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We characterize the polynomials P(X, ¥) that are irreducible over a number field
K and such that for some ¢ K, the specialized polynomials P(1", ¥) are reducible
in K[ Y7 for infinitely many integers m. As a consequence, we show for example
that if P is absolutely irreducible and if ¢ is neither a strict power in K nor of the
form —4w* or —w? with we K, then P(;™, ¥) is irreducible in K[ Y] for infinitely
many integers m (cf. Corollary 1.8).  © 1992 Academic Press, Inc.

In this paper, we let P= P(X, ¥)e Q(X)[ Y] be a polynomial in ¥, K be
a number field, and ¢ be an element of K. We assume that ¢ is different from
0 and is not a root of unity, i.., te K™\ . Our main results are of two
types (labeled 1] and [@ below); they are complete characterisations of the
couples {P, t) for which

([ The equation P(:™, y}=0 has a solution y & K for infinitely many
integers m.

3] P is irreducible in K(X)[¥] and the polynomial P(:™, Y) is
reducible in K[ Y] for infinitely many integers m.

Problem is the more interesting. Polynomials of the form P(X, ¥Y)=
A(X, YY" — X, with A(X, Y)eK(X)[Y]), are good candidates; so are
polynomials of the form P(X, ¥Y)= A(X, ¥)*+4X. We will show that the
solutions to problem [Z) are the irreducible divisors of these polynomials.
The main results (Theorems.1.1 and 1.2) and their consequences are
precisely stated in Sect. 1. They should be regarded as irreducibility results
for the specialized polynomials P(¢*, ¥) and thereby as new versions of
Hilbert’s irreducibility theorem (see in particular, Corollaries 1.7 and 1.8).
Recall that Hilbert's irreducibility theorem [Hi, La2, Chap. 9] asserts that
for any r polynomials P,(X, Y), .., P, (X, Y), irreducible in K(X)[ Y], there
exist infinitely many x e K such that each of the polynomials P;(x, Y) is
itreducible in K[ Y], i=1, .., r. Using Siegel’s theorem on integral points
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on algebraic curves, one can show that, for all but finitely many a € X, one
can take x of the form a + ¢ {for m» 1) [Se, Chap. 9.7]. Here we improve
on this result by specifying under what condition @ can be taken to be 0,
We also use Siegel's theorem but the reduction to it is different and
requires some preliminary irreducibility results for the polynomials
P(X™, Y) (Sect. 2). The proofs of Theorems 1.1 and 1.2 are given in Sect. 3.

Noration. If k is a field, p, (k) (or simply u, when there is no risk of
confusion) denotes the set of all nth roots of unity in . The set y, is the
union of all y,, for ne N, If T is an indeterminate, k({7T)) denotes the field
of formal power series in T with coefficients in k. If n is any integer, 7"
is a nth root of T in the algebraic closure k(T) of k(T) and k(T ") denotes
the union of all fields k(7'"), for neN. Unless otherwise specified, the
word “polynomial” means “polynomial in the one variable ¥.” Polynomials
are very often considered up to a nonzero constant, for example, in
statements like “Pe K(X)[ Y].” Also, we always assume that the specialized
polynomials P(x, ¥) that we consider are defined, that is, x is not a pole
of the coefficients in £(X) of the polynomial P(X, ).

The integer e(P) that we now define is a controlling parameter for both
our problems. Assume & has characteristic 0 and P= P(X, Y)ek(X)[Y]
(deg, P2 1). The integer e=¢(P) is defined as the smallest integer such
that the polynomial P(X, ¥) has a root in k({(X'*)) (existence of e(P)
foliows from Puiseux’s theorem).

Remarks. (a) Assume that P is irreducible in £(X)[¥] and consider
the factorization of P in the u.fd. k((X))[ Y]. The degrees of the irreducible
polynomials in this factorization correspond to the multiplicities of the
zeroes of the function x on a smooth model of the curve P(x, y)=0. The
integer e(P) is the smallest of those integers.

(b) The integer e(P) remains the same if P(X, ¥) is replaced by
P{aX, Y), for any a€k; the definition of e(P) is geometric. This will be of
frequent use throughout this paper.

(c) If P is irreducible in &(X)[ Y], then P has a root in £(X"/*) ifl
it has a root in &(X "} iff all of its roots lie in £(X'*) (where e =e(P)).

