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Abstract

Let (ξn)n≥1 be the polygonal partial sums processes built on the linear
processes Xn =

P
i≥0 aiεn−i, where (εi)i∈Z are i.i.d., centered and square

integrable random variables with
P

i≥0 a2
i < ∞. We investigate functional

central limit theorem for ξn in the Hölder spaces Ho
α[0, 1] of functions

x : [0, 1] → R such that |x(t + h) − x(t)| = o(hα) uniformly in t. WhenP
i≥0 |ai| < ∞ (short memory case), we show that n−1/2ξn converges

weakly in Ho
α[0, 1] to some Brownian motion under the optimal assumption

that P (|ε0| ≥ t) = o(t−p), where 1/p = 1/2 − α. This extends the
Lamperti invariance principle for i.i.d. Xn's. When ai = `(i)i−β , 1/2 <
β < 1, with ` positive, increasing and slowly varying, (Xn)n≥1 has long
memory. The limiting process for ξn is then the fractional Brownian
motion W H with Hurst index H = 3/2−β and the normalizing constants
are bn = cβnH`(n). For 0 < α < H − 1/2, the weak convergence of
b−1
n ξn to W H in Ho

α[0, 1] is obtained under the mild assumption that
E ε20 < ∞, strengthening Wu and Min's (2005) invariance principle in
C[0, 1]. For H − 1/2 < α < H, the same convergence is obtained under
P (|ε0| ≥ t) = o(t−p), where 1/p = H − α.

Keywords: fractional Brownian motion, Hölder space, invariance principle,
short memory, long memory, linear process, Wiener measure.

1 Introduction

In the classical time series analysis, the innovations in the linear process (Xn)n∈N
are often assumed to be i.i.d. In this case asymptotic behaviors of the sample
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means and partial sum processes have been extensively studied in the litera-
ture. It would be hard to compile a complete list. Here we only mention some
representatives: Davydov [1], Gorodetskii [3], Hall and Heyde [4], Phillips and
Solo [13] and Hosking [7]. See references therein for further background. There
are basically two types of results. If the linear �lter is absolutely summable,
then the covariances of (Xn) are summable and one says that (Xn) is short-
range dependent (SRD). Under SRD, the normalizing constant for the sum
Sn := X1 + · · ·+Xn is of the same order as that in the classical CLT for i.i.d.
observations. When the linear �lter is not summable, then (Xn) is long-range
dependent (LRD) and the normalizing constant for Sn is typically larger than
square root of n. Fractional ARIMA model (Hosking [6]) is an important class
which may exhibit LRD. For a survey of LRD, we refer to [2].

Invariance principles (or functional central limit theorems) play an impor-
tant role in econometrics and statistics [19]. For example, to obtain asymptotic
distributions of unit root test statistics, researchers have applied invariance prin-
ciples of various forms; see Sowell [18] and Wu [21] among others.

There is a large amount of papers which provide invariance principles for
various linear processes in the framework of the classical function spaces, i.e.
the space C[0, 1] of continuous functions or the Skorokhod space D[0, 1] of càdlàg
functions. Our current contribution aims to investigate invariance principle for
linear processes in spaces having a stronger topology than C[0, 1].

The weak convergence of a sequence of stochastic processes in some functions
space F provides results about the asymptotic distribution of functionals of the
paths which are continuous with respect to the topology of F . Since the Hölder
spaces are topologically embedded in C[0, 1] and in D[0, 1], they support more
continuous functionals. From this point of view, the alternative framework of
Hölder spaces gives functional limit theorems of a wider scope. This choice may
be relevant as soon as the paths of stochastic processes and the limit process
ξ (like e.g. the Brownian motion and the Fractional Brownian motion) share
some Hölder regularity, roughly speaking ξ(t + h) − ξ(t) = O(hα) for some
0 < α < 1. The �rst result in this direction seems to be Lamperti's Hölderian
invariance principle [9] for the polygonal partial sums process n−1/2ξn, where ξn
is the polygonal line indexed by [0, 1] with vertices (k/n, Sk), k = 0, 1, . . . , n and
the underlying random variables Xi are i.i.d. with EX1 = 0 and E |X1|q < ∞
for some q > 2. This invariance principle was extended under some weak-
dependance assumptions on the Xi's by Hamadouche [5]. Both results cost
a stronger moment assumption than the classical square integrability of the
Xi's, which is necessary and su�cient in the C[0, 1] framework. Ra£kauskas and
Suquet [15], found the right price to be paid to obtain an Hölderian invariance
principle. They proved that for 0 < α < 1/2, n−1/2ξn converges in distribution
to a Brownian motion in the Hölder space Ho

α[0, 1] (precise de�nition is given
below) if and only if

lim
t→∞

tp(α)P (|X1| > t) = 0, where p(α) =
1

1
2 − α

. (1)

Contrastly the same authors [14] show how one can relax (1) in EX2
1 < ∞

2



by using selfnormalization and adaptive construction of the partial sums pro-
cess. These theoretical results found statistical applications in the problem of
detection of a changed segment in data [16, 17].

For recent result and a survey in the domain of the invariance principles for
the linear processes we refer to Merlevède, Peligrad, Utev [10, 11, 12]. These
papers fully analyze the asymptotic properties of the partial sums of the linear
process, and extend the results for various noise processes, in the framework
of the spaces D[0, 1] or C[0, 1]. The same holds for other approaches involving
invariance principles for the linear processes (see [20, 21] with comprehensive
list of bibliography).

In this paper we consider the polygonal partial sums processes (ξn)n≥1

built on the linear processes Xn =
∑

i≥0 aiεn−i, where (εi)i∈Z are i.i.d., cen-

tered and square integrable random variables with
∑

i≥0 a
2
i < ∞. We inves-

tigate functional central limit theorem for ξn in the Hölder spaces Ho
α[0, 1].

