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Abstract

Hölder regularity which plays a key rôle in fractal geometry raises an
increasing interest in probability and statistics. In this paper we discuss
various aspects of local and global regularity for stochastic processes and
random fields. As a main result we show the invariability of the pointwise
Hölder exponent of a continuous and nowhere differentiable random field
which has stationary increments and satisfies a zero-one law. We also
survey some recent uses of Hölder spaces in limit theorems for stochastic
processes and statistics.

Résumé

La régularité hölderienne qui joue un rôle clé en géométrie fractale
suscite un intérêt grandissant en porbabilités et statistique. Dans cette
contribution nous discutons divers aspects de la régularité hölderienne lo-
cale et globale pour les processus stochastiques et les champs aléatoires.
Notre résultat principal est la constance temporelle et déterministe de
l’exposant de Hölder ponctuel d’un champ aléatoire continu et nulle part
différentiable, à accroissements indépendants et vérifiant une loi du zéro-
un. Nous donnons aussi un panorama de quelques utilisations récentes des
espaces de Hölder dans les théorèmes limites pour les processus stochas-
tiques et en statistique.
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1 Introduction
The concept of Hölder regularity is quite important in fractal geometry, signal
and image processing, finance, statistics and telecommunications [8]. Hölder
exponents have been used frequently to measure the roughness of a curve or
of a surface [10]; applications in signal and image processing are numerous and
include interpolation, segmentation [26] and denoising [27]. They are closely
related to other fractal indices such as fractal dimensions, self-similarity param-
eters and multifractal spectra (see e.g. [12, 18, 44, 45]). On the other hand, the
Hölder spaces provide a functional framework for limit theorems in the theory of
stochastic processes. The use of Hölder topologies leads to more precise results
than the classical framework of continuous functions spaces.

This paper discuss both uses of Hölder regularity in the study of stochastic
processes.

1.1 Hölder exponents

When looking for random fields modeling some roughness, it is quite natural
to investigate the pointwise Hölder regularity of various extensions of the well
known Brownian motion.

Recall that {BH(t), t ∈ Rd}, the fractional Brownian motion (fBm) of Hurst
parameter H ∈ (0, 1) is the real-valued, self-similar and stationary increments
continuous Gaussian field defined for every t ∈ Rd as the Wiener integral

BH(t) =
∫

Rd

eit.ξ − 1
|ξ|H+d/2

dŴ (ξ), (1)

where dŴ is a complex-valued white noise. This field was first introduced by
Kolmogorov [20] for generating Gaussian “spirals” in a Hilbert space. Later,
the seminal article of Mandelbrot and Van Ness [30] emphasized its relevance
for the modeling of natural phenomena (hydrology, finance,...) and thus greatly
contributed to make it popular. Since then, this field turns out to be a very
powerful tool in modeling. The monograph of Doukhan, Oppenheim and Taqqu
[11] offers a systematic treatment of fBm, as well as an overview of different
areas of applications.

The field {BH(t), t ∈ Rd} is a natural generalization of the Wiener process
({B1/2(t), t ∈ R} is a Wiener process) and shares many nice properties with it.
However, one of the main advantages of fBm with respect to Wiener process
is that its increments are correlated and can even display long range depen-
dence. Still, fBm is not always a realistic model. Indeed, its pointwise Hölder
exponent remains constant all along its trajectory which can be a serious draw-
back in several applications (see for example [28, 2, 3, 4]). Generally speaking,
a multifractional field is a field with continuous trajectories that extends fBm
and whose pointwise Hölder exponent is allowed to change from one point to
another. Recall that {αX(t), t ∈ T} the pointwise Hölder exponent of a contin-
uous and nowhere differentiable field {X(t), t ∈ T} is defined for every t ∈ T
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as
αX(t) = sup

{
α; lim sup

h→0

|X(t + h)−X(t)|
|h|α

= 0
}

. (2)

A paradigmatic example of a multifractional field is multifractional Brownian
motion (mBm). It was introduced independently in [28] and in [7] but the
denomination multifractional Brownian motion is due to Lévy Véhel. MBm
is obtained by substituting to the Hurst parameter in the harmonizable rep-
resentation (1) of fBm a continuous function t 7→ H(t) with values in (0, 1).
When the function H(·) is smooth enough (typically when it is a C1 function),
the pointwise Hölder exponent of mBm satisfies for any t ∈ T , almost surely
αmBm(t) = H(t), which means that it can change from one point to another.

In [5] it has been proved that when the increments of any order of mBm are
stationary the function H(·) is constant (i.e. mBm reduces to an fBm). More-
over, no example of a multifractional field with stationary increments has been
constructed yet. This is why it seems natural to wonder whether there exists a
continuous, nowhere differentiable and stationary increments field {X(t), t ∈ T}
whose pointwise Hölder exponent changes from one point to another. In Sec-
tion 2 we show that the answer is negative when we impose in addition to
{X(t), t ∈ T} to satisfy a zero-one law.

1.2 Hölder spaces as a functional framework

In many situations some uniform control on the regularity is needed. For in-
stance let us consider the following statistical problem. Having observed the ran-
dom variables X1, . . . , Xn, we need to test the null hypothesis that X1, . . . , Xn

have the same expectation µ0 against the alternative of a change from µ0 to µ1

between the unknown instants k∗ and m∗ with going back to µ0 after m∗. This
is known as the epidemic model. It is quite natural, see [41] for a step by step
explanation, to use here the weighted test statistics

UI(n, a) := max
1≤i<j≤n

∣∣S(j)− S(i)− S(n)(tj − ti)
∣∣

|tj − ti|a

where S(n) :=
∑

1≤i≤n Xi, ti := i/n and 0 < a < 1/2. The asymptotic distri-
bution of UI(n, a) follows from the weak convergence of a partial sums process
ξn in some Hölder space Ha (a precise definition of Hölder spaces is given in
Section 3). The practical interest of the exponent a here lies in the sensitivity of
the test. Detecting the shortest epidemics requires to take the biggest possible
a and this leads to investigate weak convergence of ξn in Ha.

In Section 4 we survey some recent advances in the asymptotic theory of
sequences of stochastic processes considered as random elements in some Hölder
space H. The issues addressed may be classified along the following two main
directions.

A) Classical limit theorems for normalized sums b−1
n Sn of independent ran-

dom elements Xi in H: laws of large number, central limit theorems, see
e.g. [31], [32], [35], [40].
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B) Weak convergence in H of sequences of random elements ξn of the form

t 7−→ ξn(t) = Gn(X1, . . . , Xn, t),

where X1, . . . , Xn is usually a sample of i.i.d. random variables or random
elements in some Banach space and Gn a function smooth enough to
ensure the membership in H of ξn .

