Rational pullbacks of Galois covers

Pierre Dèbes ${ }^{1}$. Joachim König ${ }^{2}$. François Legrand ${ }^{3}$. Danny Neftin ${ }^{4}$

Received: 26 May 2020 / Accepted: 10 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract

The finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ are shown to be the only finite groups G with this property: for some integer r_{0} (depending on G), all Galois covers $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ of group G can be obtained by pulling back those with at most r_{0} branch points along non-constant rational maps $\mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$. For $G \subset \mathrm{PGL}_{2}(\mathbb{C})$, it is in fact enough to pull back one well-chosen cover with at most 3 branch points. A consequence of the converse for inverse Galois theory is that, for $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$, letting the branch point number grow provides truly new Galois realizations $F / \mathbb{C}(T)$ of G. Another application is that the "Beckmann-Black" property that "any two Galois covers of $\mathbb{P}_{\mathbb{C}}^{1}$ with the same group G are always pullbacks of another Galois cover of group G " only holds if $G \subset \mathrm{PGL}_{2}(\mathbb{C})$.

Keywords Galois covers • Rational pullback • Inverse Galois theory
Mathematics Subject Classification Primary 12F12 • 11R58 • 14E20; Secondary 14E22 . 12E30 • 11Gxx

[^0]
1 Introduction

Suppose $f: X \rightarrow \mathbb{P}_{k}^{1}$ is a k-regular cover, i.e., a (branched) cover over a field k with X a smooth and geometrically irreducible curve over k. By a rational pullback of f, we mean a k-regular cover $f_{T_{0}}: X_{T_{0}} \rightarrow \mathbb{P}_{k}^{1}$ obtained by pulling back f along some non-constant rational map $T_{0}: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$. If f is given by a polynomial equation $P(t, y)=0$ (with f corresponding to the t-coordinate projection) and T_{0} is viewed as a rational function $T_{0}(U) \in k(U)$, then an equation for the pullback $f_{T_{0}}$ is merely $P\left(T_{0}(u), y\right)=0$. As recalled in Sect. 2.2, if f is additionally Galois of group G, then for "many" T_{0}, the resulting map $f_{T_{0}}$ remains a k-regular Galois cover of group G.

The Regular Inverse Galois Problem over k precisely consists in realizing each finite group as the Galois group of a k-regular Galois cover of \mathbb{P}_{k}^{1}. Rational pullback creates such covers, if one is already known. Finding covers g that are not rational pullbacks of some Galois covers f of given group G may be a more important issue. Indeed, if none of the f are defined over k (as a regular cover), the pullbacks $f_{T_{0}}$ are generally not expected to be either, in which case the remaining hope to realize G as a regular Galois group over k rests on those covers g.

1.1 Main results

Assume first $k=\mathbb{C}$. Consider the situation that all Galois covers $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ of given group G can be obtained from a proper subset of them by rational pullback; say then that the subset is regularly parametric. ${ }^{1}$ For some finite groups G, a single cover f may suffice. For example, the degree 2 cover $\mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ sending z to z^{2} is regularly parametric. Such situations are, however, exceptional. For "general" finite groups, an opposite conclusion holds:

Theorem 1.1 The finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ (i.e., cyclic and dihedral groups, A_{4}, S_{4}, and A_{5}) are exactly those finite groups which have a regularly parametric cover $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$. More precisely, given a finite group G, the following two statements hold:
(a) if $G \subset \mathrm{PGL}_{2}(\mathbb{C}),{ }^{2}$ then G has a regularly parametric cover,
(b) if $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$, then even the set of all Galois covers $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ of group G and with at most r_{0} branch points is not regularly parametric, for any $r_{0} \geq 0$.

Hence, for $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$, letting the branch point number grow provides an endless source of "new" Galois covers of $\mathbb{P}_{\mathbb{C}}^{1}$ of group G, i.e., not mere rational pullbacks of covers with a bounded branch point number, and so truly new candidates to be defined over \mathbb{Q}.

Both statements of Theorem 1.1 are non-trivial. The one showing that finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ have a regularly parametric cover over \mathbb{C} (with at most 3 branch points) was proved in [7, Corollary 2.5], as a consequence of the twisting lemma and Tsen's theorem. The statement about "general" finite groups, those not contained in $\mathrm{PGL}_{2}(\mathbb{C})$, is a new result of this paper. In particular, it solves [7, Problem 2.14].

Here is a more precise version. Given an integer $r \geq 0$ and an r-tuple \mathbf{C} of non-trivial conjugacy classes of G, denote the stack of regular Galois covers $X \rightarrow \mathbb{P}^{1}$ of group G with r branch points by $\mathrm{H}_{G, r}$, and the stack of those with ramification type (r, \mathbf{C}) by $\mathrm{H}_{G, r}(\mathbf{C})$ (see

[^1]Sect. 2.1); these are the Hurwitz stacks. From Theorem 1.1, if $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$, the set

$$
\mathrm{H}_{G, \leq r_{0}}(\mathbb{C})=\bigcup_{r \leq r_{0}} \mathrm{H}_{G, r}(\mathbb{C})
$$

is never regularly parametric ($r_{0} \geq 1$). More precisely, we have the following:
Theorem 1.2 Let k be an algebraically closed field of characteristic 0 and let G be a finite group, not contained in $\mathrm{PGL}_{2}(\mathbb{C})$. Fix an integer $r_{0} \geq 0$. For every suitably large integer R, depending on r_{0}, there is a non-empty Hurwitz stack $\mathrm{H}_{G, R}(\mathbf{C})$ such that not all k-covers in $\mathrm{H}_{G, R}(\mathbf{C})$ are rational pullbacks of k-covers in $\mathrm{H}_{G, \leq r_{0}}$.

Finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$, which are excluded in Theorem 1.2, are the Galois groups of genus 0 Galois covers. We show further that, if we also exclude the Galois groups of genus 1 Galois covers, then the conclusion of Theorem 1.2 holds for all Hurwitz stacks $\mathrm{H}_{G, R}(\mathbf{C})$ with \mathbf{C} of suitably large length R (see Theorem 3.1). In fact, this stronger conclusion can even be obtained without the extra genus 1 assumption as long as the field k is also assumed to be uncountable (see Remark 3.7).

A related result (see Theorem 3.8) provides the following more explicit conclusion under the stronger assumption that the finite group G has at least 5 maximal non-conjugate cyclic subgroups (finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ have at most 3): given any integer $r_{0} \geq 0$, for every suitably large even integer R, there is a non-empty Hurwitz stack $\mathrm{H}_{G, R}(\mathbf{C})$ such that no k-cover in $\mathrm{H}_{G, R}(\mathbf{C})$ is a rational pullback of some k-cover in $\mathrm{H}_{G, \leq r_{0}}$.

If, instead of the stacks $\mathrm{H}_{G, r}$, we consider the smaller stacks $\mathrm{H}_{G, r}(\mathbf{C})$, we obtain the following striking conclusion.

Theorem 1.3 Let k be an algebraically closed field of characteristic 0 , let G be a finite group not contained in $\mathrm{PGL}_{2}(\mathbb{C})$, and let (R, \mathbf{C}) be a ramification type for G with $R \geq 4$. Then there exists a ramification type $\left(R+1\right.$, D) for G such that $\mathrm{H}_{G, R+1}(\mathbf{D}) \neq \emptyset$ and no k-cover in $\mathrm{H}_{G, R+1}(\mathbf{D})$ is a pullback of a k-cover in $\mathrm{H}_{G, R}(\mathbf{C})$.

Remark 1.4 (a) The assumption that k is algebraically closed can be weakened in some of the results above to only assume that k is ample, or even arbitrary (of characteristic 0) in some situations; see Theorem 3.10. Recall that a field k is ample if every geometrically irreducible smooth k-curve has either zero or infinitely many k-rational points. Ample fields include separably closed fields, Henselian fields, fields $\mathbb{Q}^{\text {tot } \mathbb{R}}, \mathbb{Q}^{\text {tot } p}$ of totally real or p-adic algebraic numbers. See, e.g., [2,16,26] for more on ample fields.
(b) Theorem 1.3 also holds for $R=3$. The proof uses the same tools and techniques as for the case $R \geq 4$, but is longer and more technical; it is given in [6].

1.2 Application

Theorem 1.2 has the following consequence. Given an algebraically closed field k of characteristic 0 , denote the set of all Galois covers $X \rightarrow \mathbb{P}_{k}^{1}$ of group G by $\mathrm{H}_{G}(k)$. Say that a finite group G has the Beckmann-Black regular lifting property over k if, for any two g_{1} and g_{2} in $\mathrm{H}_{G}(k)$, there exist $f \in \mathrm{H}_{G}(k)$ and two non-constant rational maps $T_{01}, T_{02}: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$ such that $g_{i}=f_{T_{0 i}}(i=1,2)$.

Corollary 1.5 Let k be an algebraically closed field of characteristic 0 . The finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ are exactly those finite groups for which the Beckmann-Black regular lifting property over k holds.

The proof combines Theorem 1.2 with [7, Theorem 2.1], and is given in Sect. 2.3.2 where the latter is recalled.

Our lifting property is a geometric variant of the Beckmann-Black arithmetic lifting property for which the cover $f \in \mathrm{H}_{G}(k)$ is requested to be defined over \mathbb{Q} and to specialize to some given Galois extensions $E_{1} / \mathbb{Q}, \ldots, E_{N} / \mathbb{Q}$ of group G at some points $t_{01}, \ldots, t_{0 N} \in$ $\mathbb{P}^{1}(\mathbb{Q})^{3}$. There is no known counter-example to the latter. In comparison, our geometric variant is obvious for $N=1$ (by picking $T_{0}(U)=U$ so that $f_{T_{0}}=f$), and Corollary 1.5 shows that it fails for $N \geq 2$ if $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$.

An intermediate stage towards counter-examples to the Beckmann-Black arithmetic property is to find groups G with no \mathbb{Q}-parametric covers, i.e. such that no cover $f \in \mathrm{H}_{G}(\mathbb{Q})$ specializes to all Galois extensions of \mathbb{Q} of group G. First examples were given in [19,20]. Extending them to all finite subgroups $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$ is a next challenge, to which we will devote a subsequent work. Theorem 1.3 will be a key ingredient, the central idea being to combine the strong non regular parametricity conclusions of Theorem 1.3 with a strategy from [7] designed to deduce non \mathbb{Q}-parametricity conclusions.

1.3 Methods and organization of the paper

Riemann's existence theorem (RET) is the fundamental theorem the above results build on. Furthermore, our proof of Theorem 1.2 exploits the geometric structure of the Hurwitz moduli spaces $\mathcal{H}_{G, R}(\mathbf{C})$, namely, it shows that the dimension of the subset of all covers obtained by pulling back a cover in $\mathrm{H}_{G, \leq r_{0}}$ is strictly smaller than that of $\mathcal{H}_{G, R}(\mathbf{C})$, for sufficiently large R.

The tools used to bound the dimension of the subset of pullbacks include bounding the degree of defining polynomials for covers using a Riemann-Roch based result of Sadi [27], Chevalley's theorem, and combinatorial ramification arguments. For the analogous result over ample fields k, we show that $\mathrm{H}_{G, R}(\mathbf{C})(k)$ is non-empty, using Pop's $\frac{1}{2}$-Riemann existence theorem [24], thus Zariski-dense in at least one connected component of $\mathcal{H}_{G, R}(\mathbf{C})$; and hence this set is not contained in the above smaller dimension subset of pullbacks. Over arbitrary fields of characteristic 0 , we extend the theorem to certain families of groups using the rigidity method.

On the other hand, the proofs of Theorems 1.3 and 3.8 construct explicit ramification types whose Hurwitz stacks are non-empty by RET, and contain none of the pullbacks in question, as shown using combinatorial arguments, the Riemann-Hurwitz formula, and Abhyankar's lemma. For an analogous result to Theorem 3.8 over ample fields k, we use $\frac{1}{2}$-RET once more to ensure that $\mathrm{H}_{G, R}(\mathbf{C})(k) \neq \emptyset$ for the constructed ramification types.

See Sect. 3 for the proof of Theorem 1.2 and its variants. See Sect. 4 for the proof of Theorem 1.3. Section 2 is a preliminary section providing the basic notation and terminology together with some general prerequisites.

[^2]
2 Notation, terminology, and prerequisites

2.1 Basic terminology (for more details, see [4] and [11])

The base field k is always assumed to be of characteristic 0 . We also fix a big algebraically closed field containing k and the indeterminates that will be used, and in which every field compositum should be understood.

2.1.1 Covers

Given a field k, a k-variety is a geometrically irreducible and geometrically reduced quasiprojective k-scheme. A k-curve is a k-variety of dimension 1 .

A field extension $F / k(T)$ is k-regular if $F \cap \bar{k}=k$. A k-regular cover $f: X \rightarrow \mathbb{P}_{k}^{1}$ is a non-constant finite morphism with X a smooth k-curve; the function field extension $k(X) / k(T)$ is then k-regular. If in addition $k(X) / k(T)$ is Galois, then $f: X \rightarrow \mathbb{P}_{k}^{1}$ is called a k-regular Galois cover. If k is algebraically closed, we sometimes omit the word " k-regular".

We also use affine equations: we mean the irreducible polynomial $P \in k[T, Y]$ of a primitive element of $k(X) / k(T)$, integral over $k[T]$. We say defining equation if the primitive element is not necessarily integral over $k[T]$; then $P \in k(T)[Y]$.

By group and branch point set of a k-regular cover $f: X \rightarrow \mathbb{P}_{k}^{1}$, we mean those of the extension $\bar{k}(X) / \bar{k}(T)^{4}$: the group of $\bar{k}(X) / \bar{k}(T)$ is the Galois group of its Galois closure and the branch point set of $\bar{k}(X) / \bar{k}(T)$ is the (finite) set of points $t \in \mathbb{P}^{1}(\bar{k})$ such that the associated discrete valuations are ramified in $\bar{k}(X) / \bar{k}(T)$.