When
∑

i≥0 |ai| < ∞ (short memory case), we show that n−1/2ξn converges
weakly in Ho

α[0, 1] to some Brownian motion under the optimal assumption that
P (|ε0| ≥ t) = o(t−p), where 1/p = 1/2 − α. This extends the Lamperti in-
variance principle for i.i.d. Xn's. When ai = `(i)i−β , 1/2 < β < 1, with `
positive, increasing and slowly varying, (Xn)n≥1 has long memory. The lim-
iting process for ξn is then the fractional Brownian motion WH with Hurst
index H = 3/2 − β and the normalizing constants are bn = cβn

H`(n). For
0 < α < H − 1/2, the weak convergence of b−1

n ξn to WH in Ho
α[0, 1] is obtained

under the mild assumption that E ε20 <∞, strengthening Wu and Min's (2005)
invariance principle in C[0, 1]. For H − 1/2 < α < H, the same convergence is
obtained under P (|ε0| ≥ t) = o(t−p), where 1/p = H−α. The case α = H−1/2
is also discussed.

The paper is organized as follows. Section 2 gives the notations and results.
Section 3 presents the proofs, starting with a general theorem on Hölderian
invariance principles for dependent variables which enables us to simplify the
proofs of our main results. It may be also of independent interest. Technical
lemmas are gathered in Section 4.

2 Results

2.1 Notations

For 0 < α < 1, we denote by Ho
α[0, 1] the set of real valued continuous functions

x : [0, 1] → R such that
lim
δ→0

wα(x, δ) = 0,

where

wα(x, δ) = sup
0<|t−s|<δ

|x(t)− x(s)|
|s− t|α

.

The set Ho
α[0, 1] is a separable Banach space when endowed with the norm

||x||α = |x(0)|+wα(x, 1). Let ξn (n ≥ 1) and ξ be random elements in Ho
α[0, 1].
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The weak convergence in Ho
α[0, 1] of ξn to ξ, denoted by

ξn
Ho

α−−−−→
n→∞

ξ

means that for every fonctional f : Ho
α[0, 1] → R, continuous with respect to the

strong topology of Ho
α[0, 1], the sequence of random variables f(ξn) converges

to f(ξ) in distribution.
For the sequence (Xn)n≥1 of random variables, put

S0 := 0, Sn :=
n∑

i=1

Xi (2)

and de�ne the partial sums process ξn by

ξn(t) := S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1], (3)

where [nt] denotes the integer part of nt. As polygonal lines, the paths of ξn
belong to Ho

α[0, 1] for every α < 1.
Recall that the standard fractional Brownian motion WH , with the Hurst

index H is a zero mean Gaussian process with covariance

EWH(t)WH(s) =
1
2
(
|t|2H + |s|2H − |t− s|2H

)
, 0 ≤ s, t ≤ 1.

The special case H = 1/2 gives the Brownian motion denoted W . The limiting
processes ξ involved in this paper are either W , either WH with positively
correlated increments, that is H > 1/2. Almost all paths of WH are Hölder
continuous of any order α strictly less than H.

The linear processes (Xk)k≥0 considered throughout the paper are of the
form

Xk =
∞∑

i=0

aiεk−i, k = 0, 1, . . . , (4)

where (ai, i ∈ Z) is a given sequence of real numbers with ai = 0 for i < 0
and (εi, i ∈ Z) is a sequence of independent identically distributed random
variables with E ε0 = 0 and E |ε0|2 < ∞. Under these assumptions, the series
in (4) converges in L2 and almost surely and the sequence of random variables
(Xk)k≥0 is stationary.

2.2 Linear processes with short memory

Theorem 1. Let (Xk)k≥0 be the linear process de�ned by (4) and assume that
(ai)i≥0 satis�es:

(A)
∞∑

i=0

|ai| <∞ and A :=

∣∣∣∣∣
∞∑

j=0

ai

∣∣∣∣∣ > 0.

4



Let Sn and ξn be the partial sums and partial sums process built on (Xk)k≥0,
de�ned by (2) and (3). Put b2n = A2nE ε20, bn > 0. Then for every 0 < α < 1/2,

b−1
n ξn

Ho
α−−−−→

n→∞
W

if

lim
t→∞

tpP (|ε0| > t) = 0, where p =
1

1
2 − α

. (5)

Condition (5) is optimal because the class of linear processes considered
includes the special case where Xk = εk and it is known that in this case (5) is
necessary for the weak-Ho

α[0, 1] convergence of n−1/2ξn to W , see [15].

2.3 Linear processes with long memory

Now we consider a class of linear processes whose associated partial sums process
converges to a fractional Brownian motion WH with H > 1/2.

Theorem 2. For 1/2 < β < 1, let (Xk)k≥0 be the linear process

Xk =
∞∑

j=0

ψjεk−j , with ψ0 = 1, ψj =
`(j)
jβ

, j ≥ 1, (6)

where ` is a positive non decreasing normalized slowly varying function and
(εj , j ∈ Z) is a sequence of i.i.d. random variables with E ε0 = 0 and E |ε0|2 is
�nite. Put

H :=
3
2
− β. (7)

Let Sn and ξn be the partial sums and partial sums process built on (Xk)k≥0,
de�ned by (2) and (3). Put

bn = nH`(n)cβ
(
E ε20

)1/2
, (8)

with

cβ := (1− β)−2

∫ ∞

0

(
x1−β − (x− 1)1−β

+

)2 dx, where x+ := max(0;x).

Then for 0 < α < H, the weak-Hölder convergence

b−1
n ξn

Ho
α−−−−→

n→∞
WH (9)

is obtained in the following cases.

