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FAMILIES OF HIGHER DIMENSIONAL GERMS

WITH BIJECTIVE NASH MAP
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Abstract

Let ðX ; 0Þ be a germ of complex analytic normal variety, non-singular outside 0.

An essential divisor over ðX ; 0Þ is a divisorial valuation of the field of meromorphic

functions on ðX ; 0Þ, whose center on any resolution of the germ is an irreducible

component of the exceptional locus. The Nash map associates to each irreducible

component of the space of arcs through 0 on X the unique essential divisor intersected

by the strict transform of the generic arc in the component. Nash proved its injectivity

and asked if it was bijective. We prove that this is the case if there exists a divisorial

resolution p of ðX ; 0Þ such that its reduced exceptional divisor carries su‰ciently many

p-ample divisors (in a sense we define). Then we apply this criterion to construct an

infinite number of families of 3-dimensional examples, which are not analytically

isomorphic to germs of toric 3-folds (the only class of normal 3-fold germs with

bijective Nash map known before).

1. Introduction

Let X be a reduced complex algebraic variety. An arc contained in X is a
germ of formal map:

ðC; 0Þ ! X :

If t denotes the local parameter of C at 0, notice that each arc comes equipped
with a canonical parametrization: thought algebraically, it is a morphism of C-
algebras OX ;0 ! C½½t��.

In a preprint written around 1966, published later as [17], Nash defined the
associated arc space Xy of X , whose points represent the arcs contained in
X . By looking at the Taylor expansions of the functions on X with respect to
the parameter t and to their truncations at all the orders, Nash constructed this
space as a projective limit of algebraic varieties of finite type over X .

If one associates to a formal arc the point of X where it is based, that is the
image of 0 A C, one gets a natural map:
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a : Xy ! X

If Y is a closed subvariety of X , denote by:

ðX ;Y Þy :¼ a�1ðYÞ
the space of arcs on X based at Y .

Nash was thinking of the spaces Xy and ðX ;Y Þy for varying Y H SingðX Þ
as tools for studying the structure of X in the neighborhood of its singular
set. Indeed, the main object of his paper was to state a program for comparing
the various resolutions of the singularities of X . Such resolutions always exist,
as had recently been proven by Hironaka, but unlike in the case of surfaces,
minimal ones do not necessarily exist. We quote from the introduction of [17]
the two main problems formulated by Nash in this direction:

i) For surfaces it seems possible that there are exactly as many families of arcs
associated with a point as there are components of the image of the point in the
minimal resolution of the singularities of the surface.

ii) In higher dimensions, the arc families associated with the singular set
correspond to ‘‘essential components’’ which must appear in the image of the
singular set in all resolutions. We do not know how complete is the representation
of essential components by arc families.

The first question is a local one, as it deals with the structure of X only in a
neighborhood of one of its (closed) points. The second one is more global, as it
deals with the structure of X in the neighborhood of its entire singular set.

Following Nash’s paper, the foundations for his program were worked with
more detail by Lejeune-Jalabert [15], Nobile [18] and Ishii & Kollár [12]. They
also extended the program to other categories of spaces. For example, Ishii &
Kóllar [12] considered schemes over arbitrary fields, Lejeune-Jalabert [15] and
Nobile [18] considered formal germs of varieties. Their treatment extends readily
to germs of complex analytic varieties.

For such germs, the space ðX ; SingðXÞÞy of arcs based at the singular locus
of X can be canonically given the structure of a relative scheme over X , as the
projective limit of relative schemes of finite type obtained by truncating arcs at
each finite order.

In the sequel we will restrict to the case where ðX ; 0Þ is a germ of a complex
analytic variety and SingðXÞ ¼ f0g.

The space ðX ; 0Þy of arcs on X based at 0 is a relative subscheme over X of
Xy. As it projects onto 0, we see that it is in fact a true scheme (but not of
finite type over C). This implies that it makes sense to speak about the set
CðX ; 0Þy of its irreducible components.

Denote by
p : ~XX ! X

a resolution of X . The exceptional set ExcðpÞ :¼ p�1ð0Þ is not assumed to be of
pure codimension 1, that is, the resolution is not necessarily divisorial.

An irreducible component of ExcðpÞ is called an essential component of p if it
corresponds to an irreducible component of the exceptional set of any other
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resolution of X . In other words, if its birational transform is an irreducible
component of the exceptional set in any resolution. An equivalence class of such
essential components over all the resolutions of X is called an essential divisor
over ðX ; 0Þ. If we denote by EðX ; 0Þ the set of essential divisors over ðX ; 0Þ, the
essential components of the given resolution morphism p are in a canonical
bijective correspondence with the elements of EðX ; 0Þ.

Let K be an element of CðX ; 0Þy. For each arc represented by a point of
K, one can consider the intersection point with ExcðpÞ of its strict transform
on ~XX . For an arc generic with respect to the Zariski topology of K, this
intersection point is situated on a unique irreducible component of ExcðpÞ;
moreover, this component is essential (Nash [17], see also [15]). In this manner
one defines a map:

NX ;0 : CðX ; 0Þy ! EðX ; 0Þ

which is called the Nash map associated to ðX ; 0Þ. Nash proved that the map
NX ;0 is always injective (which shows in particular that CðX ; 0Þy is a finite set).
In our context, one can reformulate question ii) above:

When is the map NX ;0 bijective?

This question is also known as the Nash problem on arcs.
In [23] we listed the classes of isolated surface singularities for which the

Nash map was proved to be bijective. In higher dimensions, the bijectivity of N
was proved till now for the following classes of germs with not necessarily
isolated singularities:

� for the germs which have resolutions with irreducible exceptional set, for
trivial reasons;

� for germs of normal toric varieties by Ishii and Kollár in [12]; in this case,
one can distinguish two types of Nash problems, as was done by Ishii [11]; Ishii
[10] solved the Nash problem also for not-necessarily normal toric varieties;

� for various classes of not necessarily irreducible germs whose normalizations
are disjoint unions of normal toric germs by Ishii [10], [11], Petrov [20] and
González Pérez [7].

