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Ultrametric spaces of branches on arborescent singularities

Patrick Popescu-Pampu

(joint work with Evelia R. Garćıa Barroso and Pedro D. González Pérez)

This work started from our intention to study in which measure a theorem of
P!loski from [5] can be generalized from germs of smooth complex analytic surfaces
to other normal surface singularities. This theorem may be stated as follows:

Theorem. Fix a smooth complex analytic surface singularity (S,O). For each
pair of branches (that is, germs of irreducible formal curves) A,B drawn on (S,O),
consider:

U(A,B) :=

⎧
⎪⎨

⎪⎩

mO(A) ·mO(B)

A · B
, if A ̸= B,

0, if A = B

where mO denotes the multiplicity at O and A ·B denotes the intersection number
of A and B at O. Then U is an ultrametric on the set of branches on (S,O).

We discovered that, slightly reformulated purely in terms of intersection num-
bers, the theorem may be extended to arborescent singularities. We call a normal
surface singularity arborescent if it has a simple normal crossings resolution whose
dual graph is a tree – in which case all such resolutions have this property. For
instance, the normal surface singularities with rational homology sphere links are
precisely the arborescent singularities such that all irreducible exceptional divisors
appearing in its resolutions are rational.
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Our generalization of P!loski’s theorem is:

Theorem. Fix an arborescent singularity (S,O) and a branch L on it. For each
pair of branches A,B on (S,O) which are distinct from L, consider:

UL(A,B) :=

⎧
⎪⎨

⎪⎩

(L · A) · (L ·B)

A ·B
, if A ̸= B,

0, if A = B

.

Then UL is an ultrametric on the set of branches on (S,O) distinct from L.

Here we work with Mumford’s notion of rational-valued intersection number of
Weil divisors drawn on normal surface singularities, introduced in [4].

The previous theorem generalizes P!loski’s one. Indeed, each time a finite set F
of branches is fixed on a smooth germ of surface – the simplest kind of arborescent
singularity – one may choose a smooth branch L transversal to all of them, in
which case the functions U and UL coincide in restriction to F .

Consider now a finite set F of branches on an arbitrary arborescent singularity
(S,O). The restriction of the ultrametric UL to F allows to associate canonically a
rooted tree TL(F) to F . Its set of leaves is F , its set of vertices consists of the closed
balls defined by the ultrametric and its root may be seen as the union of F with
an infinitely distant supplementary point. We prove the following interpretation
of this rooted tree in terms of dual graphs:

Theorem. Fix an arborescent singularity (S,O), a branch L on it and a finite
set F of branches distinct from L. Consider an embedded resolution π with simple
normal crossings of the sum of L with the branches of F . Denote by DL,π(F) the
union of the geodesics joining the strict transforms of L and of the branches of
F inside the dual graph of their total transform by π, seen as a tree rooted at the
strict transform of L. Then the rooted trees TL(F) and DL,π(F) are canonically
isomorphic.

In the special case in which both (S,O) and the branch L are smooth, we recover
a theorem of Favre and Jonsson [2].

The tree DL,π(F) has also a valuative interpretation, generalizing the one given
by Favre and Jonsson [2] for the same case when both S and L are smooth.

As in [2], we work with valuations of the local ring O of (S,O) with values in
[0,+∞] and which are allowed to take the value +∞ on other elements of O than
the function 0. Their set is naturally partially ordered : ν1 ≤ ν2 if and only if
ν1(f) ≤ ν2(f) for all f ∈ O.

Every branch drawn on (S,O) defines a valuation – taking Mumford’s intersec-
tion number of the principal divisor of each element of O with the branch. Every
irreducible exceptional divisor on a resolution of (S,O) defines also a valuation –
taking the order of vanishing of each element of O along this divisor.

Mumford’s notion of intersection product allows moreover to define the value
of a valuation of O on an arbitrary branch L. A valuation ν is called normalized
relative to L if ν(L) = 1. We prove that:
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Theorem. Fix an arborescent singularity (S,O), a branch L on it and a finite
set F of branches distinct from L. Consider an embedded resolution with simple
normal crossings of the sum of L with the branches of F . Then the rooted tree
DL,π(F) is isomorphic to the Hasse diagram of the poset of valuations defined
by the irreducible curves represented by the vertices of DL,π(F), once they are
normalized relative to L.