The central role played by the'paramcter e=e(P) is revealed by the
following lemma.
b

LEmMa O.1. ‘Let P=P(X, Y)ek(X)[Y]). The following statements are
equivalent. - ’ *
() P(X*, Y) is irreducible in k(X)[ Y],
(it) PLX™, Y) is irreducible in k(X)[ Y] for all integers mz 1.
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Proof. Denote by P, the polynomial P (X, ¥)= P(X*, Y). Assume that
P, is irreducible in £(X)[ Y]. Let m = 1 be an integer. We show below that
the polynomial P.(X™, ¥)=P(X*", Y) is irreducible in k(X)[Y]; this
clearly implies that P(X™, ¥) is irreducible in A&(X}[Y].

By definition, the polynomial P, has a root in &£((X)). Denote this root
by #(X}. Consider this diagram:

kX, H(X™))

/N

k(X) KX, Y (X))

k(X™)
We have
LE(X™, F(X™)): k(X™)] = [k(T, #(T)): k(T)] =degy P..

On the other hand, it follows from Eisenstein’s criterion that the polyno-
mial T™ — X™ is irreducible in k((X"™)}[T]. In particular, we have

L(X, F(X™)): k(X F(X™))] = [k(X): K(X™)]=m.
Consequently, one gets
(X, Z(X™)): k(X)] =degy P.,
which means that P,(X™, Y) is irreducible in k(X)[Y].

1. MAIN RESULTS AND CONSEQUENCES

L.1. Statement of the Main Results

Theorems 1.1 and 1.2 below relate respectively to problems labeled
and in the introduction.

THEOREM 1.1, Let P=P(X, Y)e Q(X){ Y], let K be a number field, and
let te K*\p,,. Assume P is irreducible in Q(X)[Y]. The following
Statements are equivalent.

(i) The equation P(¢™, y)=0 has a solution y € K for infinitely many
integers m.

(il) There exists an integer u such that the polynomial P(1*X*, Y) has
a root in K(X).

FEE, -,
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(iii) The polynomial P is a degree e divisor in K(X)[Y] of some
polyromial of the form

AX, YY —t7*X with Ae K(X)[Y]andueN
(where e = e(P)).

Notes. (a) We have assumed “P irreducible in Q(X)[Y]” so as to
simplify the formulation of statement (iii). One may always restrict to this
case when studying the equation P(:™, y)=0.

{b) The term “+*" in statements (ii) and (iii) comes from the fact that
if a polynomial P(X, Y) satisfies condition (i), then so does any polynomial
P(r*X, Y), with ueZ. '

TueoreM 1.2. Let K be a number field, let P=P(X, Y)e K(X)[Y], and
let 1€ K*\p,. Assume P is irreducible in K(X)[Y]. The following
Statements are equivalent.

(i} The polynomial P(t™, Y) is reducible in K[ Y] for infinitely many

integers m.

(i) There exists an integer u such that the polynomial P(t*X°, Y) is
reducible in K(X)[ Y] {where e =e(P)).

(iii) The polynomial P is a divisor in K(X)[ Y] of some polynomial of
the form

AX, Y)Y -7

or

dA(X, Y)Y +17"X,

where Ae K(X)[Y], p is some prime number, and ue N.

The statements (ii) == (i) (left to the reader) and (ili}=-(ii) (below) are
the easy parts in both Theorems 1.1 and 1.2. The two converses are proved
in Sects. 2 and 3.

Proof of (iii) = (ii) in Theorem 1.2. We may assume that =0 in both
conditions {ii) and (iii). What we actually prove is that condition (iii)
implies that P(X7, Y} (or P(X* Y)) is reducible in K(X)[Y]; the conclu-
sion (ii) then follows from Lemma 0.1. Of course, this is clear if the polyno-
mial P is exactly of the given form. More generally, assume that P is a
divisor of a polynomial of the given form. Let %, be a root in K{X) of the
poiynomial P.

Ist case. P is a divisor of A(X, Y)* —X. Then, the function fieid
K(X, %,) contains a pth root X' of X. Thus we have

[K(X, #,): K(X"?)] =degy, P/p < degy P.
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Consequently, P(X, Y) is reducible in K(X'?)[¥], or, equivalently,
P(X?, Y) is reducible in K(X)[Y].

Note. This last point is left to the reader. It will be of frequent use
throughout the paper, just like this other similar one. For PeK(X)[ Y]
and me N, the following statements are equivalent: (i) P(X™, Y) has a root
in X(X) and (ii} P(X, Y} has a root in K(X ™), where X /" is any mth root
of X in K(X).

2nd case. P is a divisor of 44(X, Y)*+ X. Then, the function field
K(i, X, %,) contains a 4th root X' of X (note that —4 = (1 +)*). Thus we
have

[K(XY, #p): K(X)) < [KU, X, %p): K(X'*)] <2 degy P/4 < degy P.