No surface or 3-fold is known for which the Nash map is not bijective. But
Ishii and Kollár proved in [12] that it is not always bijective for algebraic
varieties of dimension at least 4. Indeed, they gave a counterexample in
dimension 4, which can be immediately transformed into a counterexample
(with non-isolated singularity) in any larger dimension.

In this article we construct a class of normal isolated singularities of arbitrary
dimension ðX ; 0Þ for which the Nash map NX ;0 is bijective (Corollary 4.3). The
definition of the class uses a criterion ensuring that a divisorial component of the
exceptional set of a given resolution is in the image of the Nash map (Theorem
4.1). In fact, we use that theorem in the following less general form (a
reformulation of Corollary 4.2), which allows us to apply Kleiman’s ampleness
criterion:
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Theorem. Let p : ~XX ! X be a divisorial projective resolution of ðX ; 0Þ.
Consider an irreducible component Ei of ExcðpÞ. Suppose that for any other
component Ej, there exists an e¤ective integral divisor Fij on ~XX whose support
coincides with ExcðpÞ, in which the coe‰cient of Ei is strictly less than the
coe‰cient of Ej and such that the line bundle OExcðpÞð�FijÞ is ample. Then Ei is
an essential component contained in the image of the Nash map.

Using the previous criterion, we construct an infinite family of examples of
3-dimensional singularities with bijective Nash map (see Section 5). In Section 6,
we distinguish some of the singularities constructed before using suitable ana-
lytical invariants. Moreover, we determine those which are isomorphic to germs
of toric varieties, establishing like this the intersection of our class of examples
with the classes known before.

Acknowledgements. We are grateful to Monique Lejeune-Jalabert and to
the referee of [23] for having remarked that the main theorem of [23] could be
obtained by replacing Laufer’s vanishing theorem with a convenient use of the
ampleness of adequate line bundles. This is the method we have extended in this
paper to higher dimensions. The second author is also grateful to Sébastien
Boucksom, David Eisenbud, Charles Favre and Christophe Mourougane for their
explanations about ampleness and positivity. He addresses special thanks to C.
Mourougane for his many helpful remarks on previous versions of this paper.

2. Essential divisors and essential components

In the sequel, if A is a complex analytic space or a relative scheme over an
analytic space, we denote by CA the set of its irreducible components.

Let ðX ; 0Þ be an irreducible germ of complex analytic variety. We suppose
that SingðXÞ ¼ f0g, that is, the germ is smooth outside the origin (with a slight
abuse of vocabulary due to the fact that X is also allowed to be smooth, we say
that the germ has an isolated singularity). Denote by m the maximal ideal of
its local ring OX ;0. We also write N instead of NX ;0, as we do not consider
various Nash maps at the same time.

Consider a resolution p : ~XX ! X . This means that p is a proper bimer-
omorphic map with ~XX smooth, restricting to an isomorphism over the comple-
ment of 0 in X . The exceptional set ExcðpÞ of p is by definition the subset of ~XX
where p is not a local isomorphism. If 0 is a singular point of X , it coincides
with the preimage p�1ð0Þ. If each irreducible component of ExcðpÞ is of pure
codimension 1 in ~XX , we say that p is divisorial. In the sequel, we do not suppose
that this is the case. We do neither suppose that the morphism p is projective.

Remark 2.1. In dimension 2, all the resolutions of a normal surface are
divisorial. This is no longer true in higher dimensions: the simplest example of a
normal germ with isolated singularity which has non-divisorial resolutions is the
3-fold hypersurface germ defined by the a‰ne equation xy� zt ¼ 0. Neverthe-
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less, all the resolutions of a Q-factorial germ are divisorial (see Debarre [4,
Section 1.40]).

Consider a closed irreducible subvariety E of ExcðpÞ (not necessarily one of
its irreducible components). Take the preimage D of E on BEð ~XX Þ, the variety
obtained by blowing-up E in ~XX . As ~XX is smooth, this preimage is an irreducible
hypersurface of BEð ~XXÞ. Therefore, it induces a discrete valuation vE of rank 1
on the field of meromorphic functions on ðX ; 0Þ (which associates to any such
function the order of vanishing along D of its total transform on BEð ~XX Þ).

If c : X ! X is another resolution of X , the birational transform Ec of E on
X is the center of the valuation vE on X . We have obviously vE ¼ vE c . This
allows to identify the valuation vE with the set whose elements are E and its
birational transforms on all the resolutions of X . Following [12], we say that vE
(or the class of its centers on all the resolutions) is an exceptional divisor over
ðX ; 0Þ. The name is motivated by the fact that any resolution is dominated by
another one on which the center of vE is a divisor (as above, just blow-up E, then
resolve the singularities of the new space).

Conversely, if v is an exceptional divisor over ðX ; 0Þ and p : ~XX ! X is a
resolution, we denote by E p

v (or Ev, if p is clear from the context) the center of v
on ~XX . Among the exceptional divisors over ðX ; 0Þ, Nash distinguished those
whose centers are not only subvarieties, but irreducible components of the
exceptional locus of any resolution of ðX ; 0Þ (in fact he considered this in the
global case of an algebraic variety; Ishii [11, Definition 2.08] considers the same
localized situation as ours):

Definition 2.2. An essential divisor over ðX ; 0Þ is an exceptional divisor
over ðX ; 0Þ whose center on ~XX is an irreducible component of ExcðpÞ, this for
any resolution p : ~XX ! X . We also say that the centers of the essential divisors
on ~XX are the essential components of p.

