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Abstract Let f (x, y) be an irreducible formal power series without constant term,
over an algebraically closed field of characteristic zero. One may solve the equation
f (x, y) = 0 by choosing either x or y as independent variable, getting two finite
sets of Newton–Puiseux series. In 1967 and 1968 respectively, Abhyankar and Zariski
published proofs of an inversion theorem, expressing the characteristic exponents of
one set of series in terms of those of the other set. In fact, a more general theorem,
stated by Halphen in 1876 and proved by Stolz in 1879, relates also the coefficients
of the characteristic terms of both sets of series. This theorem seems to have been
completely forgotten. We give two new proofs of it and we generalize it to a theorem
concerning irreducible series with an arbitrary number of variables.
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1 Introduction

Let f (x, y) be a polynomial with complex coefficients and without constant term.
In his Treatise of fluxions and of infinite series [29, Sect. XXIX-XXXIII], Newton
described an iterative method to compute a formal power series η ∈ C[[t]], such that
f (x, η(x1/n)) = 0 for certain positive integern. In his 1850paper [32], Puiseux proved
that the series produced by Newton’s algorithm were convergent whenever one starts
from a convergent series f (x, y) ∈ C[[x, y]]. Since then, the series whose exponents
are positive rational numbers with bounded denominators, be they convergent or not,
are called either Newton–Puiseux series or Puiseux series. In the sequel we will use
the first denomination.

In the years 1870, Smith [34] and Halphen [20] realized that for several questions
about the singularities of plane algebraic curves, a finite number of the exponents of
a Newton–Puiseux series were more important than the others. Halphen called those
special exponents characteristic. Their modern definition is the following one: if one
looks at the sequence of exponents taken in increasing size, then the characteristic
ones are exactly those at which jumps the lowest common denominator which may be
used for the exponents up to that point. It is a basic fact that if f (x, y) ∈ C[[x, y]] is
irreducible, then all the associated Newton–Puiseux series have the same sequence of
characteristic exponents. Let us call it the characteristic sequence of f (x, y) relative
to x .

Nowadays, one describes usually the importance of this notion as follows. Consider
a branchC (that is, an irreducible germof curve) on a germof smooth complex analytic
surface S. If (x, y) are local coordinates on S and f (x, y) ∈ C[[x, y]] is a defining
function of C relative to those coordinates, then one may consider its characteristic
sequence relative to x . This sequence is independent of (x, y) once the y-axis is
transversal to the branchC , that is, once its tangent does not coincide with the reduced
tangent cone of C , which is a line. One speaks then of the generic characteristic
sequence of C . Its main property is that it is a complete invariant of the embedded
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topological type of the branch in the ambient germ of surface (see for instance [38,
Theorem 5.5.8]). In fact, most computations of other topological invariants of the pair
(S,C) are done in terms of its generic characteristic sequence.

It is nevertheless important to work also with Newton–Puiseux series computed
relative to non-generic coordinate systems. For instance, another usual way to study
the branch C is to perform its process of embedded resolution by blow-ups of points
(see for instance [38, Chapter 3]). A basic problem is then to express the generic
characteristic sequence of the strict transform of C obtained after one blow up in
terms of that of C . If one starts from a generic Newton–Puiseux series η(x1/n) of C ,
then x−1 · η(x1/n) is a Newton–Puiseux series of the strict transform of C . This series
is generic for the strict transform if and only if the x-order of η(x1/n) is at least 2. In
this case, it is immediate to get from it the generic characteristic sequence of the strict
transform. But how to proceed when this is not the case?

Onegets the following problem, inwhose formulationwe replaced for simplicity the
strict transform by the initial branch: to compute the generic characteristic exponents
of C in terms of those of a Newton–Puiseux series η(x1/n) of a defining function
f (x, y), when C is tangent to the y-axis. But in this case C is necessarily transversal
to the x-axis. Therefore, if ξ(y1/m) is a Newton–Puiseux series of f (x, y) relative to
y, that is, if f (ξ(y1/m), y) = 0, then its characteristic sequence is exactly the generic
characteristic sequence of C . Consequently, it is enough to express the characteristic
sequence of ξ(y1/m) in terms of that of η(x1/n). Such an inversion theorem (called in
this way because one inverts the roles of x and y in passing from η(x1/n) to ξ(y1/m))
is well-known and it is often attributed to Abhyankar’s paper [2] of 1967 or to Zariski’s
paper [40] of 1968. Proofs of this inversion theorem can be also found in [7, Section
5.6], [10, Theorem 5.2.21], [31, Proposition 4.3] and [3, Page 111].

We were very surprised to discover that in his 1876 paper [20, page 91], Halphen
had already formulated a stronger result than the previous inversion theorem. He did
not provide a proof of it. As far as we know, the first proof was given by Stolz [36,
Sect. 3] in 1879. For this reason, we will speak in the sequel about the Halphen–Stolz
inversion theorem. It is stronger than the inversion theorem of Abhyankar–Zariski
because it does not only provide formulae for the characteristic exponents of ξ(y1/m)

in terms of those of η(x1/n), but also for the corresponding coefficients. The previous
papers of Halphen and Stolz seem to be forgotten, even though they were mentioned
in Halphen’s appendix [21] to Salmon’s treatise on plane algebraic curves, which is
cited sometimes nowadays.

The aim of our paper is to extend the Halphen–Stolz inversion theorem to an arbi-
trary number of variables. We achieve this aim in Corollary 5.21 of our Inversion
Theorem 5.20.

In order to arrive at those results, we give first two new proofs of the classical
Halphen–Stolz inversion theorem (stated by us as Corollary 4.5 of Theorem 4.4). The
first one is based on the relations between the coefficients associated to the irreducible
exponents of an invertible power series (see Definition 3.2), those of its powers and
those of its dual (see Proposition 3.16). A flow-chart representing our line of reason-
ing for this first proof is drawn in diagram (4.17). Our second proof uses a formula
expressing all the coefficients of the Newton-Puiseux series ξ(y1/m) in terms of those
of η(x1/n) (see Proposition 4.10). This formula, based on the Lagrange inversion
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theorem (see Theorem 4.9), generalizes the Halphen–Stolz inversion formula for the
coefficients.

It is the first proof which we extend into a proof of the several-variables case. We
could have given directly the most general statements and proofs. We preferred to start
explaining in a detailed way the classical case, because it served us as a model for
building the general proof, and because we feel that in this way the paper is easier to
read. Its title is inspired by the title of Griffiths’ paper [19].

As the generic characteristic sequence is crucial for understanding the embedded
topology of complex plane branches, we expect that the associated coefficients could
play an important role in problems related not only to their topology, but also to their
analytical type. It is the main reason why we considered that it is important to bring
to the attention of researchers the forgotten inversion theorem of Halphen–Stolz.

Zariski’s proof of the inversion theorem in [40]was obtained as an application of the
theory of saturation of local rings, in connexion with the study of topological equisin-
gularity. There exist other notions of saturation, for instance, the Lipschitz-saturation
(see [25,30]) and also the presaturation of Campillo, which is better adapted to positive
characteristic (see [5,6]). In the case of irreducible germs of quasi-ordinary hyper-
surface singularities, Zariski’s results on saturation and Lipman’s inversion theorem
appear also in the combinatorial characterization of the embedded topological type of
this class of singularities (see [14,27]). We expect that these lines of research com-
bined with our generalized inversion theorem will lead to a better understanding of
the invariants of singularities of other classes of hypersurface germs.

The article is structured as follows. In Sect. 2 we recall basic facts about Newton–
Puiseux series associated to plane branches and their characteristic exponents. In Sect.
3 we introduce the notions of irreducible and essential exponents of a series and we
give some results relating the coefficients of certain pairs of invertible series. In Sect. 4
we explain our proofs of theHalphen–Stolz inversion theorem and of its generalization
into an inversion formula for all coefficients, based on a Lagrange inversion formula.
Finally, in Sect. 5 we prove our generalization concerning an arbitrary number of
variables and we explain in which way it extends the inversion theorem of Lipman
concerning the characteristic exponents of quasi-ordinary series. Note that we work
always over a fixed algebraically closed field of characteristic zero.

2 Newton–Puiseux series and their characteristic exponents

In this section we introduce the notations and vocabulary about power series with inte-
gral or rational exponentswhichwill be used throughout the text.Among the serieswith
rational exponents, we will be interested only in those with bounded denominators,
called Newton–Puiseux series. We conclude the section introducing the well-known
notion of characteristic exponents of a Newton–Puiseux series.

Throughout the paperN denotes the set of non-negative integers,N∗ denotesN\{0}
and K denotes a fixed algebraically closed field of characteristic zero.

The following definition explains the basic vocabulary and notations about power
series with integer exponents which will be used in the sequel:
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Definition 2.1 The ring K[[t]] of entire series consists of the formal power series in
the variable t , with coefficients in K and exponents in N. We say that the elements of
its field of fractions K((t)) are meromorphic series. They are exactly the series with
coefficients inK, exponents inZ and a finite number of terms with negative exponents.
If η ∈ K((t)) and m ∈ Z, we denote by [η]m ∈ K the coefficient of the monomial tm

in η(t) and by S(η) ⊂ Z its support, consisting of the exponents m with non-zero
coefficients [η]m .

Therefore, a meromorphic series η ∈ K((t)) may be written as:

η(t) =
∑

m∈S(η)

[η]m tm .

We will also use series with rational exponents, but such that their support has
bounded denominators:

Definition 2.2 A Newton–Puiseux series ψ in the variable x is a power series of the
form η(x1/n), where η(t) ∈ K[[t]] and n ∈ N

∗. For a fixed n ∈ N
∗, they form the ring

K[[x1/n]]. Its field of fractions is denoted K((x1/n)).

One extends immediately to Newton–Puiseux seriesψ the notion of support (which
is a set with bounded denominators in the sense of Definition 3.1) and the notation
[ψ]m for their coefficients (where now m ∈ Q+).

Denote by:

K[[x1/N]] :=
⋃

n∈N∗
K[[x1/n]]

the local K-algebra of Newton–Puiseux series in the variable x .
The algebra K[[x1/N]] is endowed with the natural order valuation:

ordx : K[[x1/N]] −→ Q+ ∪ {∞}

which associates to each seriesψ = η(x1/n) ∈ K[[x1/n]] the minimum of its support.
The dominating coefficient of a Newton–Puiseux series ψ is the coefficient of its
term of exponent ordx (ψ).

The field of fractions of the ring K[[x1/N]] of Newton–Puiseux series is:

K((x1/N)) :=
⋃

n∈N∗
K((x1/n)).

One has the following fundamental theorem (see for instance, [10, Chapter 5.1],
[13, Chapter 7], [9, Chapter 2.1] or [38, Chapter 2] for a proof), which explains the
reason why we need to work with Newton–Puiseux series even if we are interested
primarily in series with integral exponents:
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Theorem 2.3 (The Newton–Puiseux theorem) Any monic reduced polynomial f ∈
K[[x]][y] of degree n ∈ N

∗ has n roots in K[[x1/N]]. If f is moreover irreducible,
then those roots are precisely the series of the form:

ψρ := η(ρ · x1/n), (2.1)

where ψ = η(x1/n) ∈ K[[x1/n]] is any one of them and ρ ∈ K
∗ varies among the

multiplicative subgroup Gn of (K∗, ·) of n-th roots of 1 ∈ K
∗.

Remark 2.4 If f ∈ K[[x]][y] is a monic irreducible polynomial of degree n ∈ N
∗and

if ψ ∈ K((x1/n)) is a root of f , then the field extension:

K((x)) ⊂ K((x))[y]/( f ) � K((x))[ψ] = K((x1/n))

is Galois. Its Galois group is isomorphic to the group Gn , acting on K((x1/n)) by:

(ρ, x1/n) → ρ · x1/n, for all ρ ∈ Gn . (2.2)

The series ψρ in Theorem 2.3 are precisely the conjugates of ψ under this action.