1. For 0 < α < H − 1/2, (9) holds true if E ε20 <∞.

2. For α = H − 1/2, (9) holds true if

lim
t→∞

(t ln t)2P (|ε0| > t) = 0 (10)
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3. For H − 1/2 < α < H, (9) holds true if

lim
t→∞

tpP (|ε0| > t) = 0, where p =
1

H − α
. (11)

The slowly varying function ` is said normalized if for every δ positive, tδ`(t)
is ultimately increasing and t−δ`(t) is ultimately decreasing.

The variance σ2
n of Sn is asymptotically equivalent to b2n, see [20, Th.2].

Therefore the convergence (9) holds as well with bn replaced by σn.
The necessity of condition (11) remains an open and interesting question.

To our best knowledge necessary moment conditions for limit behavior of sums
of long memory linear processes are not treated in literature.

3 Proofs

3.1 General reduction

We describe here the common part of the proofs of Theorems 1 and 2 which
provides a general methodology to establish the weak-Ho

α[0, 1] convergence of the
partial sums process. This may be of independent interest to prove invariance
principles under various kind of dependence of the underlying sequence (Xn)n≥1.
Classically b−1

n ξn converges weakly to ξ in Ho
α[0, 1] if and only if

a) the �nite dimensional distributions of b−1
n ξn converge to those of ξ;

b) the sequence (b−1
n ξn)n≥1 is tight in Ho

α[0, 1].

Usually condition a) is known to be satis�ed under mild assumptions, e.g.
if weak convergence of b−1

n ξn is already established in C[0, 1]. This is indeed
the case in the context of Theorems 1 and 2. So we will focuse on the tightness
problem. General conditions implying the tighness of a sequence of random
elements in Ho

α[0, 1] may be found in [14] (Prop. 7 and Rem. 8). To translate
this result in the setting of partial sums process ξn, write for simplicity

tk = tj,k = k2−j , k = 0, 1, . . . , 2j , j = 1, 2, . . .

Then the tighness of (b−1
n ξn)n≥1 in Ho

α[0, 1] takes place provided that

i) for every t ∈ [0, 1], (b−1
n ξn(t))n≥1 is tight on R;

ii) lim
J→∞

lim sup
n→∞

P
{

sup
j≥J

2jαb−1
n max

0≤k<2j
|ξn(tk+1)− ξn(tk)| ≥ ε

}
= 0.

Now we are able to go a step further by proving the following theorem. It
is worth noticing that nothing is assumed about the dependence structure of
(Xn)n≥1 in its statement.

Theorem 3. Let ξn be the partial sums process built on (Xk)k≥0, de�ned by (3).
Then (b−1

n ξn)n≥1 is tight in Ho
α[0, 1] if:
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1. for every t ∈ [0, 1], (b−1
n ξn(t))n≥1 is tight on R;

2. nαb−1
n max

1≤i≤n
|Xi| converges in probability to 0;

3. lim
J→∞

lim sup
n→∞

P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|S[ntk+1] − S[ntk]| ≥ ε

}
= 0

for every positive ε.

Here and throughout the paper, log n stands for the logarithm with basis 2,
so that 2log n = n. The following corollary suits better our needs.

Corollary 4. Assume that the Xi's have identical distribution. Then (b−1
n ξn)n≥1

is tight in Ho
α[0, 1] if Conditions 1 and 3 of Theorem 3 are satis�ed and

∀ε > 0, nP (|X1| ≥ εbnn
−α) −−−−→

n→∞
0. (12)

Clearly under identical distribution of the Xi's, (12) implies Condition 2
in Theorem 3. Moreover when (12) is enough for (b−1

n ξn)n≥1 to satisfy the
invariance principle in C[0, 1], then we can drop Condition 1 and concentrate
on the veri�cation of (12) and Condition 3 to prove the invariance principle in
Ho

α[0, 1].

Proof of Theorem 3. We have to check ii). Denote by P0 = P0(J, n) the proba-
bility appearing in Condition ii). Then P0 is bounded by P1 + P2 where

P1 := P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|ξn(tk+1)− ξn(tk)| ≥ ε

}
and

P2 := P
{

sup
j>log n

2jαb−1
n max

0≤k<2j
|ξn(tk+1)− ξn(tk)| ≥ ε

}
.

Estimation of P2. As j > log n, tk+1− tk = 2−j < 1/n and then with tk in say
[i/n, (i+1)/n), either tk+1 is in (i/n, (i+1)/n] or belongs to

(
(i+1)/n, (i+2)/n

]
,

where 1 ≤ i ≤ n− 2 depends on k and j.
In the �rst case, noting that the slope of ξn on [i/n, (i + 1)/n) is exactly

nXi+1, we have

|ξn(tk+1)− ξn(tk)| = n|Xi+1|2−j ≤ 2−jn max
1≤i≤n

|Xi|.

If tk and tk+1 are in consecutive intervals, then

|ξn(tk+1)− ξn(tk)| ≤ |ξn(tk)− ξn((i+ 1)/n)|+ |ξn((i+ 1)/n)− ξn(tk+1)|
≤ 2−j+1n max

1≤i≤n
|Xi|.
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With both cases taken into account we obtain

P2 ≤ P
{

sup
j>log n

2jαb−1
n n2−j+1 max

1≤i≤n
|Xi| ≥ ε

}
= P

{
nb−1

n max
1≤i≤n

|Xi| sup
j>log n

2(α−1)j ≥ ε

2

}
≤ P

{
nαb−1

n max
1≤i≤n

|Xi| ≥
ε

2

}
,

so by Condition 2, limn→∞ P2 = 0.