In [2], Bouvier considered another definition of essential divisors. She called
a component of codimension 1 of the exceptional set essential if its center on any
resolution was a divisor. Her definition is strictly more restrictive than ours, as
shown by the germs which admit resolutions without exceptional components of
codimension 1 (see Remark 2.1). Ishii and Kollár introduced a third notion in
[12], that of divisorially essential divisors. Namely, an exceptional divisor is of
this type, if its center in any divisorial resolution is an irreducible component of
the exceptional set. It follows directly from the Definition 2.2 that an essential
divisor is a divisorially essential divisor, but it seems to be an open question if the
converse is true.

In the sequel we consider only the notion of essential components and essential
divisors introduced in Definition 2.2.

If ðX ; 0Þ is a normal surface singularity, then the essential divisors over
ðX ; 0Þ are precisely the divisorial valuations generated by the irreducible com-
ponents of the exceptional set of the minimal resolution of ðX ; 0Þ. In higher
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dimensions it is much more di‰cult to determine them, as no minimal resolution
(in the sense that it is dominated by all the other resolutions) exists in general.

The only class of normal singularities for which the essential divisors are
completely known is that of germs of normal toric varieties. Indeed, Bouvier [2]
determined combinatorially the essential divisors of all normal toric germs. Her
work was based on preliminary results of Bouvier & González-Sprinberg [3].
Ishii [10] characterized the essential divisors with respect to the definition given in
[12] also in the case of not necessarily normal toric varieties.

Two general criteria are known, ensuring that a 1-codimensional component
of the exceptional locus of a given resolution is essential (see Ishii & Kollár [12,
Examples 2.4, 2.5, 2.6]):

Proposition 2.3. Let Ei be an irreducible component of ExcðpÞ, which is of
codimension 1 in ~XX.

1) (Nash [17]) If Ei is not birationally ruled, then Ei is essential.
2) If ðX ; 0Þ is a canonical singularity and Ei is crepant, then Ei is essential.
Moreover, in both cases the birational transform of Ei on any other resolution

has again codimension 1.

One of the results of our work is to give a new criterion of essentiality for
exceptional divisors, using the space of arcs on X based at 0 (Theorem 4.1).

For each irreducible component E of ExcðpÞ, consider the smooth arcs on ~XX
whose closed points are on E �6

F0E
F , where F varies among the elements of

C ExcðpÞ, and which intersect E transversely (that is, such that their tangent line
and the tangent space to E at their intersection point are direct summands).
Consider the set of their images in ðX ; 0Þy and denote the closure of this set by
VðEÞ.

Remark 2.4. In fact VðEÞ only depends on the exceptional divisor vE over
ðX ; 0Þ determined by E (see Ishii [10, Example 2.14]). For this reason, in the
sequel we also write VðvÞ instead of VðEÞ, if E ¼ Ev.

Nash [17] proved:

Proposition 2.5. 1) The sets VðEÞ are irreducible subvarieties of ðX ; 0Þy
(but not necessarily components).

2)

ðX ; 0Þy ¼ 6
E ACExcðpÞ

VðEÞ:

The next lemma gives a criterion to show that an exceptional divisor v over
ðX ; 0Þ is essential, using its image VðvÞ in the space of arcs based at 0.

Lemma 2.6. Let v be an exceptional divisor over 0. If VðvÞ is an irreducible
component of ðX ; 0Þy, then v is essential.
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Proof. Suppose by contradiction that v is inessential. This means that there
exists a resolution p : ~XX ! X such that the center Ev of the valuation v on ~XX
is strictly included in an irreducible component E of ExcðpÞ. We deduce
that VðvÞ is strictly included in VðEÞ. But this last variety is irreducible, by
Proposition 2.5. This contradicts the fact that VðvÞ is an irreducible component
of ðX ; 0Þy. r

The next proposition gives a criterion to prove that some components of the
exceptional locus of a resolution of ðX ; 0Þ are essential, and in particular to prove
that Nash’s map N is bijective.

Proposition 2.7. Let p : ~XX ! X be a resolution. Consider the irreducible
components ðEiÞi A I of ExcðpÞ. Suppose that one can write the index set I as a
disjoint union I ¼ J t K such that VðEjÞQVðEiÞ, Ej A J, Ei A I � f jg. Then:

1) The varieties ðVðEjÞÞj A J are irreducible components of ðX ; 0Þy. In par-
ticular, ðEjÞj A J are essential components of p.

2) If ðEkÞk AK are all inessential components of p, then N is bijective.

Proof. 1) By Proposition 2.5, the irreducible components of ðX ; 0Þy are
among the varieties VðEÞ with E A CEpðX ; 0Þ. Moreover, by definition, the
irreducible components of ðX ; 0Þy are those which are not included in other
irreducible subsets. Then the varieties ðVðEjÞÞj A J are irreducible components of
ðX ; 0Þy. By the previous lemma, it follows that ðEjÞj A J are essential components
of p.

2) If the components ðEkÞk AK are all inessential, then, by Lemma 2.6, the
varieties ðVðEkÞÞk AK are not irreducible components of ðX ; 0Þy. The irre-
ducible components of ðX ; 0Þy are exactly ðVðEjÞÞj A J and they do correspond

bijectively to the essential components of the resolution. This implies that N is
bijective. r

The following proposition was proven by the first author in [21, 2.2], as a
generalization of Reguera [25, Theorem 1.10], who considered only the class of
rational surface singularities. It appears also implicitely in the toric case in Ishii
[9, Proposition 4.8]. It is an essential ingredient of all the criteria we prove in
this paper. It was also the basis of our work [23].

Proposition 2.8. Let v1 and v2 be exceptional divisors over ðX ; 0Þ. If there
exists a function f A m such that v1ð f Þ < v2ð f Þ, then Vðv1ÞUVðv2Þ.