Given a Newton–Puiseux seriesψ , there exists an infinite number of choices of n ∈
N

∗ such thatψ ∈ K[[x1/n]]. This is simply due to the fact thatK[[x1/n]] ⊂ K[[x1/m]]
whenever n divides m. One may get nevertheless a canonical choice of n ∈ N

∗ by
asking it to be minimal:

Definition 2.5 If ψ ∈ K((x1/N)), a representation ψ = η(x1/n) with η(t) ∈ K[[t]]
and n ∈ N

∗ is called primitive if n is the lowest common denominator of the exponents
of ψ .

Example 2.6 Assume thatψ = x5/2+x8/3. Thenψ = η(x1/6), with η(t) = t15+t16.
This defines a primitive representation ofψ . Writing nowψ = η1(x1/12)with η1(t) =
t30 + t32, one gets a non-primitive representation. Let us consider a 6-th root of unity
ρ ∈ K

∗. Then:

ψρ = η(ρ x1/6) = ρ15x5/2 + ρ16x8/3 = ρ3x5/2 + ρ4x8/3.

Among the exponents of a Newton–Puiseux series, several are distinguished by
looking at the way they may be written as quotients of coprime integers:

Definition 2.7 Let ψ ∈ K[[x1/N]] be a nonzero Newton–Puiseux series with zero
constant term. The set E(ψ) of characteristic exponents ofψ consists of the elements
of the support of ψ which, when written as quotients of integers, need a denominator
strictly bigger than the lowest common denominator of the previous exponents. That
is:

E(ψ) := {l ∈ S(ψ) | Nl · l /∈ Z} , where

Nl := min

{
N ∈ N

∗ | (S(ψ) ∩ [0, l)) ⊂ 1

N
Z

}
.
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The sequence of characteristic exponents of ψ ∈ K[[x1/N]] is defined by writing
the elements of E(ψ) in increasing order.

Example 2.8 Both Newton–Puiseux series x5/2+x8/3 and 2x−x5/2+x8/3−3x7/2+
x23/6 have the same set {5/2, 8/3} of characteristic exponents.
Remark 2.9 According to Enriques and Chisini [11, page 375], it was Smith [34] and
Halphen [20] who discovered in the years 1870 that special exponents of a Newton–
Puiseux series are particularly important if one wants to compute the intersection
number of two plane branches starting from their Newton–Puiseux series. This infor-
mation was repeated by Zariski [39, Ch. 1], but without citing anymore their precise
papers. Those special exponents were called characteristic by Halphen in [20, Sect.
1.1],which is also the paper inwhich he stated his inversion theorem for both exponents
and coefficients. This denomination remained, but with slightly variable meanings
(see also Remarks 2.12 and 4.8). Let us mention that Smith did not name those special
exponents (which he defined in [34, Sect. 8]).

The set E(ψ) of characteristic exponents of ψ is necessarily finite, even if the
series has infinite support. More precisely, if ψ ∈ K[[x1/n]], then E(ψ) has at most as
many elements as the number of factors of the prime factorisation of n. The set E(ψ)

may also be characterized using the Galois action, as the set of orders ordx (ψρ − ψ),
when ρ varies in Gn\{1} (see for instance [38, Prop. 4.13]). Note that, because all the
conjugates ψρ have the same support (by the explicit description of the Galois action
recalled in Remark 2.4), they also have the same set of characteristic exponents, a fact
implicitly used in Definition 2.11 below.

One has the following particular case of the Weierstrass preparation theorem (see
for instance [10, Chap. 3.2] or [13, Chap. 6]):

Theorem 2.10 Let f ∈ K[[x, y]] be a series such that ordy( f (0, y)) = n ∈ N
∗.

Then, there exist a unique monic polynomial F ∈ K[[x]][y] of degree n and a unique
unit ε ∈ K[[x, y]] such that:

f = ε · F. (2.3)

In addition, f is irreducible in K[[x, y]] if and only if the polynomial F is irreducible
in K[[x]][y].

This theorem allows us to introduce the following vocabulary:

Definition 2.11 Let f ∈ K[[x, y]] be an irreducible series such that ordy f (0, y) =
n ∈ N

∗. The polynomial F ∈ K[[x]][y] provided by Theorem 2.10 is called the
Weierstrass polynomial associated to the series f ∈ K[[x, y]] relative to x . Then,
the Newton–Puiseux series of f relative to x are the roots of the associated Weier-
strass polynomial F ∈ K[[x]][y], in the ring K[[x1/N]]. If f is irreducible, then its
characteristic exponents relative to x are the characteristic exponents of any one of
those roots.

Remark 2.12 Let us explain how the previous algebraic notions apply in the geomet-
rical setting of a branch, an irreducible germ of complex analytic plane curve C on
a germ S of smooth complex analytic surface. Choose a local system of coordinates

123



1366 E. R. García Barroso et al.

(x, y) on S. Then, the branch C is defined by an irreducible series f ∈ C[[x, y]]. If
the y-axis is transversal to the tangent line of the branch C , then one may show that
the characteristic exponents of f relative to x are always the same (see for instance
[38, Thm. 3.5.6]). One speaks in this case about generic characteristic exponents. The
notations used for them by Zariski in [39, Ch. 1], [40, Sect. 3] and [41, Sect. II.3]

are common nowadays:
(
m1
n1

, m2
n1n2

, . . . ,
mg

n1···ng
)
. At least since [40, Sect. 3], Zariski

uses also a characteristic sequence (β0, β1, . . . , βg) of natural numbers instead of
the sequence of generic characteristic exponents, which may then be reconstructed as(

β1
β0

, . . . ,
βg
β0

)
(here β0 is the multiplicity of the branch C , that is, the minimal degree

of the monomials of f (x, y)). We do not use the previous notations in this paper
for two reasons: on one side we never need a genericity hypothesis on the coordi-
nate system relative to C and on the other side we find the related notion of essential
exponent relative to 1 (see Definition 3.6) better suited to a simple formulation of the
Halphen–Stolz inversion theorem (see Remark 4.7).

3 A calculus for the irreducible terms of invertible entire series

In this section we introduce several notions allowing to study the supports of Newton–
Puiseux series and the semigroups generated by them: their irreducible elements (see
Definition 3.2) and their essential elements (see Definition 3.6) relative to an arbitrary
natural number. We concentrate then on the entire series with non-zero constant terms.
If φ is such a series, we introduce its dual φ̌ and we show that the coefficients of the
monomials with irreducible exponents in the positive integral powers of φ and in the
dual φ̌ may be deduced from those of φ by simple formulae (see Proposition 3.16). In
Sect. 4 we will apply those formulae to the essential exponents relative to well-chosen
natural numbers, in order to prove the Halphen–Stolz inversion theorem.

Next definition introduces vocabulary about the sets of rational numbers whichmay
appear as supports of Newton–Puiseux series:

Definition 3.1 A set with bounded denominators is a non-empty (possibly infinite)

set E ⊂ Q such that there exists n ∈ N
∗ with E ⊂ 1

n
N. We denote by N

∗ E ⊂ Q+
the semigroup generated by E , that is, the set of non-empty finite sums of elements
of E . Analogously, we denote by Z E ⊂ Q the group generated by E .

Note that the semigroup N
∗ E contains 0 (that is, it is a monoid for addition) if and

only if E does.
Given a set with bounded denominators, we will be interested in its irreducible

elements:

Definition 3.2 Assume that E ⊂ Q+ is a set with bounded denominators. We denote
by Irr(E) the set of irreducible elements of E , that is, the subset of E formed by
those elements which cannot be written as sums of at least two elements of E\{0}.
The elements of E which are not irreducible are called reducible. If E is the support
S(ψ) of a Newton–Puiseux series ψ , then we write also Irr(ψ) := Irr(S(ψ)), and we
call it the set of irreducible exponents of ψ .
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Remark 3.3 Let E ⊂ Q+ be a set with bounded denominators. Notice that if E
contains 0, then 0 is by definition an irreducible element of E . More generally, the
minimum of E is always irreducible in E .

Example 3.4 Assume that E = {6, 15, 16, 21, 23}. Then Irr(E) = {6, 15, 16, 23}.
Note that 21 is reducible in E , because it is equal to the sum 6 + 15 and 6, 15 ∈ E .

The sets of irreducible elements of E and of the semigroup it generates coincide:

Lemma 3.5 Assume that E ⊂ Q+ is a set with bounded denominators. Then:

(1) Irr(E) = Irr(N∗ E) and this set is the minimal generating set of the semigroup
N

∗ E, relative to the inclusion partial order on the set of its generating sets.
(2) The set Irr(E) is finite.

Proof Multiplying E by a convenient rational number, we may restrict to the sets
E ⊂ N whose elements are globally coprime.

(1) Both inclusions between Irr(E) and Irr(N∗ E) are immediate to check, therefore
we will assume from now on that the two sets are equal.

Let us prove theminimality property of Irr(N∗ E). Consider another generating
set A of N

∗ E and a ∈ Irr(N∗ E). As A is generating, a may be written as a sum
of elements of A. If this sum were non-trivial, then a would not be irreducible in
N

∗ E . Therefore a ∈ A, which shows the desired inclusion Irr(N∗ E) ⊂ A.
(2) In order to show that Irr(E) is finite, it is enough to show that Irr(N∗ E) is finite.

The semigroup N
∗ E being generated by globally coprime elements, it has finite

conductor, that is, there exists c ∈ N such that all natural numbers greater than
or equal to c belong to N

∗ E (see [38, page 82]; in this case, the smallest such c
is called the conductor of the numerical semigroup N

∗ E). But this implies that
Irr(N∗ E) ⊂ {0, 1, . . . , 2c−1}. Indeed, any element l ≥ 2c of the semigroup may
be written in the form c + d, with d ≥ c, that is, as a non-trivial sum of elements
of the semigroup. ��

We will be especially interested in particular sequences of irreducible elements of
a given set E with bounded denominators:

Definition 3.6 Let us consider a set E ⊂ Q+ with bounded denominators and an
integer p ∈ N

∗. Then the sequence ess(E, p) := (ess(E, p)l)l of essential elements
of E relative to p is defined inductively by:

• ess(E, p)0 := min E .
• If l ≥ 1, then the term ess(E, p)l is defined if and only if E is not included in the
group Z{p, ess(E, p)0, . . . , ess(E, p)l−1}. In this case:

ess(E, p)l := min (E\Z{p, ess(E, p)0, . . . , ess(E, p)l−1}) .

The following basic property of this notion is a direct consequence of the definition:
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Lemma 3.7 Assume that E ⊂ Q+ has bounded denominators and take p, q ∈ N
∗.

Then:

q ess(E, p) = ess (qE, qp) .

One has also:

Lemma 3.8 Assume that E ⊂ Q+ has bounded denominators and that p ∈ N
∗. Then

the sequence of essential exponents ess(E, p) is finite.

Proof Lemma 3.7 implies that it is enough to consider the case where E ⊂ Z. Then
one has by definition the strict inclusions:

Z{p, ess(E, p)0, . . . , ess(E, p)l−1} � Z{p, ess(E, p)0, . . . , ess(E, p)l}, for all l≥1

(for which the term ess(E, p)l is defined). Any ascending chain of subgroups of Z

being stationary, we deduce that the sequence of essential exponents is finite. ��
Example 3.9 Let us consider again the set E = {6, 15, 16, 21, 23} from Example 3.4.
Here are its sequences of essential elements relative to the numbers p ∈ {1, . . . , 12}:

⎧
⎪⎪⎨

⎪⎪⎩

ess(E, 1) = ess(E, 5) = ess(E, 7) = ess(E, 11) = (6),
ess(E, 2) = ess(E, 4) = ess(E, 8) = ess(E, 10) = (6, 15),
ess(E, 3) = ess(E, 9) = (6, 16),
ess(E, 6) = ess(E, 12) = (6, 15, 16).

Lemma 3.7 implies that: ess
({

1, 5
2 ,

8
3 ,

7
2 ,

23
6

}
, 1

)
= 1

6ess(E, 6) =
(
1, 5

2 ,
8
3

)
. The

set
{
1, 5

2 ,
8
3 ,

7
2 ,

23
6

}
is precisely the support of the second series considered in Example

2.8, whose sequence of characteristic exponents is
(
5
2 ,

8
3

)
. Note that its sequence of

essential exponents relative to 1 may be obtained from the characteristic sequence by
adjoining to it as initial term the order of this series (which is in this case equal to 1).
We will see in Lemma 3.13 that this is a general fact.