The field k being of characteristic 0 , we also have the inertia canonical invariant \mathbf{C} of the k-regular cover $f: X \rightarrow \mathbb{P}_{k}^{1}$, defined as follows. If $\mathbf{t}=\left\{t_{1}, \ldots, t_{r}\right\}$ is the branch point set of f, then \mathbf{C} is an r-tuple $\left(C_{1}, \ldots, C_{r}\right)$ of conjugacy classes of the group G of $\bar{k}(X) / \bar{k}(T)$: for $i=1, \ldots, r$, the class C_{i} is the conjugacy class of the distinguished ${ }^{5}$ generators of the inertia groups $I_{\mathfrak{P}}$ above t_{i} in the Galois closure of $\bar{k}(X) / \bar{k}(T)$. The pair (r, \mathbf{C}) is called the ramification type of f. More generally, given a finite group G, we say that a pair (r, \mathbf{C}) is a ramification type for G over k if it is the ramification type of at least one k-regular Galois cover $f: X \rightarrow \mathbb{P}_{k}^{1}$ of group G.

We also use the notation $\mathbf{e}=\left(e_{1}, \ldots, e_{r}\right)$ for the r-tuple with i th entry the ramification index $e_{i}=\left|I_{\mathfrak{P}}\right|$ of primes above $t_{i} ; e_{i}$ is also the order of elements of $C_{i}, i=1, \ldots, r$.

We say that two k-regular covers $f: X \rightarrow \mathbb{P}_{k}^{1}$ and $g: Y \rightarrow \mathbb{P}_{k}^{1}$ are \mathbb{P}_{k}^{1}-isomorphic if there is an isomorphism $\chi: X \rightarrow Y$ defined over k such that $f=g \circ \chi$.

2.1.2 Hurwitz stacks and Hurwitz spaces

Given a finite group G, an integer $r \geq 1$, an r-tuple \mathbf{C} of non-trivial conjugacy classes of G, and a field k (of characteristic zero), we use the following notation:

- $\mathrm{H}_{G}(k)$: set of all k-regular Galois covers $f: X \rightarrow \mathbb{P}_{k}^{1}$ of group G,
- $\mathrm{H}_{G, r}(k)$ (resp., $\mathrm{H}_{G, \leq r}(k)$): subset of $\mathrm{H}_{G}(k)$ defined by the extra condition that the branch point number is r (resp., that the branch point number is $\leq r$),
- $\mathrm{H}_{G, r}(\mathbf{C})(k)$: subset of $\mathrm{H}_{G, r}(k)$ defined by the extra condition that the inertia canonical invariant is \mathbf{C}.

[^3]The sets $\mathrm{H}_{G, r}(k)$ and $\mathrm{H}_{G, r}(\mathbf{C})(k)$ can be viewed as the sets of k-rational points on some stacks $\mathrm{H}_{G, r}$ and $\mathrm{H}_{G, r}(\mathbf{C})$, usually called Hurwitz stacks. More formally, $\mathrm{H}_{G, r}(k)$ is the category whose objects are the k-regular Galois covers $f: X \rightarrow \mathbb{P}_{k}^{1}$ with r branch points and given with an isomorphism $G \rightarrow \operatorname{Gal}(k(X) / k(T))$, and morphisms are the \mathbb{P}_{k}^{1}-isomorphisms commuting with the action of G; and similarly for $\mathrm{H}_{G, r}(\mathbf{C})$.

We use the phrase sets of k-points on the Hurwitz, stacks $\mathrm{H}_{G, r}$ and $\mathrm{H}_{G, r}(\mathbf{C})$ for the sets $\mathrm{H}_{G, r}(k)$ and $\mathrm{H}_{G, r}(\mathbf{C})(k)$, but shall not use the stack structure.

On the other hand, we shall need the structure of variety of the associated moduli spaces, notably in Sect. 3.1 for the proof of Theorem 1.2. The stacks $\mathrm{H}_{G, r}$ and $\mathrm{H}_{G, r}(\mathbf{C})$ have indeed a coarse moduli space, which we denote by $\mathcal{H}_{G, r}$ and $\mathcal{H}_{G, r}(\mathbf{C})$, respectively. They are commonly referred to as Hurwitz spaces; see [14] for more details ${ }^{6}$. They are finite unions of r-dimensional varieties and have this property: if k is an algebraically closed field of characteristic 0 , the sets $\mathcal{H}_{G, r}(k)$ and $\mathcal{H}_{G, r}(\mathbf{C})(k)$ are in one-one correspondence with the sets of isomorphism classes of objects in the categories $\mathrm{H}_{G, r}(k)$ and $\mathrm{H}_{G, r}(\mathbf{C})(k)$, respectively. Finally, if k is a not necessarily algebraically closed field (but is still of characteristic 0) and $f \in \mathrm{H}_{G, r}(k)$, then its isomorphism class [f] still corresponds to a k-rational point of $\mathcal{H}_{G, r}(\mathbf{C})$. If additionally G has trivial center, then the spaces $\mathcal{H}_{G, r}(\mathbf{C})$ are in fact fine moduli spaces, whence conversely any k-rational point on $\mathcal{H}_{G, r}(\mathbf{C})$ corresponds to a k-regular Galois cover.

2.2 Pullback and regular parametricity

Let k be a field of characteristic zero and $f: X \rightarrow \mathbb{P}_{k}^{1}$ a k-regular cover. Let $T_{0} \in$ $k(U) \backslash k$; we make no distinction between the rational function T_{0} and the rational map $T_{0}: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{17}$. The fiber product $X \times_{f, T_{0}} \mathbb{P}_{k}^{1}$ provides a cartesian square

When $X \times_{f, T_{0}} \mathbb{P}_{k}^{1}$ is geometrically irreducible, denote by $f_{T_{0}}: X_{T_{0}} \rightarrow \mathbb{P}_{k}^{1}$ the smooth projective model of the top horizontal map: $X_{T_{0}}$ is the normalization of \mathbb{P}_{k}^{1} in the function field of $X \times_{f, T_{0}} \mathbb{P}_{k}^{1}$. The map $f_{T_{0}}: X_{T_{0}} \rightarrow \mathbb{P}_{k}^{1}$ is then a k-regular cover, which we call the pullback of f along T_{0}. More generally, covers $f_{T_{0}}$ are called rational pullbacks of f. If $f: X \rightarrow \mathbb{P}_{k}^{1}$ is additionally assumed to be Galois of group G, then $f_{T_{0}}: X_{T_{0}} \rightarrow \mathbb{P}_{k}^{1}$ remains a k-regular Galois cover of group G.

Given an affine equation $P \in k[T, Y]$ of f, consider the subset $H_{P, \bar{k}(U)}$ of $\bar{k}(U)$ of all T_{0} such that $P\left(T_{0}(U), Y\right)$ is irreducible in $\bar{k}(U)[Y]$. It is a Hilbert subset of $\bar{k}(U)$ [12, Chapter 12]. If $T_{0} \in H_{P, \bar{k}(U)} \cap k(U)$, then $T_{0} \notin k$ and the fiber product $X \times_{f, T_{0}} \mathbb{P}_{k}^{1}$ is geometrically irreducible; hence the pullback $f_{T_{0}}$ is a k-regular cover and $P\left(T_{0}(U), Y\right)$ is a defining equation of $f_{T_{0}}$. The subset $H_{P, \bar{k}(U)} \cap k(U)$ only depends on f (and not on the specific equation $P(T, Y)$). Denote it by $H_{f, k}$. The field $\bar{k}(U)$ being Hilbertian [12,

[^4]Proposition 13.2.1], the Hilbert subset $H_{P, \bar{k}(U)}$ is "big" in various senses: by definition of a Hilbertian field, it is infinite; by Theorems 3.3 and 3.4 from [9], it is dense for the Strong Approximation Topology. The same is true of the set $H_{f, k}$.

Definition 2.1 For $\mathrm{H} \subset \mathrm{H}_{G}(k)$, we define

$$
\mathrm{PB}(\mathrm{H})=\left\{\begin{array}{c|c}
f_{T_{0}} & f \in \mathrm{H} \\
T_{0} \in H_{f, k}
\end{array}\right\} \text { (PB for "PullBack"). }
$$

A subset H of $\mathrm{H}_{G}(k)$ is k-regularly parametric if $\mathrm{PB}(\mathrm{H}) \supset \mathrm{H}_{G}(k)$. We say that a cover $f \in \mathrm{H}_{G}(k)$ is k-regularly parametric if the subset $\{f\}$ of $\mathrm{H}_{G}(k)$ is.

The k-regularly parametricity notion relates to the classical notion of genericity (in one parameter; see, e.g., [17]): clearly, if a cover $f \in \mathrm{H}_{G}(k)$ is generic, then it is k-regularly parametric. The paper [5] says more about how the two notions compare.

2.3 Prerequisites

Let k be an algebraically closed field of characteristic 0 .

2.3.1 Riemann Existence Theorem

This fundamental tool of the theory of covers of \mathbb{P}^{1} allows turning questions about covers into combinatorics and group theory considerations.
Riemann Existence Theorem (RET). Given a finite group G, an integer $r \geq 2$, a subset \mathbf{t} of $\mathbb{P}^{1}(k)$ of r points, and an r-tuple $\mathbf{C}=\left(C_{1}, \ldots, C_{r}\right)$ of non-trivial conjugacy classes of G, there is a Galois cover $f: X \rightarrow \mathbb{P}_{k}^{1}$ of group G, branch point set \mathbf{t}, and inertia canonical invariant \mathbf{C} if and only if there exists $\left(g_{1}, \ldots, g_{r}\right) \in C_{1} \times \cdots \times C_{r}$ such that $g_{1} \cdots g_{r}=1$ and $\left\langle g_{1}, \ldots, g_{r}\right\rangle=G$. Furthermore, the number of such covers $f: X \rightarrow \mathbb{P}_{k}^{1}$, counted up to \mathbb{P}_{k}^{1}-isomorphism classes, equals the number of r-tuples $\left(g_{1}, \ldots, g_{r}\right)$ as above, counted modulo componentwise conjugation by an element of G.

Cf., e.g., [29, Theorem 2.13] for the mere existence statement, or [8] for a detailed overview.

The RET shows that a pair (r, \mathbf{C}) is a ramification type for G over k if the set, traditionally called the Nielsen class, of all $\left(g_{1}, \ldots, g_{r}\right) \in C_{1} \times \cdots \times C_{r}$ such that $g_{1} \cdots g_{r}=1$ and $\left\langle g_{1}, \ldots, g_{r}\right\rangle=G$ is non-empty. We shall use the RET to construct Galois covers of given group G and with some special ramification type.

2.3.2 Bounds for the branch point number and the genus of pulled-back covers

Theorem 2.2 Let $f: X \rightarrow \mathbb{P}_{k}^{1} \in \mathrm{H}_{G}(k)$ and T_{0} be in the Hilbert subset $H_{f, k}$. Denote the branch point number of f (resp., $f_{T_{0}}$) by r (resp., $r_{T_{0}}$) and the genus of X (resp., $X_{T_{0}}$) by g (resp., $g_{T_{0}}$). Then $r \leq r_{T_{0}}$ and $g \leq g_{T_{0}}$. Moreover, if $g>1$ and T_{0} is not an isomorphism, then $g<g_{T_{0}}$.

Proof For branch point numbers, see [7, Theorem 2.1]. Regarding genera, we may assume $g \neq 0$ and T_{0} is not an isomorphism. The claim then follows from applying the RiemannHurwitz formula to the cover $X_{T_{0}} \rightarrow X$. Namely, we obtain $2 g_{T_{0}}-2 \geq N(2 g-2)$ with $N=\operatorname{deg}(f)$, whence $g_{T_{0}} \geq 2(g-1)+1 \geq g$ if $g \geq 1$, with equality only if $g=1$.

We can now explain how Corollary 1.5 is deduced from Theorem 1.2.
Proof of Corollary 1.5 assuming Theorem 1.2 First, assume that the group G satisfies the Beckmann-Black regular lifting property over k. Pick a Galois cover $g_{1} \in \mathrm{H}_{G}(k)$ (such a cover exists from the RET). Let r_{1} be the branch point number of g_{1}. Then, for any $g_{2} \in \mathrm{H}_{G}(k)$, there exists $f \in \mathrm{H}_{G}(k)$ and $T_{01}, T_{02} \in k(U)$ such that $g_{i}=f_{T_{0 i}}(i=1,2)$. From Theorem 2.2, it follows from $g_{1}=f_{T_{01}}$ that the branch point number of f is $\leq r_{1}$. This shows that $\mathrm{H}_{G, \leq r_{1}}(k)$ is regularly parametric. From Theorem 1.2, $G \subset \mathrm{PGL}_{2}(\mathbb{C})$.

Conversely, if $G \subset \mathrm{PGL}_{2}(\mathbb{C})$, then G has a k-regularly parametric cover $f: X \rightarrow \mathbb{P}_{k}^{1}$ (see [7, Corollary 2.5]); a fortiori the Beckmann-Black regular lifting property holds over k.

Remark 2.3 The proofs above of Theorem 2.2 and Corollary 1.5 cite two results which are only stated with $k=\mathbb{C}$: Theorem 2.1 and Corollary 2.5 from [7]. These two results however hold more generally over any algebraically closed field of characteristic 0 . Indeed, regarding [7, Theorem 2.1], the assumption $k=\mathbb{C}$ was made for simplicity and can readily be generalized. As to [7, Corollary 2.5], the main ingredient there is Tsen's theorem that the field $\mathbb{C}(U)$ is quasi-algebraically closed, which is also true with \mathbb{C} replaced by any algebraically closed field.

2.3.3 On varieties and their dimension

In the following, we recall some well-known facts from algebraic geometry about the structure and dimension of images and preimages under algebraic morphisms.

It is elementary that the image of an n-dimensional variety under an algebraic morphism is always of dimension $\leq n$. A bound in the opposite direction is given via the dimension of a fiber (see, e.g., [23, §1.8, Theorems 2 and 3]):

Theorem 2.4 Let $f: X \rightarrow Y$ be a dominant morphism between varieties X and Y. For any point $p \in f(X)$, we have $\operatorname{dim}(Y) \leq \operatorname{dim}(X) \leq \operatorname{dim}(Y)+\operatorname{dim}\left(f^{-1}(p)\right)$.