Problem A) is directly connected to the Probability Theory in Banach Spaces.
It is well known in this area that the limit theorems for a sequence of random
elements b−1

n Sn in some separable Banach space B involve the geometry of B.
For instance, if the Xi’s are i.i.d. with null expectation, then the square inte-
grability of ‖X1‖ gives the asymptotic normality of n−1/2Sn when B is of type
2 (e.g. B is a Hilbert space or a Lp space with 2 ≤ p < ∞). But if B = c0, the
classical space of sequences converging to 0, we can find a bounded random ele-
ment X1 in c0 which does not satisfy the CLT, i.e. the corresponding sequence
n−1/2Sn is not asymptotically Gaussian. This makes hopeless characterizing
the CLT in a general B in terms of integrability properties of X1 only. Because
all the Hölder spaces H under consideration here contain a subspace isomorphic
to c0 and are concrete function spaces, they provide an interesting framework
to study the asymptotic behavior of b−1

n Sn in a context where the geometry of
the Banach space is “bad”.

Problem B) is more oriented to statistical applications. Indeed, the weak
convergence ξn

D−→ ξ in some function space E means

E g(ξn) −−−−→
n→∞

E g(ξ), (3)

for every continuous and bounded function g : E → R. By the continuous
mapping theorem, this implies that for every functional f : E → R, continuous
with respect to the strong topology of E,

f(ξn) −−−−→
n→∞

f(ξ), in distribution. (4)

The classical functional frameworks for such convergence ξn
D−→ ξ are the Sko-

rohod space when ξn has jumps and some space C of continuous functions when
ξn has continuous paths. The interest in replacing, whenever possible, C by
H is that this strenghtening of the topology on the paths space enlarges the
set of continuous functionals f . Usually, the random functions ξn share more
smoothness than their weak limit ξ. For instance in the Hölderian version of
the invariance principle for partial sums processes, the paths of ξn are random
polygonal lines, while ξ is a Brownian motion. In such cases the global smooth-
ness of ξ put a natural bound in the choice of the “best” space H. The example
of the Brownian motion W shows here that the classical ladder of Hölder spaces
Ha is not rich enough. Indeed Ha is the space of functions x whose increments
x(t + h) − x(t), h ≥ 0 are O(ha) uniformly in t. Due to Lévy’s result on W ’s
modulus of uniform continuity [25, Th. 52,2], it seems desirable to consider also
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the spaces of functions x such that x(t + h)− x(t) = O
(
h1/2 lnb(1/h)

)
. In more

generality, this leads to introduce a ladder of Hölder spaces Hρ, where member-
ship of x in Hρ is equivalent to the uniform estimate x(t + h)− x(t) = O(ρ(h)),
for some weight function ρ.

This raises a third problem which in some sense is also preliminary to Prob-
lem A):

C) Given a stochastic process X = {X(t), t ∈ T}, find conditions in terms of
its finite dimensional distributions so that X admits a version with paths
in the Hölder space Hρ.

2 Critical Exponents

2.1 Zero-One laws and Exponents

Let X = {X(t), t ∈ T} be a real process with, say, separable and metric time
set T . We can view X as a random element in RT endowed with product σ-field
B(R)⊗T where B(R) denotes the Borel σ-field of R. The kind of zero-one law
we shall focus on can be stated as follows:

Definition 1. We will say that X satisfies a zero-one law if for each measurable
linear subspace V of RT ,

P (X ∈ V ) = 0 or 1. (5)

It is known that Gaussian, stable and some infinitely divisible (without
Gaussian component) processes satisfy (5). Their associated finite-order chaos
processes do as well. We refer the reader to the paper [43] by Rosinski and
Samorodnitsky and the references therein. One classical application of such a
zero-one law is to establish regularity properties of paths. For instance, neglect-
ing measurability questions at first glance, V could be:

1. the space of bounded functions on T ,

2. the space of continuous functions on T , if T is compact,

3. the space of uniformly continuous functions on T ,

4. the space of Lipschitz functions on T ,

5. the space of a-Hölderian functions on T ,

6. the space of absolutely continuous functions on T , if T is an interval in R.

If for some countable dense subset S of T , we have

P
(
∀t ∈ T, ∃(sn)n≥1 ⊂ S, sn → t, X(sn) → X(t)

)
= 1,

then the measurability of {X ∈ V }, for the V ’s displayed above, can be estab-
lished provided the underlying probability space (Ω,F ,P) is complete (as can



VII – 7

be always assumed). Indeed, the events {X ∈ V } may then be expressed, up to
negligeable sets, as ones involving only the restriction of X to S. The following
result illustrates how useful this zero-one law can be.

Theorem 1. Assume that T is an open subset of Rd (d ∈ N). Let X =
{X(t), t ∈ T} be a continuous, nowhere differentiable process satisfying the
zero-one law (5). Then, for all t ∈ T , the pointwise Hölder exponent of X at
t is almost surely deterministic. In other words, for all t ∈ T , there exists a
number H(t) ∈ [0, 1] such that

P
(
αX(t) = H(t)

)
= 1.

Proof. This result has already been established by Ayache and Taqqu for Gaus-
sian processes, see [6]. Their proof is based on the same key-argument (zero-one
law), but the one we give here uses it more directly and explicitely.

We set S = Qd. Let t be some arbitrary point of the open set T and choose
η > 0 such that the ball B(t, η) be in T . Since X has almost all continuous and
nowhere differentiable paths on T , we know that αX(t, ω) belongs to [0, 1] for
almost all ω ∈ Ω. We can thus define

u∗(t) := sup
{
u ∈ R;P(αX(t) ≤ u) = 0

}
,

u∗(t) := inf
{
u ∈ R;P(αX(t) ≤ u) = 1

}
.

By definition, the interval [u∗(t), u∗(t)] is the support of the distribution function
of αX(t). To prove that αX(t) is almost surely deterministic, we only need to
check that u∗(t) ≤ u∗(t). Let u < u∗(t), we thus have P(αX(t) > u) > 0. On
the event {αX(t) > u}, we have lim suph→0 |h|−u|X(t + h) − X(t)| = 0 which
implies that h 7→ h−u(X(t + h) −X(t)) is bounded on the countable bounded
subset {h ∈ S; |h| < η}. It follows, by inclusion, that

0 < P
(
αX(t) > u

)
≤ P

 sup
|h|<η
h∈S

|X(t + h)−X(t)|
|h|u

< ∞

 .