Consequently, P(X,Y) is reducible in K(X“)[Y], ie, P(X*, Y) is
reducible in K(X)[¥].

The proof of (iii)= (ii) in Theorem 1.1 can be worked out on similar
principles.

Remark 1. In (iii) in both Theorems 1.1 and 1.2, the polynomial P may
be only a strict divisor of some polynomial of the given form. In Sect. 2, we
give an example of a polynomial P that has a root in K(X ¥*) but is not
of the form A(X, ¥)*— XB(X, Y), for any a>1 and 4, Be Q(X)[¥] (cf.
Sect. 2.1).

1.2 Consequénces of Theorem 1.1

The following conclusions about the equation P(¢™, y)=0 should be
drawn from Theorem 1.1.

CoroLLARY 1.3. Let P=P(X, Y)e Q(X)[ Y], K be a number field, and
te K™\, Assume that P is irreducible in Q(X)[ Y] and that the equation
P(™, y)=0 has a solution y € K for infinitely many integers m.

Then, the following are true:

(a) PeK(X)[Y] and deg, P=e(P).

(b) The equation P(X, Y)=0 has a solution in (X ">).

(c) More precisely, there exists an integer u such that the roots
Y. ... %, in Q(X) of the polynomial P are the e (=e(P)) conjugates over
Q(X) of an element %, € K((1~*X)"*).

(d) Any field that contains K and the coefficients of ¥, regarded as a
rational fraction in X%, contains a eth root of ¥, i=1, .., e (where u is any
integer satisfying (c)).
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(e} Let d be the smallest integer such that 1€ K*. Then, all but a finite
number of those integers m for which P(t™, y)=0 has a solution ye K lie in
a same coset modulo d (namely, the coset of u).

Remark 2. Geometrically, the condition “deg, P=e(P)” means that
the function x has a unique zero on a smooth model of the algebraic curve
P(x, y)=0. It is also equivalent to the irreducibility of the polynomial P in
R((X)LY].

Remark 3. The integer d is defined in (e) as the smallest integer such
that #“e K°. Related to 4 are the integers

d'=[K(t"):K] and  d"=[K(u, ") K(g)].
One can show that
d"/did'je

and that these inequalities are strict in general. Thus, conclusion (e} of
Corollary 1.3 is true with d deplaced by d” (but not as good). It is false
with d replaced by 4’ {take P=Y*— X and r= —9 for which we have
e=4,d=2, and d'=4),

Remark 4. In (¢), the integer u can be required to satisfy 0 € u < d; then
it is unique. More precisely, two integers v and v satisfying condition (c)
are necessarily congruent modulo 4. {(Assume that the polynomial P has
some root in K({~“X)"”) and some other one in K({r X)), Set P, =
P(t“X, Y). The polynomial P,(X, Y) has some root in K(X ') and some
other one in K{(r*~°X)'*). Conclusion (d) may be applied to the polyno-
mial P,: one gets that the field K contains an eth root of *~*. Conse-
quently, " e K* and u=v [mod 4].)

Proof of Corollary 1.3. We assume that condition (i} of Theorem 1.1
holds. Then (a) and (b) are part of (iii). Now, from (ii), there exists ueN
and &'(X)e K(X) such that

(1) P(“X¢, Z(X))=0.

The rational fraction Z(X) can be written in a unique way:
e—1
ZX)=Y X)X, where =eK(T),i=0,..,e—1.
Q)

Substituting an eth root {z “X)"* of (+7“X) for X in (1) yields
P(X, Z((t7“X)")) =0,

e X g =y T L s .t T e
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Set @, = Z({t~“X)"*). The roots %, ... %, in Q(X) of the polynomial 7 are
the e (=e( P)) conjugates over Q(X) of &,. For i=1, .., e, % is of the form
e—1
2y #=73% H(t7X) LX), where [eyu,.
i=0
Let L be any field that contains the field K and the coefficients of %,
regarded as a rational fraction in X . Then @, can be written in a unique
way:
e—1
Y p(X) X%, where geL(T)i=0 .,e— i
i=0

i=

(3) %=

Tt follows from (2) and (3) that, for every index i such that %; %0, we have
L)Y e L.

But the indices 7 such that x, 0, together with the integer e, are relatively
prime. Indeed, this follows from the minimality of the integer e=e(P).
Therefore, one obtains

C(t—u)l."e el

This proves (d). It remains to prove (¢). We may assume that #=0. Then
it follows from Remark 4 that

(4) T1f P(s"X*, Y) has a root in K(X), then v=0 [mod 4].
Now, let v be an integer such that v#0 [modd]. The polynomial
P=P#FX".Y) h:cls no root in {((X ). Applying Theorem 1.1 ((ii) = (1)} to
the polynomial P (note that e(P)=1) yields

(5) The equation P(¢**™, y)=0 has a solution ye K for only finitely
many integers m.