We refer to, e.g., [15, p. 239, lemme 1.8.4.1] for the next theorem:
Theorem 2.5 (Chevalley) Let $f: X \rightarrow Y$ be a morphism between varieties X and Y. Then the image of any constructible subset of X is constructible. ${ }^{8}$

In particular, the image of any subvariety X_{0} of X is a finite union of varieties $Y_{i} \subset Y$, each of dimension at most $\operatorname{dim}\left(X_{0}\right)$.

For short, we shall say that a subset S of a variety X is of dimension $\leq d$, if it is contained in a finite union of subvarieties of dimension $\leq d$.

2.3.4 Defining equations for Galois covers and their pullbacks

To prove Theorem 1.2, we shall use affine and defining equations of Galois covers of \mathbb{P}_{k}^{1} (as defined in Sect. 2.1.1).

Lemma 2.6 Let G be a finite group and $r_{0} \in \mathbb{N}$. Then every Galois cover in $\mathrm{H}_{G, \leq r_{0}}(k)$ can be defined by an affine equation $P(T, Y)=0$, where $P \in k[T][Y]$ is irreducible, monic in Y, of bounded T-degree depending only on r_{0} and G, and of degree $|G|$ in Y.

[^5]Proof The fact that every Galois cover of group G and of bounded genus $g \leq g_{0}$ can be defined by an affine equation of bounded T-degree depending only on g_{0} and $|G|$ follows essentially from an application of the Riemann-Roch theorem. Concretely, in [27, §2.2] the upper bound $\left(2 g_{0}+1\right)|G| \log |G| / \log (2)$ was obtained, cf. also [10, Lemma 4.1]. It then suffices to note that the genus g of a Galois cover of \mathbb{P}_{k}^{1} with r_{0} branch points is bounded from above only in terms of r_{0} and G : the Riemann-Hurwitz formula gives $2 g \leq 2-2|G|+r_{0}\left(|G| \cdot\left(1-1 / e_{\max }\right)\right)$, with $e_{\text {max }}$ the maximal element order in G.

Definition 2.7 Let $d, e \in \mathbb{N}$. We denote by $\mathcal{P}_{d, e}$ the space of polynomials $P(T, Y) \in k[T, Y]$ of degree exactly d in T and exactly e in Y, viewed up to multiplicative constants. Similarly, let $\mathcal{P}_{\leq d}$ denote the space of polynomials $Q(T) \in k[T]$ of degree at most d, viewed up to multiplicative constants. Furthermore, denote by \mathcal{R}_{d} the set of rational functions over k in one indeterminate U of degree exactly d.

The spaces $\mathcal{P}_{d, e}$ and $\mathcal{P}_{\leq d}$ are varieties in a natural way, via identifying the polynomials $P(T, Y)=\sum_{i=0}^{d} \sum_{j=0}^{e} \alpha_{i, j} T^{i} Y^{j}$ and $Q(T)=\sum_{i=1}^{d} \beta_{i} T^{i}$ with the coordinate tuples $\left(\alpha_{i, j}\right)_{i, j}$ and $\left(\beta_{i}\right)_{i}$, respectively, in the corresponding projective space. Similarly, \mathcal{R}_{d} is a variety by identifying a rational function $T_{0}=T_{0}(U)=\left(\sum_{i=0}^{d} \beta_{i} U^{i}\right) /\left(\sum_{j=0}^{d} \gamma_{j} U^{j}\right)$, with coprime numerator and denominator, with the coordinate tuple ($\beta_{0}: \cdots: \beta_{d}: \gamma_{0}: \cdots$: $\left.\gamma_{d}\right) \in \mathbb{P}^{2 d+1}$. Note that the degree and coprimeness assumptions fix the numerator and denominator up to constant factor, whence the above identification is well-defined.

We can now define pullback maps on the level of the above spaces $\mathcal{P}_{d, e}$ and \mathcal{R}_{d} :
Lemma 2.8 Let d_{1}, d_{2}, and d_{3} be positive integers. Then the map

$$
\widetilde{\mathrm{PB}}: \mathcal{P}_{d_{1}, d_{2}} \times \mathcal{R}_{d_{3}} \rightarrow \mathcal{P}_{d_{1} \cdot d_{3}, d_{2}}
$$

defined by $\left(P(T, Y), T_{0}(U)\right) \mapsto$ "numerator of $P\left(T_{0}(U), Y\right)$ ", is a morphism of algebraic varieties.

Proof Let $P(T, Y)=\sum_{i=0}^{d_{1}} \sum_{j=0}^{d_{2}} \alpha_{i, j} T^{i} Y^{j}$ and $T_{0}=\left(\sum_{k=0}^{d_{3}} \beta_{k} U^{k}\right) /\left(\sum_{k=0}^{d_{3}} \gamma_{k} U^{k}\right)$. Then

$$
\widetilde{\mathrm{PB}}\left(P, T_{0}\right)=\sum_{i, j} \alpha_{i, j}\left(\sum_{k} \beta_{k} U^{k}\right)^{i}\left(\sum_{k} \gamma_{k} U^{k}\right)^{d_{1}-i} Y^{j},
$$

and identification with the spaces of coordinate tuples shows that $\widetilde{\mathrm{PB}}$ is given by a polynomial map.

3 Proofs of Theorem 1.2 and its variants

In Sect. 1.1, we mention two variants of Theorem 1.2: a "genus ≥ 2 " version (Theorem 3.1) and an "explicit" variant (Theorem 3.8). Section 3.1 is devoted to the proof of the former, the proof of how Theorem 1.2 can be deduced being explained at the end of Sect. 3.1.1 (where Theorem 3.1 is stated). Sect. 3.2 is devoted to the proof of Theorem 3.8. Throughout this section, except in Sect. 3.3, the field k is algebraically closed of characteristic 0 . Our proofs make use of the fact that k is algebraically closed but certain parts carry over to more general fields. We collect such considerations in Sect. 3.3.

3.1 Proof of Theorem 1.2

3.1.1 Reduction to Theorem 3.1 and Lemma 3.2

The following theorem is our strongest result regarding pullbacks of Galois covers of genus at least 2. Its proof is also the main part of the proof of Theorem 1.2.

Theorem 3.1 Let G be a finite group, let $r_{0} \in \mathbb{N}$, and let

$$
\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)=\mathrm{H}_{G, \leq r_{0}}(k) \backslash\{\text { genus } \leq 1 \text { covers }\}
$$

be the set of all Galois covers $f: X \rightarrow \mathbb{P}_{k}^{1}$ of genus at least 2 with Galois group G and at most r_{0} branch points. Then there exists $R_{0} \in \mathbb{N}$ such that, for every ramification type (R, \mathbf{C}) for G with $R \geq R_{0}$, we have

$$
\mathrm{H}_{G, R}(\mathbf{C})(k) \not \subset \mathrm{PB}\left(\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)\right) .
$$

In particular, $\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)$ is not k-regularly parametric.
Theorem 3.1 is proved in Sect. 3.1.2-4 below. The following lemma shows nonparametricity for sets of Galois k-covers of genus 1 :

Lemma 3.2 Let $\mathrm{H}_{G, g=1}(k)$ be the set of Galois covers $f: X \rightarrow \mathbb{P}_{k}^{1}$ of genus 1 with group G. Then there exists a ramification type (r, \mathbf{C}) for G such that no cover in $\mathrm{H}_{G, r}(\mathbf{C})(k)$ is a pullback from any cover in $\mathrm{H}_{G, g=1}(k)$. In particular, $\mathrm{H}_{G, g=1}(k)$ is not k-regularly parametric.

Proof Let $f: X \rightarrow \mathbb{P}^{1} \in \mathrm{H}_{G, g=1}(k)$. As a consequence of the Riemann-Hurwitz formula, the tuple of element orders in the inertia canonical invariant of f is one of $(2,2,2,2)$, $(3,3,3),(2,4,4)$, or $(2,3,6)$. Furthermore, in each case, G has a normal subgroup N with cyclic quotient group G / N of order $2,3,4$ and 6 , respectively, and such that the quotient map $X \rightarrow X / N$ is an unramified cover of genus-1 curves over k. Assume first $|N|=1$. Then G is cyclic ${ }^{9}$ and, therefore, there exist Galois covers of \mathbb{P}_{k}^{1} of group G and genus 0 . In particular, no set of covers of genus ≥ 1 can have those as pullbacks, by Theorem 2.2.

Assume therefore $|N|>1$. Let $x \in N \backslash\{1\}$, and let (r, \mathbf{C}) be any ramification type for G involving the conjugacy class of x. Since $X \rightarrow X / N$ is unramified, its image under any rational pullback of f must also be unramified. But, of course, for any cover $\widetilde{X} \rightarrow \mathbb{P}^{1}$ with inertia canonical invariant \mathbf{C}, the subcover $\widetilde{X} \rightarrow \widetilde{X} / N$ is ramified by definition. Therefore, no cover of inertia canonical invariant \mathbf{C} can be a pullback of f.

Remark 3.3 In the case that G is non-cyclic, the above proof shows immediately that, for (r, \mathbf{C}) any ramification type of genus 1 with group $G(r \in\{3,4\})$ and for each $s \geq r+1$, there exists a ramification type (s, \mathbf{D}) for G such that no k-cover in $\mathrm{H}_{G, s}(\mathbf{D})$ is a pullback of some k-cover in $\mathrm{H}_{G, r}(\mathbf{C})$. Indeed, for the only critical case $s=r+1$, it suffices to replace $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{C}$, where $x_{1} \notin N$ without loss, by $\left(x_{0}, x_{0}^{-1} x_{1}, \ldots, x_{n}\right)$ with $x_{0} \in N \backslash\{1\}$.

Assuming Theorem 3.1 and Lemma 3.2, we can now derive Theorem 1.2.
Proof of Theorem 1.2 By assumption, there is no Galois cover of \mathbb{P}^{1} of group G and genus 0 . Let (R, \mathbf{C}) be a ramification type for G with $\mathbf{C}=\left(C_{1}, \ldots, C_{R}\right)$. From Theorem 3.1, we know that not all covers in $\mathrm{H}_{G, R}(\mathbf{C})(k)$ are rational pullbacks of some element of $\mathrm{H}_{G, \leq r_{0}}(k)$

[^6]of genus ≥ 2, if the length R of \mathbf{C} is sufficiently large (depending on r_{0}). From Lemma 3.2 and its proof, we know that no k-cover in $\mathrm{H}_{G, R}(\mathbf{C})$ is a rational pullback of some k-cover in $\mathrm{H}_{G, \leq r_{0}}$ of genus 1, if \mathbf{C} contains certain conjugacy classes. Altogether, if \mathbf{C} contains all classes of G sufficiently often, then certainly not all k-covers in $\mathrm{H}_{G, R}(\mathbf{C})$ are reached via rational pullback of some k-cover in $\mathrm{H}_{G, \leq r_{0}}$.

3.1.2 Proof of Theorem 3.1: some dimension estimates

To prepare the proof of Theorem 3.1, we investigate the behaviour of rational pullbacks of Galois covers.

Recall that we have introduced two different ways of associating algebraic varieties to certain sets of Galois covers: the Hurwitz spaces and the spaces of defining equations. In the next lemma, we relate both concepts via a dimension estimate stating, in particular, that, in order to obtain defining equations for all covers in an r-dimensional Hurwitz space, we require at least r-dimensional subvarieties in the space of defining equations.

To state the lemma, denote by $\mathcal{P}_{d, e}^{\text {sep }}$ the subset of separable (in Y) polynomials in $\mathcal{P}_{d, e}$ (the latter set is introduced in Definition 2.7). Note that this is a dense open subset of $\mathcal{P}_{d, e}$. Due to Lemma 2.6, when looking for defining equations for covers in some $\mathrm{H}_{G, \leq r_{0}}(k)$, we can restrict without loss to a suitable finite union of $\mathcal{P}_{d, e}^{\text {sep }}$ (for d smaller than some bound depending only on G and r_{0}, and in fact always with $e=|G|$).

Lemma 3.4 Let $r, s, d, e \in \mathbb{N}$. Let $V \subset \mathcal{P}_{d, e}^{\text {sep }}$ be a subvariety of dimension s. Let G be a finite group and let (r, \mathbf{C}) be a ramification type for G. Then the set of $f \in \mathcal{H}_{G, r}(\mathbf{C})(k)$ which have a defining equation in V is of dimension $\leq s{ }^{10}$. In particular, if $s<r$, there are infinitely many covers in $\mathrm{H}_{G, r}(\mathbf{C})(k)$ which do not have a defining equation in V.

Proof Denote the discriminant of a polynomial $Q(Y)=\sum_{i=0}^{e} a_{i} Y^{i}$ by

$$
\Delta(Q)=a_{e}^{2 e-2} \prod_{i<j}\left(r_{i}-r_{j}\right)^{2}
$$

where the r_{i} 's are the roots of Q, counted with multiplicities. The discriminant induces an algebraic morphism $\Delta: \mathcal{P}_{d, e}^{\text {sep }} \rightarrow \mathcal{P}_{\leq c}, P(T, Y) \mapsto \Delta(P)$ (where P is viewed as a polynomial in Y) to the space of polynomials in T of degree $\leq c$ up to constant factors (see Definition 2.7). Note that indeed the image of a separable polynomial is nonzero. The fact that the degree of $\Delta(P)$ is bounded only in terms of d and e follows easily from the fact that the discriminant is a polynomial expression in the coefficients, viewed as transcendentals. In particular, the dimension of $\Delta(V) \subseteq \mathcal{P}_{\leq c}$ is at most $\operatorname{dim}(V)=s$.