We shall prove that this last probability is equal to 1, using the zero-one law
(5). To this end, note that the event sup

|h|<η
h∈S

|X(t + h)−X(t)|
|h|u

< ∞


can clearly be written {X ∈ V } for some linear subspace V , which is B(R)⊗T -
measurable since it involves only countable many projections x 7→ x(t) from RT

to R. The zero-one law ensures consequently that

P

(
sup
|h|<η

|X(t + h)−X(t)|
|h|u

< ∞

)
= 1,
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where we skipped the restriction h ∈ S in the supremum thanks to the continuity
of X. But now, a simple inclusion of events yields

P
(

lim sup
h→0

|X(t + h)−X(t)|
|h|u

< ∞
)

= 1,

which can be read as P (u ≤ αX(t)) = 1 or, equivalently, as P(αX(t) < u) = 0.
This means that u ≤ u∗(t) which gives u∗(t) ≤ u∗(t), since u is arbitrary in
(−∞, u∗(t)). Besides, by definition u∗(t) ≤ u∗(t), whence u∗(t) = u∗(t). We
call H(t) this common value. We just have proved that the distribution function
of αX(t) jumps from 0 to 1 at H(t) in other words P(αX(t) = H(t)) = 1.

Remark 1. Other exponents may be defined to characterize the regularity of
a function, for instance the local Hölder exponent at time t

α̃X(t) = sup

{
α;∃η > 0 sup

u,v∈B(t,η)

|X(u)−X(v)|
|u− v|α

< ∞

}
,

where B(t, η) denotes the open ball centered at t and of radius η, and the global
Hölder exponent on a compact set K ⊂ T

βX = sup
{

β; sup
u,v∈K

|X(u)−X(v)|
|u− v|β

< ∞
}

.

When X is a continuous nowhere differentiable process, satisfying a zero-one
law, the same property as in Theorem 1 holds. More precisely, for all compact
subset K of T , βX is almost surely deterministic, and for all t ∈ T , α̃X(t)
is almost surely deterministic. The proof of both results is the same as for
Theorem 1, the only change concerns the measurable subspace of RT involved
in the zero-one law. In the case of α̃X(t), we use

Ṽ :=
⋃

n∈N∗

{
x ∈ RT ; sup

u,v∈B(t,1/n)∩S

|x(u)− x(v)|
|u− v|α

< ∞

}
,

where S is a countable dense subset of T , and in the case of βX , we define

W :=
{

x ∈ RT ; sup
u,v∈K∩S

|x(u)− x(v)|
|u− v|α

< ∞
}

.

2.2 Processes with Stationary Increments

Throughout all this paragraph, T , the set of times, can be taken to be equal to
any non-empty open subset of Rd (d ∈ N).

Let X = {X(t), t ∈ T} denote a continuous nowhere differentiable process,
for which a zero-one law holds (see (5)). Thanks to Subsection 2.1, we know
that the pointwise Hölder exponent of X at t is deterministic, but depends on
t. Now, we assume besides that X has stationary increments. This means that
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(X(s2)−X(s1), . . . , X(sn)−X(s1)) and (X(s2 + t)−X(s1 + t), . . . , X(sn + t)−
X(s1 + t)) are identically distributed for any s1, . . . , sn, s1 + t, . . . , sn + t ∈ T
and any integer n ≥ 2. Since the pointwise Hölder exponent is defined by means
of increments, we can show that it doesn’t depend anymore on t.

Theorem 2. Let X = {X(t), t ∈ T} be a continuous nowhere differentiable
process, with stationary increments. We assume that a zero-one law holds for
X. Then there exists H ∈ [0, 1] such that for all t ∈ T

P (αX(t) = H) = 1.

Proof. The scheme of the proof is the following: since T is a non-empty set, it
contains at least one element, that we will denote 0 for the sake of simplicity.
Using an equivalent definition of the pointwise Hölder exponent, we prove that
αX(t) and αX(0) have the same law, for all t ∈ T . Thanks to Theorem 1, we
know that there exists H = H(0) ∈ [0, 1] such that the law of αX(0) is a Dirac
mass at point H. Consequently, for all t ∈ T , the law of αX(t) is a Dirac mass
at point H.

As in the proof of Theorem 1, S denotes a countable dense subset of T . Let t
be a fixed point of T . It can be easily shown that the pointwise Hölder exponent
of X at t is given by:

αX(t) = lim inf
h→0

log |X(t + h)−X(t)|
log |h|

,

with the usual convention that log 0 = −∞. This definition reads as

αX(t) = sup
R>0

inf
|h|<R

log |X(t + h)−X(t)|
log |h|

= sup
n∈N

inf
|h|<1/n

h∈S

log |X(t + h)−X(t)|
log |h|

,

the last equality coming from the monotonicity of the infimum with respect
to R and from the continuity of the paths of X. To obtain the identity in law
between αX(t) and αX(0), we introduce an increasing sequence (Sk)k≥1 of finite
sets such that ∪k≥1Sk = S. Then, note that for u ∈ R

{αX(t) ≤ u} =
⋂
n∈N
↓
⋂

m∈N
↓
⋃
k∈N
↑

 min
|h|<1/n

h∈Sk

log |X(t + h)−X(t)|
log |h|

< u +
1
m

 ,

so that, for every t ∈ T and u ∈ R, by sequential monotonic continuity of P,

P (αX(t) ≤ u) = lim
n

lim
m

lim
k

P

 min
|h|<1/n

h∈Sk

log |X(t + h)−X(t)|
log |h|

< u +
1
m

 .

The event mentioned in the last probability involves a finite number of incre-
ments of X, all of them based on point t. The stationarity of the increments
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implies that we can replace them with the analogue increments, based on point
0. It follows that for all u ∈ R

P(αX(0) ≤ u) = P(αX(t) ≤ u),

which means that αX(t) and αX(0) have the same law, for all t ∈ T . We already
know that the pointwise Hölder exponent of X at point 0 is deterministic, so
that there exists H ∈ [0, 1] such that P(αX(0) = H) = 1. The equality in law
between αX(t) and αX(0) thus leads to P(αX(t) = H) = 1, for all t ∈ T .