This concludes the proof of (e).

The following corollaries are consequences of conclusions (d) and (e) of
Corollary 1.3.

COROLLARY 14, Let P=P(X, Y) be irreducible in Q(X)[Y]. Let K be
a number field and t be an element of K that is not a strict power in K.
Assume that the equation P(t™, y)=0 has a solution y € K for all but finitely
many integers m. Then deg, P=1.

(Corollary 1.4 follows immediately from Corollary 1.3 (e).)

CoROLLARY 1.5. Let P=P(X, Y) be irreducible in Q(X)[Y] and K be a
number field. Let t, and t; be two elements of K such that, for some choice
of ¢, one has K(14*) 0 K(u,, 1*)=K. Let d, be the smallest integer such
that 191¢ K®. Assume that
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(x) the equation P(t" v)=0 has a solution YeK for infinitely many
integers m such that m#0 [mod d, ].

Then, the equation P(t7, y)=0 has a solution YeK for only finitely many
integers m.

For example, let % Q(\/T)( NQ(X) and P be its irreducible polynomial
over Q(X). The equation P(2”, y}=0 has a solution yeQ for infinitely
many odd m. From Corollary 1.5, we may conclude that the same is true
for the equation P(1™, y)=0iff 2¢ is a square in Q.

Proof of Corollary 1.5. Assume that both P(r?. y)=0, i=1, 2, have a
solution ye K for infinitely many integers m. From Corollary 1.3, there
exist two integers u, and u, such that the polynomial P has some root in
K((17%X)"%)), i=1, 2. From Corollary 1.3 (d), we get

K(e5) 2 KL tw/e) forsome {'ey,.

It follows from the assumption on ¢, and 1, that
K{{twy=K

This shows that 1¥'e K*. Therefore u, =0 [mod d,] and the equation
P(1r7, y)=0 has a solution ye K for infinitely many integers = such that
m=0 [mod d,]. But this, combined with Corollary 1.3 (e}, contradicts
assumption (=),

L3. Consequences of Theorem 1.2

Theorem 1.2 contains the following irreducibility results.

COROLLARY 1.6. Let K be a number field and P = PX, Y e K(IX)[¥].

(@) Assume that the polynomial P(X*, Y) is irreducible in QX[ Y]
(ie, absolutely irreducible). Then, Jor all te K*\y, ., the polyromial
P(t™, Y) is irreducible for all but finitely many integers m,

(b) If P is irreducible in K(X)[Y] and has a root in Q((X)) (ie.,
e=1), then, for all te K*\ u.., the polynomial P(1", Y) is irreducible for all
but finitely many integers m.

Proof. (a) Only note that “P(X*, Y) irreducible in Q(X)[Y]” implies
“P(r*X*, Y) irreducible in K(X)[Y] for all re Kk and all ueZ”
(b) corresponds exactly to the special case “e = 1" of Theorem 1.2,

Note. Corollary 1.6.(a) is false if the polynomial. P(X°, Y) is only
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assumed to be irreducible in K(X)[Y]. (Consider for example the
polynomial P=¥?=2X))

We now derive a new version of Hilbert’s irreducibility theorem.

COROLLARY 1.7. Let K be a number field, and P,, .., P, be n polyno-
mials, irreducible in K(X[ Y. Let te K*\ u,,. Then there exists an integer
s of K such that, for all but finitely many integers m, the polynomial
P (st™, YY) is irreducible in K[ Y], i=1,..,n

The special case of Corollary 1.7 where K=Q and teZ was proved in
[De2] in a completely effective way. The result here is more general but is
not effective, due to ineffectiveness in Siegel's theorem. In [De2], one uses
some of Sprindzuk’s results {Sp, Del] instead. Corollary 1.7 shows in par-
ticular that Hilbert’s irreducibility theorem is “compatible with the strong
approximation theorem for algebraic numbers”; that is, there exist clements
of K that satisfy simultaneously the conclusions of both theorems. This
consequence of Corollary 1.7 was proved independently by Y.Morita
[Mo]; we point out that in the case K=Q, it was already contained in
[Del, Sect. 3.3].