Next, for any $r \leq t \leq c$ and any r-subset R of $\{1, \ldots, t\}$, consider the morphisms $u:\left(\mathbb{A}^{1}\right)^{t} \rightarrow \mathcal{P}_{\leq c}$ given by $\left(a_{1}, \ldots, a_{t}\right) \mapsto \prod_{i=1}^{t}\left(T-a_{i}\right)$ and $v:\left(\mathbb{A}^{1}\right)^{t} \rightarrow\left(\mathbb{A}^{1}\right)^{r}$ the projection on the coordinates in R. For each of these finitely many possible maps u, v, the map u is finite and so $v\left(u^{-1}(W)\right)$ is of dimension $\leq s$, where $W=\Delta(V)$. But, since any branch point (assumed to be finite without loss) of a Galois cover of \mathbb{P}_{k}^{1} is necessarily a root of the discriminant of a defining equation, such a cover can only have a defining equation in V if its branch point set is in $v\left(u^{-1}(W)\right)$ for some u, v as above. Now, let \mathcal{U}^{r} and \mathcal{U}_{r} denote the spaces of ordered and unordered r-sets in \mathbb{P}^{1}, respectively. There is a well-defined finite morphism from $\mathcal{H}_{G, r}(\mathbf{C})$ to \mathcal{U}_{r} : the branch point reference map. Now, let $\mathcal{H}^{\prime}=\mathcal{H}_{G, r}(\mathbf{C}) \times \mathcal{U}_{r} \mathcal{U}^{r}$ be

[^7]the "ordered branch point set version" of the Hurwitz space $\mathcal{H}_{G, r}(\mathbf{C})$. Then the branch point reference map induces a finite morphism $\psi: \mathcal{H}^{\prime} \rightarrow \mathcal{U}^{r}\left(\subset\left(\mathbb{P}^{1}\right)^{r}\right)$. Furthermore, there is a natural finite morphism $\pi: \mathcal{H}^{\prime} \rightarrow \mathcal{H}_{G, r}(\mathbf{C})$.

In particular, each set $\pi\left(\psi^{-1}\left(v\left(u^{-1}(W)\right)\right)\right.$), and thus finally also the set of $f \in$ $\mathcal{H}_{G, r}(\mathbf{C})(k)$ having (only finite branch points and) a defining equation in V, is of dimension $\leq s$.

The additional assertion in the case $s<r$ follows immediately, since $\psi\left(\mathcal{H}^{\prime}\right) \cap\left(\mathbb{A}^{1}\right)^{r}$ is of dimension r and, in fact, equal to the set of all ordered r-sets in \mathbb{A}^{1}, by the Riemann Existence Theorem.

In the proof of Theorem 3.1, we shall show as an intermediate result that a rational function pulling a prescribed Galois cover f of \mathbb{P}_{k}^{1} back into a prescribed $\mathrm{H}_{G, R}(\mathbf{C})(k)$ can only have a certain maximal number of branch points outside of the branch point set of f. We then require the following auxiliary result stating that varieties of rational functions with such partially prescribed branch point sets cannot be too large.

Lemma 3.5 Let $d, m, n, s \in \mathbb{N}$, let W be a subvariety of $\mathcal{P}_{m, n}^{s e p}$, and let \mathcal{R}_{d} be as in Definition 2.7. Then the set $W^{\prime} \subset W \times \mathcal{R}_{d}$ of all $\left(P, T_{0}\right) \in W \times \mathcal{R}_{d}$ such that at most s branch points of T_{0} are not roots of $\Delta(P)$ is of dimension at most $\operatorname{dim} W+s+3$.

Proof Denote the discriminant map on $\mathcal{P}_{m, n}^{\text {sep }}$ by Δ_{1} and the one on \mathcal{R}_{d} by Δ_{2}. Here we define the discriminant of a rational function $T_{0}(U)=T_{0,1}(U) / T_{0,2}(U)$ as the discriminant of the polynomial $T_{0,1}(U)-T \cdot T_{0,2}(U)$ with respect to U. Note that, in the special case of rational functions, every root of the discriminant is in fact a branch point (see, e.g., [22, Lemma 3.1] for a stronger version of this statement). This means that, with $u:\left(a_{1}, \ldots, a_{t}\right) \mapsto \prod_{i=1}^{t}\left(T-a_{i}\right)$ as before, an element of $u^{-1}\left(\Delta_{2}\left(T_{0}\right)\right)$ is already the exact branch point set of T_{0}, up to multiplicities.

Consider now the following chain of maps:

$$
W^{\prime} \subset W \times \mathcal{R}_{d} \xrightarrow{\mathrm{id} \times \Delta_{2}} W \times \mathcal{P}_{\leq t} \stackrel{\mathrm{id} \times u}{\longleftrightarrow} W \times\left(\mathbb{A}^{1}\right)^{t} \stackrel{\alpha}{\longleftarrow} W \times\left(\mathbb{A}^{1}\right)^{t},
$$

where α is defined by $\alpha\left(P,\left(a_{1}, \ldots, a_{t}\right)\right)=\left(P,\left(\Delta_{1}(P)\left(a_{1}\right), \ldots, \Delta_{1}(P)\left(a_{t}\right)\right)\right)$. Clearly, all maps in this chain are morphisms and, except for the first map id $\times \Delta_{2}$, they are all finite. Therefore, $\left(\operatorname{id} \times \Delta_{2}\right)\left(W^{\prime}\right)$ is of the same dimension as $\alpha^{-1}\left(\left(\operatorname{id} \times\left(u^{-1} \circ \Delta_{2}\right)\right)\left(W^{\prime}\right)\right)$ and, by definition of W^{\prime}, the latter is contained in one of finitely many varieties isomorphic to $W \times\left(\mathbb{A}^{1}\right)^{s}$. Indeed, up to repetitions, all except for at most s roots of $\Delta_{2}\left(T_{0}\right)$ are mapped to 0 under $\Delta_{1}(P)$, for $\left(P, T_{0}\right) \in W^{\prime}$. Thus, $\left(\right.$ id $\left.\times \Delta_{2}\right)\left(W^{\prime}\right)$ is of dimension at most $\operatorname{dim}(W)+s$. Theorem 2.4 then yields that W^{\prime} is of dimension at $\operatorname{most} \operatorname{dim}(W)+s+\operatorname{dim}\left(\Delta_{2}^{-1}(p)\right)$ for any p equal to the discriminant of a rational function T_{0} as above.

It remains to show that $\Delta_{2}^{-1}(p)$ is of dimension ≤ 3. Now, the set of genus zero covers $\mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$ (viewed up to equivalence) of degree d with prescribed branch point set is finite, and each such cover is given by a degree- d rational function, unique up to $\mathrm{PGL}_{2}(k)$-equivalence. Since $\operatorname{dim}\left(\mathrm{PGL}_{2}\right)=3$, the claim follows, completing the proof.

3.1.3 Proof of Theorem 3.1: reduction to Lemma 3.6

Lemma 3.6 Let G be a finite group and $f: X \rightarrow \mathbb{P}_{k}^{1}$ a Galois cover with group G and genus ≥ 1. Then, for every $j \in \mathbb{N}$, there exists a constant $R_{0} \in \mathbb{N}$, depending only on j and the branch point number of f, such that, for every class- R-tuple \mathbf{C} of $G\left(R \geq R_{0}\right)$ and for every rational function $T_{0}: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$ in $H_{f, k}$ with more than $R-j$ branch points outside the branch point set of f, the pullback of f along T_{0} is not in $\mathrm{H}_{G, R}(\mathbf{C})(k)$.

Proof of Theorem 3.1 assuming Lemma 3.6 Let $f: X \rightarrow \mathbb{P}^{1} \in \mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)$. Let g be the genus of X. Let $F=F(T, Y)$ be a separable defining equation for f, of minimal degree in T. Using the pullback map $\widetilde{\mathrm{PB}}$ as in Lemma 2.8, denote by $\widetilde{\mathrm{PB}}(f)$ the set of all pullbacks of F by rational functions of arbitrary degree, i.e., $\widetilde{\mathrm{PB}}(f)=\cup_{d \in \mathbb{N}} \widetilde{\mathrm{~PB}}\left(\{F\} \times \mathcal{R}_{d}\right)$. Then $\widetilde{\mathrm{PB}}(f)$ contains defining equations for all rational pullbacks of the cover f.

Let (R, \mathbf{C}) be a ramification type for G. By the Riemann-Hurwitz formula, the genus of a Galois k-cover of group G arising as a degree- d pullback of f is $\geq d(g-1)+1$. As $g \geq 2$, this shows that there is $d_{0} \in \mathbb{N}$, depending only on \mathbf{C}, such that, for all $d>d_{0}$, a degree- d pullback of f cannot have inertia canonical invariant \mathbf{C} (as the genus is the same for all covers with invariant \mathbf{C}). In other words, to investigate the set of polynomials in $\widetilde{\mathrm{PB}}(f)$ which are defining equations for covers in $\mathrm{H}_{G, R}(\mathbf{C})(k)$, it suffices to restrict to pullback functions $T_{0} \in \mathcal{R}_{d}, d \leq d_{0}$, with some bound $d_{0} \in \mathbb{N}$ depending only on \mathbf{C}.

Let $D \in \mathbb{N}$ be such that every $f \in \mathrm{H}_{G, \leq r_{0}}(k)$ has a separable defining equation in some space $\mathcal{P}_{d_{1},|G|}$ with $d_{1} \leq D$. Such D exists by Lemma 2.6. Let δ be the dimension of $\mathcal{P}_{D,|G|}$ (to be explicit, $\delta=(D+1)(|G|+1)-1)$.

Fix $j>\delta+3$, choose R_{0} large enough (see the proof of Lemma 3.6 for an explicit bound) and $R \geq R_{0}$, and denote by \mathcal{S}_{f} the set of $T_{0} \in H_{f, k}$ for some $f \in \mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)$ such that $f_{T_{0}}$ has R branch points. As seen above, the degree of such T_{0} is absolutely bounded from above (in terms of the genus, and thus the branch point number of f) and, by Lemma 3.6, all $T_{0} \in \mathcal{S}_{f}$ have at most $R-j$ branch points outside the branch point set of f. A fortiori, they are in the set \mathcal{S}_{F}^{\prime} of rational functions (of bounded degree as before and) with at most $R-j$ finite branch points outside the set of roots of the discriminant of $F(T, Y)$, for a defining equation $F(T, Y)=0$. The latter sets \mathcal{S}_{F}^{\prime} can be defined for all $F \in \mathcal{P}_{d_{1}, d_{2}}^{\text {sep }}$ (not just for those defining Galois covers).

Now, consider the set $\mathcal{S}=\cup_{d_{1} \leq D} \cup\{F\} \times \mathcal{S}_{F}^{\prime}$, where the inner union is over all $F \in \mathcal{P}_{d_{1},|G|}^{\text {sep }}$. From Lemma 3.5 (with $W=\mathcal{P}_{d_{1},|G|}^{\text {sep }}$), it follows that \mathcal{S} is contained in a a finite union of varieties, of dimension at most $\operatorname{dim}\left(\mathcal{P}_{D,|G|}\right)+R-j+3=\delta+R-j+3<R$.

Therefore, the image of \mathcal{S} under $\widetilde{\mathrm{PB}}$ is of dimension strictly smaller than R as well. On the other hand, Lemma 3.4 shows that no finite union of varieties of dimension $<R$ can contain defining equations for all k-covers in $\mathrm{H}_{G, R}(\mathbf{C})$.

Hence, $\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)$ is not k-regularly parametric.

Remark 3.7 In fact, the restriction to sets of Galois covers of genus ≥ 2 is used only once in the proof of Theorem 3.1; namely, to ensure that the degree of a rational function T_{0}, that pulls back a k-cover with $\leq r_{0}$ branch points to a k-cover in $\mathrm{H}_{G, R}(\mathbf{C})$, is bounded from above in terms of r_{0} and R. This then ensures, via the various auxiliary lemmas, that $\mathrm{PB}\left(\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)\right) \cap \mathrm{H}_{G, R}(\mathbf{C})(k)$ is contained in a finite union of lower-dimensional varieties (as soon as R is sufficiently large), i.e., that its complement inside $\mathrm{H}_{G, R}(\mathbf{C})(k)$ contains a Zariski-dense open subset. If the set $\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)$ in Theorem 3.1 is replaced by $\mathrm{H}_{G, \leq r_{0}, g \geq 1}(k)$, this strong conclusion will no longer be guaranteed. However, since all the auxiliary lemmas remain valid, we obtain in the same way that $\mathrm{PB}\left(\mathrm{H}_{G, \leq r_{0}, g \geq 1}(k)\right) \cap \mathrm{H}_{G, R}(\mathbf{C})(k)$ is contained in a countable union of lower-dimensional varieties (each corresponding to rational functions T_{0} of some fixed degree). This at least implies $\mathrm{H}_{G, R}(\mathbf{C})(k) \not \subset \mathrm{PB}\left(\mathrm{H}_{G, \leq r_{0}, g \geq 1}(k)\right)$ as soon as k is uncountable. Thus the conclusion of Theorem 3.1 remains valid for $\mathrm{H}_{G, \leq r_{0}, g \geq 1}(k)$ in the important special case $k=\mathbb{C}$.

3.1.4 Proof of Lemma 3.6

Let t_{1}, \ldots, t_{s} be the branch points of f, and let e_{1}, \ldots, e_{s} be the corresponding orders of inertia groups of f. Set $e_{\text {max }}=\max \left\{e_{1}, \ldots, e_{s}\right\}$. We choose $R_{0}=(s-2+j) e_{\max }$, and $R \geq R_{0}$ arbitrary. We divide the proof into two main steps.
First step: Translation into a combinatorial statement. Let $\sigma_{1}, \ldots, \sigma_{s} \in S_{d}$ be the inertia group generators of T_{0} at t_{1}, \ldots, t_{s}, and $\sigma_{s+1}, \ldots, \sigma_{s+m}$ the non-trivial inertia group generators at further points. For $\sigma \in S_{d}$, denote by $o(\sigma)$ the number of orbits of $\langle\sigma\rangle$, and set $\operatorname{ind}(\sigma)=d-o(\sigma)$. We claim that, assuming choice of R_{0} as above, the following holds:

Claim:

$$
\sum_{i=1}^{s} \operatorname{ind}\left(\sigma_{i}\right) \geq 2 d-2-R+j
$$

or equivalently:

$$
\sum_{i=1}^{s} o\left(\sigma_{i}\right) \leq d(s-2)-j+2+R .
$$

The assertion then follows from the claim, since T_{0} defines a genus-zero cover, whence the Riemann-Hurwitz formula yields $\sum_{i=1}^{s+m} \operatorname{ind}\left(\sigma_{i}\right)=2 d-2$. Together with the claim, this enforces $m \leq R-j$.
Second step: Transformation of cycle structures. To prove the claim, consider the cycle structures of $\sigma_{i}, i=1, \ldots, s$. We shall manipulate the cycle structures of the σ_{i} in a controlled way, to make it easier to estimate the total number of orbits of all $\sigma_{i}, i=1, \ldots, s$.