3 Hölder spaces
Let us introduce the Hölder spaces by an informal description of the most fa-
miliar case. For fixed 0 < a < 1, Ha is the set of functions x : [0, 1] → R such
that |x(t) − x(s)| ≤ K|t − s|a for some constant K depending only on x and
a. The best constant K in this uniform estimate defines a semi-norm on the
vector space Ha. By adding |x(0)| to this semi-norm we obtain a norm ‖x‖a

which makes Ha a non separable Banach space. Clearly if 0 < a < b < 1, Hb

is topologically embedded in Ha and all these Hölder spaces are topologically
embedded in the classical Banach space C of continuous functions [0, 1] → R.

To remedy the non separability drawback of Ha, one introduces its subspace
Ha,o of functions x such that |x(t)−x(s)| = o(|t−s|a) uniformly. This subspace
is closed (hence also a Banach space for the same norm ‖x‖a) and separable.

One interesting feature of the spaces Ha,o is the existence of a basis of
triangular functions, see [9]. It is convenient to write this basis as a triangular
array of functions, indexed by the dyadic numbers. Let us denote by Dj the set
of dyadic numbers in [0, 1] of level j, i.e.

D0 = {0, 1}, Dj =
{
(2l − 1)2−j ; 1 ≤ l ≤ 2j−1

}
, j ≥ 1.

Write for r ∈ Dj , j ≥ 0,

r− := r − 2−j , r+ := r + 2−j .

For r ∈ Dj , j ≥ 1, the triangular Faber-Schauder functions Λr are continuous,
piecewise affine with support [r−, r+] and taking the value 1 at r:

Λr(t) =

 2j(t− r−) if t ∈ (r−, r];
2j(r+ − t) if t ∈ (r, r+];
0 else.

When j = 0, we just take the restriction to [0, 1] in the above formula, so

Λ0(t) = 1− t, Λ1(t) = t, t ∈ [0, 1].

The sequence {Λr; r ∈ Dj , j ≥ 0} is a Schauder basis of C. Each x ∈ C has a
unique expansion

x =
∞∑

j=0

∑
r∈Dj

λr(x)Λr, (6)
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with uniform convergence on [0, 1]. The Schauder scalar coefficients λr(x) are
given by

λr(x) = x(r)− x(r+) + x(r−)
2

, r ∈ Dj , j ≥ 1, (7)

and in the special case j = 0 by

λ0(x) = x(0), λ1(x) = x(1). (8)

The partial sum
∑n

j=0 in the series (6) gives the linear interpolation of x by a
polygonal line between the dyadic points of level at most n.

6

-

Λr(t)

1

0 tr− r r+
� -

2−j

�
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Figure 1: The Faber-Schauder triangular function Λr

Ciesielski [9] proved that {Λr; r ∈ Dj , j ≥ 0} is also a Schauder basis of each
space Ha,o (hence the convergence (6) holds in the Ha topology when x ∈ Ha,o)
and that the norm ‖x‖a is equivalent to the following sequence norm :

‖x‖seqa := sup
j≥0

2ja max
r∈Dj

|λr(x)|.

This equivalence of norms provides a very convenient discretization procedure
to deal with Hölder spaces and is extended in Račkauskas and Suquet [34] to
the more general setting of Hölder spaces of Banach space valued functions x,
with a modulus of continuity controlled by some weight function ρ.

Let (B, ‖ ‖) be a separable Banach space. We write CB for the Banach
space of continuous functions x : [0, 1] → B endowed with the supremum norm
‖x‖∞ := sup{‖x(t)‖ ; t ∈ [0, 1]}. Let ρ be a real valued non decreasing function
on [0, 1], null and right continuous at 0. Put

ωρ(x, δ) := sup
s,t∈[0,1],
0<t−s<δ

‖x(t)− x(s)‖
ρ(t− s)

.
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Denote by Hρ
B the set of continuous functions x : [0, 1] → B such that ωρ(x, 1) <

∞. The set Hρ
B is a Banach space when endowed with the norm

‖x‖ρ := ‖x(0)‖+ ωρ(x, 1).

Define
Hρ,o

B = {x ∈ CB : lim
δ→0

ωρ(x, δ) = 0}.

Then Hρ,o
B is a closed separable subspace of Hρ

B. We shall abbreviate CR, Hρ
R

and Hρ,o
R in C, Hρ and Hρ,o correspondingly. Our main examples of Hölder

spaces use as weight function ρ = ρa,b, 0 < a < 1, b ∈ R defined by:

ρa,b(h) := ha lnb(c/h), 0 < h ≤ 1,

for a suitable constant c. For ρ = ρa,b, we shall write Ha,b
B and Ha,b,o

B for Hρ
B

and Hρ,o
B respectively and we abbreviate Ha,0,o

B in Ha,o
B . As above, the subscript

B will be omitted when B = R.
In what follows, we assume that the weight function ρ satisfies the following

technical conditions where c1, c2 and c3 are positive constants:

ρ(0) = 0, ρ(δ) > 0, 0 < δ ≤ 1; (9)
ρ is non decreasing on [0, 1]; (10)
ρ(2δ) ≤ c1ρ(δ), 0 ≤ δ ≤ 1/2; (11)∫ δ

0

ρ(u)
u

du ≤ c2ρ(δ), 0 < δ ≤ 1; (12)

δ

∫ 1

δ

ρ(u)
u2

du ≤ c3ρ(δ), 0 < δ ≤ 1. (13)

For instance, elementary computations show that the functions ρa,b satisfy Con-
ditions (9) to (13), for a suitable choice of the constant c, namely c ≥ exp(b/a)
if b > 0 and c > exp(−b/(1 − a)) if b < 0. For any ρ satisfying (9) to (13), we
have the equivalence of norms :

‖x‖ρ ∼ ‖x‖seqρ := sup
j≥0

1
ρ(2−j)

max
r∈Dj

‖λr(x)‖ ,

where the B-valued coefficients λr(x) are still defined by (7) and (8).
The space E = Hρ,o

B may be used as the topological framework for limit
theorems. Among various continuous functionals f for which the convergence
(4) holds, let us mention the norms f1(x) = ‖x‖ρ and f2(x) = ‖x‖seqρ , which
are closely connected to the test statistics proposed below for the detection
of epidemic changes. Other examples of Hölder continuous functionals and
operators like p-variation, fractional derivatives are given in Hamadouche [15].
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4 Random elements in Hölder spaces

4.1 Processes with a version in Hölder space

Let B be a Banach space. We consider a given B-valued stochastic process
ξ = {ξ(t), t ∈ T}, continuous in probability and discuss the problem of exis-
tence of a version of ξ with almost all paths in Hρ,o

B . For simplicity we restrict
this presentation to the case T = [0, 1]. The results presented here are proved
in [34], in the more general case of B-valued random fields. The main ana-
lytic tool in this problem is the following generalization of the Faber-Schauder
decomposition.