Estimation of P1. Let uk = [ntk]. Then uk ≤ ntk ≤ 1 + uk and 1 + uk ≤
uk+1 ≤ ntk+1 ≤ 1 + uk+1. Therefore

|ξn(tk+1)− ξn(tk)| ≤ |ξn(tk+1)− Suk+1 |+ |Suk+1 − Suk
|+ |Suk

− ξn(tk)|.

Since |Suk
− ξn(tk)| ≤ |X1+uk

| and |ξn(tk+1) − Suk+1 | ≤ |X1+uk+1 | we obtain
P1 ≤ P1,1 + P1,2, where

P1,1 := P
{

max
J≤j≤log n

2jαb−1
n max

1≤k≤2j
|Suk+1 − Suk

| ≥ ε

2

}
P1,2 := P

{
max

J≤j≤log n
2jαb−1

n max
1≤i≤n

|Xi| ≥
ε

4

}
.

In P1,2, the maximum over j is realized for j = [log n], so limn→∞ P1,2 = 0 by
Condition 2.

Gathering all the estimates, we �nally obtain

lim
J→∞

lim sup
n→∞

P0 = lim
J→∞

lim sup
n→∞

P1,1 = 0,

by Condition 3.

We now turn to the proofs of Theorems 1 and 2. To avoid disturbing the
main �ow of argumentation, we deferred technical lemmas to subsection 3.4.

3.2 Short memory

Proof of Theorem 1. We need to check the convergence of �nite dimensional
distributions and tightness. Put σ2

n := ES2
n. By a classical computation

σ2
n

n
= E ε20

∞∑
i,k=0

aiak

(
1− |i− k|

n

)
+
.

Due to assumption (A),
∑∞

i,k=0 |aiak| is �nite, so by the bounded convergence
theorem for the series

σ2
n

n
−−−−→
n→∞

E ε20

∞∑
i,k=0

aiak = A2E ε20, (13)
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recalling that A :=
∣∣∑∞

i=0 ai

∣∣. In what follows we assume without loss of gen-
erality that E ε20 = 1. As bn and σn are asymptotically equivalent, the C[0, 1]
or Ho

α[0, 1] convergences of b−1
n ξn and σ−1

n ξn are equivalent. The convergence of
the �nite dimensional distributions of b−1

n ξn to those of the standard Brownian
motion W follows of the weak convergence in C[0, 1] of σ−1

n ξn to W . Such an
invariance principle may be found for instance in [20], Theorem 1. That theorem
involves more general linear �lters and condition (A) is just a special case (see
also Remark 4 in [20]). As a by-product of this invariance principle, Condition 1
in Theorem 3 is automatically satis�ed.

To check the tightness, we use Corollary 4. First we note that our assump-
tion (5) implies via Lemma 9 below that

lim
t→∞

tpP (|X0| ≥ t) = 0.

As bn = An1/2 and 1/p = 1/2 − α, we deduce immediately (12) from the
above limit. So it remains only to check Condition 3 of Theorem 3, that is
limJ→∞ lim supn→∞ P1(J, n, ε) = 0, with

P1(J, n, ε) = P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|Suk+1 − Suk

| ≥ ε
}
, (14)

where uk = [ntk] = [nk2−j ].
Let us �x an arbitrary δ > 0, put ∆n := δn1/p and de�ne

ε̂l := εl1{|εl| ≤ ∆n} −E εl1{|εl| ≤ ∆n}, (15)

ε̃l := εl1{|εl| > ∆n} −E εl1{|εl| > ∆n}. (16)

Since E εl = 0, εl = ε̂l + ε̃l and we have

uk+1∑
i=uk

Xi =
∞∑

l=−∞

(
uk+1∑
i=uk

ai−l

)
εl = Z

(1)
j,k + Z

(2)
j,k ,

where

Z
(1)
j,k =

∞∑
l=−∞

(
uk+1∑
i=uk

ai−l

)
ε̂l and Z

(2)
j,k =

∞∑
l=−∞

(
uk+1∑
i=uk

ai−l

)
ε̃l. (17)

Hence, we have to prove both

lim
J→∞

lim sup
n→∞

P
(i)
1 (J, n, ε) = 0, i = 1, 2, (18)

where for i = 1, 2,

P
(i)
1 (J, n, ε) := P

{
max

J≤j≤log n
2αj max

0≤k<2j

∣∣Z(i)
j,k

∣∣ > bn
ε

2

}
.

To estimate P
(2)
1 (J, n, ε), �rst apply Chebyshev inequality to obtain

P
(2)
1 (J, n, ε) ≤

∑
J≤j≤log n

22αjb−2
n 4ε−2

∑
0≤k<2j

E
∣∣Z(2)

j,k

∣∣2. (19)
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Next, observe that by stationarity,
∑∞

l=−∞
∣∣∑uk+1

i=uk
ai−l

∣∣2E ε20 = σ2
uk+1−uk

, whence
it follows via (13) that for some constant c,

∞∑
l=−∞

∣∣∣∣∣
uk+1∑
i=uk

ai−l

∣∣∣∣∣
2

≤ c(uk+1 − uk). (20)

This gives

E
∣∣Z(2)

j,k

∣∣2 =
∞∑

l=−∞

(
uk+1∑
i=uk

ai−l

)2

E |ε̃l|2 ≤ c(uk+1 − uk)E |ε̃0|2 ≤ 2n2−jcE |ε̃0|2.