The following lemma shows that the non-zero essential elements of a set E relative
to any positive integer are irreducible elements of E :

Lemma 3.10 The essential elements of a set E ⊂ Q+ with bounded denominators
relative to a number p ∈ N

∗ are irreducible elements of E.

Proof If ess(E, p) = (ε0, . . . , εd), then we have that ε0 = min E , which is an irre-
ducible element of E .
Let us show that the property is also true for εl , where l ≥ 1. If εl was reducible,
then it would be a non-trivial sum of elements of E , which would therefore be strictly
less than εl . By the definition of εl , the terms of this sum would belong to the group
Z{p, ε0, . . . , εl−1}. This would imply that εl belongs also to this group, which con-
tradicts Definition 3.6. ��
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Variations on inversion theorems for Newton–Puiseux series 1369

Lemma 3.11 Assume that E ⊂ Q+ has bounded denominators and that p ∈ N
∗.

Then we have the following equality of essential sequences:

ess(E, p) = ess(Irr(E), p).

Proof If ess(E, p) = (ε0, . . . , εd) and ess(Irr(E), p) = (ε′
0, . . . , ε

′
d ′), then Remark

3.3 and Definition 3.6 imply that:

ε0 = min E = min Irr(E) = ε′
0.

Assume by induction that ε0 = ε′
0, . . . , εl−1 = ε′

l−1, for 1 ≤ l < d. Then we get:

ε′
l = min(Irr(E)\Z{p, ε0, . . . , εl−1}) ≤ εl = min(E\Z{p, ε0, . . . , εl−1}),

since εl is an irreducible element of E by Lemma 3.10. The inclusion Irr(E) ⊂ E
implies also that εl ≤ ε′

l , hence εl = ε′
l . This proves that εl = ε′

l for 0 ≤ l ≤ d and
d ≤ d ′. By Lemma 3.10 and the definition of the essential exponents, one has the
inclusions Irr(E) ⊂ E ⊂ Z{p, ε0, . . . , εd}, which imply that d ′ = d. ��

Definition 3.12 Ifψ ∈ K[[x1/n]] is a non-zero series and p ∈ N
∗, then wewill write:

ess(ψ, p) := ess(S(ψ), p),

and we will speak about the sequence of essential exponents of ψ relative to p.

The characteristic exponents of a Newton–Puiseux series are intimately related to
its essential exponents relative to 1:

Lemma 3.13 Let (α1, . . . , αg) be the sequence of characteristic exponents of a series
ψ ∈ K[[x1/n]]. It may be obtained from the sequence (ε0, ε1, . . . , εd) of essential
exponents of ψ relative to 1 in the following way:

• If ε0 /∈ Z, then g = d + 1 and αi = εi−1 for all i ∈ {1, . . . , d + 1}.
• If ε0 ∈ Z, then g = d and αi = εi for all i ∈ {1, . . . , d}.

Proof Consider first the case in which ε0 /∈ Z.
As the first characteristic exponent is the minimal non-integral exponent in the support
of ψ , we deduce that α1 = ε0. Assume by induction that αi = εi−1 for all i ∈
{0, . . . , l}. Definition 3.6 implies that εl is the first exponent of S(ψ) which is strictly
greater than εl−1 and which cannot be written as a fraction whose denominator is
the least common denominator of the previous exponents in the support of ψ . By
Definition 2.7, we get that αl+1 = εl .
Consider now the case in which ε0 ∈ Z.
By definition, ε0 ∈ N cannot be a characteristic exponent ofψ and α1 = ε1. The result
follows by induction, using the same argument as in the first case. ��
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In the rest of this section we will be especially interested in entire series with
non-zero constant term, that is, in invertible elements of the multiplicative monoid
(K[[t]], ·). They form a multiplicative group, which we will denote by (K[[t]]∗, ·).

Note that the entire series of the form t φ(t) for φ ∈ K[[t]]∗, that is, the entire
series of order 1, form the (non-commutative) group under composition of serieswhich
admit a reciprocal (an inverse for composition).We denote by (t K[[t]]∗, ◦) this group.
Division by t transforms it bijectively into (K[[t]]∗, ·), but is not amorphism of groups.
What is essential for us is that the inversion for composition becomes an involution of
the set K[[t]]∗ which has special properties with respect to the terms whose exponents
are irreducible (see Proposition 3.16 (2)). We use the following vocabulary for this
involution:

Definition 3.14 If φ ∈ K[[t]]∗, then its dual is the unique entire series φ̌ ∈ K[[u]]∗
such that u φ̌(u) and t φ(t) are reciprocal.

Remark 3.15 If φ ∈ K[[t]]∗, then setting u = t φ(t) defines a change of variable
in the ring K[[t]]. Notice that K[[t]] = K[[u]] and by Definition 3.14 the following
equivalence holds:

u = t φ(t) ⇔ t = u φ̌(u). (3.1)

We use two variables t and u in our notations for a dual pair of series, in order to
relate them easily from the notational point of view to the two sets of Newton–Puiseux
series of an irreducible f (x, y) ∈ K[[x, y]], which depend on the two variables x and
y (see Sect. 4).

The following proposition expresses the coefficients of the positive integral powers
and of the dual of an entire series φ ∈ K[[t]]∗ in terms of those of φ. It may be deduced
from the statement and the proof of Wall’s [38, Lemma 3.5.4]. But as we could not
find it formulated in the literature and as it lies at the core of our first proof of the
Halphen–Stolz theorem, we give a detailed proof of it.

Proposition 3.16 Let φ ∈ K[[t]]∗ and N ∈ N
∗. Then:

(1) Irr(φN ) = Irr(φ). Moreover [φN ]0 = [φ]N0 and [φN ]r = N [φ]N−1
0 [φ]r , for all

r ∈ Irr(φ)\{0}.
(2) Irr(φ̌) = Irr(φ). Moreover [φ̌]0 = [φ]−1

0 and [φ̌]r = −[φ]−r−2
0 [φ]r , for all

r ∈ Irr(φ)\{0}.
Proof One has:

φ(t) =
∑

j∈S(φ)

[φ] j t j . (3.2)

The hypothesis φ ∈ K[[t]]∗ translates into 0 ∈ S(φ), that is, [φ]0 �= 0.
(1) Consider first the case of φN .

By equation (3.2), we have:

φN (t) =
∑

j1,..., jN∈S(φ)

[φ] j1 · · · [φ] jN t j1+···+ jN . (3.3)
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• Let us show first that Irr(φ) ⊂ Irr(φN ) and that one has the stated equalities
between coefficients.

Consider r ∈ Irr(φ). If r = 0, one has obviously r ∈ Irr(φN ) and [φN ]0 = [φ]N0 .
Assume therefore that r > 0. The only way to write r as a sum of N elements of S(φ),
is that one of them be equal to r , and the other ones vanish. There are N different
positions in the sum for the non-vanishing one, therefore:

[φN ]r = N [φ]N−1
0 [φ]r ,

which is the desired formula.
In particular, [φN ]r �= 0, which shows that r ∈ S(φN ). If r was reducible inS(φN ),

it could be written as a non-trivial sum of elements of S(φN ). By formula (3.3), it
would also be a non-trivial sum of elements of S(φ), which would contradict the fact
that it is an irreducible element of S(φ). Therefore r ∈ Irr(φN ).

• Let us show now the reverse inclusion Irr(φN ) ⊂ Irr(φ).

Consider an element r ∈ Irr(φN ). By formula (3.3), we know that it may be written as
a sum of N elements of S(φ). In particular, it may be written as a sum of irreducible
elements of S(φ). By the previous point, we know that those elements are also irre-
ducible in S(φN ). Our hypothesis r ∈ Irr(φN ) implies that there is only one non-zero
term in this sum, which proves the desired membership r ∈ Irr(φ).

(2) Consider now the case of φ̌.
Write the analogue of (3.2) for φ̌:

φ̌(u) =
∑

k∈S(φ̌)

[φ̌]k uk . (3.4)

As t φ(t) ∈ K[[t]] and u φ̌(u) ∈ K[[u]] are reciprocal series, one has by definition
the identity:

t = (t φ(t)) φ̌(t φ(t)),

which, after division by t and combination with the expansion (3.4), gives:

1 =
∑

k∈S(φ̌)

[φ̌]k tkφ(t)k+1. (3.5)

Expand now the powers φ(t)k+1 using equation (3.3). We get:

1 =
∑

k ∈ S(φ̌)

j1, . . . , jk+1 ∈ S(φ)

[φ̌]k [φ] j1 · · · [φ] jk+1 t
k+ j1+···+ jk+1 .
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1372 E. R. García Barroso et al.

Therefore:

∑

k ∈ S(φ̌)

j1, . . . , jk+1 ∈ S(φ)

k + j1 + · · · + jk+1 = p

[φ̌]k [φ] j1 · · · [φ] jk+1 = 0, forall p ∈ N
∗. (3.6)

• Let us show first that Irr(φ) = Irr(φ̌). By Lemma 3.5 (1), the irreducible elements
of a set are determined by the semigroup it generates. In order to show that the sets
Irr(φ) and Irr(φ̌) coincide, it is therefore enough to prove that:

N
∗(S(φ)) = N

∗(S(φ̌)). (3.7)

The situation being symmetric between φ and φ̌, we may prove only the inclusion:

N
∗(S(φ̌)) ⊂ N

∗(S(φ)). (3.8)

We will argue by contradiction, assuming that the previous inclusion is false. Con-
sider then:

r ∈ N
∗(S(φ̌))\N

∗(S(φ)), (3.9)

which is minimal with this property. As 0 ∈ S(φ) , we have r > 0.
Apply Eq. (3.6) to p = r . Consider a tuple:

(k, j1, . . . , jk+1) ∈ S(φ̌) × S(φ)k+1 (3.10)

such that:
k + j1 + · · · + jk+1 = r. (3.11)

Let us show that this implies the equality k = r . Reasoning again by contradiction,
assume that k < r . As k ∈ S(φ̌) ⊂ N

∗(S(φ̌)), the minimality of r shows that
k ∈ N

∗(S(φ)). Combining condition (3.10) and equation (3.11), we deduce that
r ∈ N

∗(S(φ)), which contradicts the assumption (3.9).
Therefore, if both (3.10) and (3.11) are true, then k = r , which implies that j1 =

· · · = jr+1 = 0. Hence there is only one term in the sum of the left-hand side of
equation (3.6) for p = r , and we get:

[φ̌]r [φ]r+1
0 = 0,

which contradicts the assumption that both coefficients [φ̌]r and [φ]0 are non-zero (as
they are associated to elements of the supports of φ and φ̌).

Our proof of the inclusion (3.8) is finished. Therefore, as explained above, we get
the desired equality Irr(φ̌) = Irr(φ).

• Let us prove the identities relating the coefficients associated to the irreducible
exponents of φ and φ̌. Consider r ∈ Irr(φ) = Irr(φ̌). Look again at the tuples
(k, j1, . . . , jk+1) satisfying the conditions (3.10) and (3.11) above.
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If k /∈ {0, r}, then at least one of the numbers j1, . . . , jk+1 would not van-
ish. Equation (3.11) gives a non-trivial decomposition of r inside S(φ) ∪ S(φ̌) ⊂
N

∗(S(φ))
(3.7)= N

∗(S(φ̌)), which shows that r /∈ Irr(N∗S(φ)). This contradicts Lemma
3.5 (1).

Therefore, one has necessarily k = 0 or k = r . Both possibilities determine com-
pletely ( j1, . . . , jk+1) through Eq. (3.11). Applying Eq. (3.6) to p = r , we get:

[φ̌]0 [φ]r + [φ̌]r [φ]r+1
0 = 0. (3.12)

The equalities (3.12) and [φ̌]0 = [φ]−1
0 imply the formula for [φ̌]r written in the

statement of the proposition. ��
Combining Proposition 3.16 with Lemma 3.11, we get:

Corollary 3.17 Let φ ∈ K[[t]]∗ and N , p ∈ N
∗. Then the sequences of essential

exponents of φ, φN and φ̌ relative to p coincide.