Proposition 1. For a B-valued array ν = (νr; j ≥ 0, r ∈ Dj), consider the
following conditions.

(a)
∞∑

j=0

max
r∈Dj

‖νr‖ < ∞.

(b) sup
j≥0

1
ρ(2−j)

max
r∈Dj

‖νr‖ < ∞.

(c) lim
J→∞

sup
j>J

1
ρ(2−j)

max
r∈Dj

‖νr‖ = 0.

Define the sequence (yJ)J≥0 of continuous piecewise affine functions by

yJ :=
J∑

j=0

∑
r∈Dj

νrΛr.

Then (a) implies the convergence in CB of yJ to some function y. Condition (b)
gives the same convergence plus the membership in Hρ

B for y. Condition (c)
gives the convergence of yJ to y in Hρ,o

B .

Corollary 1. For any function x : [0, 1] → B, define the B-valued array ν =
ν(x) := (λr(x); j ≥ 0, r ∈ Dj). Then x coincides at the dyadic points of [0, 1]
with some function y which is in CB under (a), in Hρ

B under (b) and in Hρ,o
B

under (c).

From Corollary 1 and continuity in probability of ξ, it is easily seen that the
problem of existence of Hρ,o

B -versions of ξ reduces to the control of the λr(ξ)’s
which are dyadic second differences of ξ. It is convenient here to define the
second differences of ξ by

∆2
hξ(t) := ξ(t + h) + ξ(t− h)− 2ξ(t), t ∈ T, t± h ∈ T.

This leads to the general following result.
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Theorem 3. Let ξ = {ξ(t), t ∈ T} be a B-valued stochastic process, continuous
in probability. Assume there exist a function σ : [0, 1] → R+, σ(0) = 0 and a
function Ψ : (0,∞] → R+, Ψ(∞) = 0 such that for all real numbers z > 0,
t ∈ T , t± h ∈ T ,

P
(∥∥∆2

hξ(t)
∥∥ > zσ(|h|)

)
≤ Ψ(z). (14)

Put for 0 < u < ∞,

R(u) = R(Ψ, σ, ρ, u) :=
∞∑

j=0

2jdΨ
(
u

ρ

σ
(2−j)

)
.

If R(u0) is finite for some 0 < u0 < ∞, then ξ has a version in Hρ
B. If R(u) is

finite for every 0 < u < ∞, then ξ has a version in Hρ,o
B .

When Ψ is non increasing and σ non decreasing, the same conclusions hold
replacing R(u) by

I(u) :=
∫ 1

0

Ψ
(
u

ρ

σ
(s)
) ds

s2
.

We only give here an application to the case of Gaussian processes. For
other applications and examples we refer to [34].

Corollary 2. Assume that the Gaussian B-valued stochastic process ξ = {ξ(t), t ∈
T} is continuous in probability and satisfies for each t ∈ T , t± h ∈ T ,

E
∥∥∆2

hξ(t)
∥∥2 ≤ σ2(|h|). (15)

(i) If lim inf
j→∞

ρ(2−j)
j1/2σ(2−j)

> 0, then ξ admits a version in Hρ
B.

(ii) If lim
j→∞

ρ(2−j)
j1/2σ(2−j)

= ∞, then ξ has a version in Hρ,o
B .

Example 1. Let B be a separable Banach space and Y a centered Gaussian
random element in B with distribution µ. A B-valued Brownian motion with
parameter µ is a Gaussian process ξ indexed by [0, 1], with independent incre-
ments such that ξ(t) − ξ(s) has the same distribution as |t − s|1/2Y . Hence
(15) holds with σ(h) = h1/2E 1/2 ‖Y ‖2B (h ≥ 0). Choosing the weight function
ρ(h) =

√
h ln(e/h), we see that

lim
j→∞

ρ(2−j)
j1/2σ(2−j)

=
1

E 1/2 ‖Y ‖2
> 0.

Hence by Corollary 2 (ii), the B-valued Brownian motion ξ has a version in Hρ
B.

This result is optimal because of Lévy’s theorem on the modulus of uniform
continuity of the standard Brownian motion.
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4.2 Tightness

To deal with convergence in distribution of stochastic processes considered as
random elements in Hρ,o

B , a key tool is the following tightness criterion estab-
lished in Račkauskas and Suquet [40].

Theorem 4. Suppose the Banach space B is separable. Then the sequence
(ξn)n≥1 of random elements in Hρ,o

B is tight if and only if it satisfies the two
following conditions.

(i) For each dyadic t ∈ [0, 1], the sequence of B-valued random variables
(ξn(t))n≥1 is tight on B.

(ii) For each positive ε,

lim
J→∞

sup
n≥1

P
(

sup
j>J

1
ρ(2−j)

max
r∈Dj

‖λr(ξn)‖ > ε

)
= 0.

4.3 Partial sums processes

Let (Xk)k≥1 be a sequence of i.i.d. random elements in the separable Banach
space B. Set S0 := 0, Sk := X1 + · · · + Xk, for k = 1, 2, . . . and consider the
partial sums processes

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1].

When B = R, Donsker-Prohorov invariance principle states, that if EX1 = 0
and EX2

1 = σ2 < ∞, then

n−1/2σ−1ξn
D−→ W, (16)

in C[0, 1], where {W (t), t ∈ R} is a standard Wiener process. The necessity of
EX2

1 < ∞ is clear here, since (16) implies the CLT for n−1/2Sn = n−1/2ξn(1).
Lamperti [22] was the first who considered the convergence (16) with respect

to some Hölderian topology. He proved that if 0 < a < 1/2 and E |X1|p < ∞,
where p > p(a) := 1/(1/2 − a), then (16) takes place in Ha,o. This result was
derived again by Kerkyacharian and Roynette [19] by another method based
on Ciesielski [9] analysis of Hölder spaces by triangular functions. Further
generalizations were given by Erickson [13] (partial sums processes indexed by
[0, 1]d), Hamadouche [15] (weakly dependent sequence (Xn)), Račkauskas and
Suquet [37] (Banach space valued Xi’s and Hölder spaces built on the weight
ρ(h) = ha lnb(1/h)). The following result is proved in Račkauskas and Su-
quet [38].