Proof of Corollary 1.7. In fact, we prove that, for sufficiently big m and
with the extra assumption deg, P; =2 2, i =L, ..., r, the polynomial P,(st", Y)
has no root in K for i=1, .., n. A standard argument (which is recalled in
Sect. 3 (Proposition 3.1)) allows us to restrict to this weaker conclusion.
One may also assume that the polynomials are irreducible in Q(X)[Y]:
indeed, it is weil known that if P(X, Y) is irreducible in K{X)[ Y] but is not
absolutely irreducible, the K-rational points {x, y} on the affine curve
P(x, y)=0 are singular points and so are in finite number. Now let f be the
Le.m. of the integers e(P,), .., e(P,) and 7 be an fth root of ¢. The polyno-
mials P,,.., P, are irreducibie in K(z}X)[¥Y]. From {Del, Sect. 3,
Proposition 3], there exists an integer s of K such that the polynomials
P.(sX/, Y), ., P(sX/,Y) are irreducible in K(t}{X)[Y]): for example,
one can take for s any sufficiently big prime number. Apply now
Corollary 1.6 (b) to the data (P,(sX”, Y), K(t), t), i=1, .., n. One gets that
for all but finitely many integers m, the polynomial P,(s(z™), Y) is
irreducible in K{z)(X)[ Y]. In particular, for all but finitely many integers
m, the equation P,(sr™, y) =0 has no solution yeK, i=1, . n

We end this section with a rather unexpected result. Its proof, which
relies on some subsequent results, is given in Sect. 2.3.

CoROLLARY 1.8. Let K be a number field and P=P(X, Y)e K(X)[ Y] be
an absolutely irreducible polynomial. Let t be an element of K that is neither
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a strict power in K nor of the form —aw* with we K. Then the polyromial
P(1™, Y} is irreducible in K[ Y for infinitely many integers m (in fact, for all
m in an arithmetic progression (an + Jimo)

Remark 5. (a) Unlike Corollary 1.7, Corollary 1.8 does not extend to
the case of several polynomials (think of P,=¥>—X, P,= ¥?—2X and
t=2}

(b) The conclusion of Coroliary 1.8 may be false for ¢ of the form
—4w* or —w? with we K. Take P=Y*— X and t= —4. We have

P(Izm, Y) — Y4 _ 2401
P(rm+l Y)= Y4442

It follows from the reducibility in Q(X)[¥] of ¥*~X* and Y%+ 4X* that
for all integers m, the polynomial P(+”, ¥) is reducible in QX 1]

{c) Corollary 1.8 is false if the polynomial P is not assumed to be
absolutely irreducible. For example, take for P the irreducible polynomial
of /X+/2 over Q(X). The polynomials P(X?, ¥) and P(2X> ¥) are
reducible in Q(X)[Y]: indeed, they have respectively X +\/§ and
\/5(1 + X) as a root, two elements of degree2 over Q{X) whereas
deg, P=4. Thus, for r=2, the polynomial P(r”, ¥) is reducible in
Q(X)[ Y], for all integers m.

2. THE POLYNOMIALS P(X™, Y}

2.1 An iff Criterion for the Irreducibility of the Polynomial P(X™, Y)

For the rest of the paper, for P irreducible in K(X)[ Y], we denote by

Yp. a root in K(X) of the polynomial P; note that ¥y is a primitive element
over the field K(X) of the function field

K(XY)[YP(K(X)[Y])
In this section, the field X can be any fleld of characteristic 0.

LEMMA 2.1, Let P=P(X, Y) be irreducible in KX Y)and m=2 be an
integer. The following statements are equivalent.

(i) The polynomial P(X™, Y) is reducible in K(X HYL
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(i) XeK(X,%p)? for some prime divisor p of m, or 4/m, and
Xe —4K(X, ¥,)%

(iii) The polynomial P is a divisor in K(X)[ Y] of some polynomial of
the form

A(X, YV —X  for some prime divisor p of m
or (1)
44(X, Y)*+X  and then 4/m,

where Ae K(X)[Y].
Note that (ii) = (iii} in Theorem 1.2 is a consequence of Lemma 2.1.
Proof of Lemma 2.1. Consider the diagram
K(XV™ @)

/

K(X'"™) K(X, ¥p)

/

K(X)
where X ' denotes some mth root of X, The condition (i) is equivalent to
LK(X'™, Fp): K(XV™)] < [K(X, %p): K(X)]
or also to

[K(X'™, %p): K(X, )] < [K(X™)): K(X)].

This last condition is equivalent to the reducibility of the polynomial
I — X in K(X, %p)[T). Thus, the equivalence between (i) and (ii) comes
from Capelli’s theorem [Lal, Ch. VIII, Theorem 16]. Condition (iii) is a
reformulation of condition (ii).

