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Abstract. The geometric study of the absolute Galois group of the rational
numbers has been a highly active research topic since the first milestones:
Hilbert’s Irreducibility Theorem, Noether’s program, Riemann’s Existence
Theorem. It gained special interest in the last decades with Grothendieck’s
“Esquisse d’un programme”, his “Letter to Faltings” and Fried’s introduction
of Hurwitz spaces. It grew on and thrived on a wide range of areas, e.g. formal
algebraic geometry, Diophantine geometry, group theory. The recent years
have seen the development and integration in algebraic geometry and Galois
theory of new advanced techniques from algebraic stacks, `-adic representa-
tions and homotopy theories. It was the goal of this mini-workshop, to bring
together an international panel of young and senior experts to draw bridges
towards these fields of research and to incorporate new methods, techniques
and structures in the development of geometric Galois theory.
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Introduction by the Organisers

The workshop Arithmetic Geometry and Symmetries around Galois and Funda-
mental Groups dealt with recent progress in the study of the absolute Galois group
of the rational numbers based on geometric representations through étale funda-
mental groups. This includes various approaches which aim at moduli properties
of algebraic spaces via their arithmetic-geometric interpretations, and which trans-
late into the study of the finite quotients of the absolute Galois group – the Inverse
Galois Problem. IGP has been one key thread of the workshop, a second one being
the symmetries of the spaces, which the automorphisms of the structures reflect.
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Overview

The traditional Geometric Galois & Inverse Galois approaches – abelian, geomet-
ric, via Galois representation – have grown into new branches leading to striking
results: conditions on Galois realizations expressed in terms of rational properties
of Hurwitz space towers (Fried, Dèbes, Cadoret, Tamagawa), arithmetic proper-
ties of the stack structures of moduli spaces of curves (Schneps, Nakamura, Collas,
Maugeais), extension of anabelian results to higher-dimension (Hoshi, Schmidt,
Stix), realization of new groups as Galois groups (Dettweiler, Reiter), specializa-
tion properties of geometric Galois realizations (Dèbes, Legrand, König, Neftin),
contributions to Colliot-Thélène’s program on G-torsors (Harari, Wittenberg).

The workshop focused on this progress as organized under 3 hot topics:

(1) Abelian approach to Inverse Galois. After the completion of the Shafare-
vich solution to IGP for solvable groups, the Colliot-Thélène approach to
the Noether program and the Grunwald problem, via the study of rational
points on rationally connected varieties, has become a leading project.

(2) Geometric Galois Theory, which investigates the arithmetic of finite Ga-
lois covers of the projective line and their specializations and has led to
the study of their moduli spaces and their towers — Hurwitz spaces and
Modular Towers, has been the only key to the non-solvable territory.

(3) Galois Anabelian and Homotopical Geometry, which deals with Galois
properties of the étale fundamental group as supported by the seminal
example of the moduli stack of curves, has been, since Grothendieck, one
of the most influential set of ideas.

One goal of the workshop has been to take full advantage of the bridges between
the three topics, notably by considering the geometric and arithmetic higher sym-
metries of the objects via homotopical methods. The automorphisms of families
at the 2-categorical level of Hurwitz and moduli stacks, and the higher cohomo-
logical obstructions to rationality are two successful examples of this approach.
The introductory talk referred to this quote by S. Lefschetz “It was my lot to plant
the harpoon of algebraic topology into the body of the whale of algebraic geometry”.
Taking over this mission for Arithmetic was inspirational for the workshop.

The program of the mini-workshop consisted of 18 eighty-minutes lectures. Par-
ticipants introduced their knowledge and shared their progress in a lively atmo-
sphere of stimulating exchanges. Informal sessions crystallizing the connections
between classical problems and some of the new expertises revealed quite promis-
ing. For example the embedding problem paired with the spectral étale Brauer-
Manin obstruction, Regular Inverse Galois Theory with approximation properties
on the Noether variety, anabelian geometric properties with étale homotopy type.

This mini-workshop renewed the long and strong tradition of fruitful exchanges
between Arithmetic and Galois theories in such famous places as Oberwolfach,
Luminy, Seattle, Red Lodge, and Kyoto. Because of the strong support and feed-
back of the participants, agreement has been made to meet again in a similar
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event within the next two years for sharing the progress of the research directions
initiated during this mini-workshop.