Theorem 5. Let 0 < a < 1/2 and p(a) = 1/(1/2− a). Then

n−1/2σ−1ξn
D−−−−→

n→∞
W in the space Ha,o

if and only if EX1 = 0 and

lim
t→∞

tp(a)P(|X1| ≥ t) = 0. (17)
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Condition (17) yields the existence of moments E |X1|p for any 0 ≤ p <
p(a). If a approaches 1/2 then p(a) →∞. Hence, stronger invariance principle
requires higher moments.

The description of more general results requires some background on Gaus-
sian random elements and central limit theorem in Banach spaces. Let B′ be
the topological dual of B. For a random element X in B such that for every
f ∈ B′, E f(X) = 0 and E f2(X) < ∞, the covariance operator Q = Q(X) is
the linear bounded operator from B′ to B defined by Qf = E f(X)X, f ∈ B′.
A random element X ∈ B (or covariance operator Q) is said to be pregaussian
if there exists a mean zero Gaussian random element Y ∈ B with the same
covariance operator as X, i.e. for all f, g ∈ B′, E f(X)g(X) = E f(Y )g(Y ).
Since the distribution of a centered Gaussian random element is defined by its
covariance structure, we denote by YQ a zero mean Gaussian random element
with covariance operator Q.

For any pregaussian covariance Q there exists a B-valued Brownian motion
WQ with parameter Q, a centered Gaussian process indexed by [0, 1] with in-
dependent increments such that WQ(t) − WQ(s) has the same distribution as
|t− s|1/2YQ.

We say that X1 satisfies the central limit theorem in B, which we denote
by X1 ∈ CLT(B), if n−1/2Sn converges in distribution in B. This implies that
EX1 = 0 and X1 is pregaussian. It is well known, e.g. Ledoux and Tala-
grand [24] that the central limit theorem for X1 cannot be characterized in
general in terms of integrability of X1 and involves the geometry of the Banach
space B.

We say that X1 satisfies the functional central limit theorem in B, which we
denote by X1 ∈ FCLT(B), if n−1/2ξn converges in distribution in CB. Kuelbs [21]
extended the classical Donsker-Prohorov invariance principle to the case of B-
valued partial sums by proving that n−1/2ξn converges in distribution in CB to
some Brownian motion W if and only if X1 ∈ CLT(B) (in short X1 ∈ CLT(B)
if and only if X1 ∈ FCLT(B)). Of course in Kuelbs theorem, the parameter Q
of W is the covariance operator of X1.

The convergence in distribution of n−1/2ξn in Hρ,o
B , which we denote by

X1 ∈ FCLT(B, ρ), is clearly stronger than X1 ∈ FCLT(B).
An obvious preliminary requirement for the FCLT in Hρ,o

B is that the B-
valued Brownian motion has a version in Hρ,o

B . From this point of view, the
critical ρ is ρc(h) =

√
h ln(e/h) due to Lévy’s Theorem on the modulus of

uniform continuity of the Brownian motion. So our interest will be restricted
to functions ρ generating a weaker Hölder topology than ρc. More precisely, we
consider the following class R of functions ρ.

Definition 2. We denote by R the class of functions ρ satisfying

i) for some 0 < a ≤ 1/2, and some function L which is normalized slowly
varying at infinity,

ρ(h) = haL(1/h), 0 < h ≤ 1, (18)
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ii) θ(t) = t1/2ρ(1/t) is C1 on [1,∞),

iii) for some b > 1/2 and some a > 0, θ(t) ln−b(t) is non decreasing on [a,∞).

The following result is proved in Račkauskas and Suquet [36].

Theorem 6. Let ρ ∈ R. Then X1 ∈ FCLT(B, ρ) if and only if X1 ∈ CLT(B)
and for every A > 0,

lim
t→∞

tP
(
‖X1‖ ≥ At1/2ρ(1/t)

)
= 0. (19)

If ρ ∈ R with a < 1/2 in (18) then it suffices to check (19) for A = 1 only.
Of course the special case B = R and ρ(h) = ha gives back Theorem 5.

In the case where ρ(h) = h1/2 lnb(c/h) with b > 1/2, Condition (19) is
equivalent to E exp

(
γ ‖X1‖1/b

)
< ∞, for each γ > 0. Let us note, that for the

spaces B = Lp(0, 1), 2 ≤ p < ∞, as well as for each finite dimensional space,
Condition (19) yields X1 ∈ CLT(B). On the other hand it is well known that
for some Banach spaces existence of moments of any order does not guarantee
central limit theorem. It is also worth noticing that like in Kuelbs FCLT, all the
influence of the geometry of the Banach space B is absorbed by the condition
X1 ∈ CLT(B).

It would be useful to extend the Hölderian FCLT to the case of dependent
Xi’s. A first step was done by Hamadouche [15] in the special case where B = R
and under weak dependence (association and α-mixing). The result presented
in Račkauskas and Suquet [37] provides a very general approach for B-valued
Xi’s and any dependence structure, subject to obtaining a good estimate of the
partial sums. Laukaitis and Račkauskas [23] obtained Hölderian FCLT for a
polygonal line process based on residual partial sums of a stationary Hilbert
space valued autoregression (ARH(1)) and applied it to the problem of testing
stability of ARH(1) model under different types of alternatives.

4.4 Adaptive self-normalized partial sums processes

In order to relax moment assumptions like (19) in the FCLT for i.i.d. mean
zero random variables Xi, Račkauskas and Suquet [33] consider the so called
adaptive self-normalized partial sums processes. Self-normalized means that the
classical normalization by

√
n is replaced by

Vn = (X2
1 + · · ·+ X2

n)1/2.

Adaptive means that the vertices of the corresponding random polygonal line
have their abscissas at the random points V 2

k /V 2
n (0 ≤ k ≤ n) instead of the

deterministic equispaced points k/n. By this construction the slope of each line
adapts itself to the value of the corresponding random variable.

By ζn (respect. ξn) we denote the random polygonal partial sums process
defined on [0, 1] by linear interpolation between the vertices (V 2

k /V 2
n , Sk), k =

0, 1, . . . , n (respect. (k/n, Sk), k = 0, 1, . . . , n). For the special case k = 0, we
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put S0 = 0, V0 = 0. By convention the random functions V −1
n ξn and V −1

n ζn

are defined to be the null function on the event {Vn = 0}. Figure 2 displays the
polygonal lines n−1/2ξn and V −1

n ζn built on a simulated sample of size n = 800 of
the symmetric distribution given by P(|X1| > t) = 0.5 t−2.21[1,∞)(t). For these
simulated paths we have

∥∥n−1/2ξn

∥∥
0.49

' 24.75, while
∥∥V −1

n ζn

∥∥
0.49

' 3.05.
This picture shows how adaptive partition of the time interval improves slopes
of polygonal line process.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.645

−1.326

−1.008

−0.690

−0.372

−0.054

0.265

0.583

0.901

1.219

1.537

classical partial sums process
adaptative selfnormalized

Figure 2: Partial sums processes n−1/2ξn and V −1
n ζn

Membership of X1 in the domain of attraction of the normal distribution
(DAN) means that there exists a sequence bn ↑ ∞ such that

b−1
n Sn

D−→ N(0, 1).