Assume P(X™, ¥) is reducible in K(X)[¥]. Let p be any of the integers
for which (1) holds (p is a prime number or p = 4). It follows from (it) that
Xe& K(X, %,.)". The definitions of e = e(P) and %, then lead to

Xe K((X))r,

Therefore the integer p is necessarily a divisor of e (use the X-adic
valuation). This shows that Lemma 2.1 contains Lemma 0.1 given in the

A rt T AMIEL AT et mT
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introduction. The following proposition summarizes the results of this
section,

PROPOSITION 2.2. Let P=P(X, Y) be irreducible in K(X)[Y]. Then

— Either P(X*,Y) is irreducible in K(X)[Y] and then P(X™, Y) is
irreducible in K(X)[ Y] for ail integers m,’

— Or, P(X*, Y) is reducible in K(X). Y] and then,

* There exists a divisor p of e such thar P is a prime number or p=14
and P{X?*, Y) is reducible in KX)[ 1)

*» P(X7, Y) is reducible in K(X)[ Y] iff mis a multiple of some integer
P that satisfies = In particular, if (e, m)= 1, then P(X™ Y } is irreducible in
Kx)[r],
22. An Example

We indicated previously that in Lemma 2.1(iii), the polynomial P may
be only a strict divisor of some polynomial of the given form. We will
actually prove a little bit more. We give an example of a polynomial
P=P(X, Y)eQ(X)[ Y], absolutely irreducible, which has a root in
Q(X"*=} but is not of the form A(X, Y)¥— XB(X, Y) with d> 1 and 4 and
B in Q(X)[ Y7 (up to a constant in Q(x).

ExampLE. Let P be the irreducible polynomial over Q(X) of #,=
X104 X2 x3° It is easily checked that Q(X, #)=Q(X'?), so0
[Q(X, Z,): Q(X)] = [Q(X, #,): Q(X)] =deg, P=9 and that e=9. Note
then that if P is of the form A(X, Y)'— XB(X, Y)¢ with d>1, then
P(X Y) is reducible in Q(X)[¥]. Therefore, from Proposition 2.2, it
suffices to prove that P is not of the given form for d=3. So assume that
the polynomial P can be written

P, Y)=(a; Y +a, Y+ a, Y +a,)* ~ X(b, Y4 b, Y2 +5, Y +b,),
where a;, b6 Q(X). Then the polynomial P(X?, Y) splits as
Ays—Xbyy . a,.—Xb Aoz — Xb
P(X3, Y)=|:Y3+ 23 23 A 13 y o Jos 03]
33— Xbs,y @33 — Xbs; 33— Xbsy
a3 — jXb.y a3 — jXb,, o3 — jX by,
x| Y342 Y4 - - :l
l: ay; — jXby, Q13 — jXby; Q33— jXby,y

a3 "J:szza Y2+a13_f:sz§3 Y+003“‘J’:2Xboa}
a3 —j Xbs, 33— j Xbj; 33— Xby,y

x[:}” +
where
a3 =ar‘(X3)

i={(,1,2.
bi3=bI(X3) for =0
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Now, the polynomial is also divisible in Q(X){ Y] by the irreducible
polynomial over Q(X) of

W XN=X1P+ XX,
Some calculations show that this polynomial is
(Y+2XP -X(Y+ X+ 1)
=(1-X{[Y*+3XY>+3X(X-1) Y+ X(X?—4X-1)].

Up to the constant 1 — X, this polynomial must be one of the three factors
of P(X?, ¥) above. With no loss of generality one may assume that it is the
first one. Hence, one gets

dyy— Xbyy —1X

@33 — Xbs;

a3 —Xby; 2

= =3X-3X

a3;— Xb33

ag; — Xbos 2

208 o X(XT—-4X—-1).
as3 — Xby; ( )

The first two equations can be rewritten as

ay3— (b +3a33) X+ by X*=0
(@1 +3X7b3y) + (3a3;— bi3) X = 3(ax +by) X*=0.

Since 1, X, X are linearly independent over Q(Xx?*), we must have
dyy= b3 =0, ie, ay=b;=0, whence a contradiction.

