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Abstract

To detect epidemic change in the mean of a sample of size n of random
elements in a Banach space, we introduce new test statistics DI based on
weighted increments of partial sums. We obtain their limit distributions
under the null hypothesis of no change in the mean. Under alternative
hypothesis our statistics can detect very short epidemics of length logγ n,
γ > 1. We present applications to detect epidemic changes in distribution
function or characteristic function of real valued observations as well as
changes in covariance matrixes of random vectors.

Some keywords: change point, epidemic alternative, functional central limit
theorem, Hölder norm, partial sums processes

1 Introduction

A central question in the area of change point detection is testing for changes in
the mean of a sample. Indeed many change point problems may be reduced to
this basic setting, see e.g. Brodsky and Darkhovsky [1]. Here we present a new
illustration of this general approach. Starting from the detection of epidemic
changes in the mean of Banach space valued random elements, we construct
new tests to detect changes in the distribution function or the characteristic
function of real valued observations as well as changes in covariance matrixes of
random vectors.

Let B be a separable Banach space with a norm ‖x‖ and dual space B′ with
duality denoted by f(x), f ∈ B′, x ∈ B. Suppose that X1, . . . , Xn are random
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elements in B with means m1, . . . ,mn respectively. We want to test the standard
null hypothesis of a constant mean

(H0): m1 = · · · = mn

against the so called epidemic alternative

(HA): there are integers 1 < k∗ < m∗ < n such that
m1 = m2 = · · · = mk∗ = mm∗+1 = · · · = mn,
mk∗+1 = · · · = mm∗ and mk∗ 6= mk∗+1.

The study of epidemic change models (with B = R) goes back to Levin and
Kline [8] who proposed test statistics based on partial sums. Using a maximum
likelihood approach, Yao [14] suggested some weighted versions of these statistics
which may be viewed as some discrete Hölder norm of the partial sums process,
see also Csörgő and Horváth [3] and the references therein.

In [12], we study a large class of statistics obtained by discretizing Hölder
norms of the partial sums process (with B = R). One important feature
of Hölderian weighting is the detection of short epidemics. Roughly speak-
ing, the use of Hölderian tests allows the detection of epidemics whose length
l∗ := m∗ − k∗ is at least of the order of lnγ n with γ > 1, while the same test
statistics without Hölderian weight detects only epidemics such that n−1/2l∗

goes to infinity. Among the test statistics suggested in [12], the statistics DI(n, ρ)
built on the dyadic increments of partial sums are of special interest because
their limiting distribution is explicitly computable. The aim of this new con-
tribution is to investigate asymptotical behavior of DI(n, ρ) in the setting of B
valued random elements Xi’s.

The paper is organized as follows. Section 2 introduce the dyadic increment
test statistics and present general results on their asymptotical behavior under
(H0) or under (HA). Several applications are proposed in Section 3, involv-
ing epidemic changes in distribution function (through Kolmogorov-Smirnov or
Cramér-von Mises versions of DI(n, ρ)), in characteristic function, in the co-
variance of a random vector. Section 4 gathers the relevant background on
Hölderian functional central limit theorem and the proofs.

2 The class of DI test statistics

Let us denote by Dj the set of dyadic numbers in [0, 1] of level j, i.e.

D0 = {0, 1}, Dj =
{
(2l − 1)2−j ; 1 ≤ l ≤ 2j−1

}
, j ≥ 1.

Write for r ∈ Dj , j ≥ 0,

r− := r − 2−j , r+ := r + 2−j .

For a function x : [0, 1] → B, we shall denote

λr(x) := x(r)− 1
2
(x(r+) + x(r−)), r ∈ Dj , j ≥ 1 (1)
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and λr(x) = x(r) in the special case r = 0, 1. Consider partial sums

S(0) = 0, S(u) =
∑
k≤u

Xk, 0 < u <∞.

We define also

Sn(a, b) := S(nb)− S(na) =
∑

na<k≤nb

Xk, 0 ≤ a < b ≤ 1

and
Sn(t) = Sn(0, t) =

∑
k≤nt

Xk, 0 ≤ t ≤ 1.

Dyadic increments statistics DI(n, ρ) depend on a weight function ρ : [0, 1] → R
and are defined by

DI(n, ρ) := max
1≤j≤log n

1
ρ(2−j)

max
r∈Dj

‖λr(Sn)‖

=
1
2

max
1≤j log n

1
ρ(2−j)

max
r∈Dj

∥∥∥ ∑
nr−<k≤nr

Xk −
∑

nr<k≤nr+

Xk

∥∥∥. (2)

In this paper, we write “log” for the logarithm with basis 2 (log(2j) = j) and
“ln” for the natural logarithm (ln(et) = t). Throughout we assume that ρ
belongs to the following class R.

Definition 1. Let R be the class of non decreasing functions ρ : [0, 1] → R,
positive on (0, 1], such that ρ(0) = 0 and satisfying

i) for some 0 < α ≤ 1/2, and some function L which is normalized slowly
varying at infinity,

ρ(h) = hαL(1/h), 0 < h ≤ 1; (3)

ii) θ(t) := t1/2ρ(1/t) is C1 on [1,∞);

iii) there is a β > 1/2 and some a > 0, such that θ(t) ln−β(t) is non decreasing
on [a,∞).

For a random element X in a separable Banach space B such that for every
f ∈ B′, E f(X) = 0 and E f2(X) < ∞, its covariance operator Q = Q(X) is
the linear bounded operator from B′ to B defined by Qf = E

(
f(X)X

)
, f ∈ B′.

A random element X ∈ B (or covariance operator Q) is said to be pregaussian
if there exists a mean zero Gaussian random element Y ∈ B with the same
covariance operator as X, i.e. for all f, g ∈ B′, E f(X)g(X) = E f(Y )g(Y ).
Since the distribution of a centered Gaussian random element is defined by its
covariance structure, we denote by YQ a zero mean Gaussian random element
with covariance operator Q.
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For any pregaussian covariance Q there exists a B-valued Brownian motion
WQ with parameter Q, i.e. a centered Gaussian process indexed by [0, 1] with
independent increments such that WQ(t)−WQ(s) has the same distribution as
|t− s|1/2YQ.