In Section 4, we combine the propositions 2.7 and 2.8 in order to give
criteria of essentiality for exceptional divisors in terms of global generation and
ampleness of suitable line bundles. Before that, we need some background about
ampleness and exceptional sets.
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3. Background about ampleness and exceptional analytic sets

In this section we recall Kleiman’s criterion of ampleness and Grauert’s
criterion of contractibility.

Let Y be a complete algebraic variety. Let Z1ðYÞR be the R-vector space of
real one-cycles on X , consisting of all finite R-linear combinations of irreducible
algebraic curves on Y . Two elements g1 and g2 of Z1ðYÞR are numerically
equivalent if one has the equality of intersection numbers

E � g1 ¼ E � g2
for every E A DivðY ÞnZ R, where DivðY Þ denotes the group of Cartier divisors
on Y . The corresponding vector space of numerical equivalence classes of one-
cycles is written N1ðYÞR.

Definition 3.1. Let Y be a complete algebraic variety. The cone of curves

NEðYÞHN1ðYÞR
is the cone Rþ-spanned by the classes of all e¤ective one-cycles on Y . Its closure
NEðY ÞHN1ðY ÞR is the closed cone of curves or Kleiman-Mori cone of Y .

Theorem 3.2 (Kleiman’s criterion of ampleness). Let Y be a projective
variety. A Cartier divisor E on Y is ample if and only if E � z > 0 for all non zero
z A NEðY Þ.

For details, we refer to Debarre [4] and Lazarsfeld [14].
Ampleness on a reducible variety can be tested on its irreducible components

(see for example Lazarsfeld [14, proposition 1.2.16]):

Proposition 3.3. Let Y be a projective variety and L a line bundle on Y.
Then L is ample on Y if and only if the restriction of L to each irreducible
component of Y is ample.

We took the following definition from Peternell [19, definition 2.8]:

Definition 3.4. Let Y be a reduced complex space and EHY a compact
nowhere discrete and nowhere dense analytic set. E is called exceptional (in X )
if there is a complex space Z and a proper surjective holomorphic map
f : Y ! Z such that:

(1) fðEÞ is a finite set;
(2) f : YnE ! ZnfðEÞ is biholomorphic;
(3) f�ðOY Þ ¼ OZ.
Then one says that f contracts E (in Y ).

One can show that a map f which contracts E in Y is unique in the
following sense: if fk : Y ! Zk, k A f1; 2g both contract E in Y , then there exists
a unique analytic isomorphism u : Z1 ! Z2 such that f2 ¼ u � f1.
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In the minimal model theory of algebraic varieties, one considers more
general contractions, which are not necessarily birational maps.

The vocabulary is coherent with the one used in section 2. Indeed, if
p : ~XX ! X is a resolution of a normal germ X with isolated singularity, then its
exceptional set ExcðpÞ in the sense of section 2 is exceptional in ~XX in the sense of
Definition 3.4, and p contracts ExcðpÞ in ~XX .

The strategy we use for constructing examples of 3-dimensional singularities
with bijective Nash maps (see Section 5) works thanks to Grauert’s fundamental
criterion of contractibility (Grauert [8], see also Peternell [19, theorem 2.12]). A
particular case of it is su‰cient for our purposes:

Theorem 3.5 (Grauert’s criterion of contractibility). Let Y be a complex
manifold and let E be a reduced projective (not necessarily smooth or irreducible)
hypersurface in Y. Suppose that there exists an e¤ective divisor A whose support
is E, such that the restriction OEð�AÞ of the line bundle OY ð�AÞ to E is ample.
Then the analytic hypersurface E is exceptional in Y.

Remark 3.6. 1) If Y is a surface, the converse of the theorem is also true.
In this case, the hypothesis about the existence of A is equivalent to the fact that
the intersection form of E is negative definite. For surfaces, the hypothesis of
Grauert’s criterion of contractibility is usually expressed in this last manner.

2) The converse of Theorem 3.5 is not true in a naive form if dimC Y b 3,
as shown by examples of Laufer [13] (see also Peternell [19, Example 2.14]).
Nevertheless, there exists a converse if one replaces the search of an ample line
bundle by that of a coherent sheaf I such that suppðOY=IÞ ¼ E and I=I2 is
positive (see Peternell [19, Theorem 2.15]).

4. Criteria for an exceptional divisor to be essential

Recall that ðX ; 0Þ is supposed to be an irreducible germ with isolated
singularity. From now on, we suppose moreover that ðX ; 0Þ is normal. We need
this condition in order to be able to conclude that a bounded holomorphic
function on Xn0 extends to a function holomorphic over X .

Let p : ð ~XX ;ExcðpÞÞ ! ðX ; 0Þ be a divisorial resolution of ðX ; 0Þ. Denote by
ðEiÞi A I the irreducible components of ExcðpÞ.

Let

LðpÞ :¼ 0
i A I

ZEi

be the lattice freely generated by the Ei’s, that is, the lattice of divisors on ~XX
supported by ExcðpÞ. Inside the associated real vector space LRðpÞ, consider the
closed regular cone:

sðpÞ :¼ 0
i A I

RþEi

of the e¤ective R-divisors on ~XX supported by ExcðpÞ.
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For each pair ði; jÞ A I 2 with i0 j, consider the closed convex sub-cone
sijðpÞ of sðpÞ defined by:

sijðpÞ :¼
X
k A I

akEk A sðpÞ j ai a aj

( )

Theorem 4.1. Fix i A I . Suppose that for each j A Infig, the cone sijðpÞ
contains in its interior an integral divisor Fij such that O ~XX ð�FijÞ is generated by its
global sections. Then VðEiÞ is in the image of the Nash map N. In particular,
Ei is an essential component of p.