2.3. Proof of Corollary 1.8

We prove that under the assumptions of Corollary 1.8, the polynomial
P(t™, Y) is irreducible in K[¥] for all m in apn arithmetic progression
(o1 + B),50- From Corollary 1.6(b), it suffices to show that there exists an
integer f such that the polynomial P(rPXe, Y) is irreducible in KXN[YY);
one may then take o =¢e=e(P). :

Let L be the set consisting of all the divisors p of e such that p is a prime
or p=4. Let pe L; from Lemma 2.1, if P(+“X”, Y) is reducible in X{X)[ Y],
then

X e (K(X, ¥p)) if pisaprime

_ o (2)
t~“Xe —4(K(X, %)) if p=4

M e ek A e oo

o mmaee mAe L T
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Now let two elements » and v be such that P(1“X?, Y) and P(t"X?, ¥) are
reducible in K(X)[ ¥]. Assume p#4 (the case p=4 is similar). It follows
from (2) that r—*¢ (K(X, %p))?, or, equivalently, the field K(X, %)
contains a pth root 1"~ "2 of '~ % But P(X, Y}is assumed to be absolutely
irreducible; equivalently, the field K(X,%,) is a regular extension of X
(e, K(X, %)~ K=K). Therefore we get ("-*Vrg g, But, due to our
assumptions and Capelli’s theorem [Lal, Ch. VII, Sect. 9, Theorem 16],
we have [K(¢'7); K] = p. So we have necessarily u=v [mod p].

We have shown that for all peL, there exists an integer u, with the
following property: if u is any integer such that u#u, [mod p], then the
polynomial P(r“X” Y) is irreducible in K(X)[Y]. Let f be an integer such
that f#u, [mod p] for all p€ L (existence of § is an easy consequence of
the Chinese remainder theorem). Then for ali pel, the pelynomial
P(1°X*, Y) is irreducible in K(X)[Y]. From Proposition 2.2 (applied to the
polynomial P(:”X, 1)), the polynomial P(+’X*, ¥)is necessarily irreducible
in K(XH[¥].

3. PROOF OF THE MAIN RESULTS

3.1. The Diophantine Ingredient

The following lemma is a consequence of Siegel’s finiteness resuit on the
integral points on aigebraic curves. We give a rapid proof. The details can
be found in [Se]. The field K is a number field. The set of all absolute
values of X is denoted by M,.

LeMMA 3.1, Ler C be a quasi-affine curve defined over K and C be a
complete smooth model of C. Let S be a finite subset of M that contains all
the archimedean absolute values of K. Let x be a function on C defined over
K. Assume that the subset x~'(0, 00) of T contains at least 3 points. Then
there are only finitely many M e C(K) (ie., K-rational poinis M on C) such
that |x(M)|.= 1, for all v¢ §.

Proof.  Recall that if X is a quasi-affine varicty defined over X, a subset
of x of X(K) is said to be quasi-integral on X relatively to S if, for all Sin
the coordinate ring of X, there exists e K such that laf (M), < 1, for all
Meyand all v¢ S Let

Py={xcK||x|,=1foralivgsS}

The set P, is quasi-integral on P\{0, o0} relatively to §: indeed, the
coordinate ring of the affine subset P\ {0, oo} is generated by x and 1/x.
Then consider the quasi-affine subset of C:

Cor=Cr\x~ {0, o0).
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The morphism x: & — P, induced by x on C is a finite morphism. Thus,
C.y 1s an affine subset of C; furthermore, the set

s=Cp(K) 0 x 7' (Py)

is quasi-integral on C, relatively to § [Se, Chap. 8.1]. Now C is a complete
smooth model of C,;; the set of points at infinity on Cy is the set C\Cyy=
x~ Y0, :0). From the assumption, it consists of at least 3 points. From
Siegel’s theorem, the set % is a finite set.

3.2. Proof of Theorem 1.1

We are given a polynomial P=P(X, Y)eQ(X)[Y], absolutely
irreducible, a number field K, and te K*\ .

{iy=-(ii). We distinguish two cases.

Ist case. e=e(P)=1. Denote the affine curve P(x, y)=0 by C and
a smooth projective model of C by C. Let L be a field that contains K
and such that Pe L(X)[Y] Let § be the subset of M, of all absolute
values of L such that v is archimedean or ‘|f|,# 1. The condition (i)
implies that there are infinitely many L-rational points M on C such that
Ix(M)|,=1 for all v¢S. From Lemma 3.1, the subset x~'(0, 0} of C
consists of at most 2 points. But, due to the assumption “e = 1,” the function
x has a simple zero on C (cf. Remark 1(a)). Conclude that the function x
is of degree | on C. Equivalently, deg, P=1; i, P has a root % € L(X}.
It remains to show that P has a root in K(X). This readily follows of
“@(t") e K for infinitely many integers m.”