In the next sectionwe apply Proposition 3.16 and its Corollary 3.17 in order to relate
the essential exponents relative to 1 and their coefficients for the Newton–Puiseux
series of an irreducible series f (x, y) ∈ K[[x, y]].

4 Applications to inversion formulae for Newton–Puiseux series

Let f (x, y) ∈ K[[x, y]] be an irreducible formal power series. One has therefore
associated Newton–Puiseux series relative to both coordinates x and y. In this section
we prove in two ways the Halphen–Stolz theorem (Corollary 4.5), which relates the
coefficients of the terms with essential exponents relative to 1 in both series. The first
proof, summarized in the flow-chart (4.17), applies directly the results of the previous
section. The second one passes through a more general result, allowing to compute
recursively all the coefficients of one series in terms of those of the other one (see
Proposition 4.10). In turn, this proposition is a consequence of a version of the classical
Lagrange inversion formula (see Theorem 4.9).

4.1 The first proof of the Halphen–Stolz theorem

There is no natural bijection between the Newton–Puiseux series of a formal power
series f (x, y) relative to x and y, for the simple reason that their numbers are in general
different. We want to explain first that if one takes adequate roots of them, then one
gets two sets which are naturally in a bijective correspondence (see Proposition 4.2).

Let us denote by η(x1/n) ∈ K[[x1/n]] a Newton–Puiseux series of f (x, y) with
respect to x , where η ∈ K[[t]]. We assume that the representation of this Newton–
Puiseux power series is primitive (see Definition 2.5). The series η is of the form:

η = a · tm + higher order terms,
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1374 E. R. García Barroso et al.

with m > 0 and a ∈ K
∗. Let us choose an m-th root ã ∈ K

∗ of a. Then, we have a
unique m-th root t η̃(t) ∈ K[[t]] of η:

η(t) = (t η̃(t))m, (4.1)

such that the series η̃ has constant term [η̃]0 = ã �= 0.

Example 4.1 Start from a branchC with Newton–Puiseux series:ψ = x3/2 +c · x7/4,
where c ∈ K

∗. Therefore, we get a = 1, n = 4 and ψ = η(x1/4), where η(t) =
t6+c · t7 = t6(1+c · t). This shows thatm = 6 and if ã = 1 then η̃(t) = (1+c · t)1/6.
By (4.20) below we have the expansion η̃(t) = 1 + ∑

k∈N∗
(1/6

k

)
ck · tk .

Let us come back to the general case.
Denote by ξ̃ (u) ∈ K[[u]]∗ the dual series of η̃(t) (see Definition 3.14). Hence, one

has the following equivalence (see (3.1)):

u = t η̃(t) ⇔ t = u ξ̃ (u). (4.2)

As η(x1/n) is a Newton–Puiseux-series of f (x, y) relative to x , we have:

f (x, η(x1/n)) = 0.

Replacing x by tn and using the equality (4.1), we get:

f (tn, (t η̃(t))m) = 0. (4.3)

By the equivalence (4.2), we deduce:

f ((u ξ̃ (u))n, um) = 0. (4.4)

Consequently, if one defines:
ξ(u) = (u ξ̃ (u))n (4.5)

(an equation which is analogous to (4.1)), then one sees that:

f (ξ(y1/m), y) = 0,

that is, ξ(y1/m) is a Newton–Puiseux series of f (x, y) with respect to the variable y.
In fact, one has the following proposition:

Proposition 4.2

(1) The map

x1/n η̃(x1/n) −→ y1/m ξ̃ (y1/m)

induced by the duality involution on K[[t]]∗, gives a bijection from the set of m-th
roots of the Newton–Puiseux series of f (x, y) relative to x to the set of n-th roots of
those relative to y.
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(2) If f̃ (t, u) := f (tn, um) ∈ K[[t, u]] then:
– the series of the form t η̃(t) ∈ K[[t]] are the Newton–Puiseux series of f̃

relative to t .
– the series of the form u ξ̃ (u) ∈ K[[u]] are the Newton–Puiseux series of f̃

relative to u.

Proof

(1) The two sets have both mn elements and the given map is injective because the
map η̃ → ξ̃ is an involution. Therefore the given map is bijective.

(2) Equation (4.3) shows that the Newton-Puiseux series of f̃ relative to the variable
t are exactly those of the form t η̃(t). The situation is analogous for the series of
the form u ξ̃ (u). ��

The following lemma relates special sequences of essential exponents of the series
η(t) and η̃(t) on one side, and of the series ξ(u) and ξ̃ (u) on another side:

Lemma 4.3 Denote:
{
ess(η, n) = (m, ε1, . . . , εd),

ess(ξ,m) = (n, ε′
1, . . . , ε

′
d ′).

Then:

{
ess(η̃, gcd(n,m)) = (0, ε1 − m, . . . , εd − m),

ess(ξ̃ , gcd(n,m)) = (0, ε′
1 − n, . . . , ε′

d ′ − n).

Proof By symmetry, it is enough to treat the case of the series η̃. Since η̃ ∈ K[[t]]∗,
Proposition 3.16 implies that Irr(η̃) = Irr(η̃m). Then, by Lemma 3.11, for any integer
p ∈ N

∗ one has:

ess(η̃, p) = ess(Irr(η̃), p) = ess(Irr(η̃m), p) = ess(η̃m, p).

Thus, it is enough to prove that (0, ε1 − m, . . . , εd − m) is the sequence of essential
exponents of η̃m relative to gcd(n,m). By formula (4.1), we have that η̃m = t−mη,
therefore: S(η̃m) = S(η) − m. Using Definition 3.6, we see that we have to prove
that:

• min(S(η) − m) = 0.
• For all k ∈ {1, . . . , d}:

εk − m = min((S(η) − m)\Z{ gcd (n,m), 0, ε1 − m, . . . , εk−1 − m}).
• S(η) − m ⊂ Z{ gcd (n,m), 0, ε1 − m, . . . , εd − m}.

But all these facts are immediate from the definition of the essential exponents εi ,
because:

Z{ gcd (n,m), 0, ε1 − m, . . . , εk−1 − m} = Z{n,m, ε1, . . . , εk−1},

for all 1 ≤ k ≤ d, an equality which is immediate to check by double inclusion. ��
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We are ready to deduce an inversion formula, expressing the sequence of essential
exponents of ξ relative to m and the associated coefficients in terms of the sequence
of essential exponents of η relative to n and their associated coefficients. We chose to
inverse also the order of presentation, by starting from any pair of dual series (η̃, ξ̃ )

and any pair of positive integers (m, n), and by associating to them the series (η, ξ)

by the formulae (4.1) and (4.5). In this way, we emphasize only univalued maps, in
contrast to their reciprocals, which involve taking roots.

Theorem 4.4 Let η̃ ∈ K[[t]]∗ and ξ̃ ∈ K[[u]]∗ be dual of each other and m, n ∈ N
∗.

Let ã be the constant term of η̃. Denote:

{
η(t) = (t η̃(t))m,

ξ(u) = (u ξ̃ (u))n,

and:

{
ess(η, n) = (m, ε1, . . . , εd),

ess(ξ,m) = (n, ε′
1, . . . , ε

′
d ′).

Then one has the following inversion formulae for exponents and coefficients:

d ′ = d, (4.6)

ε′
k + m = εk + n, for all k ∈ {1, . . . , d}, (4.7)

[ξ ]n = ã−n and [ξ ]ε′
k

= − n

m
ã−n−εk [η]εk , for all k ∈ {1, . . . , d}. (4.8)

Proof The entire series η̃ and ξ̃ being dual in the sense of Definition 3.14, Corol-
lary 3.17 shows that they have the same sequences of essential exponents relative to
gcd(n,m). Then, Lemma 4.3 allows us to deduce the desired formulae (4.6) and (4.7)
relating the two sequences (εk)k and (ε′

k)k .
Let us pass to the proof of the inversion formula (4.8) for the coefficients.
Equation (4.5) implies that ξ = un(ξ̃ )n . Therefore:

[ξ ]ε′
k

= [(ξ̃ )n]ε′
k−n . (4.9)

Combining Proposition 3.16 and Lemma 3.10, we get:

[(ξ̃ )n]ε′
k−n = n [ξ̃ ]n−1

0 [ξ̃ ]ε′
k−n = n ã−n+1[ξ̃ ]ε′

k−n . (4.10)

The same proposition, combined with the equivalent form ε′
k − n = εk − m of the

equality (4.7), implies that:

[ξ̃ ]ε′
k−n = −[η̃]−εk+m−2

0 [η̃]εk−m = −ã−εk+m−2[η̃]εk−m . (4.11)
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Combining the equalities (4.9), (4.10) and (4.11), we obtain:

[ξ ]ε′
k

= −n ã−εk+m−n−1[η̃]εk−m . (4.12)

Now, from the analogues of Eqs. (4.9) and (4.10) for η̃, we get:

[η̃]εk−m = 1

m
[η̃]−m+1

0 [η̃m]εk−m = 1

m
[η̃]−m+1

0 [η]εk = 1

m
ã−m+1[η]εk . (4.13)

Combining formulae (4.12) and (4.13), we deduce the inversion formula for the coef-
ficients [ξ ]ε′

k
, for k ∈ {1, . . . , d}. ��

Dividing by n all the terms of the sequence (m, ε1, . . . , εd), one gets the sequence
of essential exponents of η relative to 1 (see Remark 3.7). Similarly, dividing by m all
the terms of the sequence (n, ε′

1, . . . , ε
′
d), one gets the sequence of essential exponents

of ξ relative to 1. Theorem 4.4 translates therefore in the following inversion formula
for the Newton–Puiseux series of f (x, y) relative to x and to y, which is the theorem
of Halphen–Stolz presented in the introduction:

Corollary 4.5 (The Halphen–Stolz inversion theorem) Let η(x1/n) and ξ(y1/m) be
Newton–Puiseux series of an irreducible formal power series f (x, y) ∈ K[[x, y]]
relative to x and y respectively. As before, we assume that η(t) = (t η̃(t))m and
ξ(u) = (u ξ̃ (u))n, where η̃(t), ξ̃ (u) are dual series and [η̃]0 = ã. Denote:

{
ess(η(x1/n), 1) = (m/n, e1, . . . , ed),
ess(ξ(y1/m), 1) = (n/m, e′

1, . . . , e
′
d ′).

Then one has the following inversion formulae for exponents and coefficients:

d ′ = d. (4.14)

m(1 + e′
k) = n(1 + ek) for all k ∈ {1, . . . , d}. (4.15)

[ξ(y1/m)]n/m = ã−n and

m[ξ(y1/m)]e′
k

= − n

m
ã−(1+ek)n[η(x1/n)]ek for all k ∈ {1, . . . , d}. (4.16)

In the case in which ã = 1, the inversion formula for the coefficients stated in
Corollary 4.5 may be written in a more symmetric way, easier to remember:

Corollary 4.6 Assume moreover that the constant coefficient ã of η̃ is equal to 1.
Then:

[ξ(y1/m)]n/m = 1 = [η(x1/n)]m/n and

m[ξ(y1/m)]e′
k
+ n[η(x1/n)]ek = 0 for all k ∈ {1, . . . , d}.
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Summary of the previous arguments. In order to understand better the line of rea-
soning we followed till now, the reader may find helpful the following flow-chart, in
which f (x, y) ∈ K[[x, y]] is irreducible:

ess(η(x1/n ),1)

{η(x1/n)} (Lm.3.7)

x=tn ess(η(t),n)

{η(t)}
ess(η̃(t),gcd(m,n))

{η̃(t)}(
(Prop.3.16(1),

Lm.4.3)

)
η=(t η̃)m

(Prop.3.16(2))

u = t η̃(t)
�

t = u ξ̃ (u)

f (x, y)

{ξ(y1/m)}
ess(ξ(y1/m ),1)

(Lm.3.7)

y=um
{ξ(u)}

ess(ξ(u),m)

{ξ̃ (u)}
ess(ξ̃ (u),gcd(m,n))

(
(Prop.3.16(1),

Lm.4.3)

)

ξ=(uξ̃ )n

(4.17)

Let us explain this diagram:

• From the irreducible series f (x, y) ∈ K[[x, y]], one gets symmetrically two sets
of Newton–Puiseux series {η(x1/n)} and {ξ(y1/m)}. The first one has n and the
second one m elements.