A random elementX is said to satisfy the central limit theorem in B (denoted
X ∈ CLT(B)) if the sequence n−1/2(X1 + · · ·+Xn) converges in distribution in
B, where X1, . . . , Xn are independent copies of X. Necessarily then (see [7]), X
is mean zero, pregaussian and satisfies the moment condition

lim
t→∞

tP
(
‖X1‖ > t1/2

)
= 0. (4)

However the central limit theorem for X cannot be characterized in general in
terms of the only integrability of X because the geometry of B is involved in
the problem.

To complete these preliminaries, we recall here the following classical esti-
mate (see [7], (3.5) p.59) for the tail of a mean zero Gaussian random element
Y in B.

P(‖Y ‖ ≥ u) ≤ 4 exp
(

−u2

8E ‖Y ‖2

)
, u > 0. (5)

In order to investigate the asymptotic behavior of the statistics DI(n, ρ) we
consider a null hypothesis a little bit stronger then H0. Namely,

(H ′
0): X1, . . . , Xn are i.i.d. mean zero pregaussian random elements

in B with covariance Q.

Let (YQ, YQ,r, r ∈ D) be a collection of non degenerate independent mean
zero Gaussian random elements with covariance Q. Set with θ as in Defini-
tion 1 ii)

DI(ρ,Q) := sup
j≥1

1√
2θ(2j)

max
t∈Dj

‖YQ,r‖. (6)

Due to the definition of the class R, it can be shown (see Theorem 13 below)
that the random variable DI(ρ,Q) is well defined for any ρ ∈ R.

Theorem 2. If under (H ′
0), X1 ∈ CLT(B) and for every A > 0

lim
t→∞

tP
(
‖X1‖ > Aθ(t)

)
= 0, (7)

then
n−1/2DI(n, ρ) D−−−−→

n→∞
DI(ρ,Q). (8)

As θ(t) = t1/2ρ(1/t), Condition (7) is clearly stronger than (4) which is
implicitly included in the assumption “X1 ∈ CLT(B)”. If ρ(h) = ρα(h) =
hα, h ∈ [0, 1], where 0 < α < 1/2, then Condition (7) reads

P
(
‖X1‖ ≥ t

)
= o

(
t−p(α)

)
with p(α) =

(1
2
− α

)−1

.

4



In the case where ρ(h) = ρα,β(h) = h1/2 lnβ(c/h), h ∈ [0, 1] with β > 1/2,
Condition (7) is equivalent to

E exp{d‖X1‖1/β} <∞, for all d > 0.

For a discussion of the condition “X1 ∈ CLT(B)”, we refer to [7]. Let us mention
simply here that if the space B is either of type 2 or has Rosenthal’s property
(e.g. B is any separable Hilbert space, B = Lp(S, µ) with 2 ≤ p <∞ etc.) then
Condition (7) yields X1 ∈ CLT(B). If B is of cotype 2 (e.g. B = Lp(S, µ), 1 ≤
p ≤ 2), then “X1 ∈ CLT(B)” follows from X1 being pregaussian.

Due to the independence of YQ,r the limiting distribution function FQ,ρ(u)
of the dyadic increments statistic is completely specified by the distribution
function

ΦQ(u) := P
(
‖YQ,1‖ ≤ u

√
2

)
, u ≥ 0.

Namely, we have

Proposition 3. If ρ ∈ R, then the distribution of DI(ρ,Q) is absolutely con-
tinuous and its distribution function FQ,ρ is given by

FQ,ρ(u) := P
(
DI(ρ,Q) ≤ u

)
=

∞∏
j=1

[
ΦQ

(
θ(2j)u

)]2j−1

, u ≥ 0. (9)

The convergence in (9) is uniform on any interval [ε,∞), ε > 0.

For practical applications we sumarized in the next proposition some esti-
mates of the tail of distribution function FQ,ρ. Denote for J ≥ 0

F
(J)
Q,ρ(u) =

J∏
j=1

[
ΦQ

(
θ(2j)u

)]2j−1

, u ≥ 0

and

cJ := inf
γ>0

{
γ + 8

∞∑
j=J+1

2j

θ2(2j)
exp

(−γθ2(2j)
4

)}
. (10)

Proposition 4. For each ρ ∈ R, FQ,ρ satisfies the following estimates.

i) For each u > 0

1− FQ,ρ(u) ≤ 4 exp
(

−u2

8c0E ||YQ||2

)
. (11)

ii) For each J ≥ 1 and u > 0[
1− 4 exp

(
−u2

8cJE ||YQ||2

)]
F

(J)
Q,ρ(u) ≤ FQ,ρ(u) ≤ F

(J)
Q,ρ(u). (12)
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We end this section by examining a consistency of rejecting (H ′
0) versus the

epidemic alternative (H ′
A) for large values of DI(n, ρ), where

(H ′
A) Xk =

{
mc +X ′

k if k ∈ In := {k∗ + 1, . . . ,m∗}
X ′

k if k ∈ Ic
n := {1, . . . , n} \ In

where mc 6= 0 may depend on n and the X ′
k’s satisfy (H ′

0).

Theorem 5. Let ρ ∈ R. Under (H ′
A), write l∗ := m∗ − k∗ for the length of

epidemics and assume that

lim
n→∞

n1/2hn‖mc‖
ρ(hn)

= ∞, where hn := min
{ l∗
n

; 1− l∗

n

}
. (13)

Then
n−1/2DI(n, ρ)

pr−−−−→
n→∞

∞.

To discuss Condition (13), consider for simplicity the case where mc does not
depend on n. When ρ(h) = hα, (13) allows us to detect short epidemics such
that l∗ = o(n) and l∗n−δ → ∞, where δ = (1 − 2α)(2 − 2α)−1. Symmetrically
one can detect long epidemics such that n− l∗ = o(n) and (n− l∗)n−δ →∞.

When ρ(h) = h1/2 lnβ(c/h) with β > 1/2, (13) is satisfied provided that
hn = n−1 lnγ n, with γ > 2β. This leads to detection of short epidemics such
that l∗ = o(n) and l∗ ln−γ n→∞ as well as of long ones verifying n− l∗ = o(n)
and (n− l∗) ln−γ n→∞.