By the definition of T_{0} and Abhyankar's lemma, the cycle lengths of the σ_{i} are multiples of e_{i}, for $i=1, \ldots, s$, with a total of exactly R exceptions over all $i \in\{1, \ldots, s\}$. For each $i \in\{1, \ldots, s\}$, let $n_{i, 1}, \ldots, n_{i, r(i)}$ denote the exceptional cycle lengths (i.e., the ones which are not multiples of e_{i}), in descending order. Define a permutation $\tau_{i} \in S_{d}$ in the following way. First, fill all the non-exceptional cycles of σ_{i} into τ_{i}. Next, find the smallest j such that $\sum_{k=1}^{j} n_{i, k} \geq e_{i}$ and, instead of the cycles of length $n_{i, 1}, \ldots, n_{i, j}$, fill one single cycle of length $\sum_{k=1}^{j} n_{i, j}$ into τ_{i}. Repeat this procedure until the sum of the remaining exceptional cycle lengths in σ_{i} is less than e_{i}. Fill one more cycle of length the sum of those remaining exceptional cycle lengths into τ_{i}. By definition, all except possibly one cycle of τ_{i} have length $\geq e_{i}$. In particular, the number $o\left(\tau_{i}\right)$ of orbits of $\left\langle\tau_{i}\right\rangle$ is bounded from above by $\left\lceil d / e_{i}\right\rceil<d / e_{i}+1$. Also, since f is of genus ≥ 1, the Riemann-Hurwitz formula yields $\sum_{i=1}^{s} \frac{1}{e_{i}} \leq s-2$.

Therefore,

$$
\sum_{i=1}^{s} o\left(\tau_{i}\right)<d\left(\sum_{i=1}^{s} \frac{1}{e_{i}}\right)+s \leq d(s-2)+s .
$$

On the other hand, we can effectively bound the difference between $\sum_{i=1}^{s} o\left(\tau_{i}\right)$ and $\sum_{i=1}^{s} o\left(\sigma_{i}\right)$ via the above construction. Namely, to obtain $\left(\tau_{1}, \ldots, \tau_{s}\right)$ from $\left(\sigma_{1}, \ldots, \sigma_{s}\right)$, certain sets of exceptional cycles were replaced by one big cycle. There were R exceptional cycles in total and, since at most $e_{\max }$ cycles each were replaced by one cycle, the total
difference $\sum_{i=1}^{s}\left(o\left(\sigma_{i}\right)-o\left(\tau_{i}\right)\right)$ is bounded from above by $R-\frac{R}{e_{\max }}$. Altogether,

$$
\begin{aligned}
& \sum_{i=1}^{s} o\left(\sigma_{i}\right) \leq R-\frac{R}{e_{\max }}+\sum_{i=1}^{s} o\left(\tau_{i}\right)<R-\frac{R}{e_{\max }}+d(s-2)+s \\
& \quad \leq R-(s-2+j)+d(s-2)+s
\end{aligned}
$$

with the last inequality following from our choice of R_{0}. This finally yields

$$
\sum_{i=1}^{s} o\left(\sigma_{i}\right) \leq d(s-2)-j+2+R,
$$

showing the claim. This completes the proof.

3.2 An explicit variant of Theorem 1.2

The goal of this subsection is to prove the following statement, alluded to in Sect. 1.1 as an explicit variant of Theorem 1.2.

Theorem 3.8 Let k be an algebraically closed field of characteristic 0 and G a finite group with at least 5 maximal non-conjugate cyclic subgroups. Fix an integer $r_{0} \geq 0$. For every suitably large even integer R, there is a non-empty Hurwitz stack $\mathrm{H}_{G, R}(\mathbf{C})$ such that no k-cover in $\mathrm{H}_{G, R}(\mathbf{C})$ is a rational pullback of some k-cover in $\mathrm{H}_{G, \leq r_{0}}$.

Remark 3.9 Subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ have at most 3 maximal non-conjugate cyclic subgroups. Other groups have exactly 3 : the quaternion group \mathbb{H}_{8} or, more generally, dicyclic groups DC_{n} of order $4 n(n \geq 2)$ (which include generalized quaternion groups $\mathrm{DC}_{2^{k-1}} k \geq 2$), groups $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ with q a prime power, etc. For these groups, the conclusion from Theorem 1.2 holds but that from Theorem 3.8 is unclear. Replacing 5 by 4 in Theorem 3.8 seems feasible but hard and technical; for the sake of brevity, we avoid this slight improvement. Groups with 4 maximal non-conjugate cyclic subgroups (for which the conclusion from Theorem 3.8 might also hold) include $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, A_{6}$.

Proof Fix a finite group G with at least 5 non-conjugate maximal cyclic subgroups. At first, assume that not all of them are of order 2. Let $\gamma_{1}, \ldots, \gamma_{5}$ be generators of 5 non-conjugate maximal cyclic subgroups of G, and let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{5}$ be their conjugacy classes. Denote the order of γ_{i} by $e_{i}, i=1, \ldots, 5$ and, without loss of generality, assume $e_{1}>2$. Consider then a tuple $\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{5}, \mathcal{C}_{6}, \ldots, \mathcal{C}_{s}\right)$ of conjugacy classes of G, not necessarily distinct, and satisfying the following:
all the non-trivial conjugacy classes of G, but the powers $\mathcal{C}_{i}^{j}, i=1, \ldots, 4$,
$j=1, \ldots, e_{i}-1$, appear in the set $\left\{\mathcal{C}_{5}, \ldots, \mathcal{C}_{s}\right\}$.
Consider the (2s)-tuple $\underline{\mathcal{C}}=\left(\mathcal{C}_{1}, \mathcal{C}_{1}^{-1}, \ldots, \mathcal{C}_{s}, \mathcal{C}_{s}^{-1}\right)$. Note that the integer s can be taken to be any suitably large integer, e.g., by repeating the conjugacy class \mathcal{C}_{5}.

Picking $g_{i} \in \mathcal{C}_{i}(i=1, \ldots, s)$, form the tuple $g=\left(g_{1}, g_{1}^{-1}, \ldots, g_{s}, g_{s}^{-1}\right)$. As the elements of g and their powers contain at least one element from each conjugacy class, a classical lemma of Jordan (see [18]) implies that g forms a generating set of G. By construction, the product of entries of g is 1 . From the Riemann Existence Theorem, $\mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})(k) \neq \emptyset$.

Let $h \in \mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})(\bar{k})$. Assume there exist $r_{0} \in \mathbb{N}$, a Galois cover $f \in \mathrm{H}_{G, \leq r_{0}}(k)$, and $T_{0} \in$ $H_{f, k}$ (as defined in Sect. 2.2) of degree N such that h and the pullback $f_{T_{0}}$ are \mathbb{P}_{k}^{1}-isomorphic.

Denote the branch point number of f by r (so $r \leq r_{0}$) and its inertia canonical invariant by $\mathbf{C}=\left(C_{f, 1}, \ldots, C_{f, r}\right)$. By [7, §3.1], the inertia canonical invariant of $f_{T_{0}}$ is a tuple $\mathbf{C}_{f, T_{0}}$ obtained by concatenating tuples of the form $\mathbf{C}_{f, T_{0}, j}=\left(C_{f, j}^{e_{j 1}}, \ldots, C_{f, j}^{e_{j r_{j}}}\right), j=1, \ldots, r$, where $r_{j}, e_{j, \ell}$ are integers with $r_{j} \geq 0$ and $e_{j, \ell} \geq 1$ for all $\ell=1, \ldots, r_{j}$, and $j=1, \ldots, r$. Note that some of the classes in $\mathbf{C}_{f, T_{0}}$ might be trivial.
 >1), for $j=1, \ldots, r$. For $j=1$, denote further by u_{1} (resp., v_{1}) the number of $e_{1, \ell \text { 's, }}$, $\ell=1, \ldots, r_{1}$, that are equal to 2 (resp., >2). Recall further from [7, §3.1] that, since $e_{j 1}, \ldots, e_{j r_{j}}$ are the ramification indices of T_{0} over some point, we have $\sum_{\ell=1}^{r_{j}} e_{j, \ell}=N$, for $j=1, \ldots, r$. Hence, $p_{j}+2 q_{j} \leq N$, and $p_{1}+2 u_{1}+3 v_{1} \leq N$, or equivalently:

$$
\begin{equation*}
q_{j} \leq \frac{N-p_{j}}{2} \leq \frac{N}{2} \text { for } j=2, \ldots, r \text { and } v_{1} \leq \frac{N-p_{1}-2 u_{1}}{3} \leq \frac{N}{3} . \tag{1}
\end{equation*}
$$

By the Riemann-Hurwitz formula for T_{0}, we also have
$2 N-2 \geq \sum_{\ell=1}^{r_{1}}\left(e_{1, \ell}-1\right)+\sum_{j=2}^{r} \sum_{\ell=1}^{r_{j}}\left(e_{j, \ell}-1\right)=N-p_{1}-u_{1}-v_{1}+\sum_{j=2}^{r}\left(N-p_{j}-q_{j}\right)$.

As $f_{T_{0}}$ and h are \mathbb{P}_{k}^{1}-isomorphic, we have $\mathbf{C}_{f, T_{0}}=\underline{\mathcal{C}}$, up to order. Without loss of generality, we may assume $\mathcal{C}_{1} \in \mathbf{C}_{f, T_{0}, 1}$. For each $i=1, \ldots, 4$, if $j_{i} \in\{1, \ldots, r\}$ is such that $\mathcal{C}_{i} \in$ $\mathbf{C}_{f, T_{0}, j_{i}}{ }^{11}$, then, as $\left\langle\gamma_{i}\right\rangle$ is a maximal cyclic subgroup of G, we have $\mathcal{C}_{i}=C_{f, j_{i}}^{w_{i}}$ for some integer w_{i} relatively prime to e_{i}. This, together with the assumption that $\mathcal{C}_{1}, \ldots, \mathcal{C}_{4}$ are not powers of each other, implies that the correspondence $i \mapsto j_{i}$ is injective. Thus, (2) and (1) give

$$
2 N-2 \geq N-p_{1}-u_{1}-v_{1}+\sum_{i=2}^{4}\left(N-p_{j_{i}}-q_{j_{i}}\right) \geq \frac{13}{6} N-\left(p_{1}+u_{1}\right)-\sum_{i=2}^{4} p_{j_{i}}
$$

and hence

$$
\begin{equation*}
N \leq 6\left(p_{1}+u_{1}+\sum_{i=2}^{4} p_{j_{i}}\right) . \tag{3}
\end{equation*}
$$

Since each $\mathcal{C}_{i}, i=1, \ldots, 4$, appears at most twice in $\mathbf{C}_{f, T_{0}}$ by (A), it follows that $p_{j_{i}} \leq 2$ for $i=1, \ldots, 4$. Furthermore, since the powers of \mathcal{C}_{1} appear at most twice and $e_{1}>2$, we also have $p_{1}+u_{1} \leq 2$. Thus, (3) gives $N \leq 48$. However, by a priori choosing s to be large, the degree N of T_{0} is forced to be at least 49 , contradiction.

It remains to consider the case where all the fixed 5 non-conjugate maximal cyclic subgroups are of order 2 . We can reduce to the previous case by changing one of them to another maximal cyclic subgroup of order >2, unless all elements of G are of order 2. But, in this case, G is an elementary abelian 2 -group of rank at least 3 , and the number of maximal conjugacy classes of cyclic groups is at least 7. Repeating the above argument with seven classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{7}$, replacing the previous $\mathcal{C}_{1}, \ldots, \mathcal{C}_{5}$, (2) and (1) take the form

$$
2 N-2 \geq \sum_{j=1}^{r}\left(N-p_{j}-q_{j}\right) \text { and } q_{j_{i}} \leq \frac{N-p_{j_{i}}}{2} \leq \frac{N}{2} \text { for } i=1, \ldots, 6 .
$$

[^8]Thus, their combination gives

$$
2 N-2 \geq \sum_{i=1}^{6}\left(N-p_{j_{i}}-q_{j_{i}}\right) \geq 3 N-\sum_{i=1}^{6} p_{j_{i}}
$$

and so $N \leq \sum_{i=1}^{6} p_{j_{i}}$. Once again, choosing s and hence N sufficiently large, we obtain a contradiction.

3.3 Extension to more general fields

We have assumed so far that the field k is algebraically closed because we use the Riemann Existence Theorem. However, as we explain below, this assumption can be relaxed in some situations.

Theorem 3.10 Let G be a finite group and let k be a field of characteristic 0 .
(a) Theorem $1.1(\mathrm{~b})$ with $\mathbb{P}_{\mathbb{C}}^{1}$ replaced by \mathbb{P}_{k}^{1} holds in each of these situations:
(a-1) k is ample ${ }^{12}$,
(a-2) G is abelian of even order,
(a-3) G is the direct product $A \times H$ of an abelian group A of even order and of a nonsolvable group H occuring as a regular Galois group over k^{13},
$(\mathrm{a}-4) \quad G=S_{5}$.
(b) Theorem 3.8 holds if either k is ample or G is abelian.