The following result is proved in Račkauskas and Suquet [33].

Theorem 7. Assume that ρ satisfies Conditions (9) to (13) and

lim
j→∞

2jρ2(2−j)
j

= ∞. (20)

If X1 is symmetric then

V −1
n ζn

D−→ W, in Hρ,o

if and only if X1 ∈ DAN .
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When tested with ρ(h) = h1/2 lnb(c/h), (20) reduces to j2b−1 →∞. Due to
the inclusions of Hölder spaces, this shows that Theorem 7 gives the best result
possible in the scale of the separable Hölder spaces Ha,b,o. Moreover, no high
order moments are needed except the condition X1 ∈ DAN which due to well
known O’Briens result is equivalent to

V −1
n max

1≤k≤n
|Xk|

P−→ 0.

It seems worth noticing here, that without adaptive construction of the polyg-
onal process, the existence of moments of order bigger than 2 is necessary for
Hölder weak convergence. Indeed, if the process V −1

n ξn converges weakly to W
in Ha,o for some a > 0, then its maximal slope n−1/2V −1

n max1≤k≤n |Xk| con-
verges to zero in probability. This on its turn yields V −1

n max1≤k≤n |Xk| → 0
almost surely, and according to Maller and Resnick (1984), EX2

1 < ∞. Hence
n−1V 2

n converges almost surely to EX2
1 by the strong law of large numbers.

Therefore n−1/2ξn converges weakly to W in Ha,o and by Theorem 5 the mo-
ment restriction (17) is necessary.

Naturally it is very desirable to remove the symmetry assumption in The-
orem 7. Although the problem remains open, we can propose the following
partial result in this direction (for more on this problem see Račkauskas and
Suquet [33]).

Theorem 8. If for some ε > 0, E |X1|2+ε < ∞, then for any b > 1/2, V −1
n ζn

converges weakly to W in the space H1/2,b,o.

Some extensions of this result for the non i.i.d. case are given in Račkauskas
and Suquet [39].

4.5 Empirical processes

In asymptotic statistics, the empirical distribution function Fn of an i.i.d. sam-
ple X1, . . . , Xn plays a central rôle. When the distribution function F of the
Xi’s is continuous, the transformation Ui := F (Xi) reduces the study of the
asymptotical behavior of Fn to the case of uniform [0, 1] distributed random
variables Ui. The corresponding uniform empirical process is defined by

ξn(t) :=
1√
n

n∑
i=1

(
1{Ui≤t} − t

)
, t ∈ [0, 1].

It is well known that ξn converges weakly in the Skorokhod space to the Brow-
nian bridge B. From this convergence follows the weak C[0, 1] convergence to B
of ξpg

n , the polygonal smoothing of ξn. This polygonal smoothing is simply the
empirical process associated to the polygonal cumulative distribution function.
More precisely, let us denote by Un:i the order statistics of the sample U1, . . . , Un

0 = Un:0 ≤ Un:1 ≤ · · · ≤ Un:n ≤ Un:n+1 = 1.
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We define ξpg
n = (ξpg

n (t), t ∈ [0, 1]) as the random polygonal line with vertices
(Un:k, ξn(Un:k)), k = 0, 1, . . . , n + 1.

Investigating the weak Hölder convergence of ξpg
n , Hamadouche [14] proved

the following result.

Theorem 9. The sequence (ξpg
n )n≥1 converges weakly to the Brownian bridge

B in every Ha,o for 0 < a < 1/4. Moreover (ξpg
n )n≥1 is not tight in Ha,o for

a ≥ 1/4.

At first sight this result looks somewhat surprising because the limiting pro-
cess B has a version in every Ha,o for a < 1/2 and the paths of ξpg

n are Lipschitz
functions. It illustrates the fact that polygonal smoothing of the empirical dis-
tribution function is in some sense too violent. With a convolution smoothing
it is possible to achieve the convergence in any Ha,o for a < 1/2 (see [16] and
the references therein).

Another important stochastic process connected to the empirical distribu-
tion function is the so-called uniform quantile process. Put for notational con-
venience

un:i = EUn:i =
i

n + 1
, i = 0, 1, . . . , n + 1.

The (discontinuous) uniform quantile process χn is given by

χn(t) :=
√

n
( n+1∑

i=1

Un:i1]un:i−1,un:i](t)− t
)
, t ∈ [0, 1]. (21)

We associate to χn the polygonal uniform quantile process χpg
n which is affine

on each [un:i−1, un:i], i = 1, . . . , n + 1 and such that

χpg
n (un:i) =

√
n(Un:i − un:i), i = 0, 1, . . . , n + 1. (22)

Using the Hölderian FCLT (Theorem 6), Hamadouche and Suquet [17] obtained
the following optimal result.

Theorem 10. Let ρ(h) = h1/2L(1/h) be a weight function in the class R. Then
χpg

n converges weakly in Hρ,o to the Brownian bridge if and only if

lim
t→∞

L(t)
ln t

= ∞. (23)

A third process related to empirical process is the empirical characteristic
function cn. Functional limit theorems for cn in Hölderian framework are in-
vestigated in [35] in the multivariate case. For simplicity we shall describe the
results in the univariate case only. Let X be a real valued random variable
and (Xk)k≥1 a sequence of independent copies of X. Define respectively the
empirical characteristic function cn and the characteristic function c by

cn(t) := n−1
n∑

k=1

exp(itXk), c(t) := E exp(itX), t ∈ R.
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Here the paths of cn are smooth enough to allow membership in any Hρ,o,
so we do not need any smoothing. Clearly cn appears as the sum of i.i.d.
random elements in Hρ,o, so that the almost sure convergence in Hρ,o of cn

reduces to some strong law of large numbers in Hρ,o, while the weak Hρ,o

convergence of n1/2(cn−c) is just a central limit theorem for the random element
ξ : t 7→ exp(itX). The Hölder functions considered here (as elements of the
spaces Hρ,o) can be defined on any compact interval of R, but we shall keep
T = [0, 1] for simplicity.