Now using inequality (34) in Lemma 6 and recalling that ∆n = δn1/p, b2n = A2n
and 1/p = 1/2− α, we obtain

P
(2)
1 (J, n, ε) ≤ 8cpδ2−p

(p− 2)ε2
∑

J≤j≤log n

22αjb−2
n 2jn2−jn2/p−1 sup

t≥∆n

tpP (|ε0| > t)

=
8cpδ2−p

(p− 2)A2ε2
n2/p−1 sup

t≥∆n

tpP (|ε0| > t)
log n∑
j=J

22αj

≤ 8cpδ2−p

(p− 2)A2ε2
n2/p−1 sup

t≥∆n

tpP (|ε0| > t)
22αn2α

22α − 1

≤ 16cpδ2−p

(p− 2)A2ε2(22α − 1)
sup

t≥∆n

tpP (|ε0| > t).

Thus (5) gives

lim
n→∞

P
(2)
1 (J, n, ε) = 0. (21)

To estimate P
(1)
1 (J, n, ε), let us �x some q > p and apply the Markov in-

equality of order q to start with:

P
(1)
1 (J, n, ε) ≤ 2q

εqbqn

∑
J≤j≤log n

∑
0≤k<2j

2qαjE
∣∣Z(1)

j,k

∣∣q. (22)

By Rosenthal's inequality, see (30) in Lemma 5 below,

E
∣∣Z(1)

j,k

∣∣q ≤ Rq

( ∞∑
l=−∞

∣∣∣∣∣
uk+1∑
i=uk

ai−l

∣∣∣∣∣
2

E |ε̂l|2
)q/2

+Rq

∞∑
l=−∞

∣∣∣∣∣
uk+1∑
i=uk

ai−l

∣∣∣∣∣
q

E |ε̂l|q.

(23)
As the series

∑∞
i=0 |ai| converges, we have

A0 := sup
I⊂N

∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣ <∞.

10



Thus from (20) we get
∑∞

l=−∞
∣∣∑uk+1

i=uk
ai−l

∣∣q ≤ cAq−2
0 (uk+1−uk) ≤ 2cAq−2

0 n2−j .
From now on, we denote by C a constant which may depend of ε, q, α, c, A, A0

and of the distribution of ε0. Its explicit value is allowed to vary from one line
to another. Going back to Rosenthal inequality with the above estimate and
the inequalities (33) and (36), we get for n large enough:

E
∣∣Z(1)

j,k

∣∣q ≤ C
(
nq/22−jq/2 + δq−pnq/p2−j

)
.

Thus we can bound P
(1)
1 (J, n, ε) by

P
(1)
1 (J, n, ε) ≤ C

∑
J≤j≤log n

2(1−q/2+qα)j + Cδq−pnq(1/p−1/2)
∑

J≤j≤log n

2qαj

≤ Cn1−q(1/2−α) + Cδq−p,

recalling that 1/p− 1/2 + α = 0. Moreover, as q > p = (1/2− α)−1, we get

lim sup
n→∞

P
(1)
1 (J, n, ε) ≤ Cδq−p.

This together with (21) leads to

lim sup
n→∞

P1(J, n, ε) ≤ Cδq−p.

As this last limsup does not depend on δ and δ may be choosen arbitrarily small,
we conclude that lim supn→∞ P1(J, n, ε) = 0, whence Condition 3 of Theorem 3
is satis�ed.

3.3 Long memory

We now prove Theorem 2. For notational simpli�cations, we assume without loss
of generality that E ε20 = 1. Recalling that by [20, Th.2], ES2

n is asymptotically
equivalent to b2n, one can �nd a constant κ such that for every n ≥ 1,

σn = (ES2
n)1/2 ≤ κbn. (24)

By the same reference, the square integrability of ε0 is enough to imply the weak-
C[0, 1] convergence to WH of σ−1

n ξn or equivalently of b−1
n ξn. So, according to

the remark after Corollary 4, we only need to check (12) and Condition 3 of
Theorem 3 to obtain the weak Ho

α[0, 1] convergence of b−1
n ξn to WH .

Proof of the case 0 < α < H − 1/2 in Theorem 2. The convergence (12) follows
immediately from Chebyshev inequality:

nP
(
|X1| ≥ εbnn

−α
)
≤ n2α+1

ε2b2n
EX2

1 = O
(
n2α+1−2H`(n)−2

)
,

since α < H − 1/2.

11



Let us keep the same notation P1(J, n, ε) as in (14) for the probability in-
volved in Condition 3. By stationarity of (Xi)i∈N and (24), we have

E
(
Suk+1 − Suk

)2 = ES2
uk+1−uk

≤ κ2c2β(2n2−j)2H`(2n2−j)2.

In view of this estimate, applying Chebyshev inequality leads to

P1(J, n, ε) ≤
4Hκ2

ε2

∑
J≤j≤log n

`(2n2−j)2

`(n)2
2(2α+1−2H)j

≤ 4Hκ2M2

ε2(1− 22α+1−2H)
2(2α+1−2H)J ,

noting that 2α+ 1− 2H < 0 and that by slow variation of `

M := sup
n≥1

`(2n)
`(n)

<∞. (25)

This entails limJ→∞ lim supn→∞ P1(J, n, ε) = 0, so the proof of the case α <
H − 1/2 is complete.

Proof of the case H − 1/2 < α < H in Theorem 2. To check convergence (12),
it su�ces to show that for any positive ε, nP (|X1| ≥ εnH−α`(n)) = o(1). By
Lemma 9 below, the hypothesis (11) enables us to write P (|X1| ≥ t) = t−pg(t),
with limt→∞ g(t) = 0. Therefore

nP
(
|X1| ≥ εnH−α`(n)

)
= ε−pn1−p(H−α)`(n)−pg

(
εnH−α`(n)

)
= ε−p`(n)−pg

(
εnH−α`(n)

)
= o(1),

since p = (H − α)−1 and α < H. So (12) is satis�ed.
In order to check Condition 3 of Theorem 3, we use the same truncation

technics as in the short memory case, with the same level ∆n = δn1/p but with
1/p = H − α instead of 1/2 − α. With obvious adaptations, we also keep the

same notations (15)�(17) and P
(i)
1 (J, n, ε). We have again to prove (18).