Remark 3.11 The proof below actually gives a little more than what is stated. Under the assumptions of Theorem 3.10(a), not only can we conclude that $\mathrm{H}_{G}(k) \not \subset \mathrm{PB}\left(\mathrm{H}_{G, \leq r_{0}}(k)\right)$ for any integer $r_{0} \geq 0$ (as is stated), but what we really obtain is that

$$
\mathrm{H}_{G}(k) \otimes_{k} \bar{k} \not \subset \mathrm{~PB}\left(\mathrm{H}_{G, \leq r_{0}}(\bar{k})\right) .
$$

That is: for any $r_{0} \geq 0$, one can always find a k-cover in H_{G} that cannot be obtained, even after base change to \bar{k}, by pulling back some \bar{k}-cover in $\mathrm{H}_{G, \leq r_{0}}$ (and even along some non-constant rational map $T_{0} \in \bar{k}(U)$ (and not just in $k(U)$). Similarly, if k is ample or G is abelian as in Theorem 3.10(b), what the proof shows is that for any $r_{0} \geq 0$ and any suitably large s, there is a Hurwitz stack $\mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})$ such that $\mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})(k) \neq \emptyset$ and

$$
\operatorname{PB}\left(\mathrm{H}_{G, \leq r_{0}}(\bar{k})\right) \cap\left(\mathrm{H}_{G, 2 s}(\mathcal{C})(k) \otimes_{k} \bar{k}\right)=\emptyset,
$$

and not just $\mathrm{PB}\left(\mathrm{H}_{G, \leq r_{0}}(k)\right) \cap \mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})(k)=\emptyset$.

3.3.1 Proof of Theorem 3.10(b)

In the proof of Theorem 3.8 (see Sect. 3.2), the assumption $k=\bar{k}$ was only used to guarantee that there is at least one k-cover in the Hurwitz stack $\mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})$. When k is no longer algebraically closed, we first slightly modify the tuple $\underline{\mathcal{C}}$ to make it k-rational, i.e., such that

[^9]the action of $\operatorname{Gal}(\bar{k} / k)$ on $\underline{\mathcal{C}}$ (taking the power of the classes by the cyclotomic character) preserves $\underline{\mathcal{C}}$, up to the order. This can be done by replacing, for each index $i=1, \ldots, 4$, each pair $\left(\mathcal{C}_{i}, \mathcal{C}_{i}^{-1}\right)$ by the tuple $\left(\mathcal{C}_{i}, \mathcal{C}_{i}^{-1}, \ldots, \mathcal{C}_{i}^{e_{i}-1}, \mathcal{C}_{i}^{-\left(e_{i}-1\right)}\right)$.

The modified tuple is indeed k-rational and the proof of Theorem 3.8 still holds after slight adjustments: the inequalities $p_{j_{i}} \leq 2$ (resp., $p_{1}+u_{1} \leq 2$) become $p_{j_{i}} \leq 2\left(e_{i}-1\right)$ (resp., $\left.p_{1}+u_{1} \leq 2\left(e_{1}-1\right)\right), i=1, \ldots, 4$, changing only the constants in the final estimates.

With the tuple $\underline{\mathcal{C}}$ now k-rational, it is still true that the Hurwitz stack $\mathrm{H}_{G, 2 s}(\mathcal{C})$ contains a k-cover, so that Theorem 3.8 holds, in the following situations:

- G abelian and k arbitrary (as a consequence of the classical rigidity theory; see, e.g., [21, Chapter I, §4] and [29, §3.2]),
- k ample and G arbitrary. Namely, recall that, over the complete discretely valued field $k((T))$, the so-called 1/2-Riemann Existence Theorem of Pop (see [24]) ensures that $\mathrm{H}_{G, 2 s}(\mathcal{C})(k((T)))$ is non-empty. This implies $\mathrm{H}_{G, 2 s}(\underline{\mathcal{C}})(k) \neq \emptyset$ for an ample field k, as then k is existentially closed in $k((T))$ (see [25, Proposition 1.1] and [3, §4.2]).

3.3.2 Proof of Theorem 3.10(a)

In the following, we will denote equivalence classes $[f]$ in $\mathcal{H}_{G, r}(\mathbf{C})$ of a cover f (of group G and ramification type (r, \mathbf{C})) simply by f as well when there is no risk of confusion.

We shall deduce Theorem 3.10(a) from Theorem 3.13 below. Start with an arbitrary characteristic 0 field k and consider the following condition, for a finite group G :

Condition 3.12 (a) There exist a constant $m \geq 0$, infinitely many integers R and, for each R, a ramification type (R, \mathbf{C}) for G with the following property: the set of all equivalence classes $[f] \in \mathcal{H}_{G, R}(\mathbf{C})$ such that f is a k-regular Galois cover cannot be covered by finitely many varieties of dimension $<R-m\left(\right.$ in $\left.\mathcal{H}_{G, R}(\mathbf{C})(\bar{k})\right)$.
(b) Each \mathbf{C} in (a) contains every conjugacy class of G at least once.

We then have the following analog of Theorem 3.1 and Lemma 3.2:
Theorem 3.13 Assume G fulfills Condition 3.12(a) (resp., Condition 3.12(a) and (b)) over a field k of characteristic 0 . Let $r_{0} \in \mathbb{N}$, and let $\mathrm{H}=\mathrm{H}_{G, \leq r_{0}, g \geq 2}(k)\left(\right.$ resp., $\mathrm{H}=\mathrm{H}_{G, \leq r_{0}, g \geq 1}(k)$) be the set of k-regular Galois covers with group G, branch point number $\leq r_{0}$, and genus ≥ 2 (resp., genus ≥ 1). Then there are infinitely ramification types (R, \mathbf{C}) for G such that $\mathrm{H}_{G, R}(\mathbf{C})(k) \not \subset \mathrm{PB}(\mathrm{H})$. In particular, H is not k-regularly parametric.

Proof Observe that the crucial Lemma 3.6 in the proof of Theorem 3.1 (see Sect. 3.1.3) guarantees this: there exists $R_{0} \in \mathbb{N}$ such that, for every ramification type (R, \mathbf{C}) for G ($R \geq R_{0}$), the set of (defining equations of) Galois covers in $\mathrm{H}_{G, R}(\mathbf{C})(\bar{k})$ which arise as rational pullbacks of some cover with $\leq r_{0}$ branch points is contained in a union of finitely many varieties of dimension at most $R-(m+1)$. Then, with R sufficiently large and (R, \mathbf{C}) as in Condition 3.12, it follows as in Lemma 3.4 that these varieties are not sufficient to yield defining equations for every cover in $\mathrm{H}_{G, R}(\mathbf{C})(\bar{k})$ which is defined over k. Furthermore, the additional Condition 3.12(b) is sufficient for the proof of Lemma 3.2 over k, if G is non-cyclic. For cyclic $G=\mathbb{Z} / n \mathbb{Z}$, Lemma 3.2 holds as soon as the genus-0 extension $k(\sqrt[n]{T}) / k(T)$ is k-regular, i.e., as soon as $e^{2 i \pi / n} \in k$. On the other hand, Galois groups of genus-1 cyclic covers are only $\mathbb{Z} / n \mathbb{Z}$ for $n \in\{2,3,4,6\}$, and it is easy to verify that, for $e^{2 i \pi / n} \notin k$, these genus-1 covers cannot be defined over k either, as a special case of the Branch Cycle Lemma (see [13] and [29, Lemma 2.8]).

Proof of Theorem 3.10(a-1) Let k be an ample field of characteristic zero. Equivalently to the definition of "ample", every k-variety with a simple k-rational point has a Zariski-dense set of k-rational points (see [16, Lemma 5.3.1]). On the other hand, the 1/2-Riemann Existence Theorem yields plenty of class r-tuples \mathbf{C} of G with $\mathrm{H}_{G, r}(\mathbf{C})(k) \neq \emptyset$. For example, all \mathbf{C} corresponding to an arbitrarily long repetition of the tuple $\left(x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right)$, where x_{i} runs through all non-identity elements of G, are fine. For $Z(G)=\{1\}$, this then implies the existence of a k-rational point on $\mathcal{H}_{G, r}(\mathbf{C})$ (cf. Sect. 2.1.2) and as k is ample that at least one connected component of $\mathcal{H}_{G, r}(\mathbf{C})$ has a Zariski-dense set of k-rational points. Since these k rational points are equivalence classes of covers f defined over k and all components are of the same dimension, Condition 3.12 holds, even with $m=0$, and, therefore, Theorem 3.13 holds over k. Finally, the case of arbitrary G can be reduced to the above assumption $Z(G)=\{1\}$ by elementary means, using that every finite group is a quotient of a group with trivial center. Concretely, for a group G of order n, choose any non-abelian simple group S and consider the wreath product $\Gamma:=S \imath G=S^{n} \rtimes G$. Then Γ clearly has trivial center. Furthermore, the conjugates of a given complement $G \leq \Gamma$ of S^{n} generate all of Γ. Therefore, if (r, \mathbf{C}) is a ramification type of G with $\mathcal{H}_{G, r}(\mathbf{C})(\bar{k}) \neq \emptyset$, then for a suitable multiple R of r, there exists a ramification type ($R, \tilde{\mathbf{C}}$) of Γ projecting onto a repetition of \mathbf{C}, and such that $\mathcal{H}_{\Gamma, R}(\tilde{\mathbf{C}})(k) \neq \emptyset$. As above, the equivalence classes of k-regular covers of group Γ and ramification type (any arbitrarily long repetition of) $\tilde{\mathbf{C}}$ are Zariski-dense in at least one connected component, thus fulfilling Condition 3.12. But by the choice of $\tilde{\mathbf{C}}$, for any such cover, the subcover with group G is a k-regular cover with the same branch point set, thus yielding Condition 3.12 also for G.

Proof of Theorem 3.10(a-2) As a first example, let G be an elementary abelian 2-group. Since G is abelian, every tuple (C_{1}, \ldots, C_{R}) of conjugacy classes in G with non-empty Nielsen class is a rigid tuple (in the sense of, e.g., [21, Chapter I, §4]).

Furthermore, since all non-identity elements of G are of order 2, every conjugacy class is trivially rational (i.e., unchanged if taken to a power relatively prime to the order of its elements). It then follows from the rigidity method that, for every choice $\left(t_{1}, \ldots, t_{R}\right)$ of R distinct points in $\mathbb{P}^{1}(k)$, there exists a Galois cover of \mathbb{P}^{1}, defined over k, with inertia canonical invariant $\left(C_{1}, \ldots, C_{R}\right)$ and branch points $\left(t_{1}, \ldots, t_{R}\right)$. In particular, the set of all these covers cannot be obtained by a set of defining equations of dimension $<R$. Hence, G fulfills Condition 3.12 over k. The assertion of Theorem 3.13 therefore holds for G over an arbitrary field of characteristic zero.

Now, let G be an arbitrary abelian group of even order. As before, all class tuples with non-empty Nielsen class are rigid. Let $\left(C_{1}, \ldots, C_{R}\right)$ be a class tuple of G containing each element of order ≥ 3 exactly once, and each element of order 2 an arbitrary even number of times. This then yields a product-1 tuple generating G and, if the branch points for each set of generators of a cyclic subgroup $\mathbb{Z} / d \mathbb{Z}$ are chosen appropriately to form a full set of conjugates (under the action of $\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 i \pi / d}\right) / \mathbb{Q}\right)$) in $k\left(e^{2 i \pi / d}\right)$, then the associated ramification type is a rational ramification type, implying that there is again a k-regular Galois cover with inertia canonical invariant $\left(C_{1}, \ldots, C_{R}\right)$ and with the prescribed branch point set. Note that the branch points for elements of order 2 are still allowed to be chosen freely in k. Since there are less than $|G|$ other branch points, it follows as above that the set of Galois covers with these ramification data cannot be obtained by a set of defining equations of dimension $\leq R-|G|$. Therefore again, Condition 3.12 is fulfilled.

Proof of Theorem 3.10(a-3) Let $G=A \times H$, where A is an abelian group of even order and H is any non-solvable group which occurs as a regular Galois group over k. We use the nonsolvability assumption only to obtain that there are no Galois covers of genus ≤ 1 with group
G. Take a tuple $\left(C_{1}, \ldots, C_{R}\right)$ of classes of $A \leq G$ as in the proof of Theorem 3.10(a-2), and prolong it by a fixed tuple $\left(C_{R+1}, \ldots, C_{S}\right)$ of classes which occurs as some ramification type for H over k. With the appropriate choice of branch point set for the H-cover, we obtain a k-regular Galois cover with group $A \times H$ where, once again, the branch points with involution inertia in A can be chosen freely (outside of the fixed branch points of the H cover). Increasing R as in the proof of Theorem 3.10(a-2) (whilst fixing (C_{R+1}, \ldots, C_{S})), we again obtain that Condition 3.12(a) is fulfilled, and so Theorem 3.13 holds over k for Galois covers of genus ≥ 2. As there is no Galois cover of group G and genus ≤ 1, Theorem 1.1(b) holds for G over all fields of characteristic 0 .

Proof of Theorem 3.10(a-4) Let $M_{g, d}$ be the moduli space of simply branched covers (i.e., all non-trivial inertia groups are generated by transpositions) of degree d and genus g. It is known (see [1]) that $M_{g, 5}$ is unirational for all $g \geq 6$ and, in fact, this holds even over the smallest field of definition \mathbb{Q} (and, hence, over all fields of characteristic zero).

Note that $M_{g, 5}$ parameterizes Galois covers in $\mathrm{H}_{S_{5}, 8+2 g}(\mathbf{C})$ with $\mathbf{C}=\left(C_{1}, \ldots, C_{8+2 g}\right)$, where each C_{i} is the class of transpositions. This space is of dimension $8+2 g$, and unirationality (over k) implies that its function field is of finite index in some $k\left(T_{1}, \ldots, T_{8+2 g}\right)$ with independent transcendentals T_{i}. But, of course, every k-rational value of ($T_{1}, \ldots, T_{8+2 g}$) then leads to a k-rational point on $M_{g, 5}$ (and, thus, a cover defined over k), and the set of such k-rational points on a unirational variety is always Zariski-dense.

This implies that Condition 3.12(a) is fulfilled and, as there is no Galois cover of group S_{5} and genus ≤ 1, Theorem 1.1(b) holds for S_{5} over all fields of characteristic 0 .