Proof. Consider Fij A intðsijðpÞÞ such that O ~XX ð�FijÞ is generated by its global
sections. Let us consider for a moment O ~XX ð�FijÞ not as a line bundle, but as
the subsheaf of the structure sheaf O ~XX formed by the holomorphic functions
vanishing along ExcðpÞ at least as much as indicated by the coe‰cients of Fij .

If O ~XX ð�FijÞ is generated by global sections, then there exists a function

fij A H 0ð ~XX ;O ~XX ð�FijÞÞ whose divisor has a compact part coinciding with Fij .
As p realizes an isomorphism between ~XXnExcðpÞ and Xn0, there exists a

function gij on X vanishing at 0, continuous on X , holomorphic on Xn0 and such
that fij ¼ p�ðgijÞ. As X is supposed to be normal at 0 (see the beginning of the
section), we deduce that gij A m.

By construction, vEi
ðgijÞ < vEj

ðgijÞ. Proposition 2.8 implies then that
VðEiÞUVðEjÞ. As this is true for any pair ði; jÞ A I 2 with i0 j, the proposition
follows from Proposition 2.7. r

The following corollary is a direct consequence of the theorem. We state it
as a separate result, in order to be able to use Kleiman’s criterion of ampleness in
combination with it.

Corollary 4.2. Fix i A I . Suppose that for each j A Infig, the cone sijðpÞ
contains an integral divisor Fij such that O ~XX ð�FijÞ is ample when restricted to each
component of ExcðpÞ. Then VðEiÞ is in the image of N and Ei is an essential
component of p relative to 0.

Proof. As ampleness is an open condition with respect to the topology of
LðpÞ, we see that the hypothesis implies that there exists an Fij A intðsijðpÞÞ
such that O ~XX ð�FijÞ is ample when restricted to each component of ExcðpÞ. By
Proposition 3.3, it is also ample when restricted to ExcðpÞ. This implies that
O ~XX ð�FijÞ is ample on a neighborhood of E in ~XX . But then there exists a
multiple �nijFij of the divisor �Fij (where nij A Z>0) whose associated sheaf is
very ample, which implies that O ~XX ð�nijFijÞ is generated by its global sections.

The divisor nijFij is interior to the cone sijðpÞ, as Fij was supposed to be
so. This implies that the hypothesis of Theorem 4.1 are satisfied. The con-
clusion follows. r

208 camille plénat and patrick popescu-pampu



A second corollary gives the criterion of bijectivity of the Nash map
announced in the introduction:

Corollary 4.3. Suppose that for each pair ði; jÞ A I 2 with i0 j, the cone
sijðpÞ contains an integral divisor Fij such that O ~XX ð�FijÞ is ample when restricted
to each component of E. Then the components of E are precisely the essential
components over 0 and the Nash map N is bijective.

Proof. This is an immediate consequence of Corollary 4.2. r

Remark 4.4. When ðX ; 0Þ is a germ of normal surface and p : ~XX ! X is a
resolution, the set of e¤ective divisors F A sðpÞ such that the line bundle O ~XX ð�F Þ
is ample is precisely what we called the strict Lipman semigroup in [23, Remark
4.4] (see Lipman [16, 10.4 and proof of 12.1 (iii)]). Then Corollary 4.3 restricted
to germs of normal analytic surfaces gives exactly the class of singularities found
in [23]. As explained in the Acknowledgements, the present work grew out from
the wish to generalize the results of that article to higher dimensions.

5. An infinite number of families of examples in dimension 3

Corollary 4.3 gives a method to construct examples of singularities ðX ; 0Þ
for which the Nash map N is bijective. Namely, one starts from a divisorial
resolution of a germ such that the components of the exceptional locus have
closed cones of curves of finite type. The condition on an e¤ective divisor
supported by the exceptional set to have an ample opposite in restriction to the
exceptional set translates then into a finite system of linear inequalities. If this
system has solutions inside all the cones considered in the corollary then, using
the corollary, one has an example with bijective Nash map.

One could try to start from germs defined explicitly by equations and to use one
of the available algorithms of resolution. Nevertheless, those algorithms do not
allow to compute the closed cone of curves of a component of the exceptional set.

For this reason we decided to work di¤erently. The strategy we followed was
to start from a finite collection ðEiÞi A I of smooth projective varieties, with cones
of curves which are closed and of finite type. Then choose line bundles over the
varieties Ei with ample duals and glue analytically the total spaces of those line
bundles along neighborhoods of suitable hypersurfaces of the Ei. Of course,
the first thing to adjust in order to do such a gluing, is to make a pairing of the
chosen hypersurfaces and to fix isomorphisms between the elements in each pair.

If the gluing succeeds, one gets a smooth analytic variety X which contains a
divisor E obtained topologically by identifying the chosen pairs of hypersurfaces
of the varieties Ei. The choices should be done in order to make E exceptional
in X , in the sense of Definition 3.4. Then try to construct the divisors Fij

verifying the conditions of Corollary 4.3. The hypothesis on the finiteness of the
cones of curves ensures, as explained before, that this search amounts to the
resolution of a finite system of inequalities.
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In this section we apply this strategy to construct an infinite number of
families of 3-dimensional examples with bijective Nash map. All of them are
defined by contracting (using Grauert’s criterion 3.5) a divisor with two
components inside a smooth algebraic threefold obtained by gluing algebraically
along Zariski-open sets the total spaces of suitable line bundles over geometrically
ruled surfaces. Both surfaces are obtained by compactifying total spaces of
suitable line bundles over the same irreducible smooth projective curve. After
the gluing, the two surfaces meet transversely along a curve which is isomorphic
to the starting curve. We emphasize the fact that this starting curve is any
irreducible smooth projective curve.

In the sequel we say that an algebraic surface S is geometrically ruled over a
curve C if S is the total space of an algebraicaly locally trivial bundle over C,
with fibers projective lines. We say that S is birationally ruled if it is birationally
equivalent to a geometrically ruled surface.