3 Examples

3.1 Testing change of distribution function

As an example of applications of Theorem 2, here we consider change-point
problem for distribution function of a random sample in R under epidemic
alternative. Let Z1, . . . , Zn be real valued random variables with distribution
functions F1, . . . , Fn respectively. Consider the null hypothesis

(H0) : F1 = · · · = Fn = F

and the following epidemic alternative:

(HA): there are integers 1 < k∗ < m∗ < n such that
F1 = F2 = · · · = Fk∗ = Fm∗+1 = · · · = Fn,
Fk∗+1 = · · · = Fm∗ and Fk∗ 6= Fk∗+1.

Tests constructed in Lombard [9] and Gombay [5] are based on rank statistics.
Theorem 2 suggests tests based on the dyadic increments of empirical process.
For simplicity we consider only the case of continuous function F . Then we
can restrict to the uniform empirical process built on the sample (U1, . . . , Un),
where Uk = F (Zk).
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Define
κn(s, t) :=

∑
i≤ns

(
1{Ui≤t} − t

)
, s, t ∈ [0, 1].

For r ∈ Dj , j ≥ 1, define random functions λr(κn) by

λr(κn)(t) := κn(r, t)− 1
2
(
κn(r−, t) + κn(r+, t)

)
, t ∈ [0, 1]

which for practical computations may be conveniently recast as

2λr(κn)(t) =
∑

nr−<i≤nr

(
1{Ui≤t} − t

)
−

∑
nr<i≤nr+

(
1{Ui≤t} − t

)
, t ∈ [0, 1]. (14)

3.1.1 Cramér-von Mises type DI statistics

The Cramér-von Mises type dyadic increments statistics are defined by

CMDI(n, ρ) = max
1≤j≤log n

1
ρ2(2−j)

max
r∈Dj

∥∥λr(κn)
∥∥2

2
,

where ∥∥λr(κn)
∥∥2

2
:=

∫ 1

0

∣∣λr(κn)(t)
∣∣2 dt.

Its limiting distribution is completely defined by the limiting distribution of the
classical Cramér-von Mises statistic, namely, by the distribution function

L2(u) = P
{∫ 1

0

B2(t) dt ≤ u

}
, u ≥ 0,

where B(t), t ∈ [0, 1] is a standard Brownian bridge. The distribution function
L2(u) is well known and several of its representations are available (see [13]).

Theorem 6. If ρ ∈ R then

lim
n→∞

P
{
n−1CMDI(n, ρ) ≤ u

}
= L2,ρ(u),

for each u > 0, where

L2,ρ(u) =
∞∏

j=1

[
L2

(
2θ2(2j)u

)]2j−1

.

Proof. The result is a straightforward application of Theorem 2 to the random
elements X1, . . . , Xn with values in the space L2(0, 1) defined by

Xk(t) = 1{Uk≤t} − t, t ∈ [0, 1], k = 1, . . . , n. (15)

It is well known that these random elements satisfy the central limit theorem
with Brownian bridge as the limiting Gaussian element. The moment condition
(7) is fulfiled since the Xk’s are bounded.
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For practical uses, the following estimate of the tails of L2,ρ can be helpfull.
Define for u > 0

L
(J)
2,ρ (u) =

J∏
j=1

[
L2

(
2θ2(2j)u

)]2j−1

.

Proposition 7.

i) If u > 0 then

1− L2,ρ(u) ≤ 4 exp
(−3u

4c0

)
.

where the constant c0 is defined by (10).

ii) For each u > 0 and J ≥ 1[
1− 4 exp

(−3u
4cJ

)]
L

(J)
2,ρ (u) ≤ L2,ρ(u) ≤ L

(J)
2,ρ (u).

Proof. The result is a straightforward adaptation of Proposition 4, with YQ = B,
a standard Brownian bridge, using the elementary fact that E ‖B‖2

2 = 1/6.

3.1.2 Kolmogorov-Smirnov type DI statistics

The Kolmogorov-Smirnov type dyadic increments statistics are defined by

KSDI(n, ρ) = max
1≤j≤log n

1
ρ(2−j)

max
r∈Dj

∥∥λr(κn)
∥∥
∞,

where ∥∥λr(κn)
∥∥
∞ := sup

0≤t≤1

∣∣λr(κn)(t)
∣∣.

Let L∞(u) be the limiting distribution of the classical Kolmogorov-Smirnov
statistic,

L∞(u) = P
{

max
0≤t≤1

|B(t)| ≤ u

}
, u ≥ 0.

This distribution function is well known and has several representations (see [13]).

Theorem 8. If ρ ∈ R then

lim
n→∞

P
{
n−1/2KSDI(n, ρ) ≤ u

}
= L∞,ρ(u),

for each u > 0, where

L∞,ρ(u) =
∞∏

j=1

[
L∞

(√
2θ(2j)u

)]2j−1

.

The proof of this theorem is not a straightforward corollary of Theorem 2
and is postponed to Subsection 4.5 below.
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3.2 Testing change of characteristic function

Let Z1, Z2, . . . , Zn be independent random variables with characteristic func-
tions c1, c2, . . . , cn respectively. We want to test the standard null hypothesis of
equal characteristic functions

(H0) : c1 = c2 = · · · = cn = c

against the epidemic alternative

(HA): there are integers 1 < k∗ < m∗ < n such that
c1 = c2 = · · · = ck∗ = cm∗+1 = · · · = cn,
ck∗+1 = · · · = cm∗ and ck∗ 6= ck∗+1.

Define
cn(s, t) :=

∑
1≤k≤ns

(
exp(itZk)− c(t)

)
, s ∈ [0, 1], t ∈ R

and define for r ∈ Dj , j ≥ 1,

λr(cn)(t) := cn(r, t)− 1
2
(
cn(r−, t) + cn(r+, t)

)
, t ∈ [0, 1].

With any probability measure µ on R set

C2(n, r) :=
∫ ∞

−∞

∣∣λr(cn)(t)
∣∣2µ(dt)

and define the test statistics

CDI(n, ρ) := max
1≤j≤log n

1
ρ2(2−j)

max
r∈Dj

C2(n, r).

The limiting distribution function of this statistics depends on the distribution
function

G2(u) = P
{∫

R
|Yc(t)|2µ(dt) ≤ u

}
, u ≥ 0,

where Yc is a complex Gaussian process with zero mean and covariance

EYc(t)Yc(s) = c(t− s)− c(t)c(−s), s, t ∈ R.