All the theorems of P!loski and Favre-Jonsson which we generalize were proved
either by working with Newton-Puiseux series or with sequences of blow-ups. We
work instead only with intersection products of relatively nef rational exceptional
divisors on a fixed embedded resolution of the sum of L and of the branches of F .
Our proofs are based in an essential way on the following fact:

Proposition. Fix an arborescent singularity (S,O) and a simple normal crossings
resolution of it. Denote by (Eu)u∈V the irreducible components of its exceptional
divisor and by (E∗

u)u∈V the dual exceptional divisors, in the sense that E∗
u·Ev = δuv

for any (u, v) ∈ V2, where δuv is Kronecker’s symbol. If Ew belongs to the segment
[EuEv] in the dual graph of the resolution, then:

(E∗
u ·E∗

w) · (E
∗
v ·E∗

w) = (E∗
u ·E∗

v ) · (E
∗
w · E∗

w).

In turn, this proposition is based on a formula proved by Eisenbud and Neumann
in [1], expressing the intersection numbers (E∗

u · E∗
w) in terms of determinants of

subtrees of the dual tree of the resolution.
It is interesting to note that the previous proposition may be reinterpreted using

spherical geometry. Consider the real vector space freely generated by the divisors
(Eu)u∈V , endowed with the negative of the intersection product. It is a euclidean
vector space. Look at the unit vectors (Au)u∈V which are positively proportional
to the vectors (E∗

u)u∈V . Here is the announced interpretation: if Ew belongs to the
segment [EuEv] in the dual graph of the resolution, then the spherical triangle with
vertices Au, Av, Aw is right-angled at the vertex Aw. Indeed, the equality of the
previous proposition may be reformulated as the spherical Pythagorean equality :

cos(∠AuAw) · cos(∠AvAw) = cos(∠AuAv),

which characterizes right-angled triangles in spherical geometry.
Detailed proofs of our results may be found in [3].
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Introduction to Singularities

Norbert A’Campo

This evening talk is intended especially for those Young Researchers from the
Heidelberg Laureate Forum, september 18th–25th, this year, see www.heidelberg-
laureate-forum.org/event 2016/, who were invited to attend the Conference on
Singularities in Oberwolfach.

We start out with a very general approach to the term Singularity.
A singularity is an object in nature that does not fall in the realm of main

understanding. Here main understanding is very vague. It could mean under-
standing by the basic laws in Physics, Theorems in Mathematics, .... or by the
basic achievements of a theory.

In mathematical nature such an object or rather a feature could be the local
behavior near a given point or global behavior of a function, a vector field, a
differential form, a space, a representations of a group, etc..

Let us restrict to the case of the local behavior near a point p of differentiable
functions that are defined on numerical real or complex spaces Rn or Cn. So we
study locally near p ∈ Rn or p ∈ Cn differentiable functions f : Rn → R with
derivatives of any order or holomorphic functions f : Cn → C.

The first step is the three term expansion

f(p+ h) = f(p) +A(h) + Restf (p, h)

where A : Rn → R is a linear function and where the third term Restf (p, h) is
relatively small compared to h, meaning

lim
h→0

Restf (p, h)

||h||
= 0

The linear map A is called the differential of f at p and is denoted by (Df)p.
Examples of functions on Rn are the differentiable coordinate functions xi :

Rn → R, i = 1, · · · , n, on R2 also denoted by x, y. A general function f can be
expressed using a system of coordinate functions. For example f = x5+y3 : R2 →
R. Other examples are g = x5 + y3 + x2y2 and k = x4 + y4 + x2y2.

Functions with least complicated expressions are the coordinate functions. In
fact, how complicated a given function f is depends heavily on the system of
coordinate functions.

A natural question Q1 is to ask which functions f can be expressed near a given
point p as first coordinate function of a local coordinate system of functions.

The following main theorem gives the answer:
The answer to the question Q1 is YES if and only if (Df)p ̸= 0.
Indeed, let f : Rn → R be a differentiable function, p ∈ Rn such that the

differential (Df)p : Rn → R at p does not vanish. The kernel X = (Df)−1
p (0) is

a linear subspace of dimension n − 1 in Rn. Let Y be a 1-dimensional subspace