4 Proof of Theorem 1.3

Throughout this section, fix an algebraically closed field k of characteristic 0 and a Galois cover $f: X \rightarrow \mathbb{P}_{k}^{1}$ with group G and ramification type (R, \mathbf{C}) for $R \geq 4$. Assume $G \not \subset$ $\mathrm{PGL}_{2}(\mathbb{C})$. Let $\mathbf{t}=\left\{t_{1}, \ldots, t_{R}\right\}$ be the branch point set of f. Let $e_{f}\left(t_{0}\right)$ denote the ramification index of $t_{0} \in \mathbb{P}^{1}(k)$ under f, and set $e_{i}=e_{f}\left(t_{i}\right)$ for $i=1, \ldots, R$. Given $T_{0} \in k(U) \backslash k$ and $t_{0} \in \mathbb{P}^{1}(k)$, let $e\left(q \mid t_{0}\right)$ denote the ramification index under T_{0} of $q \in T_{0}^{-1}\left(t_{0}\right)$. The proof is based on the following estimate on the branch point number of a pullback, which strengthens the bounds in [7, Theorem 3.1(b-2)]. Recall that for $T_{0} \in H_{f, k}$, the fiber product $X \times{ }_{f, T_{0}} \mathbb{P}_{k}^{1}$ is irreducible, cf. Sect. 2.2.

Lemma 4.1 Let $T_{0} \in H_{f, k}$ be of degreen. Let a_{i} be the number of preimages $q \in T_{0}^{-1}\left(t_{i}\right)$ with $e_{i} \mid e\left(q \mid t_{i}\right)$ for $i=1, \ldots, R$, and $U_{T_{0}, f}$ the set of points $q \in \mathbb{P}^{1}(k)$ such that $e\left(q \mid t_{0}\right) \neq e_{f}\left(t_{0}\right)$ for $t_{0}=T_{0}(q)$. Then the branch point number $R_{T_{0}}$ of the pullback $f_{T_{0}}$ is at least

$$
R_{T_{0}} \geq(R-4) n+4+\sum_{i=1}^{R}\left(e_{i}-2\right) a_{i}+\sum_{q \in U_{T_{0}, f}}\left(e\left(q \mid t_{0}\right)-1\right) .
$$

Moreover, equality holds if and only if T_{0} is unramified away from \mathbf{t} and its ramification indices over t_{i} are either e_{i} or not divisible by e_{i}, for $i=1, \ldots, R$.

Proof Let b_{i} denote the number of preimages q in $T_{0}^{-1}\left(t_{i}\right)$ such that $e\left(q \mid t_{i}\right)$ is not divisible by e_{i}, for $i=1, \ldots, R$. Note that, since $X \times_{f, T_{0}} \mathbb{P}_{k}^{1}$ is irreducible, Abhyankar's lemma implies

$$
\begin{equation*}
R_{T_{0}}=b_{1}+\cdots+b_{R} . \tag{4}
\end{equation*}
$$

By the Riemann-Hurwitz formula for T_{0}, we have

$$
\begin{equation*}
2 n-2=\sum_{t_{0} \in \mathbb{P}^{1}} \sum_{q \in T_{0}^{-1}\left(t_{0}\right)}\left(e\left(q \mid t_{0}\right)-1\right) \geq \sum_{q \in U_{T_{0}, f}}\left(e\left(q \mid t_{0}\right)-1\right)+\sum_{i=1}^{R}\left(e_{i}-1\right) a_{i}, \tag{5}
\end{equation*}
$$

with equality if and only if $e\left(q \mid t_{i}\right)$ is either e_{i} or non-divisible by e_{i}, for all points $q \in$ $T_{0}^{-1}\left(t_{i}\right), i=1, \ldots, R$. The same Riemann-Hurwitz formula also implies

$$
2 n-2 \geq \sum_{i=1}^{R}\left(n-a_{i}-b_{i}\right)=R n-\sum_{i=1}^{R}\left(a_{i}+b_{i}\right)
$$

with equality if and only if T_{0} is unramified away from \mathbf{t}. Combined with (5), this gives

$$
\begin{aligned}
2 n-2 & \geq R n-\sum_{i=1}^{R}\left(a_{i}+b_{i}\right) \\
& \geq R n+\sum_{i=1}^{R}\left(e_{i}-2\right) a_{i}+\sum_{q \in U_{T_{0}, f}}\left(e\left(q \mid t_{0}\right)-1\right)-(2 n-2)-\sum_{i=1}^{R} b_{i} .
\end{aligned}
$$

Combined with (4), this gives

$$
R_{T_{0}}=\sum_{i=1}^{R} b_{i} \geq(R-4) n+4+\sum_{i=1}^{R}\left(e_{i}-2\right) a_{i}+\sum_{q \in U_{T_{0}}, f}\left(e\left(q \mid t_{0}\right)-1\right)
$$

with equality if and only if T_{0} is unramified away from \mathbf{t} and every ramification index $e\left(q \mid t_{i}\right)$, for $q \in T_{0}^{-1}\left(t_{i}\right), i=1, \ldots, R$, which is divisible by e_{i} is equal to e_{i}.

Let E denote the multiset $\left\{e_{1}, \ldots, e_{R}\right\}$. Throughout the proof below, we assume T_{0} is in the Hilbert subset $H_{f, k}$, and hence that the fiber product $X \times{ }_{f, T_{0}} \mathbb{P}_{k}^{1}$ is irreducible.
Proof of Theorem 1.3 when $E \neq\{2,2,2,3\},\{2,2,2,4\}$
The case where f is of genus 1 follows from Remark 3.3, so henceforth we shall assume that the genus of X is at least 2 . Let $\left(g_{1}, \ldots, g_{R}\right)$ be a tuple in the Nielsen class of \mathbf{C}, corresponding to f. As any permutation of the tuple $\mathbf{C}=\left(C_{1}, \ldots, C_{R}\right)$ has a non-empty Nielsen class, without loss of generality, we may assume that g_{i} is a branch cycle over t_{i} and the orders e_{1}, \ldots, e_{R} of g_{1}, \ldots, g_{R} are ordered in decreasing order. This tuple can be modified to a tuple $\left(P_{y}\right) y, y^{-1} g_{1}, \ldots, g_{R}$ for any $y \neq g_{1}$. Such a tuple generates G and has product 1, giving a non-empty Nielsen class corresponding to a ramification type which we denote by $\left(R+1, \mathbf{D}_{y}\right)$. We will show that, for a suitable choice of $y \in G$, no pullback $f_{T_{0}}$, along $T_{0} \in k(U) \backslash k$ of degree $n>1$, is in $\mathrm{H}_{G, R+1}\left(\mathbf{D}_{y}\right)(k)$. Since a cover in $\mathrm{H}_{G, R+1}\left(\mathbf{D}_{y}\right)(k)$ is a pullback of f only if y is a power of some element in C_{1}, \ldots, C_{R}, by varying y, we may assume that every conjugacy class in G is a power of one of C_{1}, \ldots, C_{R}.

As in Lemma 4.1, let a_{i} (resp., b_{i}) be the number of preimages q in $T_{0}^{-1}\left(t_{i}\right)$ such that the ramification index $e\left(q \mid t_{i}\right)$ is divisible by e_{i} (resp., is not divisible by e_{i}) for $i=1, \ldots, R$. For $R \geq 6$, as $n \geq 2$, the lower bound on $R_{T_{0}}$ from Lemma 4.1 is $\geq R+2$, as desired ${ }^{14}$.

[^10]The case $R=5$: We may assume $R_{T_{0}}=6$. By Lemma 4.1, we have

$$
n \leq 2-\sum_{i=1}^{R}\left(e_{i}-2\right) a_{i}-\sum_{q \in U_{T_{0}, f}}\left(e\left(q \mid t_{0}\right)-1\right) .
$$

As $n>1$, this forces $n=2, e\left(q \mid t_{0}\right)=1$ for all $q \in U_{T_{0}, f}$, and $\sum_{i=1}^{R}\left(e_{i}-2\right) a_{i}=0$. Thus, every ramification index of T_{0} over t_{i} is either e_{i} or 1 , and T_{0} is unramified away from \mathbf{t}. Since T_{0} is of degree 2 , it ramifies over exactly two branch points with ramification index 2 . Hence, without loss of generality, we may assume $e_{4}=e_{5}=2$, so that the inertia canonical invariant of $f_{T_{0}}$ is $\mathbf{C}_{T_{0}}=\left(C_{1}, C_{1}, C_{2}, C_{2}, C_{3}, C_{3}\right)$. If $e_{1}>2$, by picking y to be an involution, no cover in $\mathrm{H}_{G, R+1}\left(\mathbf{D}_{y}\right)(k)$ is a pullback of f, as \mathbf{D}_{y} has more conjugacy classes of involutions than $\mathbf{C}_{T_{0}}$ does. Similarly, if $e_{1}=2$ and G contains an element y of order >2, then every cover in $\mathrm{H}_{G, R+1}\left(\mathbf{D}_{y}\right)(k)$ is not a pullback of f, as its Nielsen class has a conjugacy class of non-involutions. If $e_{1}=2$ and all elements of G are of order 2, then G is an elementary abelian 2-group generated by three conjugacy classes C_{1}, C_{2}, C_{3}. As $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$, this forces $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$. In the latter case, we may choose y to be an involution whose conjugacy class is different from $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, so that no cover in $\mathrm{H}_{G, R+1}\left(\mathbf{D}_{y}\right)(k)$ is a pullback of f.

The case $R=4$: Assume $R_{T_{0}}=5$. By Lemma 4.1, we have

$$
\begin{equation*}
\sum_{i=1}^{R}\left(e_{i}-2\right) a_{i}+\sum_{q \in U_{T_{0}, f}}\left(e\left(q \mid t_{0}\right)-1\right) \leq 1 . \tag{6}
\end{equation*}
$$

Let \mathbf{t}_{2} (resp., $\mathbf{t}_{>2}$) denote the set of t_{i} with $e_{i}=2$ (resp., $e_{i}>2$). Since every point $q \in T_{0}^{-1}\left(t_{i}\right), t_{i} \in \mathbf{t}_{2}$, with ramification index $e\left(q \mid t_{0}\right)>2$ contributes at least 2 to (6), we deduce that $e\left(q \mid t_{i}\right)=1$ or 2 for all $q \in T_{0}^{-1}\left(t_{i}\right), t_{i} \in \mathbf{t}_{2}$. On the other hand, for $t_{i} \in \mathbf{t}_{>2}$, (6) gives $a_{i}=0$ with the possible exception of a single t_{ι} for which $a_{t_{l}}=1$ and $e_{\iota}=3$. Moreover, if such ι exists, then the contribution of the sum over $U_{T_{0}, f}$ in (6) is 0 . Hence,

$$
\begin{align*}
& e\left(q \mid t_{i}\right)=1 \text { for all points } q \in T_{0}^{-1}\left(t_{i}\right), t_{i} \in \mathbf{t}_{>2} \text {, with the possible } \\
& \text { exception of a single } q_{\iota} \in T_{0}^{-1}\left(t_{\iota}\right) \text { where } e_{l}=e\left(q_{\iota} \mid t_{l}\right)=3 \text {. } \tag{7}
\end{align*}
$$

Otherwise, $a_{i}=0$ for all $t_{i} \in \mathbf{t}_{>2}$, in which case (6) shows that

$$
\begin{align*}
& e\left(q \mid t_{i}\right)=1 \text { for all points } q \in T_{0}^{-1}\left(t_{i}\right), t_{i} \in \mathbf{t}_{>2} \text {, with the possible } \\
& \text { exception of a single } q_{\eta} \in T_{0}^{-1}\left(t_{\eta}\right) \text { where } e\left(q_{\eta} \mid t_{\eta}\right)=2 \neq e_{\eta} . \tag{8}
\end{align*}
$$

If G is of odd order, (7) and (8) force T_{0} to have at most one ramification point, which, by the Riemann-Hurwitz formula, forces a contradiction to $n>1$. Henceforth, assume G is of even order.

Let $a=\left|\mathbf{t}_{>2}\right|$. Since the genus of X is more than 1 and $R=4$, the Riemann-Hurwitz formula for f implies $a \geq 1$. Assume first $a>1$. In this case, we let $y \in G$ be an involution. The number of elements of order >2 in $\left(P_{y}\right)$ is a or $a-1$. In case there exists ι as above, (7) forces every point $t_{i} \in \mathbf{t}_{>2} \backslash\left\{t_{l}\right\}$ to have at least three unramified preimages and hence forces $f_{T_{0}}$ to have at least $3(a-1)$ branch points with ramification index >2. As $3(a-1)>a$ for $a>1$, the pullback $f_{T_{0}}$ does not not have ramification type ($R+1, \mathbf{D}_{y}$). The same argument applies if (8) holds and $n \geq 3$. If $n=2$ and (8) holds, then $f_{T_{0}}$ has at least $2(a-1)+1$ branch points with ramification index >2. Similarly, $2(a-1)+1>a$, and hence $f_{T_{0}}$ does not have ramification $\left(R+1, \mathbf{D}_{y}\right)$.

Henceforth, assume $a=1$, that is, $E=\{e, 2,2,2\}$. Note that $e>4$ by assumption. Condition (7) does not hold since $e>3$, and hence (8) does. The latter implies that the inertia canonical conjugacy classes of $f_{T_{0}}$ over points in $T_{0}^{-1}\left(t_{1}\right)$ are either C_{1} or C_{1}^{2}, hence of order e or $e / 2$. Thus, if we pick y to be of order different from e and $e / 2$, then the only element of $\left(P_{y}\right)$ that can appear in such conjugacy class is $y x_{1}$. Thus, (8) implies:
$T_{0}^{-1}\left(t_{1}\right)$ consists of a single point q_{η} with ramification $e\left(q_{\eta} \mid t_{1}\right)=2$ such that the inertia canonical invariant of $f_{T_{0}}$ over q_{η} is the conjugacy class of $y x_{1}$.