Theorem 11. Assume that the weight function ρ belongs to the class R. Then
the convergence

sup
t,s∈T,

s 6=t

|cn(t)− c(t)|
ρ(|t− s|)

a.s.−−−−→
n→∞

0 (24)

holds if and only if
E ρ∗(|X|) < ∞, (25)

where
ρ∗(h) :=

1
ρ
(
min(1; 1/h)

) , 0 < h < ∞. (26)

In the special case where ρ(h) = ha for some 0 < a < 1, Condition (25) writes
E |X|a < ∞.

We refer to [35] for a discussion of the rate of convergence in (24), based on
some Marcinkiewicz-Zygmund strong law of large numbers in Hρ,o.

Now consider the empirical characteristic process

Yn(t) =
√

n
(
cn(t)− c(t)

)
, t ∈ T.

By the multidimensional CLT, the finite dimensional distributions of (Yn) con-
verge to those of a complex Gaussian process Y with zero mean and covariance
EY (t)Y (s) = c(t− s)− c(t)c(−s), s, t ∈ T .

Theorem 12. If the distribution of X satisfies

∞∑
j=1

√
j

ρ(2−j)
E 1/2| sin(2−jX)|4 < ∞, (27)

then (Yn) converges in distribution to Y in the space Hρ,o.

Roughly speaking, Condition (27) may be interpreted as the square integra-
bility of the random element ξ : t 7→ exp(itX) in a norm a bit stronger than
‖ξ‖ρ, see [35]. This is not surprising because the bad geometric properties of
Hρ,o do not allow to deduce the CLT for ξ from the square integrability of ‖ξ‖ρ.
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4.6 Detection of epidemic changes

Hölderian invariance principles like Theorems 6 and 8 have statistical applica-
tions to detection of epidemic change. This question is investigated in [41] for
the case of real valued observations and in [42] for the case of Banach space
valued (in fact functional) observations. We just sketch here the method.

The epidemic model may be described as follows. Having observed a sample
X1, X2, . . . , Xn of random variables, we want to test the standard null hypoth-
esis of constant mean

(H0): X1, . . . , Xn all have the same mean denoted by µ0,

against the epidemic alternative

(HA): there are integers 1 < k∗ < m∗ < n and a constant µ1 6= µ0

such that EXi = µ0 + (µ1 − µ0)1{k∗<i≤m∗}, i = 1, 2, . . . , n.

To simplify notation put

%(h) := ρ
(
h(1− h)

)
, 0 ≤ h ≤ 1.

For ρ ∈ R, define with tk := k/n, 0 ≤ k ≤ n, S(t) :=
∑

1≤k≤t Xk,

UI(n, ρ) = max
1≤i<j≤n

∣∣S(j)− S(i)− S(n)(tj − ti)
∣∣

%(tj − ti)

DI(n, ρ) = max
1≤j≤log n

1
ρ(2−j)

max
r∈Dj

∣∣∣S(nr)− 1
2
(
S(nr+) + S(nr−)

)∣∣∣.
These test statistics may be viewed as some discrete Hölder norms of the partial
sums process built on the Xk’s. Their relevance will be clear from the next
result. In what follows, we naturally assume that the numbers of observations
k∗, m∗ − k∗, n −m∗ before, during and after the epidemic go to infinity with
n. Write l∗ := m∗ − k∗ for the length of the epidemic.

Theorem 13. Let ρ ∈ R. Assume under (HA) that the Xi’s are independent
and σ2

0 := supk≥1 VarXk is finite. If

lim
n→∞

n1/2 hn

ρ(hn)
= ∞, where hn :=

l∗

n

(
1− l∗

n

)
, (28)

then
n−1/2UI(n, ρ) P−−−−→

n→∞
∞, and n−1/2DI(n, ρ) P−−−−→

n→∞
∞.

When ρ(h) = ha, (28) leads to detect short epidemics such that l∗ = o(n)
and l∗n−δ → ∞, where δ = (1 − 2a)(2 − 2a)−1. Symmetrically one can detect
long epidemics such that n − l∗ = o(n) and (n − l∗)n−δ → ∞. When ρ(h) =
h1/2 lnb(c/h) with b > 1/2, (28) is satisfied provided that hn = n−1 lnγ n, with
γ > 2b. This leads to detect short epidemics such that l∗ = o(n) and l∗ ln−γ n →
∞ as well as of long ones verifying n− l∗ = o(n) and (n− l∗) ln−γ n →∞.
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Let W = {W (t), t ∈ [0, 1]} be a standard Wiener process and B = {B(t), t ∈
[0, 1]} the corresponding Brownian bridge B(t) = W (t) − tW (1), t ∈ [0, 1].
Consider for ρ in R, the following random variables

UI(ρ) := sup
0<t−s<1

|B(t)−B(s)|
%(t− s)

(29)

and

DI(ρ) = sup
j≥1

1
ρ(2−j)

max
r∈Dj

∣∣∣W (r)− 1
2
W (r+)− 1

2
W (r−)

∣∣∣ = ‖B‖seqρ . (30)

These variables serve as limiting for uniform increment (UI) and dyadic incre-
ment (DI) statistics respectively. No analytical form seems to be known for the
distribution function of UI(ρ), whereas the distribution of DI(ρ) is completely
specified in terms of the error function erf x = 2π−1/2

∫ x

0
exp(−s2) ds.

Theorem 14. Let c = lim sup
j→∞

j1/2/θ(2j), where θ(t) = t1/2ρ(1/t).

i) If c = ∞ then DI(ρ) = ∞ almost surely.

ii) If 0 ≤ c < ∞, then DI(ρ) is almost surely finite and its distribution
function is given by

P
(
DI(ρ) ≤ x

)
=

∞∏
j=1

{
erf
(
θ(2j)x

)}2j−1

, x > 0. (31)

The distribution function of DI(ρ) is continuous with support [c
√

ln 2,∞).

The infinite product in (31) converges very fast and in practice one need to
compute only four or five factors.

Theorem 15. Under (H0) with i.i.d Xk’s, assume that ρ ∈ R and for every
A > 0,

lim
t→∞

tP
(
|X1| > At1/2ρ(1/t)

)
= 0.

Then

σ−1n−1/2UI(n, ρ) D−−−−→
n→∞

UI(ρ) and σ−1n−1/2DI(n, ρ) D−−−−→
n→∞

DI(ρ),

where σ2 = VarX1 and UI(ρ), DI(ρ) are defined by (29) and (30).

Of course when the variance σ2 is unknown the results remain valid if σ2 is
substituted by its standard estimator σ̂2.
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