1. Abelian Inverse Galois Theory

The three talks on this topic related to the Brauer-Manin obstruction to existence
or density of rational points on a variety over a number field. A classical conjecture
due to Colliot-Thélène – the BM obstruction is the only one for geometrically
rationally connected varieties (e.g. unirational) – link this issue to Inverse Galois
Theory. Indeed it is well-known that this conjecture, applied to the Noether variety
Ad/G (with d = |G|), or its variant SLm/G (for some embedding G ↪→ SLm),
leads to a solution of IGP for the group G in question. Furthermore this approach
generally also provides some answers to the local-global Grunwald problem – lift a
finite set of local Galois extensions of group embedded in G to some global Galois
extension of group G. Recently new ingredients coming from homotopy theory,
the notion of spectras, have appeared in this topic.

In the first part of his talk, Harari reviewed the classical material around the
Brauer-Manin obstruction (over number fields). Then he explained that a big
part extends to global fields of positive characteristic, e.g. the function field K of a
curve over a finite field, or even over more complicated fields, provided some good
arithmetic duality properties remain. In this context, he finally presented some
recent results obtained (some jointly with Szamuely and some by Izquierdo) for
some K-algebraic groups.

Schlank reported on how modern homotopy theory gives – in terms of étale
topological type, spaces, and spectras – a potential finer context where to express
fundamental arithmetic questions. He first discussed the problems of Grothendieck
section conjecture, of Skorobogatov’s étale-BM obstruction to rational points, and
of Galois embeddings (jw. Carlson) in terms of cohomological methods. He then
presented recent developments of this approach within the stable motivic homo-
topy theory, which reveal a higher cohomological obstruction (jw. Stojanoska).

Wittenberg, after recalling the Colliot-Thélène conjecture and its connection to
Inverse Galois Theory, presented his recent joint result with Harpaz: a proof of the
conjecture when the variety is a smooth proper model of an homogeneous space
V of SLm with finite and supersolvable stabilizers. In the case V = SLm/G with
G a finite group, embedded in some SLm, they obtain as a corollary that every
supersolvable group G is a Galois group over any given number field, and even
that every Grunwald problem for G, for places not dividing |G|, has a solution.
He also explained the strategy of the proof and its main ingredients.

2. Geometric Galois Theory

The most basic Inverse Galois Problem version is to show that GQ has every fi-
nite group as a quotient. Some significant success has, however, come through
the Regular Inverse Galois Problem (RIGP) for which the basic tools are sophisti-
cated versions of Riemann’s existence theorem followed by specialization (Hilbert’s
irreducibility theorem). The regular approach is driven by the moduli of covers
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of the projective line P1 – Hurwitz spaces. The profinite nature of Galois groups
leads to their organization in towers – Modular Towers, which also takes us back
to fundamental `-adic representation issues. Recently there has also been a focus
on the specialization process itself aimed at assessing the difference between the
two inverse Galois problems.

Fried’s talk applied hisM(odular)T(ower) generalization of modular curve tow-
ers to the R(egular)I(nverse)G(alois)P(roblem) and expanding Serre’s O(pen)
I(mage)T(heorem). From any finite `-perfect (` prime) group G, a characteristic
extension, V`

def
= (Z`)ν(G,`) → G̃` → G, leads to towers of Hurwitz spaces based on

the finite group quotients G̃`/`k+1V`
def
= k

`G, k ≥ 0. An example used his formula
for computing all expected properties – genus, cusps, degree, fine moduli prop-
erties – of j-line covers by reduced Hurwitz spaces of 4-branch point covers. His
concluding examples showed MTs to be a seam between the OIT and the RIGP
enhancing Fried’s two main OIT conjectures.

Dèbes followed Raynaud’s “one-slide” tradition to present a diagram showing
the state of the art in Inverse Galois Theory and structuring it in three categories
of problems: realizing, lifting, parametrizing. He then used the same diagram to
recast a series of recent results from a joint program with Koenig, Legrand and
Neftin on the specialization process. In various situations, they show that the sets
of Galois extensions obtained by specialization from natural sets of Galois covers
of the line of fixed group G (singletons, moduli spaces) are big (in some density
sense), but also cannot be too big (e.g. they generally do not contain all Galois
extensions of group G). More detailed talks by his co-authors were to follow.