• Follow now two analogous sequences of transformations of those sets, indicated in
the diagram horizontally. We describe them only for the upper line of the diagram.

• The change of variables x = tn , indicated above the corresponding doubly-
arrowed horizontal segment, puts the set {η(x1/n)} in bijection with the set of
entire series {η(t)}.

• Lemma 3.7, mentioned below the same arrow, allows to pass from ess(η(x1/n), 1)
to ess(η(t), n). The corresponding coefficients are unchanged.

• One extracts in all possible ways them-th roots of the series η(t). Then one divides
the result by t , arriving at a set {η̃(t)}withmn elements. The composition of the two
operations is expressed by the formula η = (t η̃)m , written above the corresponding
arrow.

• Combining Proposition 3.16 (1) with Lemma 4.3, one passes from the sequence
ess(η(t), n) to ess(η̃(t), gcd(m, n)) and one relates also the corresponding coeffi-
cients.

• There is a canonical bijection between the two sets {η̃(t)} and {ξ̃ (u)}, indicated by
the left vertical double-arrowed segment. This bijection associates two series η̃(t)
and ξ̃ (u) whenever η̃(t) and ξ̃ (u) are dual of each other, which may be expressed
by the two equivalent equalities marked at the right of the vertical segment.

• Proposition 3.16 (2), indicated to the left of the same segment, shows that the two
sequences are equal, and allows to relate the corresponding coefficients. Note that
this proposition allows in fact to relate the coefficients corresponding to all the
irreducible exponents of the two dual series, not only those which are essential
relative to gcd(m, n). This is understandable if one thinks that, reading now the
diagram from right to left, one may start from any pair (η̃(t), ξ̃ (u)) of dual series
and only afterwards choose the pair of positive integers (m, n), independently of
the choice of the two dual series. One arrives then at the series f (x, y) by taking
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Variations on inversion theorems for Newton–Puiseux series 1379

either the minimal polynomial of η(x1/n) or that of ξ(y1/m), and multiplying it
with an invertible element of the ring K[[x, y]].

Remark 4.7 Using Lemma 3.13, the Halphen–Stolz inversion theorem (Corollary 4.5)
may also be expressed in terms of the characteristic exponents of η and ξ . That lemma
shows that the sequences of characteristic exponents of η and of ξ do not have neces-
sarily the same lengths, which has as consequence the fact that the elements of the two
series which are related have not necessarily the same position in both sequences. For
this reason, it is easier to express the inversion formulae as we have done in Theorem
4.4 and in Corollary 4.5, in terms of the essential exponents.

Remark 4.8 The part of Corollary 4.5 concerning the exponents is usually expressed
nowadays in terms of the characteristic exponents and is sometimes attributed to
Abhyankar’s paper [2] of 1967 or to Zariski’s paper [40] of 1968. In fact, it was
already stated precisely in terms of the sequences of essential exponents relative to
1 (called there “exposants caractéristiques” from their second term on) by Halphen
[20, page 91] in 1876. But Halphen stated also the previous formulae (of course, with
different notations) for the inversion of the corresponding coefficients. He did not prove
those formulae, and as far as we know, the unique proof was provided by Stolz [36,
page 133] in 1879. We searched new proofs because we were not fully convinced by
Stolz’ arguments and because we wanted to extend the theorem to higher dimensions.

4.2 The second proof of the Halphen–Stolz theorem

Let us pass now to our second proof of Theorem 4.4. Corollary 4.5 concerns only the
terms of the two Newton–Puiseux series whose exponents are essential relative to 1.
We explain now a way to get formulae for all the coefficients of ξ as rational fractions
of those of η.

We recall first a form of Lagrange’s inversion formula which, given two reciprocal
entire series X and Y , allows to express the coefficients of the integral powers of X
in terms of those of Y . Several proofs of it may be found in [35, Theorem 5.4.2], and
historical explanations in [35, pages 67–68]. Let us mention only that the founding
result for this kind of formulae was stated by Lagrange in [23, Par. 16].

Theorem 4.9 (Lagrange inversion formula) Let X (u) ∈ u K[[u]]∗ and Y (t) ∈
t K[[t]]∗ be two reciprocal series. For any p, q ∈ Z, one has:

p · [X (u)q ]p = q · [Y (t)−p]−q .

Note that the lifting to a negative integral power produces a meromorphic series
which has a finite number of terms with negative exponents.

Let us apply Theorem 4.9 in our context.
Recall that ã ∈ K

∗ is the constant term of η̃, hence by formula (4.1), we may write:

η(t) = ãmtm
(
1 +

∑

k>m

ckt
k−m

)
. (4.18)
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1380 E. R. García Barroso et al.

Therefore:

η̃(t) = ã

(
1 +

∑

k>m

ckt
k−m

)1/m

, (4.19)

in which the right-hand-side can be computed using the generalized binomial expan-
sion:

(1 + x)r := 1 +
∑

k∈N∗

(
r

k

)
xk, ∀ r ∈ R, (4.20)

where: (
r

k

)
= r(r − 1) · · · (r − k + 1)

k! , for all r ∈ R. (4.21)

Using formula (4.19), one gets the following consequence of Theorem 4.9, which
allows to compute the coefficients of the Newton–Puiseux series ξ of the irreducible
power series f (x, y) ∈ K[[x, y]] relative to y in terms of those η relative to x . Note that
one gets rational fractionswhose numerators are polynomialswith rational coefficients
in the coefficients ck and whose denominators are positive integral powers of ã:

Proposition 4.10 Assume that:

η(x1/n) = ãmxm/n

(
1 +

∑

k>m

ckx
k−m
n

)
.

Then one has the following formula for the coefficients [ξ ] q
m
of the corresponding

Newton–Puiseux series ξ(y1/m) ∈ K[[y1/m]], for all integer q ≥ n:

[ξ ] q
m

= n

q
ã−q

⎡

⎣1 +
∑

i≥1

(−q/m

i

) (
∑

s>m

csx
s−m
n

)i
⎤

⎦

−1+ q
n

.

Proof By Theorem 4.9 applied after replacing the pair (p, q) by (q, n), we have:

q · [un ξ̃ (u)n]q = n · [t−q η̃(t)−q ]−n .

We get:

q · [un ξ̃ (u)n]q (4.19)= nã−q

⎡

⎣

⎛

⎝t−q

(
1 +

∑

s>m

cst
s−m

)−q/m
⎞

⎠

⎤

⎦

−n

, (4.22)

and then by (4.20):

q · [ξ(u)]q = q · [un ξ̃ (u)n]q = nã−q

⎡

⎣

⎛

⎝1 +
∑

i≥1

(−q/m

i

) (
∑

s>m

cst
s−m

)i
⎞

⎠

⎤

⎦

q−n

.

(4.23)
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Variations on inversion theorems for Newton–Puiseux series 1381

It is enough now to divide by q, to replace u by y1/m and t by x1/n in order to get the
desired formula. ��

As a corollary, we obtain:
Second proof of Theorem 4.4. Recall the notation ess(η, n) = (m, ε1, . . . , εd). We
set then:

ε̂0 = n, ε̂1 = ε1 − m + n, . . . , ε̂d = εd − m + n.

We prove first by induction on the integer q ≥ n that if

ε̂k ≤ q < ε̂k+1 for some k ∈ {0, . . . , d}, (4.24)

then the terms of the sequence ess(ξ,m)which are lower than or equal toq are precisely
ε̂0 = n, ε̂1, . . . , ε̂k . Here the case k = d in (4.24) means simply that ε̂d ≤ q.

If q = n, we get from (4.23) that [ξ ]n = ã−n �= 0 is the dominant term of the series
ξ , hence the assertion (4.24) holds by Definition 3.12. Assume that (4.24) holds for
some q > n. We distinguish two cases:

• Assume that ε̂k < q, so ε̂k ≤ q − 1. Then, by the induction hypothesis applied
to q − 1, we have that the terms of the sequence ess(ξ,m) which are lower than or
equal to q − 1 are precisely ε̂0 = n, ε̂1, . . . , ε̂k . If [ξ(u)]q = 0, then there is nothing
to prove. Assume that [ξ(u)]q �= 0. Since q − n < εk+1 − m by (4.24), the exponent
of a term appearing in the polynomial (

∑
m<s<εk+1

csts−m)i must belong to the group
Z{n,m, ε1, . . . , εk}, by the definition of the essential exponents ess(η, n). We deduce
from this and the right hand side of the equality (4.23) that q must belong to the
subgroup Z{n,m, ε1, . . . , εk}. Since by definition we have the equality:

Z{n,m, ε1, . . . , εk} = Z{n,m, ε̂1, . . . , ε̂k}, (4.25)

q cannot be an essential exponent of ξ with respect to n (see Definition 3.12).
• Assume that ε̂k = q. Then, by the induction hypothesis applied to q − 1, we have

that the terms of the sequence ess(ξ,m)which are lower or equal to q−1 are precisely
ε̂0 = n, ε̂1, . . . , ε̂k−1. We have to prove that the coefficient [ξ(u)]q does not vanish.
Notice that there is a term with exponent equal to q − n appearing in the polynomial
(
∑

m<s≤εk
cs t s−m)i if and only if i = 1 and then this term is equal to cεk t

q−n . Indeed,
arguing as in the previous case, we see that any other termwould provide an expansion
of εk = q − n + m in the group Z{n,m, ε1, . . . , εk−1}, contradicting the definition
of the essential exponent εk . Notice that cεk = ã−m[η]εk , by (4.18). It follows from
(4.23) that:

q · [ξ ]q = nã−εk+m−n
(−q

m

)
ã−m[η]εk = −q

n

m
ã−εk−n[η]εk ,

thus [ξ ]q = − n
m ã

−εk−n[η]εk is nonzero. This finishes the proof of the assertion.
Theorem 4.4 is proved, since we have also proved the inversion formula (4.8) for

the coefficients. ��
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1382 E. R. García Barroso et al.

Example 4.11 Let us consider again the Newton–Puiseux series η(x1/4) of Example
4.1. Denote by ξ(y1/6) a Newton–Puiseux series corresponding by inversion to η,
through the bijection described in Proposition 4.2. Applying Proposition 4.10, we
get:

[ξ(y1/6)]p/6 = 4

p

⎡

⎣1 +
∑

i≥1

(−p/6

i

)
(cx

1
4 )i

⎤

⎦

−1+ p
4

= 4

p

(−p/6

p − 4

)
cp−4.

That is:

ξ(y1/6) =
∑

p≥4

4

p

(−p/6

p − 4

)
cp−4y p/6.

The first two exponents in the support S(ξ(y1/6)) are therefore 4/6 = 2/3 and 5/6,
which shows that they constitute the characteristic sequence of ξ . The corresponding
terms of ξ are, according to the previous formula: 1 · y2/3, (− 2

3c) · y5/6. One may
verify then immediately the correcteness of the formulae stated in the Halphen–Stolz
inversion theorem (Corollary 4.5).

Remark 4.12 In order to compute recursively the coefficients of ξ(y) starting from
those of η(x), one could also use the method explained by Borodzik [4].

Remark 4.13 We believe that one can use Abhyankar’s [3, First Inversion Theorem,
page 111] in order to obtain a third proof of the Halphen–Stolz inversion theorem.
The approach of that paper seems to be similar in spirit to our first approach.

5 Generalization to an arbitrary number of variables

In this section we generalize our first proof of the Halphen–Stolz theorem to an arbi-
trary number of variables. We formulate the needed generalizations of the definitions
and propositions used in that proof. We only sketch their proofs, insisting in the dif-
ferences with respect to the one-variable case. Finally, we explain how our result
generalizes Lipman’s inversion theorem for the characteristic exponents of quasi-
ordinary branches.

Throughout the section, we consider a fixed number h ∈ N
∗ and we work with

the Q-vector space Q
h and various free subgroups of it of rank h, which we will call

briefly lattices of Q
h . We denote by (ν1, ν2, . . . , νh) the canonical basis of Q

h .