Theorem 9. If ρ ∈ R then

lim
n→∞

P
{
n−1CDI(n, ρ) ≤ u

}
= G2,ρ(u),

for each u > 0, where

G2,ρ(u) =
∞∏

j=1

[
G2

(
2θ2(2j)u

)]2j−1

.

Proof. Consider the random processes X1, . . . , Xn defined by

Xk(t) = exp(itZk)− c(t), t ∈ R, k = 1, . . . , n.

Interpreting these processes as random elements in the complex Banach space
L2(R, µ) we can apply Theorem 2. Since the space L2(R, µ) is of type 2 and
evidently E ||Xk||2 <∞, the central limit theorem is satisfied. Condition (7) is
fulfiled since the Xk’s are bounded.
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3.3 Testing change of covariance matrix

Consider random vectors e1, . . . , en ∈ Rd with mean zero and covariance matri-
ces Q1, . . . , Qn respectively. We want to test the null hypothesis

(H0) : Q1 = · · · = Qn = Q,

against the epidemic alternative

(HA): there are integers 1 < k∗ < m∗ < n such that
Q1 = Q2 = · · · = Qk∗ = Qm∗+1 = · · · = Qn,
Qk∗+1 = · · · = cm∗ and Qk∗ 6= Qk∗+1.

Define
Vn(s) :=

∑
1≤k≤ns

(eτ
kek −Q), s ∈ [0, 1],

where eτ means the transposition of a vector e and put for r ∈ Dj , j ≥ 1,

λr(Vn) := Vn(r)− 1
2
(
Vn(r−) + Vn(r+)

)
.

We denote by ‖ ‖ the Euclidean norm in any Rl, and use it here for vectors in
Rd as well as for d×d matrices identified with vectors in Rd2

. Consider the test
statistic

V(n, ρ) = max
1≤j≤log n

1
ρ(2−j)

max
r∈Dj

||λr(Vn)||.

Its limiting distribution is completely determined by the distribution function

Ψ2(u) = P
{
||N(0, T )|| ≤ u

}
,

whereN(0, T ) is a mean zero Gaussian random vector in Rd2
with the covariance

T = (tijkl, i, j, k, l = 1, . . . , d),

tijkl = E (εiεjεkεl)−E (εiεj)E (εkεl),

where the εi’s are coordinates of e1, eτ
1 = (ε1, . . . , εd).

Theorem 10. If ρ ∈ R and for each A > 0

lim
t→∞

tP
{
||e1|| ≥ Aθ1/2(t)

}
= 0

then
lim

n→∞
P

{
n−1V2(n, ρ) ≤ u

}
= Ψ2,ρ(u),

for each u > 0, where

Ψ2,ρ(u) =
∞∏

j=1

[
Ψ2

(
θ(2j)

√
2u

)]2j−1

.

Proof. The result is a straightforward application of Theorem 2 to the random
elements X1, . . . , Xn with values in the space Rd2

defined by

Xk = eτ
kek −Q, k = 1, . . . , n.
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3.4 Consistency

In the examples of Subsections 3.1 to 3.3, let us denote under (HA) by G, ϕ
and R respectively the distribution function, the characteristic function and the
covariance matrix during the epidemics. All these parameters may depend on
n. The following consistency results follow from an easy adaptation of the proof
of Theorem 5.

Proposition 11. With the notations of Theorem 5, let un := n1/2 hn

ρ(hn) . Under
(HA) in the examples of Subsections 3.1 to 3.3 and when n goes to infinity,

i) if u2
n

∫
R |G− F |2 dF →∞, then CMDI(n, ρ) →∞ in probability;

ii) if un‖G− F‖∞ →∞, then KSDI(n, ρ) →∞ in probability;

iii) if u2
n

∫
R |ϕ− c|2 dµ→∞, then CDI(n, ρ) →∞ in probability;

iv) if u2
n‖R−Q‖2

2 →∞, then n−1V2(n, ρ) →∞ in probability.

4 Proofs

The proof of Theorem 2 presented below in Subsection 4.2 is based on the invari-
ance principle in Hölder spaces of Banach space valued functions. The relevant
background is gathered in Subsection 4.1. The computation of the limiting
distribution under null hypothesis is treated in Subsection 4.3. Subsection 4.4
contains the proof of consistency results and the convergence of KSDI(n, ρ) is
established in Subsection 4.5.

4.1 Hölderian probabilistic background

We write C([0, 1],B) for the Banach space of continuous functions x : [0, 1] →
B, endowed with the supremum norm ‖x‖∞ := sup{||x(t)||; t ∈ [0, 1]}. We
abbreviate C([0, 1],R) to C[0, 1]. Let ρ be a real valued non decreasing function
on [0, 1], null and right continuous at 0. Put

ωρ(x, δ) := sup
s,t∈[0,1],
0<t−s<δ

|x(t)− x(s)|
ρ(t− s)

.

We associate to ρ the separable Hölder space

Ho
ρ([0, 1],B) := {x ∈ C([0, 1]; B) : lim

δ→0
ωρ(x, δ) = 0},

equipped with the norm

‖x‖ρ := |x(0)|+ ωρ(x, 1).
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Under some technical conditions allways fulfilled when ρ ∈ R, this norm is
equivalent (see e.g. [10]) to the sequence norm ‖ ‖seq

ρ

‖x‖ρ ∼ ‖x‖seq
ρ := sup

j≥0

1
ρ(2−j)

max
r∈Dj

‖λr(x)‖, x ∈ Ho
ρ([0, 1],B),

with the λr’s defined by (1).
Consider the classical Donsker-Prohorov polygonal process

ξn(t) = S(nt)− (nt− [nt])X[nt]+1, t ∈ [0, 1]. (16)

The following result is proved in [11].

Theorem 12. Let ρ ∈ R and let the hypothesis (H ′
0) be satisfied. Then the

convergence
n−1/2ξn

D−→WQ

holds in the space Ho
ρ([0, 1],B) if and only if X1 ∈ CLT(B) and for every A > 0

lim
t→∞

tP
(
||X1|| > Aθ(t)

)
= 0.

We also shall exploit a particular representation of the B-valued Wiener
process WQ, which generalizes to the framework of Ho

ρ([0, 1],B) the classical
Ciesielski-Kampé de Fériet representation of the Brownian motion (see [2], [6])
as a random series of triangular functions in C([0, 1],R). Here we need some
more notation. For r ∈ Dj , j ≥ 1, write Hr for the L2[0, 1] normalized Haar
function:

Hr(t) :=

 +(r+ − r−)−1/2 = +2(j−1)/2 if t ∈ (r−, r];
−(r+ − r−)−1/2 = −2(j−1)/2 if t ∈ (r, r+];
0 else.