To estimate P
(2)
1 (J, n, ε), going back to (19), we need some bound forE |Z(2)

j,k |2.
Write X̂k, X̃k, Ŝn, S̃n, for the linear processes obtained by substituting ε by ε̂
or ε̃ respectively and their corresponding partial sums. Then we have

Z
(2)
j,k = S̃uk+1 − S̃uk

whence by stationarity and (24),

E
∣∣Z(2)

j,k

∣∣2 = E S̃2
uk+1−uk

≤ κ2c2β(uk+1 − uk)2H`2(uk+1 − uk)E ε̃0
2

≤ 4κ2c2βn
2H2−2Hj`2(2n2−j)E ε̃0

2.

12



Putting γ := 1 + 2α− 2H and pluging the above estimate into (24) leads to

P
(2)
1 (J, n, ε) ≤ 16κ2

ε2
E ε̃0

2
∑

J≤j≤log n

2γj `
2(2n2−j)
`2(n)

(26)

≤ 32M2κ2

ε2(2γ − 1)
E ε̃0

2nγ . (27)

Observing that γ = 1+2α− 2H = 1− 2/p and estimating E ε̃0
2 by the inequal-

ity (34) in Lemma 6 provides

P
(2)
1 (J, n, ε) ≤ 32M2κ2p

ε2(2γ − 1)(p− 2)
sup

t≥∆n

tpP (|ε| > t).

Now from hypothesis (11) we get

lim
n→∞

P
(2)
1 (J, n, ε) = 0. (28)

To estimate P
(1)
1 (J, n, ε), looking back at (22) and (23), we see that the only

real change is in the control of
∣∣∑uk+1

i=uk
ψi−l

∣∣q. To this end, let us observe that

sup
k≥0

∣∣∣∣∣
k∑

i=k−n+1

ψi

∣∣∣∣∣ = sup
k≥0

∣∣∣∣∣ ∑
1+(k−n)+<i≤k

`(i)
iβ

∣∣∣∣∣
≤ sup

k≥0
`(k)

∫ k

(k−n)+

dt
tβ

= sup
k≥0

`(k)
(
k1−β − (k − n)1−β

+

)
= sup

k≥n
`(k)

(
k1−β − (k − n)1−β

)
,

where the last equality relies on the increasingness on [0, n] of the function

t 7→ `(t)
(
t1−β − (t− n)1−β

+

)
. Using Lemma 8 below leads to

sup
k≥0

∣∣∣∣∣
k∑

i=k−n+1

ψi

∣∣∣∣∣ ≤ cn1−β`(n),

with a constant c depending on β and `. Now we have∣∣∣∣∣
uk+1∑
i=uk

ψi−l

∣∣∣∣∣
q

≤ cq−2(uk+1 − uk)(q−2)(1−β)`q−2(uk+1 − uk)σ2
uk+1−uk

≤ 2qκ2cq−2(n2−j)q(H−1/2)+1`q(2n2−j).

From now on, we denote by C a constant which may depend of ε, q, p, α, c, H,
κ and of the distribution of ε0. Its explicit value is allowed to vary from one line

13



to another. Going back to Rosenthal inequality (23) with the above estimate
and the inequalities (33) and (36), we get for n large enough:

E
∣∣Z(1)

j,k

∣∣q ≤ C
(
nqH2−qHj`q(2n2−j)+δq−pnq(H−1/2+1/p)2−(qH−q/2+1)j`q(2n2−j)

)
.

Pluging this estimate into (22), we obtain

P
(1)
1 (J, n, ε) ≤ C

nHq`q(n)

∑
J≤j≤log n

nqH2(1−qH+qα)j`q(2n2−j)

+
Cδq−p

nHq`q(n)

∑
J≤j≤log n

nq(H−1/2+1/p)2q(α−H+1/2)j`q(2n2−j)

≤C
∑

J≤j≤log n

2(1−qH+qα)j + Cδq−pnq(−1/2+1/p)
∑

J≤j≤log n

2q(α−H+1/2)j

≤C2(1−qH+qα)J + Cδq−p.

From this bound we get

lim
J→∞

lim sup
n→∞

P
(1)
1 (J, n, ε) ≤ Cδq−p.

Together with (28), this gives

lim
J→∞

lim sup
n→∞

P1(J, n, ε) ≤ Cδq−p.

As this last limit does not depend on δ and δ may be choosen arbitrarily small,
we conclude that limJ→∞ lim supn→∞ P1(J, n, ε) = 0, whence Condition 3 of
Theorem 3 is satis�ed.

Proof of the case α = H − 1/2 in Theorem 2. The proof of this special case is
obtained by an adaptation of the proof of the case H − 1/2 < α < H. We shall
just mention the relevant modi�cations in the above arguments. Now p = 2 and
we choose as truncation level ∆n = n1/2. First going back to (26), we note that
γ = 0, so we have to replace the bound (27) by

P
(2)
1 (J, n, ε) ≤ 16κ2

ε2
E ε̃0

2 log n.

Under the assumption (10), it follows from inequality (38) in Lemma 7 below

that E ε̃0
2 = o((log n)−1), so we get again lim supn→∞ P

(2)
1 (J, n, ε) = 0.