5.1 Irreducible exponents of subsets of Q
h with bounded denominators

The notions of set with bounded denominators (Definition 3.1) and of its irreducible
elements (Definition 3.2) extend immediately from subsets of Q+ to subsets of Q

h+.
If E is such a set, it generates again a semigroup N

∗ E ⊂ Q
h+ and a group Z E ⊂ Q

h .
Lemma 3.5 (1) remains true in this setting:
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Variations on inversion theorems for Newton–Puiseux series 1383

Lemma 5.1 If E ⊂ Q
h+ is a set with bounded denominators, then Irr(E) = Irr(N∗ E)

and this set is the minimal generating set of the semigroup N
∗ E, relative to the

inclusion partial order between its generating sets.

Notice that point (2) of Lemma 3.5 is not necessarily true for h ≥ 2, as shown by
the following standard example:

Example 5.2 Take E = (N∗)2. Then Irr(E) = (N∗ × {1}) ∪ ({1} × N
∗) . Therefore

Irr(E) is infinite.

When h ≥ 2, we will need also to use special order relations on the group (Qh,+):

Definition 5.3 An additive order onQ
h is a partial order relation� onQ

h satisfying:

(1) � is a total order;
(2) if α, β, γ ∈ Z

h and α � β, then α + γ � β + γ .

The additive order � dominates a set θ ⊂ Q
h if any non empty subset of θ with

bounded denominators has a minimum relative to �.

Remark 5.4 If � is an additive order of Q
h , then there exist an integer s ∈ [1, h],

linear forms u1, . . . , us ∈ (Rh)∗, and an increasing injective group morphism:

(Qh,�) → (Rh,≤lex), v → (u1(v), . . . , us(v)),

where ≤lex denotes the lexicographical order (see [33, Theorem 2.5]). The lexico-
graphical order is additive and dominates Z

h+. More generally, if � dominates Z
h+,

then � defines a well-order on Z
h+, hence Definition 5.3 is a generalization of the

notion of term order explained in [8, Chap. 2.2].

Definition 5.3 allows to generalize the notion of sequence of essential elements
relative to an integer p (Definition 3.6) in the following way:

Definition 5.5 Let us consider a set E ⊂ Q
h+ with bounded denominators. Let M be

a lattice of (Qh,+) and � be an additive order on Q
h dominating its subset Qh+. Then

the sequence ess(E, M,�) := (ess(E, M,�)l)l of essential elements of E relative
to M is defined inductively by:

• ess(E, M,�)0 := min E .
• If l ≥ 1, then the term ess(E, M,�)l is defined if and only if E is not included in
the group M + Z{ess(E, M,�)0, . . . , ess(E, M,�)l−1}. In this case:

ess(E, M,�)l := min (E\ (M + Z{ess(E, M,�)0, . . . , ess(E, M,�)l−1})) .

One gets Definition 3.6 by taking h = 1, M = pZ and � to be the unique additive
order on (Q, +) which dominatesQ+, that is, the usual order. Indeed, then the sequence
ess(E, pZ,�) defined according to Definition 5.5 is precisely the sequence ess(E, p)
defined according to Definition 3.6.

Lemma 3.8 about the finiteness of the sequences ess(E, M) holds also in our larger
context:
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Lemma 5.6 Assume that the subset E ⊂ Q
h+ has bounded denominators, that M is

a lattice of Q
h and that � is an additive order dominating Q

h+. Then the sequence of
essential exponents ess(E, M,�) of E relative to M is finite.

Proof For every integer l ≥ 0 for which ess(E, M,�)l is defined, let us denote by
Ml the abelian group M + Z{ess(E, M,�)0, . . . , ess(E, M,�)l}. Since (Ml)l is an
increasing sequence of abelian groups, the union

⋃
l Ml is also an abelian group. The

hypothesis that E has bounded denominators implies that this group
⋃

l Ml is a lattice
of Q

h . Any ascending chain of subgroups of a free abelian group of finite rank being
stationary, the sequence (Ml)l must be finite. Therefore, the sequence ess(E, M,�)

is also finite. ��
If q ∈ GL(h, Q) and if � is a additive order on Q

h , we denote by �q the additive
order defined by:

α �q β ⇔ q(α) � q(β).

By using this notion, Lemma 3.7 extends immediately into:

Lemma 5.7 Assume that E ⊂ Q
h+ has bounded denominators and that M is a lattice

of Q
h. Take q ∈ GL(h, Q) such that q(Qh+) ⊂ Q

h+ and let � be a additive order
dominating Q

h+. Then:

q (ess(E, M,�q)) = ess (q(E), q(M),�) .

Lemmas 3.10 and 3.11 also extend immediately to our more general context:

Lemma 5.8 The essential elements of a set E ⊂ Q
h+ with bounded denominators

relative to any lattice M ofQh and an additive order� dominatingQ
h+ are irreducible

elements of E.

Lemma 5.9 Let E ⊂ Q
h+ be a set with bounded denominators, M be a lattice of Q

h

and � be an additive order dominating Q
h+. Then we have the following equality of

essential sequences:

ess(E, M,�) = ess(Irr(E), M,�).

5.2 On the notions of dual and reciprocal series in several variables

Consider now the ring K[[t1, t2, . . . , th]], and its subset:

K[[t1, t2, . . . , th]]∗ = {φ ∈ K[[t1, t2, . . . , th]] : φ(0, . . . , 0) �= 0}

consisting of the series with non-zero constant term. It is the group of multiplicatively
invertible elements of the ring K[[t1, t2, . . . , th]].
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Variations on inversion theorems for Newton–Puiseux series 1385

If φ ∈ K[[t1, t2, . . . , th]]∗ has constant term α �= 0, then the map:

K[[t1, t2, . . . , th]] −→ K[[t1, t2, . . . , th]]
(t1, t2, . . . , th) −→ (t1 φ(t1, t2, . . . , th), t2, . . . , th)

(5.1)

is invertible for composition, as its linearization (t1, t2, . . . , th) → (α t1, t2, . . . , th)
is invertible in GL(h, K). One has the following generalization of the duality of series
in K[[t]]∗, introduced in Definition 3.14:

Definition 5.10 If φ ∈ K[[t1, t2, . . . , th]]∗, then its dual relative to the first variable
is the unique entire series φ̌ ∈ K[[u1, t2, . . . , th, ]]∗ such that the following maps are
reciprocal:

(u1, t2, . . . , th) → (u1 φ̌(u1, t2, . . . , th), t2, . . . , th),

(t1, t2, . . . , th) → (t1 φ(t1, t2, . . . , th), t2, . . . , th).

Remark 5.11 Note that the previous definition depends in an essential way on the
choice of the first variable t1, but that it is symmetric in the other variables. If φ ∈
K[[t1, t2, . . . , th]]∗, then setting u1 = t1φ(t1, t2, . . . , th) defines a change of variables
in the ring K[[t1, t2, . . . , th]]. Notice that K[[t1, t2, . . . , th]] = K[[u1, t2, . . . , th]] and
by Definition 5.10 one has the equivalence:

u1 = t1 φ(t1, t2, . . . , th) ⇔ t1 = u1 φ̌(u1, t2, . . . , th). (5.2)

The following proposition generalizes Proposition 3.16 to the case of an arbitrary
number of variables:

Proposition 5.12 Let φ ∈ K[[t1, . . . , th]]∗ and N ∈ N
∗. Then:

(1) Irr(φN ) = Irr(φ). Moreover [φN ]0 = [φ]N0 and [φN ]r = N [φ]N−1
0 [φ]r , for all

r ∈ Irr(φ)\{0}.
(2) Irr(φ̌) = Irr(φ). Moreover [φ̌]0 = [φ]−1

0 and [φ̌]r = −[φ]−r1−2
0 [φ]r , for all

r ∈ Irr(φ)\{0}.
Proof In what follows, if k = (k1, . . . , kh) ∈ N

h , we will write simply:

tk := tk11 · · · tkhh .

One has the following analogue of Eq. (3.2):

φ(t) =
∑

j∈S(φ)

[φ] j t j . (5.3)

The hypothesis φ ∈ K[[t1, . . . , th]]∗ translates into 0 ∈ S(φ), that is, [φ]0 �= 0.
(1) Consider first the case of φN .
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By Eq. (5.3), we get the exact analogue of the expansion (3.3):

φN (t) =
∑

j1,..., jN∈S(φ)

[φ] j1 · · · [φ] jN t j1+···+ jN . (5.4)

Then the proof is identical to that of the one-variable case.
(2) Consider now the case of φ̌. Write the analogue of the expansion (5.3) for the
series φ̌:

φ̌(u) =
∑

k∈S(φ̌)

[φ̌]k uk, (5.5)

where:

uk := uk11 tk22 · · · tkhh for all k = (k1, . . . , kh) ∈ N
h .

By Definition 5.10, if φ̌(u1, t2, . . . , th) is the dual with respect to t1 of the series
φ(t1, t2, . . . , th), then one has the identity:

t1 = (t1 φ(t1, t2, . . . , th)) · φ̌(t1 φ(t1, . . . , th), t2, . . . , th)

which, after division by t1 and combination with the expansion (5.5), gives:

1 =
∑

k∈S(φ̌)

[φ̌]k tkφ(t)k1+1.

Expand now the powers φ(t)k1+1 using equation (5.4). We get:

1 =
∑

k ∈ S(φ̌)

j1, . . . , jk1+1 ∈ S(φ)

[φ̌]k [φ] j1 · · · [φ] jk1+1 t
k+ j1+···+ jk1+1 .

Therefore:

∑

k ∈ S(φ̌)

j1, . . . , jk1+1 ∈ S(φ)

k + j1 + · · · + jk1+1 = p

[φ̌]k [φ] j1 · · · [φ] jk1+1 = 0, for all p ∈ N
h\{0}. (5.6)

• Let us show first that Irr(φ) = Irr(φ̌). Using Lemma 5.1, we reason as in
the one variable case. We must take into account that for h ≥ 2, the element
r ∈ N

∗(S(φ̌)) \ N
∗(S(φ)) chosen to be minimal with this property (for the com-

ponentwise partial order) is not necessarily unique. Let us choose r to be the
smallest element with this property, relative to an additive order � dominating
Q

h+. Then the proof of the assertion follows exactly by the same argument as for
h = 1.
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• We prove the identities relating the coefficients associated to the irreducible expo-
nents of φ and φ̌. If r ∈ Irr(φ) = Irr(φ̌) and if: k + j1 + · · · + jk1+1 = r for
k ∈ S(φ̌) and j1, . . . jk1+1 ∈ S(φ), then we obtain, by the same argument as in
the one variable case, that k = r or k = 0. We deduce the following analogues of
Eq. (3.12):

[φ̌]0 [φ]r + [φ̌]r [φ]r1+1
0 = 0 (5.7)

from which one gets the stated equality between coefficients of terms with irre-
ducible exponents. ��
Combining Proposition 5.12 with Lemma 5.9, we obtain the following extension

of Corollary 3.17:

Corollary 5.13 Let φ ∈ K[[t1, t2, . . . , th]]∗, N ∈ N
∗ and M be any lattice of Q

h.
Then the sequences of essential exponents of φ, φN and φ̌ relative to M coincide.

5.3 Newton–Puiseux series in several variables

We will consider the following analogue of the ring of Newton–Puiseux series in one
variable:

K[[x1/N1 , x1/N2 , . . . , x1/Nh ]] :=
⋃

ni∈N∗, 1≤i≤h

K[[x1/n11 , x1/n22 , . . . , x1/nhh ]].

We say that its elements are Newton–Puiseux series in the variables x1, . . . , xh . The
support S(η) of such a series η is a subset with bounded denominators of Q

h+.