In the special case j = 0, put H0(t) := −1[0,1](t), H1(t) := 1[0,1](t). Denote by
D∗ the set of all dyadic numbers of (0, 1]. It is well known that {Hr; r ∈ D∗} is
an Hilbertian basis of L2[0, 1].

For r ∈ Dj , j ≥ 1, the C[0, 1] normalized triangular Faber-Schauder function
Λr is continuous, piecewise affine with support [r−, r+] and taking the value 1
at r:

Λr(t) :=

 2j(t− r−) if t ∈ (r−, r];
2j(r+ − t) if t ∈ (r, r+];
0 else.

In the special case j = 0, we just take the restriction to [0, 1] in the above
formula, so Λ0(t) := 1 − t, Λ1(t) := t. The Λr’s are linked to the Hr’s in the
general case r ∈ Dj , j ≥ 1 by

Λr(t) = 2(j+1)/2

∫ t

0

Hr(s) ds, t ∈ [0, 1] (17)

and in the special case j = 0 by Λ0(t) = 1 +
∫ t

0
H0(s) ds, Λ1(t) =

∫ t

0
H1(s) ds.

12



Theorem 13. Let Q : B′ → B be a pregaussian covariance and let {YQ,r; r ∈
D∗} be a triangular array of i.i.d. zero mean Gaussian random elements in B
with covariance Q. Then the series of B-valued random functions

WQ := YQ,1Λ1 +
∞∑

j=1

∑
r∈Dj

2−(j+1)/2YQ,rΛr, (18)

converges a.s. in the space Ho
ρ([0, 1],B) for any ρ ∈ R. WQ is a B-valued Brow-

nian motion started at 0. Removing the term YQ,1Λ1 in (18) gives a Brownian
bridge BQ with sequential norm:

‖BQ‖seq
ρ = 2−1/2 sup

j≥1

1
θ(2j)

max
r∈Dj

‖YQ,r‖. (19)

Proof. According to Prop. 3 c) in [10], the series (18) converges almost surely
in the space Ho

ρ([0, 1],B) if

lim
j→∞

1
ρ(2−j)

max
r∈Dj

‖2−j/2YQ,r‖ = 0, almost surely. (20)

A sufficient condition for the convergence (20) is that for every positive ε,∑
j≥1

P
{

max
r∈Dj

‖YQ,r‖ ≥ εθ(2j)
}
<∞. (21)

By (5) and identical distribution of the YQ,r’s, (21) will follow in turn from

∑
j≥1

2j exp
(
−ε2θ2(2j)
8E ‖YQ,1‖2

)
<∞.

To check this last condition we simply remark that from Definition 1 iii), we
have θ(2j) ≥ bjβ for some positive constant b and with β > 1/2. It follows
easily that for every positive c,

∞∑
j=1

2j exp
(
−cθ2(2j)

)
<∞. (22)

Therefore (20) is satisfied and the series (18) of B-valued random functions con-
verges almost surely in the space Ho

ρ([0, 1],B) and defines a mean zero Gaussian
random element WQ in Ho

ρ([0, 1],B).
This convergence together with the obvious continuity of the λr’s considered

as linear operators Ho
ρ([0, 1],B) → B legitimates the equality

λr(BQ) =
∞∑

j=1

∑
r′∈Dj

2−(j+1)/2λr

(
YQ,r′Λr′

)
, a.s.

13



Allowing the meaning of the notation λr to depend on its argument (as operator
Ho

ρ([0, 1],B) → B or as functional Ho
ρ([0, 1],R) → R) and using Lemma 1 in [10]

we get
λr

(
YQ,r′Λr′

)
= YQ,r′λr

(
Λr′

)
= YQ,r′1{r=r′}, r, r′ ∈ D∗.

Hence for r ∈ Dj (j ≥ 1), λr(BQ) = 2−(j+1)/2YQ,r and (19) follows.
To complete the proof, it remains to check that WQ is a Brownian motion

with parameter Q. It is convenient here to recast (17) as 2−(j+1)/2Λr(t) =
〈Hr,1[0,t]〉, where 〈 , 〉 denotes the scalar product in the space L2[0, 1]. Now
(18) implies clearly for each t ∈ [0, 1] that

WQ(t) =
∑

r∈D∗

YQ,r〈Hr,1[0,t]〉,

where the series converges almost surely in the strong topology of B. It follows
that for any 0 ≤ s < t ≤ 1 and f ∈ B′,

f
(
WQ(t)−WQ(s)

)
=

∑
r∈D∗

f(YQ,r)〈Hr,1(s,t]〉.

This almost surely convergent series of independent mean zero Gaussian ran-
dom variables converges also in quadratic mean, which legitimates the following
covariance computation. For 0 ≤ s < t ≤ 1, 0 ≤ s′ < t′ ≤ 1, f, g ∈ B′, put

K(f, g, s, t, s′, t′) := E
[
f
(
WQ(t)−WQ(s)

)
g
(
WQ(t′)−WQ(s′)

)]
.

Then

K(f, g, s, t, s′, t′) =
∑

r∈D∗

E
[
f(YQ,r)g(YQ,r)

]
〈Hr,1(s,t]〉〈Hr,1(s′,t′]〉

= E
[
f(YQ)g(YQ)

]
〈1(s,t],1(s′,t′]〉, (23)

by identical distribution of the YQ,r’s and Parseval’s identity for the Haar basis
of L2[0, 1]. Whenever (s, t] ∩ (s′, t′] = ∅, (23) gives the independence of the
Gaussian random variables f

(
WQ(t)−WQ(s)

)
and g

(
WQ(t′)−WQ(s′)

)
for each

pair f, g ∈ B′, whence follows the independence of increments for the B-valued
process WQ. Moreover (23) gives

K(f, g, s, t, s, t) = E
[
f(YQ)g(YQ)

]
|t− s| = E

[
f(|t− s|1/2YQ)g(|t− s|1/2YQ)

]
,

from which it is clear that WQ(t) − WQ(s) and |t − s|1/2YQ have the same
distribution since both are mean zero Gaussian random elements in B.