Let C be a smooth irreducible projective curve. Consider two algebraic line
bundles L1, L2 over C such that:

degC Li ¼ �di; Ei A f1; 2g:ð1Þ
We suppose moreover that:

di > 0; Ei A f1; 2g:ð2Þ
Denote by Ai the total space of the line bundle Li and by Ci the image of

the zero section of Li in Ai. The relations (1) and (2) imply:

Ci �Ai
Ci ¼ �di < 0; Ei A f1; 2gð3Þ

(the notation �Y means that one considers intersection numbers inside the smooth
space Y ).

One can compactify Ai by adding a curve ~CCi at infinity, getting like this a
smooth projective surface Ei, which is geometrically ruled over C. Denote by pi
the morphism:

pi : Ei ! C

which extends the fibration morphism from Ai to C.
By (3), one gets:

~CCi �Ei
~CCi ¼ di:

For i A f1; 2g, we consider the following line bundle on the geometrically
ruled surface Ei:

Hi :¼ OEi
ð�xi ~CCiÞnOEi

p�
i ðLjÞ:ð4Þ

where fi; jg ¼ f1; 2g.
It is important to notice that, as an ingredient of the construction, we pull

back one line bundle over C to the total space of a compactification of the
second line bundle. The important thing is that the total spaces of the restricted
line bundles p�

1 ðL2ÞjA1
and p�

2 ðL1ÞjA2
are canonically isomorphic (see below the

explanation of relation (8)), which allows to glue them. But p�
i ðLjÞ has not an
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ample inverse on Ei, as its degree on a fiber of the ruling is 0. This obliges us to
twist the line bundle. We want to do this without changing the crucial property
of the isomorphism of the total spaces of the rectrictions to Ai. That is why we
twist with a line bundle having a meromorphic section whose divisor is supported
by the curve at infinity ~CCi.

We pass now to the needed computations. In the definition (4), the integer
xi is chosen such that the following condition is satisfied:

�HHi is ample on Ei; Ei A f1; 2g:ð5Þ
As Ci �Ei

Ci < 0 (see relation (3)), one has (see Debarre [4, 1.35]):

NEðEiÞ ¼ NEðEiÞ ¼ Rþ½Ci�lRþ½Fi�
where ½Fi� is the class of the fibers of the ruling pi. By Kleiman’s criterion of
ampleness 3.2, condition (5) is equivalent to the system:

degCi
Hi < 0

degFi
Hi < 0

�
:

But:

degCi
Hi ¼ �xi ~CCi �Ei

Ci þ degCi
p�
i ðLjÞ ¼ 0þ degC Lj ¼ �dj:

We have used the fact that the curves Ci and ~CCi are disjoint, the projection
formula and relation (1). In the same manner, using the projection formula and
the fact that the curves ~CCi and Fi



Denote by Mi the total space of the line bundle Hi over Ei and by Ni the
total space of the line bundle Hi over Ai. Consequently, Ni is a Zariski open set
of Mi. By relation (7), Ni is isomorphic to the total space of the line bundle
p�
i ðLjÞ over Ai, which in turn is isomorphic to the total space of the split vector

bundle L1 lL2 of rank 2 over C. This gives a canonical isomorphism:

N1 FN2:ð8Þ
If we glue the algebraic manifolds M1 and M2 by identifying N1 and N2, we

obtain a new 3-dimensional algebraic manifold M :¼ M1 UM2 (with a slight
abuse of notations), in which E1 and E2 are canonically embedded. We will
consequently use the same notation for their images in M. Then:

E1 VE2 ¼ C

where C is the curve obtained by the identification under the preceding gluing of
the curves C1 and C2 (see Figure 1), identified with the initial curve C.

By construction, one has the following identification of the algebraic normal
bundles of E1 and E2 inside M:

NEi jM FHi:ð9Þ
Combining this with the relations (4) we get:

C �M Ei ¼ degC NEi jM ¼ degCi
Hi ¼ �dj

Fi �M Ei ¼ degFi
NEi jM ¼ degFi

Hi ¼ �xi

Fj �M Ei ¼ degFj
NEi jM ¼ degFj

Hi ¼ 1

8><
>: :ð10Þ

In order to apply the criterion 4.3, we want to find under which conditions
on the numbers ðd1; d2; x1; x2Þ A Z4

>0, there exist pairs ða1; a2Þ A Z2
>0 such that the

line bundle OMð�ða1E1 þ a2E2ÞÞ is ample in restriction to E1 UE2 (remember that
we have already imposed the restrictions (2) and (6)).

By Kleiman’s ampleness criterion 3.2 and Proposition 3.5, this is equivalent to:

C �M ða1E1 þ a2E2Þ < 0

F1 �M ða1E1 þ a2E2Þ < 0

F2 �M ða1E1 þ a2E2Þ < 0

8><
>: ()

ð10Þ
a1d2 þ a2d1 > 0

a1x1 � a2 > 0

a2x2 � a1 > 0

8<
: :

This in turn is equivalent to:

1

x1
<

a1

a2
< x2:ð11Þ

The inequalities (11) have solutions ða1; a2Þ A Z2
>0 if and only if at least one

of the numbers x1, x2 is b 2. It has solutions in both half-planes a1 b a2 and
a2 b a1 if and only if we have simultaneously x1 b 2, x2 b 2.

Combining this with Theorem 3.5 and Corollary 4.3, we get:

Proposition 5.1. Suppose that degC L1 < 0, degC L2 < 0. Consider
x1; x2 A Z>0. If x1; x2 b 1 and at least one of them is b 2, then E1 UE2 is
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exceptional in M. Let then p : ðM;E1 UE2Þ ! ðX ; 0Þ be the morphism which
collapses E1 UE2 in M. If moreover both x1 and x2 areb 2, then E1 and E2 are
both essential components over ðX ; 0Þ and the Nash map N is bijective.