Legrand presented in more details some of the specialization results mentioned
in Dèbes’ talk. He emphasized his results on the parametricity property. No group
G had failed having a parametric extension over a given number field k: a regular
Galois extension F/k(T ) that parametrizes, via specialization of T in P1(k), all
Galois extensions E/k of group G = Gal(F/k(T )). A joint work of König and his
now offers many such groups: abelian 6= C4, Cp, Sn (n ≥ 4), etc. He also discussed
analogous results for the regular type of specialization, for which T is specialized
in k(U), and so the outcome is really a rational pull-back cover.

König came back to the specialization approach to the Grunwald problem al-
luded to in Dèbes’s talk, which consists in using the specialized extensions of some
regular realization of a group G to solve Grunwald problems for this group. After
recalling the unramified case (after Dèbes-Ghazi), he showed, based on a joint re-
sult of Legrand, Neftin and his on decomposition groups of specialized extensions,
that the Grunwad problem cannot be handled by the specialization approach in
general, but that promising perspectives exist if a 1-parameter family of regular
realizations of G is available. He also explained how to use their local work to
produce new groups with no parametric extensions, e.g. An (n ≥ 4).

Neftin focused on an old famous problem related to Hilbert’s Irreducibility
Theorem, which is to investigate situations for which the exceptional “reducible
set” in Hilbert’s theorem is finite. A breakthrough in this problem, due to Fried,
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was to understand how it is governed by group theory, via the monodromy groups
of the associated covers. Neftin recalled the special problem where the initial
polynomial is of the form p(Y )−T for which the expected conclusions (the reducible
set is finite except for the values of p) have been obtained if p is indecomposable
and deg(p) 6= 5 (Fried). Neftin explained new results in this context, obtained
by Zieve and him, together with some further results, by König and him, on the
decomposable case using Ritt’s theorems on decompositions of rational functions.

Dettweiler presented a recent joint work with Collas and Reiter on the category
of perverse sheaves over elliptic curves which is Tannakian with respect to the
convolution product. He showed how this allows some classical Galois realization
methods to go beyond the rational rigidity barrier. After presenting an alternative
to Hilbert’s Irreducibility Theorem in terms of a Mordell-Weil rank criterion for
local systems, he explained how the convolution approach relies on computations
of the monodromy within elliptic braid groups, and provided some examples.

Cadoret reported on a variant with ultraproduct coefficients of the fundamen-
tal theorem of Weil II for curves. She first recalled Deligne’s theory of Frobenius
weights for lisse Q`-coefficients and its application to the semisimplicity of geomet-
ric monodromy. Considering the issue of extending the semisimplicity of geometric
monodromy to integral and modulo-` coefficients arising from arbitrary compat-
ible systems of lisse Q`-sheaves, she motivated the introduction of a category of
“almost-curve tame” ultraproduct coefficients. She explained to what extend this
category is well-behaved and why it can be used to develop a theory of Frobenius
weights paralleling the one of Q`-coefficients. Finally, she elaborated on further
applications of her theory such as torsion freeness and unicity of integral models
in arbitrary compatible systems of lisse Q`-sheaves or the construction of the au-
tomorphic to Galois direction of a Langlands correspondence with ultraproduct
coefficients.

3. Galois Anabelian and Homotopical Geometry

Broadly, anabelian geometry deals with the arithmetic properties of finite étale
covers of a space, which relies on the study of Geometric Galois representations
of Gal(Q̄/Q) in the étale fundamental group of spaces. With the goal of identify-
ing arithmetic invariants within topological constructions, it relies on the essential
example of moduli stack of curves which provides a computational context – for
example via the Grothendieck-Teichmüller theory–, and also a connection to the
theory of motives. New fruitful research directions to be pursued appeared during
the workshop, which includes simplical and homotopical methods via étale topo-
logical type, (unstable) motivic homotopy theory and operads, as well as higher
genus and stack considerations.