The latter then has to be of order $\tilde{e}=e / 2$ or e.
At first, consider the case where the conjugacy classes C_{2}, C_{3}, C_{4} do not coincide. Without loss of generality, we may then assume that C_{2} is different from C_{3} and C_{4}. Picking $y=x_{3}$, (9) implies that $n=2$, and ($R+1, \mathbf{D}_{y}$) is a ramification type consisting of conjugacy classes of orders $2, \widetilde{e}, 2,2,2$, with $\widetilde{e}=e$ or $e / 2$. In particular, $\widetilde{e}>2$ and C_{2} appears at most once in \mathbf{D}_{y}. Since $n=2$ and $f_{T_{0}}$ is assumed to have 5 branch points, T_{0} has to ramify over exactly one of the places t_{2}, t_{3}, t_{4}, say t_{k}. If $k=2$, then C_{2} does not appear in the ramification type of $f_{T_{0}}$, contradicting its appearance in \mathbf{D}_{y}. If $k=3$ or 4 , then t_{2} is unramified under T_{0} and hence C_{2} appears at least twice in the ramification type of $f_{T_{0}}$, but only once in \mathbf{D}_{y}, contradiction.

Now, consider the case $C_{2}=C_{3}=C_{4}$. Note that, since G is non-cyclic, C_{2} is not a power of C_{1}. Assume next that e is even. We may then pick y to be an involution which is a power of x_{1}. As y is not of order e or $e / 2$, we get $y \notin C_{1} \cup C_{1}^{2} \cup C_{2}$, contradicting that those are the only conjugacy classes that may appear in the ramification type of $f_{T_{0}}$. Next, assume e is odd, and pick a prime p dividing e. If $p=e$, then G is solvable by Burnside's theorem. Letting N be a minimal normal subgroup of G, it follows that N contains exactly one of C_{1} and C_{2}. The product 1 relation then gives a contradiction in G / N. Thus, we may assume p is a proper divisor of e. In this case, if we pick y to be a power of x_{1} of order p, then (9) implies that the only conjugacy classes appearing in the ramification type of $f_{T_{0}}$ are C_{1}, C_{1}^{2} or C_{2}, neither of which contains y, contradiction. This concludes the proof in the case $E \neq\{2,2,2,3\},\{2,2,2,4\}$.

Remark 4.2 In the following, we shall use Magma for computations with small order groups. More specifically, we use the command ExtensionsOfElementaryAbelianGroup to run over extensions of a given group by an elementary abelian group.

Finally, we show that, if E is $\{3,2,2,2\}$ or $\{4,2,2,2\}$, then either $G \subseteq \mathrm{PGL}_{2}(\mathbb{C})$ or there is no group G whose maximal conjugacy classes are the classes of a product 1 tuple x_{1}, \ldots, x_{4} with orders in E. Since, in both cases, $|G|$ is divisible by at most two primes, G is solvable by Burnside's theorem. Let N be a minimal normal subgroup of G, so that $N \cong(\mathbb{Z} / 2 \mathbb{Z})^{u}$ or $(\mathbb{Z} / 3 \mathbb{Z})^{u}$, for $u \geq 1$.
Case $\{\mathbf{3 , 2 , 2 , 2}\}$: If $N \cong(\mathbb{Z} / 3 \mathbb{Z})^{u}$, the images of x_{2}, x_{3}, x_{4} in G / N remain of order 2 and hence $G / N \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since, moreover, G / N acts transitively on the $\mathbb{Z} / 3 \mathbb{Z}$ subgroups of N, it follows that $u=1$ or 2 . A check using Magma (see Remark 4.2) shows that all such group extensions G contain an element of order 6 .

In the case $N \cong(\mathbb{Z} / 2 \mathbb{Z})^{u}$, the subgroup N contains exactly one of the conjugacy classes C_{2}, C_{3}, C_{4} since, otherwise, we get a contradiction to the product 1 relation in G / N. Since G / N is generated by three elements of orders 3,2 and 2 with product 1 , it is isomorphic to S_{3}. As G / N acts transitively on the $\mathbb{Z} / 2 \mathbb{Z}$ copies in N, we have $u=1$ or 2 . Once again, a Magma check shows that all such group extensions G contain an element of order 4 or 6 , contradicting that $C_{i}, i=1, \ldots, 4$ are the only maximal ones.

Case $\{\mathbf{4 , 2 , 2 , 2}\}$: In this case, G is a 2-group, and $N \cong(\mathbb{Z} / 2 \mathbb{Z})^{u}$. The conjugacy classes of involutions in G are C_{1}^{2}, C_{2}, C_{3}, and C_{4}. If N does not contain C_{1}^{2}, then the product one relation in G / N implies that N contains exactly one of the conjugacy classes C_{2}, C_{3}, C_{4}. In this case, G / N is dihedral of order 8 , acting transitively on the $\mathbb{Z} / 2 \mathbb{Z}$ copies in N. Hence, $u=1$ or 2 . A Magma check (see Remark 4.2) shows that such a G either contains an element of order 8 , or has more than four conjugacy classes of involutions, or has more than two conjugacy classes of elements of order 4 (in which case there is more than one conjugacy class of cyclic subgroups of order 4).

If N contains C_{1}^{2}, then all elements of G / N are involutions, and hence G / N is an elementary abelian 2 -group. Since we may assume N is a proper subgroup of G, the product 1 relation in G / N implies that N contains one or two of the conjugacy classes C_{2}, C_{3}, C_{4}. In the former case, G / N is a 2 -group acting transitively on involutions in N, forcing $u=1$. In this case, a Magma check shows that, for such group extensions, either the number of conjugacy classes of involutions is more than 4 or the number of conjugacy classes of order 4 elements is more than 2 . If N contains two of C_{2}, C_{3}, C_{4}, then $G / N \cong \mathbb{Z} / 2 \mathbb{Z}$. Thus, by minimality of N, we get that $u \leq 2$ and hence that G is isomorphic to a subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$.

Acknowledgements This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01) and ISF grants No. 577/15 and No. 696/13.

References

1. Arbarello, E., Cornalba, M.: Footnotes to a paper of Beniamino Segre: "On the modules of polygonal curves and on a complement to the Riemann existence theorem" (Italian) [Math. Ann. 100 (1928), 537551 ; Jbuch 54, 685]. The number of g_{d}^{1} 's on a general d-gonal curve, and the unirationality of the Hurwitz spaces of 4-gonal and 5-gonal curves. Math. Ann., 256(3):341-362 (1981)
2. Bary-Soroker, L., Fehm, A.: Open problems in the theory of ample fields. In Geometric and differential Galois theories, volume 27 of Sémin. Congr., pages 1-11. Soc. Math. France, Paris (2013)
3. Dèbes, P., Deschamps, B.: The regular inverse Galois problem over large fields. In Geometric Galois actions, 2, volume 243 of London Math. Soc. Lecture Note Ser., pages 119-138. Cambridge Univ. Press, Cambridge (1997)
4. Dèbes, P., Douai, J-C.: Algebraic covers: field of moduli versus field of definition. Ann. Sci. École Norm. Sup. (4), 30(3):303-338 (1997)
5. Dèbes, P., König, J., Legrand, F., Neftin, D.: On parametric and generic polynomials with one parameter. J. Pure Appl. Algebra 225(10), 106717 (2021)
6. Dèbes, P., König, J., Legrand, F., Neftin, D.: Rational pullbacks of Galois covers. Manuscript (2018). arXiv:1807.01937v2
7. Dèbes, P.: Groups with no parametric Galois realizations. Ann. Sci. Éc. Norm. Supér. (4), 51(1):143-179 (2018)
8. Dèbes, P.: Méthodes topologiques et analytiques en théorie inverse de Galois : théorème d'existence de Riemann. (French). In Arithmétique de revêtements algébriques (Saint-Étienne, 2000), volume 5 of Sémin. Congr., pages 27-41. Soc. Math. France, Paris (2001)
9. Dèbes, P.: Density results for Hilbert subsets. Indian J. Pure Appl. Math. 30(1), 109-127 (1999)
10. Dèbes, P.: On the Malle conjecture and the self-twisted cover. Israel J. Math. 218(1), 101-131 (2017)
11. Dèbes, P., Legrand, F.: Specialization results in Galois theory. Trans. Am. Math. Soc. 365(10), 5259-5275 (2013)
12. Fried, M.D., Jarden, M.: Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 11. Springer-Verlag, Berlin, third edition, (2008). Revised by Jarden. xxiv+792 pp
13. Fried, M.D.: Fields of definition of function fields and Hurwitz families-groups as Galois groups. Comm. Algebra 5(1), 17-82 (1977)
14. Fried, M.D., Völklein, H.: The inverse Galois problem and rational points on moduli spaces. Math. Ann. 290(4), 771-800 (1991)
15. Grothendieck, A.: Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes de schémas. I. (French). Inst. Hautes Etudes Sci. Publ. Math., 20, 259 pp (1964)
16. Jarden, M.: Algebraic patching. Springer Monographs in Mathematics. Springer, Heidelberg, 2011. xxiv+290 pp
17. Jensen, C.U., Ledet, A., Yui, N.: Generic polynomials. Constructive Aspects of the Inverse Galois Problem. Mathematical Sciences Research Institute Publications, 45. Cambridge University Press. x+258 pp (2002)
18. Jordan, C.: Recherches sur les substitutions. J. Liouville 17, 351-367 (1872)
19. König, J., Legrand, F.: Non-parametric sets of regular realizations over number fields. J. Algebra 497, 302-336 (2018)
20. König, J., Legrand, F., Neftin, D.: On the local behavior of specializations of function field extensions. Int. Math. Res. Not. IMRN 2019(9), 2951-2980 (2019)
21. Malle, G., Matzat, B.H.: Inverse Galois theory. Springer Monographs in Mathematics. Springer, Berlin. Second edition. xvii+532 pp (2018)
22. Müller, P.: Finiteness results for Hilbert's irreducibility theorem. Ann. Inst. Fourier (Grenoble) 52(4), 983-1015 (2002)
23. Mumford, D.: The red book of varieties and schemes, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Second, expanded edition, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello. x+306 pp
24. Pop, F.: 1/2 Riemann existence theorem with Galois action. In Algebra and number theory (Essen, 1992), pages 193-218. de Gruyter, Berlin (1994)
25. Pop, F.: Embedding problems over large fields. Ann. Math. (2), 144(1):1-34 (1996)
26. Pop, F.: Little survey on large fields - old \& new. In Valuation theory in interaction, EMS Ser. Congr. Rep., pages 432-463. Eur. Math. Soc., Zürich (2014)
27. Sadi, B.: Descente effective du corps de définition des revêtements. Thèse Université Lille 1, (1999). https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/73ccb929-17bf-4a20-abc6-0aac9072c8d3
28. Silverman, J.H.: The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, (2009). xx+513 pp
29. Völklein, H.: Groups as Galois groups. An introduction, volume 53 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (1996). xviii+248 pp

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Pierre Dèbes
 pierre.debes@univ-lille.fr
 Joachim König
 jkoenig@knue.ac.kr
 François Legrand
 francois.legrand@tu-dresden.de
 Danny Neftin
 dneftin@technion.ac.il
 1 Laboratoire de Mathématiques Paul Painlevé, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France
 2 Department of Mathematics Education, Korea National University of Education, 28173 Cheongju, South Korea

 3 Institut für Algebra, Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany
 4 Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel

[^1]: ${ }^{1}$ The term "regularly" will be fully justified with the general definition of " k-regular parametricity" for which the base field k is not necessarily algebraically closed (see Definition 2.1).
 ${ }^{2}$ Above and throughout the paper, the condition " $G \subset \mathrm{PGL}_{2}\left(\mathbb{C}\right.$)" (resp., " $G \not \subset \mathrm{PGL}_{2}(\mathbb{C})$ ") really means that G is isomorphic (resp., is not isomorphic) to a subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$.

[^2]: ${ }^{3}$ The case $N=1$ is particularly significant as it supports Hilbert's strategy to solve the Inverse Galois Problem by first producing a \mathbb{Q}-regular Galois cover $f: X \rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ of given group. It is known to hold for some groups: abelian, S_{n}, A_{n}, dihedral of order $2 n$ with $n>1$ odd, etc.

[^3]: ${ }^{4}$ which is the function field extension associated with $f \otimes_{k} \bar{k}: X \otimes_{k} \bar{k} \rightarrow \mathbb{P}_{\bar{k}}$.
 5 in the sense that they correspond to $e^{2 i \pi / e_{i}}$ in the canonical isomorphism $I_{\mathfrak{P}} \rightarrow \mu_{e_{i}}=\left\langle e^{2 i \pi / e_{i}}\right\rangle$.

[^4]: ${ }^{6}$ Due to our definition of the categories $\mathrm{H}_{G, r}(k)$ and $\mathrm{H}_{G, r}(\mathbf{C})(k)$, it is the so-called inner version of Hurwitz spaces that we shall be working with.
 ${ }^{7}$ In particular, the degree of $T_{0} \in k(U)$ (the maximum of numerator degree and denominator degree in coprime notation) is the same as the degree of the associated map $\mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$.

[^5]: ${ }^{8}$ Here, a subset of a topological space is called constructible if it is a finite union of locally closed sets.

[^6]: ${ }^{9}$ In fact, $|G| \in\{2,3,4,6\}$, since G is then a group of automorphisms of some elliptic curve, see [28, Chapter III, Theorem 10.1].

[^7]: 10 Note here that equivalent covers have the same defining equations by definition, so that the term "defining equation for an element of $\mathcal{H}_{G, r}(\mathbf{C})(k)$ " is indeed well-defined.

[^8]: ${ }^{11}$ There may be a priori two different $j_{i} \in\{1, \ldots, r\}$ such that $\mathcal{C}_{i} \in \mathbf{C}_{f, T_{0}, j_{i}}$.

[^9]: 12 Definition of "ample field" is recalled in Remark 1.4(a).
 13 In fact, the assumption on H to be non-solvable can be removed with a bit of extra effort. Moreover, if H is not a regular Galois group over k, then G is not either. Hence, Theorem 1.1(b) trivially fails.

[^10]: 14 We note that, for $R \geq 6$, this claim also follows for any choice of y from [7, Theorem 3.1(b-2)], since the latter implies that every pullback of a k-cover in $\mathrm{H}_{G, R}(\mathbf{C})$ has at least $R+2$ branch points, and hence is not in $\mathrm{H}_{G, R+1}\left(\mathbf{D}_{y}\right)(k)$.