Remark 5.2. We do not say that the Nash map is not bijective when one of
the numbers x1, x2 is equal to 1. But the method of the present paper does not
allow us to decide it in general.

Our construction shows that the analytic germ ðX ; 0Þ defined in Proposition
5.1 is uniquely determined by the choice of the curve C, the line bundles L1, L2

and the numbers x1, x2. That is why, when we want to recall these ingredients,
we denote it by

ðXC;L1;L2;x1;x2 ; 0Þ:
In the same way, we denote by

MC;L1;L2;x1;x2

the smooth algebraic manifold used to construct it.

6. Analytic invariants of our families of examples

In the introduction, we gave the list of the known examples of germs of
dimension at least 3, which have a bijective Nash map. It is natural to ask if the
examples constructed in the previous section are new, or cover partially the
known ones. As the normal quasi-ordinary germs are isomorphic to germs of
simplicial toric varieties (a result proved by the second author [24, Theorem 5.1],
generalizing like this the hypersurface case treated by González Pérez [6, Prop.
14]), and as in all our examples there are exactly two essential divisors, this
amounts to ask if some of them are analytically isomorphic to germs of normal
toric varieties. Through the propositions 6.3 and 6.4, we show that this is the
case only when the curve C is rational.

The next proposition is a direct generalization of a result proved by Nash
[17, page 35]. It compares from the viewpoint of birational algebraic geometry
the centers on di¤erent resolutions of a given essential divisor over ðX ; 0Þ.

Proposition 6.1. Let ðX ; 0Þ be a germ of normal analytic variety of
dimension nb 2, with isolated singularity. If pk : ~XXk ! X , k ¼ 1; 2 are two
resolutions of X and Ak H ~XXk are essential components corresponding to the
same essential divisor over ðX ; 0Þ, then A1 � Pn�c1�1 is birationally equivalent to
A2 � Pn�c2�1, where ck :¼ codim ~XXk

Ak.

Proof. Denote by n the essential divisor whose center on ~XXk is Ak, for
k A f1; 2g. Consider the morphism bk : BAk

ð ~XXkÞ ! ~XXk obtained by blowing-up

Ak in ~XXk, and the exceptional divisor Dk HBAk
ð ~XXkÞ of bk. Then, Dk is the

center of n in BAk
ð ~XXkÞ. It is birationally equivalent to Ak � Pn�ck�1. Indeed,
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there exists a smooth Zariski open set Uk HAk whose normal bundle in ~XXk

is algebraically isomorphic to Uk � An�ck , which shows that b�1
k ðUkÞF

Uk � Pn�ck�1. But Dk is birationally equivalent to b�1
k ðUkÞ.

Now consider the bimeromorphic map r :¼ ðp � b2Þ
�1 � ðp � b1Þ : BA1

ð ~XX1Þ !
BA2

ð ~XX2Þ. As the center of the valuation n on BAk
ð ~XXkÞ is the irreducible

hypersurface Dk, this shows that the closure of rðD1Þ in BA2
ð ~XX2Þ is equal to

D2. This means that r realizes a birational equivalence between D1 and D2.
The conclusion of the proposition follows. r

In order to analyze the germs ðXC;L1;L2;x1;x2 ; 0Þ constructed in the previous
section, we will use Proposition 6.1 only through its Corollary 6.2. Before
stating it, let us introduce some notations.

Suppose that ðX ; 0Þ is a normal germ of 3-fold with isolated singularity.
Consider a fixed resolution p : ~XX ! X of it. If v is an essential divisor over
ðX ; 0Þ, and Av is its center on ~XX , define its smooth representative RðvÞ to be:

� the unique minimal model of Av, if Av is a curve or a surface which is not
birationally ruled;

� the curve C, if Av is birationally equivalent to C � P1.
Recall from the introduction that EðX ; 0Þ denotes the set of essential divisors

over ðX ; 0Þ.

Corollary 6.2. The collection ðRðvÞÞv AEðX ;0Þ of abstract smooth curves
or minimal surfaces, parametrized by the set of essential divisors of ðX ; 0Þ, is
independent of the choice of resolution.

Proof. This is a direct consequence of the previous proposition and of the
fact that a non-birationally ruled surface has a unique minimal model, whether if
the smooth projective surfaces C1 � P1 and C2 � P1 are birationally equivalent,
then the curves C1 and C2 are isomorphic (see Bădescu [1, Theorem 12.2 (c)]).

r

An immediate consequence of the corollary is:

Proposition 6.3. 1) If ðC;L1;L2; x1; x2Þ and ðC 0;L 0
1;L

0
2; x

0
1; x

0
2Þ are chosen

such that C, C 0 are non-isomorphic smooth projective curves, then the germs
ðXC;L1;L2;x1;x2 ; 0Þ and ðXC 0;L 0

1
;L 0

2
;x 0

1
;x 0

2
; 0Þ are not analytically isomorphic.

2) If C is not rational, then ðXC;L1;L2;x1;x2 ; 0Þ is not analytically isomorphic to
a germ of toric variety.

Proof. 1) The set of smooth representatives of the essential divisors of the
germ ðXC;L1;L2;x1;x2 ; 0Þ, each representative being counted with its multiplicity, is
equal to 2C. Point 1) follows then from Corollary 6.2.

2) Any germ ðX ; 0Þ of toric variety has toric resolutions. The irreducible
components of the exceptional locus of such a resolution are orbit closures, and
in particular are rational varieties. This shows that, when X has dimension 3, all
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the smooth representatives of the essential divisors are rational curves. Point 2)
follows immediately. r

Proposition 6.4. If C is rational curve, then ðXC;L1;L2;x1;x2 ; 0Þ is analytically
isomorphic to the germ of an a‰ne normal toric variety at the unique 0-dimensional
orbit.