4.2 Proof of Theorem 2

Consider the functionals gn, g : Ho
ρ([0, 1],B) → R defined by

gn(x) := max
1≤j≤log n

max
r∈Dj

1
ρ(2−j)

‖λr(x)‖, g(x) := sup
j≥1

max
r∈Dj

1
ρ(2−j)

‖λr(x)‖.

14



Recalling (2) and (16) we see that

n−1/2DI(n, ρ) = gn(n−1/2ξn) +Rn, (24)

where
|Rn| ≤

2
n1/2ρ(1/n)

max
1≤i≤n

‖Xi‖ =
2

θ(n)
max

1≤i≤n
‖Xi‖.

Assumption (7) together with the elementary bound

P
{ 1
θ(n)

max
1≤i≤n

‖Xi‖ ≥ ε
}
≤ nP

{
‖X1‖ ≥ εθ(n)

}
gives immediately that

Rn = opr(1). (25)

It is easily seen that the set of functionals {g, gn;n ≥ 1} is equicontinuous on
Ho

ρ([0, 1]. Moreover gn converges pointwise to g. Combined with the tightness
of (n−1/2ξn)n≥1, this leads (see [12] for the details) to

gn

(
n−1/2ξn

)
= g

(
n−1/2ξn

)
+ opr(1). (26)

Now the conclusion (8) follows from (24), (25), (26), Theorem 12, continuous
maping theorem and (19), noting that g(WQ) = ‖BQ‖seq

ρ .

4.3 Limiting distribution under null hypothesis

Proof of Proposition 3. Since DI(ρ,Q) = ‖BQ‖seq
ρ , we know from Theorem 13

that DI(ρ,Q) is almost surely finite for any ρ ∈ R, so DI(ρ,Q) is a non negative
random variable. As the norm of the mean zero Gaussian random element
BQ in the separable Banach space Ho

ρ([0, 1],B), it has an absolutely continuous
distribution, see Prop. 12.1 in [4].

Introduce the random variables

MJ := max
1≤j≤J

1√
2θ(2j)

max
r∈Dj

‖YQ,r‖.

By independence and identical distribution of the YQ,r’s,

P(MJ ≤ u) =
J∏

j=1

[
ΦQ

(
θ(2j)u

)]2j−1

= F
(J)
Q,ρ(u), u ≥ 0.

As the sequence (MJ)J≥1 is non decreasing and converges to ‖B‖seq
ρ , we get

P(MJ ≤ u) ↓ P(‖B‖seq
ρ ≤ u) = FQ,ρ(u),

which establishes the infinite product representation (9) for FQ,ρ.
The uniform convergence of this infinite product on any interval [ε,∞), ε > 0

follows clearly from the same convergence of the series

G(u) :=
∞∑

j=1

2j
[
1− ΦQ

(
θ(2j)u

)]
,

which in turn is easily deduced from (5) and (22).
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Proof of Proposition 4. Let WQ be a Brownian motion with representation (18)
and define

WQ,J :=
∑
j>J

∑
r∈Dj

2−(j+1)/2YQ,rΛr, J = 0, 1, . . .

It is clear from the proof of Theorem 13 that this series converges a.s. in the
space Ho

ρ([0, 1],B) for any ρ ∈ R and define a mean zero Gaussian random
element of Ho

ρ([0, 1],B). Puting

pJ(WQ) := ‖WQ,J‖seq
ρ = 2−1/2 sup

j>J

1
θ(2j)

max
r∈Dj

‖YQ,r‖

and invoking (5) with the separable Banach space Ho
ρ instead of B, we get

P
(
pJ(WQ) ≥ u

)
≤ 4 exp

(
−u2

8E pJ(WQ)2

)
, u > 0. (27)

Clearly DI(ρ,Q) = p0(WQ) and FQ,ρ(u) = F
(J)
Q (u)P(pJ(WQ) ≤ u), so all the

estimates given in Proposition 4 rely on finding an upper bound for E pJ(WQ)2.
To this aim, let us note that for any positive τ ,

E pJ(WQ)2 ≤ τ +
∫ ∞

τ

P
(
pJ(WQ)2 ≥ u

)
du

≤ τ +
∑
j>J

∑
r∈Dj

∫ ∞

τ

P
(
‖YQ,r‖2 ≥ 2θ2(2j)u

)
du

≤ τ + 8E ‖YQ‖2
∑
j>J

2j

θ2(2j)
exp

(
−θ2(2j)τ
4‖YQ‖2

)
, (28)

where we used again (5) before integration. Now puting τ = γE ‖YQ‖2 and
optimizing the bound (28) with respect to γ leads to E pJ(WQ)2 ≤ cJE ‖YQ‖2

with cJ defined by (10).
Going back to (27) with this estimate, we get

P
(
pJ(WQ) ≤ u

)
≥ 1− 4 exp

(
−u2

8cJE ‖YQ‖2

)
, u > 0,

which provides (11) and the lower bound in (12). The upper bound in (12)
being obvious, the proof is complete.

4.4 Proof of consistency

We only detail the case where l∗/n ≤ 1/2 in Theorem 5. It is enough to prove
that

n−1/2DI(n, ρ) ≥ n1/2(l∗/n)
4ρ(4l∗/n)

‖mc‖ − n−1/2DI′(n, ρ), (29)

where DI′(n, ρ) is computed by substituting the X ′
k’s for the Xk’s in DI(n, ρ).

Indeed by Theorem 2, n−1/2DI′(n, ρ) is stochastically bounded while by (13)
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and the representation (3) of ρ in Definition 1, the factor of ‖mc‖ in (29) goes
to infinity.

Let us denote by S′n the sum obtained by substituting the X ′
k’s for the Xk’s

in Sn. Introducing the cardinals

an,r := ]
(
In ∩ (nr−, nr]

)
, bn,r := ]

(
In ∩ (nr, nr+]

)
we can write

2λr(Sn) = 2λr(S′n) + (an,r − bn,r)mc,

which reduces the verification of (29) to that of

max
1≤j≤log n

max
r∈Dj

|an,r − bn,r|
ρ(2−j)

≥ l∗

2ρ(4l∗/n)
. (30)

Clearly it is enough to examine the configurations where 2−j has the same order
of magnitude as l∗/n and only one of the integers an,r and bn,r is positive.

