
,

provided that the denominator above is positive for all j � 1. This condition is clearly satisfied for λ

large enough (independently of n), since 2−jρ(2j ) tends to infinity with j and ρ is positive. Hence,
condition (57) gives the stochastic boundedness of (T ′

n)n�1 via the dominated convergence theorem for
series. The proof of the stochastic boundedness of (T ′′

n )n�1 clearly is similar.
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