Proof. If C is rational, it is isomorphic to a toric curve, and E1, E2 are
isomorphic to toric surfaces, because the only geometrically ruled surfaces over
P1 are the Hirzebruch surfaces. By recalling the shapes of the fans which define
the Hirzebruch surfaces and the way one gets the fan defining an orbit closure
from a given fan (see Fulton [5]), one sees that a candidate fan D for a toric
3-fold isomorphic to M and such that E1, E2, C are orbit closures should be as in
Figure 2.

In it, we have represented the intersections of the edges a, b, c, d, e, f of the
fan (that is, its 1-dimensional cones) with a transversal plane. The fan D lives
inside the 3-dimensional real vector space NR, where N is the associated weight
lattice. For each edge l, we denote by vl the unique primitive vector of N
situated on l. For each cone s of D, we denote by Os the associated orbit and
by Vs :¼ Os the orbit closure inside the toric variety ZðN;DÞ. If s is strictly
convex with edges l1; . . . ; ln, we write also s ¼ hl1; . . . ; lni.

As we want ZðN;DÞ to be smooth, D must be a regular fan. Moreover, we
would like to get E1 ¼ Vb, E2 ¼ Vc, C ¼ Vhb; ci verifying the numerical constraints
(10). Those equations are equivalent in our toric context with:

Vhb; ci � Vb ¼ �d2

Vhb; ci � Vc ¼ �d1

Vhb; ei � Vb ¼ �x1

Vhc;ei � Vc ¼ �x2

8>>><
>>>:

ð12Þ

where the intersection numbers are taken inside ZðN;DÞ. The equalities
Vhb; ei � Vc ¼ Vhc; ei � Vb ¼ 1 are automatically satisfied, as ZðN;DÞ is smooth.

Figure 2. Figure illustrating the proof of Proposition 6.4
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We express the vectors vc, vd , vf in the basis ðva; vb; veÞ of N. As we want
Vb, Vc to be Hirzebruch surfaces such that Vhb; ei ¼ Vb VVc has negative self-
intersection in both of them, we require that va, vb, vc, vd be coplanar. It is the
matter of a simple computation to see that this condition, combined with the
requirement that D be regular, shows the existence of a1; . . . ; a4 A Z such that:

vc ¼ �va þ a1vb

vd ¼ �a2va þ ða1a2 � 1Þvb
vf ¼ a3va þ a4vb � ve

8<
: :ð13Þ

In order to compute the intersection numbers of the left-hand side of (12)
from relations (13), we use the general formula (see Fulton [5, Section 3.3]):

divðwmÞ ¼
X
l ADð1Þ

ðm; vlÞVl ; Em A Mð14Þ

where wm is the monomial corresponding to m A M (a character of the associated
algebraic torus) seen as a rational function on ZðN;DÞ, and Dð1Þ is the set of
edges of D. Here M :¼ HomðN;ZÞ denotes the lattice of exponents of mono-
mials.

In our case, if ðv�a ; v�b ; v�e Þ denotes the basis of M dual of ðva; vb; veÞ, we get
the following formulae by applying (14) to m A fv�a ; v�bg:

divðwv �a Þ ¼ Va � Vc � a2Vd þ a3Vf

divðwv �
b Þ ¼ Vb þ a1Vc þ ða1a2 � 1ÞVd þ a4Vf

�
:

This implies:

0 ¼ Vhb; ci � divðwv �a Þ ¼ �Vhb; ci � Vc þ a3

0 ¼ Vhb; ci � divðwv �
b Þ ¼ Vhb; ci � Vb þ a1Vhb; ci � Vc þ a4

0 ¼ Vhb; ei � divðwv �
b Þ ¼ Vhb; ei � Vb þ a1

0 ¼ Vhc; ei � divðwv �a Þ ¼ �Vhc; ei � Vc � a2

8>>><
>>>:

By combining this with the equalities (12), we get:

a1 ¼ x1; a2 ¼ x2; a3 ¼ �d1; a4 ¼ d2 þ d1x1:

We have obtained the required decomposition of the vectors vc, vd , vf in the basis
ðva; vb; vcÞ of N:

vc ¼ �va þ x1vb

vd ¼ �x2va þ ðx1x2 � 1Þvb
vf ¼ �d1va þ ðd2 þ d1x1Þvb � ve

8<
: :ð15Þ

We want to see now if this fan is a subdivision of a strictly convex cone g
in NR. This is equivalent to the fact that a, e, d, f are the edges of a strictly
convex cone. After some routine computations, one sees that the only non-
trivial requirement is that a linear form on NR which vanishes on vd and ve
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takes non-vanishing values of the same sign on va and vf . Such a linear form is
m :¼ x2v

�
b þ ðx1x2 � 1Þv�a A M. Then:

ðm; vaÞ ¼ x1x2 � 1

ðm; vf Þ ¼ d1 þ x2d2

�
:

As d1 þ x2d2 > 0, we have to require that x1x2 > 1. This is precisely the
condition we had found at the end of Section 5, ensuring that E1 UE2 is
exceptional in M (see Proposition 5.1). We deduce that, if x1x2 > 1, then
gd1;d2;x1;x2 :¼ ha; e; d; f i is a strictly convex cone whose edges are a, e, d, f .

Now, as ZðN;DÞ is toric, we can easily show that it is isomorphic to the
manifold MP1;L1;L2;x1;x2

, where degP1 L1 ¼ �d1, degP1 L2 ¼ �d2. We deduce:

ðXP1;L1;L2;x1;x2
; 0ÞF ðZðN; gd1;d2;x1;x2Þ; 0Þ:

The proposition is proved. r
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