Let us fix the level j by 2−j−1 < l∗/n ≤ 2−j and denote by τ the middle of
[tk∗ , tm∗ ], where tk∗ := k∗/n and tm∗ := m∗/n. Then we get a unique r0 ∈ Dj

such that r−0 ≤ τ < r+0 and we have to consider the three following cases.

a) r−0 ≤ τ < r−0 + 2−j−1. Then τ + l∗/(2n) ≤ r−0 + 2−j−1 + 2−j−1 = r0, so
[τ, tm∗ ] ⊂ [r−0 , r0].

b) r0 + 2−j−1 ≤ τ < r+0 . Then τ − l∗/(2n) ≥ r0, so [tk∗ , τ ] ⊂ [r0, r+0 ].

c) r0 − 2−j−1 ≤ τ < r0 + 2−j−1. Then r−0 ≤ tk∗ < tm∗ ≤ r+0 . Only one
of both dyadics r−0 and r+0 has the level j − 1. If r−0 ∈ Dj−1, writing
r1 := r−0 we have r+1 = r+0 and [tk∗ , tm∗ ] ⊂ [r1, r+1 ]. Else r+0 ∈ Dj−1 and
with r1 := r+0 , r−1 = r−0 so that [tk∗ , tm∗ ] ⊂ [r−1 , r1].

Now to obtain the lower bound (30), we simply observe that in the cases a)
or b), we have |an,r0 − bn,r0 | ≥ l∗/2 and 2−j < 2l∗/n, while in the case c),
|an,r1 − bn,r1 | = l∗ and 2−(j−1) < 4l∗/n.

4.5 Proof of Theorem 8

Consider the random processes Xk, k = 1, . . . , n as defined by (15). To get into
a separable Banach space framework we use smoothing kernels Kε, ε > 0, where

Kε(t) = ε−1K(t/ε)

and K is a fixed smooth probability kernel vanishing outside [−1, 1]. Put

X̂k(t) = Kε ∗Xk(t) =
∫
Xk(v)Kε(t− v) dv =

∫
Xk(t− v)Kε(v) dv,

where 0 ≤ t ≤ 1 and k = 1, . . . , n. Obviously X̂k ∈ C[0, 1] for each k = 1, . . . , n.
Moreover X̂k satisfies the deterministic Lipschitz condition∣∣X̂k(t)− X̂k(s)

∣∣ ≤ C(ε)‖K ′‖∞|t− s|,
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which implies that X̂1 satisfies the central limit theorem in B = C[0, 1], see e.g.
[7, Th. 14.2, p.396]. An elementary computation shows that X̂1 has the same
covariance Qε as the Gaussian random element Kε ∗ B of C[0, 1] where B is a
standard Brownian bridge. By boundedness of X̂1, the moment condition (7) is
automatically satisfied, hence Theorem 2 applies to the X̂k’s with Q = Qε.

Let us denote by κ̂n and KSDI(n, ρ, ε) the quantities defined as κn and
KSDI(n, ρ) respectively, but with Xi replaced by X̂i. Let L(ε)

∞,ρ be defined as
L∞,ρ replacing the Brownian bridge B by Kε ∗B. This distribution function is
continuous everywhere on R, due to Proposition 3 and the separability of C[0, 1].
Set

∆(u) =
∣∣P{

KSDI(n, ρ) ≤ u
}
− L∞,ρ(u)

∣∣,
∆ε(u) =

∣∣P{
KSDI(n, ρ, ε) ≤ u

}
− L(ε)

∞,ρ(u)
∣∣,

I1(δ, ε) = P
{∣∣KSDI(n, ρ, ε)−KSDI(n, ρ)

∣∣ ≥ δ
}
,

I2(δ, ε) =
∣∣L(ε)
∞,ρ(u+ δ)− L∞,ρ(u)

∣∣,
I3(δ, ε) =

∣∣L(ε)
∞,ρ(u− δ)− L∞,ρ(u)

∣∣.
Elementary computations give

∆(u) ≤ max{∆ε(u− δ);∆ε(u+ δ)}+ I1(δ, ε) + I2(δ, ε) + I3(δ, ε). (31)

By Theorem 2 and continuity of L(ε)
∞,ρ, it follows that for each v and each ε > 0,

lim
n→∞

∆ε(v) = 0. (32)

Estimation of I1(δ, ε).

Put for any function x : [0, 1] → R, ω(x, ε) = sup{|x(t)− x(u)|; |t− u| ≤ ε}
and note that if x is Lebesgue integrable,

‖x−Kε ∗ x‖∞ = sup
t∈[0,1]

∣∣∣∫ (
x(t− u)− x(t)

)
Kε(u) du

∣∣∣ ≤ ω(x, ε),

since the support of the function Kε is the interval [−ε, ε]. Applying this in-
equality when x is a linear combination of the random functions Xi’s, we obtain
for each dyadic r,

‖λr(κn)− λr(κ̂n)‖∞ ≤ ω
(
λr(κn), ε

)
. (33)

Set
pn(x) := max

1≤j≤log n

1
ρ(2−j)

max
r∈Dj

‖λr(x)‖∞.

Since pn is a semi norm, we have |pn(x)− pn(y)| ≤ pn(x− y) for any bounded
functions x, y : [0, 1] → R. Applying this with x = n−1/2κn and y = n−1/2κ̂n

and taking into account (33), we see that

I1(δ, ε) ≤ P
{
n−1/2pn(κn − κ̂n) ≥ δ

}
≤

∑
1≤j≤log n

∑
r∈Dj

P
{
ω
(
λr(n−1/2κn), ε

)
≥ δρ(2−j)

}
. (34)
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Introduce the integers

n′r := ]{i ∈ N; nr− < i ≤ nr}, n′′r := ]{i ∈ N; nr < i ≤ nr+},

the empirical processes

ξ′n,r(t) :=
1√
n′r

∑
nr−<i≤nr

(1{Ui≤t} − t), ξ′′n,r(t) :=
1√
n′′r

∑
nr<i≤nr+

(1{Ui≤t} − t)

and set

P ′n,r := P
{
ω(ξ′n,r, ε) ≥

δ

2
θ(2j)

}
, P ′′n,r := P

{
ω(ξ′′n,r, ε) ≥

δ

2
θ(2j)

}
,

where θ(t) = t1/2ρ(1/t) is as in Definition 1. Recalling (14), we observe that

λr(κn) =
1
2

(n′r
n

)1/2

ξ′n,r −
1
2

(n′′r
n

)1/2

ξ′′n,r.