Definition 5.14 Assume that f (x1, y1, x2, . . . , xh) ∈ K[[x1, y1, x2, . . . , xh]] has
vanishing constant term. A Newton–Puiseux series of f relative to (x1, x2, . . . , xh)
is a series:

ψ ∈ K[[x1/N1 , x1/N2 , . . . , x1/Nh ]]

such that f (x1, ψ, x2, . . . , xh) = 0. The series ψ is called x1-dominating if it is of
the form:

a · xλ
1 (1 + higher order terms),

where λ ∈ Q
∗+, and a ∈ K

∗. A representation of ψ ∈ K[[x1/N1 , x1/N2 , . . . , x1/Nh ]] of
the form:

ψ = η(x1/n11 , x1/n22 , . . . , x1/nhh ) with η ∈ K[[t1, t2, . . . , th]] (5.8)

is called primitive if it is primitive in each variable separately in the sense of Defini-
tion 2.5.
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Example 5.15 The Newton–Puiseux series x3/21 + x7/41 x1/22 − 2x21 x1/33 is x1-

dominating. But the series: x1/21 + x1/22 and x1/32 + x1 x2/32 are not x1-dominating.
Instead, the second one is x2-dominating.

If ψ ∈ K[[x1/N1 , . . . , x1/Nh ]], then there is a series f ∈ K[[x1, y1, x2, . . . , xh]]
such that f (x1, ψ, x2, . . . , xh) = 0. Indeed, one can get such an f in the ring
K[[x1, . . . , xh]][y1] (cf. Remark 2.4 in the 1-variable case):

Remark 5.16 Recall that for any n ∈ N
∗, we denote byGn the subgroup of (K∗, ·) con-

sisting of the n-roots of unity. Consider n1, . . . , nh ∈ N
∗. Let K((x1/n11 , . . . , x1/nhh ))

be the fraction field of K[[x1/n11 , . . . , x1/nhh ]]. The field extension K((x1, . . . , xh)) ⊂
K((x1/n11 , . . . , x1/nhh )) is finite and Galois. Its Galois group is isomorphic to Gn1 ×
· · · × Gnh , acting on K((x1/n11 , . . . , x1/nhh )) by:

(
(ρ1, . . . , ρh), x

a1/n1
1 · · · xah/nhh

)
→ ρ

a1
1 · · · ρah

h · xa1/n11 · · · xah/nhh .

If ψ ∈ K[[x1/n11 , . . . , x1/nhh ]] is a Newton–Puiseux series, then the field extension
K((x1, . . . , xh)) ⊂ K((x1, . . . , xh))[ψ] is finite and its Galois group G is isomorphic
to the quotient of Gn1 × · · · × Gnh by its subgroup formed by those elements which
leave ψ fixed. If n = |G| and ψ1 = ψ,ψ2, . . . , ψn are the different conjugates of ψ

under the action of the group G, then the polynomial:

f =
n∏

j=1

(y − ψ j ) ∈ K[[x1/n11 , . . . , x1/nhh ]][y]

is invariant under the action of Gn1 × · · · × Gnh on its coefficients. It follows that f
must belong to K[[x1, . . . , xh]][y] and that ψ is a Newton-Puiseux series relative to
f .

Remark 5.17 Let f ∈ K[[x1, . . . , xh]][y1] be an irreducible polynomial such that
its discriminant �y1 f is the product of a monomial and of a unit in the ring
K[[x1, . . . , xh]]. Then, by the Jung–Abhyankar theorem, all the roots of f areNewton–
Puiseux series in the variables x1, . . . , xh (see [1]). Let us mention that the roots
obtained in this way have special properties, for instance, the Newton–Puiseux series
x3/21 + x5/22 cannot be a root of the polynomial f (see Lemma 5.24). Notice also that if
the discriminant of f is not of this form, the roots may not be expressible as Newton–
Puiseux series in the variables x1, . . . , xh . An example of this last phenomenon is the
polynomial f = x31 + x32 + y21 .

5.4 The generalized Halphen–Stolz inversion theorem

In this subsection we assume thatψ is a x1-dominating Newton–Puiseux power series
with primitive representation (see Definition 5.14):

ψ = η(x1/n11 , x1/n22 , . . . , x1/nhh ).
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Then the dominating term a · xλ
1 of ψ satisfies:

λ = m1

n1
,

with m1 ∈ N
∗. The series η is therefore of the form:

η(t1, t2, . . . , th) = a · tm1
1 (1 + higher order terms),

with m1 > 0 and a ∈ K
∗. Let us choose an m1-th root ã ∈ K

∗ of a. Then, we have a
unique m1-th root t1 η̃(t1, t2, . . . , th) ∈ K[[t1, t2, . . . , th]] of η:

η(t1, t2, . . . , th) = (t1 η̃(t1, t2, . . . , th))
m1 , (5.9)

with constant term [η̃]0 = ã �= 0.

Example 5.18 Start from theNewton–Puiseux series:ψ = x3/21 +x7/41 x1/22 −2x21 x
1/3
3 .

We get a = 1, n1 = 4, n2 = 2, n3 = 3 and ψ = η(x1/41 , x1/22 , x1/33 ) where η(t) =
t61 + t71 t2 − 2 t81 t3 = t61 (1 + t1t2 − 2 t21 t3). This shows that m1 = 6 and if ã = 1 then:
η̃(t) = (1 + t1t2 − 2 t21 t3)

1/6 := 1 + ∑
k∈N∗

(1/6
k

)
(t1t2 − 2 t21 t3)

k .

Let us come back to the general case. Denote by ξ̃ (u1, t2, . . . , th) ∈ K[[u1, t2, . . . ,
th]]∗ the dual series of η̃(t1, t2, . . . , th) with respect to t1 (see Definition 5.10). Hence,
one has the equivalence (see (5.2)):

u1 = t1 η̃(t1, t2, . . . , th) ⇔ t1 = u1 ξ̃ (u1, t2, . . . , th). (5.10)

We know that there exists a series f (x1, y1, x2, . . . , xh, ) ∈ K[[x1, y1, x2, . . . , xh]]
such that:

f (x1, η(x1/n11 , x1/n22 , . . . , x1/nhh ), x2, . . . , xh) = 0.

Replacing each xi by tnii and using the equality (5.9), we get:

f (tn11 , (t1η̃(t1, t2, . . . , th))
m1 , tn22 , . . . , tnhh ) = 0. (5.11)

By doing the second change of variable of formula (5.10), we deduce that:

f ((u1 ξ̃ (u1, t2, . . . , th))
n1, um1

1 , tn22 , . . . , tnhh ) = 0. (5.12)

Consequently, if one defines:

ξ(u1, t2, . . . , th) = (u1 ξ̃ (u1, t2, . . . , th))
n1 (5.13)

(an equation which is analogous to (5.9)), then one sees that:

f (ξ(y1/m1
1 , x1/n22 , . . . , x1/nhh ), y1, x2, . . . , xh) = 0,
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that is, ξ(y1/m1
1 , x1/n22 , . . . , x1/nhh ) is aNewton–Puiseux series of f (x1, y1, x2, . . . , xh)

with respect to the variables (y1, x2, . . . , xh) (see Definition 5.14).
Recall that we denote by (ν1, ν2, . . . , νh) the canonical basis of Q

h . The following
lemma is a multi-variable analogue of Lemma 4.3, formulated using Definition 5.3:

Lemma 5.19 Let � be an additive order of Q
h dominating Q

h+. Denote:

{
ess(η, n1Zν1 + Zν2 + · · · + Zνh, �) = (m1ν1, ε1, . . . , εd),

ess(ξ, m1Zν1 + Zν2 + · · · + Zνh, �) = (n1ν1, ε′
d , . . . , ε

′
d ′).

(5.14)

Then:

{
ess(η̃, gcd(n1,m1)Zν1 + Zν2 + · · · + Zνh, �) = (0, ε1 − m1ν1, . . . , εd − m1ν1),

ess(ξ̃ , gcd(n1,m1)Zν1 + Zν2 + · · · + Zνh, �) = (0, ε′
1 − n1ν1, . . . , ε′

d ′ − n1ν1).

Proof By symmetry, we may treat only the case of the series η̃. As η̃ ∈
K[[t1, t2, . . . , th]]∗, Proposition 5.12 implies that Irr(η̃) = Irr(η̃m). Combining this
with Lemma 5.9, we see that for any lattice M of Q

h one has:

ess(η̃, M,�) = ess(Irr(η̃), M,�) = ess(Irr(η̃m), M,�) = ess(η̃m, M,�).

Thus, it is enough to prove that (0, ε1 − m1ν1, . . . , εd − m1ν1) is the sequence of
essential exponents of η̃m1 relative to gcd(n1,m1)Zν1 + Zν2 + · · · + Zνh and the
chosen additive order. By formula (5.9), we get η̃m1 = t−m1

1 η. Therefore S(η̃m1) =
S(η) − m1ν1. Using Definition 5.5, we see that we are done if we prove that:

• min(S(η) − m1ν1) = 0.
• For all k ∈ {1, . . . , d}:

εk − m1ν1 = min ((S(η) − m1ν1)\ (gcd(n1,m1)Zν1 + Zν2 + · · · + Zνh

+ Z{ 0, ε1 − m1ν1, . . . , εk−1 − m1ν1})) .

• S(η) − m1ν1 ⊂ gcd(n1,m1)Zν1 + Zν2 + · · · + Zνh
+ Z{ 0, ε1 − m1ν1, . . . , εd − m1ν1},

where the minimum is taken with respect to the additive order �. But all these facts
are immediate from the definition of the essential exponents εi , because:

gcd(n1,m1)Zν1 + Zν2 + · · · + Zνh + Z{0, ε1 − m1ν1, . . . , εk−1 − m1ν1} =
= n1Zν1 + Zν2 + · · · + Zνh + Z {m1ν1, ε1, . . . , εk−1},

for all 1 ≤ k ≤ d, an equality which may be proved immediately by double inclusion.
��

Our extension of Theorem4.4 to the case of an arbitrary number of variables follows
then exactly as in the one variable case:
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Theorem 5.20 Let η̃ ∈ K[[t1, t2, . . . , th]]∗ and ξ̃ ∈ K[[u1, t2, . . . , th]]∗ be dual rela-
tive to the first coordinate and consider m1, n1 ∈ N

∗. Let ã be the constant term of η̃.
Denote by (ν1, ν2, . . . , νh) the canonical basis of the free abelian group Z

h. Introduce
the t1-dominating and u1-dominating series:

{
η(t1, t2, . . . , th) = (t1 η̃(t1, t2, . . . , th))m1 ,

ξ(u1, t2, . . . , th) = (u1 ξ̃ (u1, t2, . . . , th))n1,

and their sequences of essential exponents relative to an additive order � dominating
Q

h≥0:

{
ess(η, n1Zν1 + Zν2 + · · · + Zνh,�) = (m1ν1, ε1, . . . , εd),

ess(ξ,m1Zν1 + Zν2 + · · · + Zνh,�) = (n1ν1, ε′
1, . . . , ε

′
d ′).

Then one has the following inversion formulae for exponents and coefficients, where
we denote by εk,1 the first coordinate of εk ∈ Q

h+ (that is, the coefficient of ν1 in the

expansion εk = ∑h
i=1 εk,iνi ):

d ′ = d, (5.15)

ε′
k + m1ν1 = εk + n1ν1, for all k ∈ {1, . . . , d}, (5.16)

[ξ ]n = ã−n1 and [ξ ]ε′
k

= − n1
m1

ã−n1−εk,1 [η]εk , for all k ∈ {1, . . . , d}. (5.17)

As a consequence of this theorem, we get the following generalization of the
Halphen–Stolz inversion theorem (Corollary 4.5):

Corollary 5.21 (The generalized Halphen–Stolz inversion theorem) Let η(x1/n11 ,

x1/n22 , . . . , x1/nhh ) and ξ(y1/m1
1 , x1/n22 , . . . , x1/nhh ) be Newton–Puiseux series of

f (x1, y1, x2, . . . , xh) relative to (x1, x2, . . . , xh) and (y1, x2, . . . , xh) respectively. As
before, we assume that η(t1, t2, . . . , th) = (t1 η̃(t1, t2, . . . , th))m1 and ξ(u1, t2, . . . , th)
= (u1 ξ̃ (u1, t2, . . . , th))n1 , where η̃(t1, t2, . . . , th) and ξ̃ (u1, t2, . . . , th) are dual rela-
tive to the first coordinate and [η̃]0 = ã. Let � be a fixed additive order dominating
Q

h+. Denote:

⎧
⎪⎪⎨

⎪⎪⎩

ess(η(x1/n11 , x1/n22 , . . . , x1/nhh ), Z
h,�) =

(
m1

n1
ν1, e1, . . . , ed

)
,

ess(ξ(y1/m1
1 , x1/n22 , . . . , x1/nhh ), Z

h,�) =
(
n1
m1

ν1, e′
1, . . . , e

′
d ′

)
.