2nd case. General case. Let f be the smallest integer such that the
polynomial P(X, ¥) has all of its roots in Q((X ). Condition (i) implies
that there exists an integer u such that the equation P{r“(¢™)/, ¥)=0 has
a solution ye X for infinitely many integers m. Consider a factorization

P(tX, Y)=P(X,Y)---P,(X, Y}

of the polynomial P(+“X”, Y) in the ufd. Q(X)[Y]. For some index i, the
equation P;(+™, y)=0 has a solution y e K for infinitely many integers m.
Applying the preceding case to the polynomial P,, for which e(P,)=1,
yields the required conclusion.

Remark. The reduction to the first casc can be regarded as some
version of an idea of Neron [La2, Chap. 9, Sect. 1]. Given P(X, Y)e
K(X)[ Y], Neron introduces the curve C,: P(¢(x), y)=0, a puil-back of
the curve P(x, y) =0, where the polynomial ¢(X)e Z[X] is chosen so that
the genus of C,, is >0. Then Siegel’s theorem yields that for all but finitely
many integers x of K, the polynomial P(¢(x), Y) has no root in K. Here,



156 PIERRE DEBES

the idea is to consider the pull-back P(x’, y)=0 of the curve P(x, v)=0,
That way, we are reduced to a situation where the set x~H0, o0} consists
of at least 3 points and so where Siegel's theorem can be applied as well.
One can also, like in [Se, Chap. 9.7], change x into x+a; for some
suitable a, one gets |x {0, o }23 as well. But this change is inadequate
here for it moves out the origin of P, ; one obtains results on polynomials
Pla+1" Y) (and not P(1™, Y)).

(ii}=(iii). We may assume u= 0, i.e, that the polynomial P(X*, Y) has
a root in K(X). Equivalently, the polynomial P(X, ¥) has a root @, in
K(X''%). This root can be written

e—1

YUp=Z(X'),  where Z(T)=Y Z(X)T'eK((X)[T].

i=0

The conjugates of %, over K{X) are the clements
Z(Lxe,

where { runs over the set y, of eth roots of 1, These conjugates are distinct.
Indeed, if Z({X'*)=2(I'X"), then every index i such that Z(X)#0
must be a maltiple of the order ¢ ~'{’. Since, from the definition of e, these
indices together with the integer e are relatively prime, we get that ¢ = &
Thus, we conclude that [K(X, Wp): K(X)] =€ and so that

KX, %)= K(X"),

This shows in particular that the polynomial P is a degree e polynomial
with coefficients in K(X). It can also be derived that for some polynomial
Ade K(X)[ Y],

XY= 4(X, ¥,).

The polynomial A(X, ¥)°—X is then a multiple in K(X)[¥] of the
polynomial P,

(ili}= (i) was proved in Sect. 1.1,

3.3. Proof of Theorem 1.2

We are given a number field X, teK*\u,, and a polynomial
P=P(X, Y) irreducible in K(X)[Y]. (i) = (i) and (ii)= (iii) were
respectively proved in Sects. 1.1 and 2.1 (cf Lemma 2.1). It remains to
prove (i) = (ii}.

Let f be the smallest integer such that the polynomial P= P(X, ¥) has
all of its roots in Q((X)). The condition (i) implies that there exists an
integer « such that the polynomial P(s(s")/, Y) is reducible in K(X)[¥]
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for infinitely many integers m. Let P= P(t“X”, Y); the polynomial P has
this property:

(1) The polynomial P(:™, Y} is reducible in K(X)[¥] for infinitely
many integers m.

Next we are going to use this standard result (e.g, [La, Chap.9,
Sect. 17).

PROPOSITION 3.1. Let P be an irreducible polynomial in K(X)[¥] and

K(X, %p)" be its splitting field over K(X). Then there exists a finite set
x=x(P) of elements ¥ in K(X, @,)"\K(X) with the Sfollowing property. For
each % € y, denote its irreducible polynomial over K(X) by M. Then, for ail

but finitely many x € K, we have this conciusion:

{2) If P(x, Y) is reducible in K(X){[Y], then there exists ¥ € y such
that the polynomial M ,(x, Y) has a root in K.

Assume that our polynomial P is irreducible in K(X)[ ¥]. Then it follows
from (1) and Proposition 3.1 that there exists % € y(P) such that

(3) The polynomial M,(r", ¥) has a root in X for infinitely many
integers m,

The polynomial M, is then necessarily absolutely irreducible (see proof of
Corollary 1.7 for more details on the argument). Next observe that
degy M, 22, whereas e(M,)=1 (by choice of f). Corollary 1.3(a)
provides a contradiction. So we conclude that the polynomial
P=P(r*X”, Y} is reducible in K(X)[ ¥Y]. From Lemma 0.1, the polynomial
P(t"X*, Y) is reducible in K(X)[ Y] as well.
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