Next, choosing q > 3 and applying (38) in Lemma 7, the previous estimate

of E |Z(1)
j,k |q becomes (with the same convention on the constant C)

E
∣∣Z(1)

j,k

∣∣q ≤ C
(
nqH2−qHj`q(2n2−j) + nqH(lnn)−22−(qH−q/2+1)j`q(2n2−j)

)
,

14



which leads to

P
(1)
1 (J, n, ε) ≤ C

∑
J≤j≤log n

2(1−qH+qα)j +
C

(lnn)2
∑

J≤j≤log n

2−jq(H−1/2−α)

≤ C2−J/2 + C
log n

(lnn)2
.

Hence lim supn→∞ P
(1)
1 (J, n, ε) ≤ C2−J/2 and limJ→∞ lim supn→∞ P1(J, n, ε) =

0, which completes the proof.

3.4 Miscellaneous technical tools

We give now a version of Rosenthal inequality for linear processes. Recall �rst
the classical Rosenthal inequality of order q > 2. It states that for any �nite set
I of independent random variables Yi (i ∈ I) such that E |Yi|q < ∞ (for every
i ∈ I), the sum SI :=

∑
i∈I Yi satis�es

E
∣∣SI

∣∣q ≤ Rq

((
VarSI)q/2 +

∑
i∈I

E |Yi|q
)
, (29)

where Rq is a universal constant depending only on q.

Lemma 5. Let X be the series

X =
∞∑

i=0

aiεi, with

∞∑
i=0

a2
i <∞,

where the random variables εi are i.i.d., E ε0 = 0 and E |ε0|q < ∞ for some
q > 2. Then the series

∑∞
i=0 aiεi converges in L

q sense and

E |X|q ≤ Rq

((
E ε20

)q/2

( ∞∑
i=0

a2
i

)q/2

+ E |ε0|q
∞∑

i=0

|ai|q
)
, (30)

where Rq is the universal constant of the Rosenthal inequality (29).

Proof. Rosenthal inequality (29) applied to the random variables Yi = aiεi with
any non empty subset I of N reads

E

∣∣∣∣∣∑
i∈I

aiεi

∣∣∣∣∣
q

≤ Rq

((
E ε20

)q/2

(∑
i∈I

a2
i

)q/2

+ E |ε0|q
∞∑
i∈I

|ai|q
)
.

It follows immediately that the series
∑∞

i=0 aiεi ful�ls the Cauchy criterion in
Lq and hence converges in this space. Now (30) follows, taking I = {0, 1, . . . , n}
in the above inequality and letting n go to in�nity.
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Lemma 6. Let Y be a random variable such that

Λp(Y ) := sup
t>0

tpP (|Y | > t) <∞ for some p > 2. (31)

For any positive T , write

Ŷ := Y 1{|Y | ≤ T}, Ỹ := Y 1{|Y | > T}.

Write also Ŷ ′ := Ŷ −E Ŷ and Ỹ ′ := Ỹ −E Ỹ . Then the following estimates are
valid with any q > p.

E
∣∣Ŷ ∣∣q ≤ Λp(Y )

q − p
T q−p, (32)

Var Ŷ ≤ EY 2, (33)

Var Ỹ ≤ p

p− 2
T 2−p sup

t≥T
tpP (|Y | > t). (34)

If moreover EY = 0, then∣∣E Ŷ
∣∣ ≤ p

p− 1
T 1−p sup

t≥T
tpP (|Y | > t), (35)

E
∣∣Ŷ ′∣∣q ≤ 2qΛp(Y )

q − p
T q−p for T ≥ T0, (36)

where T0 depends of p, q and of the distribution of Y .

Proof. To check (32), write

E
∣∣Ŷ ∣∣q =

∫ ∞

0

qsq−1P (
∣∣Ŷ ∣∣ > s) ds =

∫ T

0

qsq−1P (
∣∣Ŷ ∣∣ > s) ds

≤
∫ T

0

qsq−1P (|Y | > s) ds

≤ sup
t>0

tpP (|Y | > t)
∫ T

0

qsq−p−1 ds

=
T q−p

q − p
sup
t>0

tpP (|Y | > t).

Next, (33) is obvious since Var Ŷ ≤ E Ŷ 2 ≤ EY 2. For (34), noting that

P (|Ỹ | > s) = P (|Y | > max(s, T )), we get

Var Ỹ ≤ E Ỹ 2 =
∫ T

0

2sP (|Y | > T ) ds+
∫ ∞

T

2sP (|Y | > s) ds

= T 2P (|Y | > T ) +
∫ ∞

T

2s1−pspP (|Y | > s) ds

≤ T 2−p sup
t≥T

tpP (|Y | > t) +
2

p− 2
T 2−p sup

t≥T
tpP (|Y | > t),
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which establishes (34).

Similarly, if EY = 0, then E Ŷ = −E Ỹ and we get

∣∣E Ŷ
∣∣ ≤ E

∣∣Ỹ ∣∣ = ∫ T

0

P (|Y | > T ) ds+
∫ ∞

T

P (|Y | > s) ds

= TP (|Y | > T ) +
∫ ∞

T

s−p
(
spP (|Y | > s)

)
ds

=
(
T 1−p +

T 1−p

p− 1

)
sup
t≥T

tpP (|Y | > t),

which gives (35).

By convexity, E
∣∣Ŷ ′∣∣q ≤ 2q−1

(
E
∣∣Ŷ ∣∣q +

∣∣E Ŷ
∣∣q). By (35),

∣∣E Ŷ
∣∣q goes to 0

when T goes to in�nity, whence (36) follows.