Then one has the following inversion formulae for exponents and coefficients, where
we denote by ek,1 the first coordinate of ek ∈ Q

h+ (that is, the coefficient of ν1 in the

expansion ek = ∑h
i=1 ek,iνi ):

d ′ = d. (5.18)

m1(ν1 + e′
k) = n1(ν1 + ek) for all k ∈ {1, . . . , d}. (5.19)
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[ξ(y1/m1
1 , . . .)]n1/m1 = ã−n1 and [ξ(y1/m1

1 , . . .)]e′
k

= − n1
m1

ã−(1+ek,1)n1 [η(x1/n11 , . . .)]ek for all k ∈ {1, . . . , d}.
(5.20)

In the case in which ã = 1, the inversion formula for the coefficients stated in
Corollary 5.21 may be written in a more symmetric way, easier to remember, and
analogous to Corollary 4.6:

Corollary 5.22 Assume moreover that the constant coefficient ã of η̃ is equal to 1.
Then:

[ξ ]n1/m1 = 1 = [η]m1/n1 , and m1[ξ ]ε′
k
+ n1[η]εk = 0 for all k ∈ {1, . . . , d}.

In order to summarize our reasoning, let us draw the analogue of the flow-chart
(4.17) in which f (x1, y1, x2, . . . , xh) ∈ K[[x1, y1, x2, . . . , xh]] is an irreducible
series:

ess(η(x
1/n1
1 ,... ),Zh )

{η(x1/n11 , . . . )} (Lm.5.7)

x1=t1n1 ess(η(t1 ,... ),n1Zν1+··· )
{η(t1, t2, . . . )}

ess(η̃(t1,... ),gcd(m1,n1)Zν1+··· )
{η̃(t1, . . . )}⎛

⎝ (Prop.5.12(1),
Lm.5.19)

⎞

⎠

η=(t1 η̃)m1

(Prop.5.12(2))

u1 = t1 η̃

�
t1 = u1 ξ̃

f (x1, y1, x2, . . . , xh )

{ξ(y1/m1
1 , . . . )}

ess(ξ(y
1/m1
1 ,... ),Zh )

(Lm.5.19)

y1=u1m1

{ξ(u1, t2, . . . )}
ess(ξ(u1,... ),m1Zν1+··· )

{ξ̃ (u1, . . . )}
ess(ξ̃ (u1,... ),gcd(m1,n1)Zν1+··· )

⎛

⎝ (Prop.5.12(1),
Lm.5.7)

⎞

⎠

ξ=(u1 ξ̃ )n1

(5.21)

5.5 The special case of quasi-ordinary series

Among the Newton–Puiseux series in several variables, the quasi-ordinary ones form
a distinguished subclass, having many special properties. We compare both classes
in this section with the help of additive orders and toric modifications. In particular,
we get that Lipman’s inversion theorem for quasi-ordinary series can be seen as a
particular case of our generalized inversion theorem (Corollary 5.21).

Definition 5.23 A series ψ ∈ K[[x1/N1 , . . . , x1/Nh ]] is quasi-ordinary if ψ is a
Newton–Puiseux series relative to an irreducible polynomial f ∈ K[[x1, . . . , xh]][y1],
such that the discriminant, �y1( f ) ∈ K[[x1, . . . , xh]] of f with respect to y1, is the
product of a monomial and of a unit in the ring K[[x1, . . . , xh]].

If the discriminant �y1( f ) of f ∈ K[[x1, . . . , xd ]][y1] is a monomial times
a unit then, by the Jung–Abhyankar theorem (see [1,22]), f factors in the ring
K[[x1/N1 , . . . , x1/Nh ]][y1] as a product of polynomials of degree 1 in the variable y1.
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If y1 − ψ , y1 − ψ ′ are two different factors of f in this ring, then ψ − ψ ′ divides the
discriminant �y1( f ), hence ψ − ψ ′ is the product of a monomial times a unit in the

ring K[[x1/N1 , . . . , x1/Nh ]]. The monomials obtained in this way:

x
αk,1
1 · · · xαk,h

h , for k ∈ {1, . . . , g},

are called the characteristic monomials, and the tuples:

αk = (αk,1, . . . , αk,h), for k ∈ {1, . . . , g},

the characteristic exponents of the quasi-ordinary series ψ . Lipman showed that
the characteristic exponents determine many features of the geometry of the germ of
hypersurface defined by f (for precise definitions and related results, see for instance
[14,24,26,27]). He also proved the following combinatorial characterization of quasi-
ordinary power series (see [24, Proposition 1.5] and [14, Proposition 1.3]):

Lemma 5.24 Denote by ≤ the coordinate-wise order on Q
h. A series ψ ∈

K[[x1/N1 , . . . , x1/Nh ]] is quasi-ordinary if and only if there exist an integer n ≥ 1
and elements λ1, . . . , λr ∈ S(ψ) such that:

(1) The support S(ψ) is included in 1
nZ

h+.
(2) Every λ ∈ S(ψ) belongs to the group Z

h + ∑
λ j≤λ Zλ j .

(3) λi ≤ λi+1, for every i ∈ {1, . . . , r − 1}.
(4) λi does not belong to the group Z

h + ∑
j≤i−1 Zλ j , for every i ∈ {1, . . . , r}.

If such elements exist, then they are the characteristic exponents of ψ .

The following lemma is an analogue of Lemma 3.13. Its proof is a consequence
of the definitions of essential exponents and of Lemma 5.24. It shows how to recover
the characteristic exponents of a quasi-ordinary series from a sequence of essential
exponents relative to the lattice Z

h and any additive order � dominating Q
h+.

Lemma 5.25 Let ψ ∈ K[[x1/N1 , . . . , x1/Nh ]] be a quasi-ordinary series with charac-
teristic exponents α1, . . . , αg. Let us denote by (e0, . . . , ed) the sequence of essential
elements of the support S(ψ) relative to the lattice Z

h and a fixed additive order �
dominating Q

h+. Then:
• If e0 /∈ Z

h, then g = d + 1 and αk = ek−1 for k ∈ {1, . . . , d + 1}.
• If e0 ∈ Z

h, then g = d and αk = ek for k ∈ {1, . . . , d}.
Remark 5.26 Lipman proved an inversion theorem for the characteristic exponents of
a quasi-ordinary series ψ , when ψ is x1-dominant. This result appeared in Lipman’s
PhD Thesis [24, Lemma 2.3 and table 4.4], see also [26], while its proof was published
later in [28]. This proof is written in the two variable case but it extends naturally to
more variables. See also [17, Proposition 5.5]. Thanks to Corollary 5.21 and Lemma
5.25, we see that Lipman’s inversion theorem for quasi-ordinary series is a particular
case of the part concerning exponents of our inversion theorem (Corollary 5.21) for
x1-dominant Newton-Puiseux series in several variables.
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We end this paper with some remarks relating geometrically the Newton–Puiseux
series with the quasi-ordinary series by using methods of toric geometry. They are
inspired by the second-named author’s proof of [16, Théorème 3].

Let f ∈ K[[x1, . . . , xh]][y1] be a reduced polynomial such that f (0, . . . , 0) = 0.
Assume that f is not quasi-ordinary. Then, the discriminant�y1( f ) ∈ K[[x1, . . . , xh]]
is not of the form a monomial times a unit. It follows that the dual fan associated to
the Newton polyhedron of �y1( f ) defines a non-trivial subdivision of the positive

quadrant (Rh)∨+ of the vector space (Rh)∨ of real weights of monomials xk11 · · · xkhh .
Let� be a regular subdivision of this dual fan.One has an associated toricmodification
X� → K

h , which is obtained by patching the monomial maps associated to the h-
dimensional cones of �. See for instance [15] or [16] for the basic definitions used in
these methods of toric geometry.

Let σ ∈ � be a h-dimensional cone of the fan �. It is spanned by the forms
γ1, . . . , γh , which are the primitive lattice vectors of the lattice (Zh)∨ lying on the
edges of the cone σ . By the definition of the dual fan, the following property holds:

Lemma 5.27 All the forms γ1, . . . , γh reach their minimum value on the support of
the discriminant �y1( f ) at the same vertex λ0 of its Newton polyhedron.

We consider the coordinates (γs,1, . . . , γs,h) of the vectors γs , s ∈ {1, . . . , h}, with
respect to the dual basis of ν1, . . . , νh . Let qσ ∈ GL(h, Q) be the linear map defined,
with respect to the canonical basis ν1, . . . , νh of Q

h , by the matrix whose rows are
(γs,1, . . . , γs,h), for every s ∈ {1, . . . , h}.

The monomial map

K[x1, . . . , xh] → K[v1, . . . , vh], xλ → vqσ (λ) (5.22)

defines the chart Kh
σ → K

h of the toric modification of X� → K
h , associated to cone

σ . If:

F =
∑

γ=(α,β)∈Nh×N

cγ x
α yβ

1 ∈ K[[x1, . . . , xh, y1]]

then the pull-back of F on K
h
σ × K is defined by:

Fσ =
∑

γ=(α,β)∈Nh×N

cγ vqσ (α)yβ
1 ∈ K[[v1, . . . , vh, y1]].

Assume that ψ = ∑
cλxλ ∈ K[[x1/N1 , . . . , x1/Nh ]] is a Newton–Puiseux series

of f . Then, by definition ψσ := ∑
cλv

q(λ) ∈ K[[v1/N1 , . . . , v
1/N
h ]] is a Newton–

Puiseux series of the pull-back fσ of f . In addition, q(λ0) belongs to the support of
the discriminant�y1( fσ ). By Lemma 5.27, if q(λ) belongs to the support of�y1( fσ ),
then q(λ0) ≤ q(λ) (for the coordinate-wise order). This implies that the Newton–
Puiseux series ψσ is quasi-ordinary, since the discriminant �y1( fσ ) is of the form
vqσ (λ0) times a unit. Using Lemma 5.7 and the fact that σ is a regular cone (which
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implies that qσ (Zh) = Z
h), we obtain also the relation:

qσ (ess(ψ, Z
h,�qσ )) = ess(ψσ , Z

h,�) (5.23)

between the essential exponents ofψ and the essential exponents of the quasi-ordinary
series ψσ .

Example 5.28 By Lemma 5.24, the series ψ = x3/21 + x1/42 + x7/21 x5/22 is not quasi-
ordinary. If we consider the chart of the blowing up of 0 ∈ K

2 given by x1 = v1v2
and x2 = v2, whose associated cone we denote by σ , then we obtain the series:

ψσ = v
3/2
1 v

3/2
2 + v

1/4
2 + v

7/2
1 v62 .

By Lemma 5.24, the series ψσ is quasi-ordinary. It has essential exponents (0, 1/4)
and (3/2, 3/2)with respect to the latticeZ

2 and any additive order� ofQ
2 dominating

Q
2+. By Lemma 5.25, these pairs are also the characteristic exponents ofψσ . By (5.23),

the pairs (0, 1/4) and (3/2, 0) are the essential exponents ofψ with respect to the order
�qσ .

Remark 5.29 Tornero studied in [37] a notion of distinguished exponents of the
Newton–Puiseux series ψ ∈ K[[x1/N1 , . . . , x1/Nh ]] with respect to a fixed additive
order �′ of N

d . In Example 5.28, one can check that the distinguished exponents of
ψ relative to the additive order �qσ correspond to the characteristic exponents of the
quasi-ordinary series ψσ . One can prove that this is a general phenomenon. By the
previous discussion, it is enough to show that given a fixed additive order �′, there
exists a unique h-dimensional cone σ ∈ � and a unique additive order � dominat-
ing Q

h+ such that the orders �′ and �qσ coincide. Indeed, the cone σ is the unique
h-dimensional cone of � such that the additive order �′ dominates σ∨ ∩ Q

h , where
σ∨ is the dual cone of σ (the existence of σ is a consequence of the properties of the
Zariski-Riemann space of the fan �, see [12] and [18, Section 3.5]).
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