As n′r, n
′′
r ≤ 1 + n2−j < 4n2−j , it follows that

ω
(
λr(κn), ε

)
≤ 2−j/2ω(ξ′n,r, ε) + 2−j/2ω(ξ′′n,r, ε),

which allows us to recast (34) as

I1(δ, ε) ≤
∑

1≤j≤log n

∑
r∈Dj

(
P ′n,r + P ′′n,r

)
.

We shall detail only the estimation of the sum I ′1(δ, ε) of the terms P ′n,r, the
extension to the sum I ′′1 (δ, ε) of the P ′′n,r’s being obvious.

In what follows, we will denote by ci, i = 1, 2, . . . positive constants which
do not depend on ε, δ. By the Mason, Shorack, Wellner inequality (see e.g. [13],
p.545), we have for 0 < ε ≤ 1/2,

P ′n,r ≤
c1
ε

exp
{
−c2

δ2

ε
θ2(2j)ψ

(
δθ(2j)

2ε n′r
1/2

)}
, (35)

where ψ(t) = 2t−2
(
(1 + t) ln(1 + t) − t

)
. The relevant fact about ψ here is

that ψ(t) decreases from 1 to 0 when t goes from 0 to ∞. Let us remark that
for j = log n, θ(2j)n′r

−1/2 = θ(n)
(
1 + o(1)

)
, so the value taken by ψ in (35)

cannot be bounded from below by a positive constant, uniformly in the range
1 ≤ j ≤ log n. This prevents us from exploiting directly (22).

To remedy this drawback, we shall split the sum I ′1(δ, ε), according to j ≤ jn
or j > jn, denoting respectively by I ′1,1(δ, ε) and I ′1,2(δ, ε) the corresponding
sums. We choose jn such that for j ≤ jn, the argument of ψ in (35) is say, at
most 1. Because θ(t) = o(t1/2) when t goes to infinity and n′r > n2−j+1, it is
easily seen that a suitable choice is

jn =
1
2

log n+ log
(
c3δ/ε). (36)
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In view of (35), we have with m := inft≥1 θ(t)2 > 0,

I ′1,1(δ, ε) ≤
∑
j≤jn

c1
ε

2j exp
{
−c2δ

2ψ(1)
ε

θ2(2j)
}

≤ c1
ε

exp
{
−c2δ

2ψ(1)m
2ε

} ∞∑
j=1

2j exp
{
−c2δ

2ψ(1)
2ε

θ2(2j)
}
.

Noting that the sum of this last series increases in ε and recalling (22), we see
that for each δ > 0,

lim
ε→0

sup
n≥1

I ′1,1(δ, ε) = 0. (37)

Next to estimate I ′1,2(δ, ε), we bound ω(ξ′n,r, ε) by 2‖ξ′n,r‖∞ and apply the
Dvoretzky, Kiefer, Wolfowitz inequality (see e.g. [13], p.354) to obtain

I ′1,2(δ, ε) ≤ c4
∑
j>jn

2j exp
(
−c5δ2θ2(2j)

)
.

From (22) and (36), it follows now that for each ε > 0 and each δ > 0,

lim
n→∞

I ′1,2(δ, ε) = 0. (38)

Estimation of I2(δ, ε) and I3(δ, ε).
Recalling (6), we get

L(ε)
∞,ρ(u) = P

{
sup
j≥1

1√
2θ(2j)

max
r∈Dj

‖Kε ∗Br‖∞ ≤ u

}
,

where (Br(t), t ∈ [0, 1], r ∈ Dj , j ≥ 1) is a triangular array of independent
standard Brownian bridges. Introduce on the space of triangular arrays a =
(xr, r ∈ Dj , j ≥ 1) of bounded measurables functions xr : [0, 1] → R, the
seminorm ‖a‖ := supj≥1

1√
2θ(2j)

maxr∈Dj ‖xr‖∞ and put b = (Br, r ∈ Dj , j ≥

1), b̂ = (Kε ∗ Br, r ∈ Dj , j ≥ 1). With these notations, L∞,ρ(u) = P(‖b‖ ≤ u)
and L(ε)

∞,ρ(u) = P(‖b̂‖ ≤ u) and it is elementary to check that

P
(
‖b‖ ≤ u−δ

)
−P

(
‖b−b̂‖ ≥ δ

)
≤ P

(
‖b̂‖ ≤ u

)
≤ P

(
‖b‖ ≤ u+δ

)
+P

(
‖b−b̂‖ ≥ δ

)
whence∣∣L(ε)

∞,ρ(u)− L∞,ρ(u+ δ)
∣∣ ≤ L∞,ρ(u+ δ)− L∞,ρ(u− δ) + P

(
‖b− b̂‖ ≥ δ

)
.

Now, using (6) and the classical estimate of the modulus of continuity of the
Brownian motion, we see that

P
(
‖b− b̂‖ ≥ δ

)
≤ P

{
sup
j≥1

1√
2θ(2j)

max
r∈Dj

‖Kε ∗Br −Br‖∞ ≥ δ

}
≤

∞∑
j=1

2jP
{
ω(B, ε) ≥ δθ(2j)

}
. (39)
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To control the tail of ω(B, ε), we use the representation B(t) = W (t) − tW (1)
where W is a standard Brownian motion, together with Inequality 1 in [13],
p.536 to obtain

P
(
ω(B, ε) ≥ u

)
≤ c6
u
√
ε

exp
(−c7u2

ε

)
+ exp

(−u2

8ε2
)
, u > 0.

Reporting this estimate into (39) and using again (22), the bounded convergence
theorem gives then the convergence to zero of P

(
‖b − b̂‖ ≥ δ

)
when ε goes to

zero. Therefore, for each δ > 0 we have

lim sup
ε→0

I2(δ, ε) ≤ L∞,ρ(u+ δ)− L∞,ρ(u− δ).

By continuity of L∞,ρ, it follows

lim
δ→0

lim sup
ε→0

I2(δ, ε) = 0. (40)

Clearly the same holds true for I2(δ, ε). Now the proof is easily completed
gathering (31), (32), (37), (38) and (40).
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dition for the Hölderian functional central limit theorem. Journal of The-
oretical Probability 17 (1), 221–243.
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