Lemma 7. With the notations of lemma 6, assume that

sup
t>1

(t ln t)2P (|Y | > t) <∞. (37)

Then with r(T ) := supt≥T (t ln t)2P (|Y | > t),

Var Ỹ ≤ 3r(T )
lnT

, for T ≥ e. (38)

If moreover EY = 0, then for any q > 3,

E
∣∣Ŷ ′∣∣q = O

(
T q−2(lnT )−2

)
. (39)

Proof. For every T > 1, we can write

Var Ỹ ≤ E Ỹ 2 = T 2P (|Y | > T ) +
∫ ∞

T

2sP (|Y | > s) ds

≤ r(T )
(lnT )2

+
∫ ∞

T

2
s(ln s)2

s2(ln s)2P (|Y | > s) ds

≤ r(T )
(lnT )2

+ r(T )
∫ ∞

T

2
s(ln s)2

ds

=
(

1
(lnT )2

+
2

lnT

)
r(T ),

whence (38) follows.
To check (39), we note �rst that (35) remains valid with p = 2 and pro-

vides the estimate |E Ŷ |q = o(T−q). Hence it is enough to show that E |Ŷ |q =
O
(
T q−2(lnT )−2

)
. To do that, recall that E

∣∣Ŷ ∣∣q ≤ ∫ T

0
qsq−1P (|Y | > s) ds and

split this integral in
∫ T0

0
+
∫ T

T0
, for T > T0 where T0 := exp( 2

q−3 ) > 1 is choosen

such that sq−3(ln s)−2 increases on [T0,∞). This clearly reduces the problem
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to the following elementary estimation of
∫ T

T0
:∫ T

T0

qsq−1P (|Y | > s) ds =
∫ T

T0

qsq−3

(ln s)2
(s ln s)2P (|Y | > s) ds

≤ (T − T0)
qT q−3

(lnT )2
sup
t≥T0

(t ln t)2P (|Y | > t).

Lemma 8. If ` is non decreasing and normalized slowly varying, then for any
0 < β < 1, there is a constant C = C(β, `) such that for every n ≥ 1,

sup
k≥n

`(k)
(
k1−β − (k − n)1−β

)
≤ Cn1−β`(n). (40)

Proof. First as 1− β < 1, we clearly have k1−β ≤ (k − n)1−β + n1−β for every
k ≥ n, from which we get

max
n≤k≤2n

`(k)
(
k1−β − (k − n)1−β

)
≤ `(2n)n1−β . (41)

As ` is slowly varying, there is a constant C1 = C1(`) such that `(2n) ≤ C1`(n).
Next, by concavity of the function t1−β on [0,∞), we have for every t > n

t1−β − (t− n)1−β ≤ (1− β)(t− n)−βn. (42)

Now for every t ≥ 2n,

(t− n)−β`(t) = t−β`(t)
( t

t− n

)β

≤ 2βt−β`(t).

Since ` is normalized slowly varying, t−β`(t) is ultimately decreasing, so for large
enough n, t−β`(t) realizes its maximum on [2n,∞) at t = 2n. So going back
to (42), we can �nd a constant C2 depending on β and ` such that for every
k > 2n,

`(k)
(
t1−β − (t− n)1−β

)
≤ C2n

1−β`(n) (43)

Now the conclusion follows from (41) and (43).

Lemma 9. It holds
lim

t→∞
tpP (|X0| ≥ t) = 0 (44)

if and only if
lim

t→∞
tpP (|ε0| ≥ t) = 0. (45)

Proof. To prove the su�ciency of (45) for (44), let us �x an arbitrary positive
δ and de�ne

ε̂j := εj1{|εj | ≤ δt}−E εj1{|εj | ≤ δt}, ε̃j := εj1{|εj | > δt}−E εj1{|εj | > δt}.
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Noting that εj = ε̂j + ε̃j , we have

tpP (|X0| ≥ 2t) ≤ tpP1 + tpP2,

where

P1 := P

( ∞∑
j=0

aj ε̂j ≥ t

)
, P2 := P

( ∞∑
j=0

aj ε̃j ≥ t

)
.

To estimate P2, we apply Chebyshev's inequality combined with inequal-
ity (34) in Lemma 6. Puting c =

∑∞
j=0 a

2
j and cp = pc/(p− 2), this gives:

P2 ≤
1
t2

E

( ∞∑
j=0

aj ε̃j

)2

=
c

t2
E |ε̃0|2 ≤ cpδ

2−pt−p sup
s≥δt

spP (|ε0| ≥ s).

To estimate P1, we combine Markov and Rosenthal inequalities of order
q > p with inequalities (33) and (36) in Lemma 6. This gives

P1 ≤ t−qE

∣∣∣∣∣
∞∑

j=0

aj ε̂j

∣∣∣∣∣
q

≤ Rqt
−q

[( ∞∑
i=0

|ai|2E |ε0|2
)q/2

+
∞∑

i=0

|ai|qE |ε̂0|q
]

≤ Ct−q
(
1 + δq−ptq−p

)
= C

(
t−q + δq−pt−p

)
,

where the constant C depends on p, q, the sequence (ai) and the distribution
of ε0. Gathering the estimates of P1 and P2 gives

tpP (|X0| > 2t) ≤ cpδ
2−p sup

s≥δt
spP (|ε0| ≥ s) + C(t−q+p + δq−p),

whence
lim sup

t→∞
tpP (|X0| > 2t) ≤ Cδq−p.

As δ may be choosen arbitrarily small, as q > p and C does not depend on δ,
the su�ciency of (45) follows.

Let us prove the necessity of (45). We have

X0 = a0ε0 +
∞∑

i=1

aiε−i = a0ε0 + Z.

If t0 > 0 is such that P (|Z| ≤ t0) ≥ 1/2, we have for t > t0

P (|X0| ≥ t) ≥ P (|a0||ε0| ≥ t+ to)P (|Z| ≤ t0) ≥
1
2
P (|a0||ε0| ≥ t+ t0)

due to independence of ε0 and Z and the necessity follows.
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