Nakamura reported on problems and recent progress of the study of Gal(Q̄/Q)
via the tower of the universal monodromy representations in the moduli spaces
of marked curves. After some reminder on Anderson-Ihara Beta function, Soulé
and Kummer characters in meta-abelian quotients and their relation in genus 0 to
the profinite Grothendieck-Teichmüller group ĜT , he presented his recent work in
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genus 1 on Eisenstein cocycles and Enriquez’ group ĜT ell, and how they are the
analogs of the genus 0 constructions.

Schmidt and Stix presented their joint work: they showed how to use étale
homotopic methods and Mochizuki’s work to deduce the existence of anabelian
Zariski-neighbourhoods in smooth variety of any dimension. Schmidt first ex-
plained the necessary requirements and difficulties in Artin-Mazur-Friedlander
pointed-unpointed étale homotopy theory, then Stix presented the proof based on
Tamagawa’s idea of Jacobian approximation of rational points via the existence of
a certain retract.

Collas presented the divisorial and stack inertia arithmetic contexts of the mod-
uli stacks of unordered marked curves, and their key role in Geometric Galois rep-
resentations, anabelian geometry, and mixed Tate motivic theory. After discussing
his joint work with Maugeais on the Tate-like Galois action on cyclic stack inertia,
its connection to Inverse Galois theory via Hurwitz spaces and the fundamental role
of Harris/Deligne-Mumford compactification, he presented a work in progress on
how the homotopical approach leads to stacky constructions in Morel-Voevodsky’s
motivic homotopy category, as well as to computable stack periods.

Litt presented his work on étale Geometric Galois representations via the Malčev
completion of the pro-`-completion of fundamental group of algebraic varieties. He
reported on a joint work with Betts on the semisimplicity of Frobenius actions on
`-adic and p-adic (log-crystalline) pro-unipotent fundamental groups, with appli-
cation to the irreducibility of Kim-Selmer varieties in Chabauty-Kim theory, and
results on the representation theory of arithmetic fundamental groups. As an
archimedean analogue, he produced and explained the role of canonical paths in
the computation of iterated integrals, and used them to recover various special
functions of Bloch-Ramakrishnan-Zagier.

Borne discussed some joint works with Biswas and Vistoli on the construction
of cyclic ramified covers of curves via the stack of roots and the notion of weighted
parabolic sheaves. After a recollection on Mehta-Seshadri’s work on weighted
parabolic bundle, Nori’s fundamental group scheme, and Noohi’s automorphisms
uniformisation criterion for stacks, he presented his result in terms of Nori uni-
formization Tannakian criterion.

Quick presented his results on obstructions for the algebraicity of topological
cycles via cobordism and simplicial homotopy theory of presheaves. He first showed
how the stable motivic homotopy theory for smooth varieties over finite fields
allows the construction of cobordism invariants that can be used to detect and
construct non-algebraic classes. He also mentioned some arithmetic prospects in
Arakelov theory.

Wickelgren reported on a joint work in progress with Westerland on the π1-
sections for configuration spaces. Their approach relies on the use of tangential
base points in connection to the parenthesized braid group operad PaB. After
presenting how they are linked together, she recalled the Drinfel’d-Fresse definition
of ĜT as homotopy automorphism group of P̂ aB. This enriches the monoidal
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structure on Hurwitz spaces given by juxtaposing conjugacy classes with the intent
to algorithmically produce families of special points on Hurwitz spaces.
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Abstracts

Specialization and Localization in Inverse Galois Theory
Pierre Dèbes

Specialization and localization have always been at the core of Inverse Galois The-
ory (IGT): Hilbert’s Irreducibility Theorem, the Noether Program, the Grunwald
Problem, the Hurwitz moduli space approach are prominent milestones.

We focus on the situation that the base field is a number field. The goal of
the talk, based on the diagram in §3, was twofold. First, explain how we see
the two operations, specialization and localization, and the somehow inverse ones
that are parametrization and lifting still structure the area. Second, present a
series of new results which are part of a joint program with J. Koenig, F. Legrand
and D. Neftin. In various situations, these results roughly show that the sets of
Galois extensions obtained by specialization or/and localization from natural sets
of geometric Galois covers of fixed group G (singletons, families, moduli spaces)
are big (in some density sense), but also cannot be too big (e.g. they generally do
not contain all Galois extensions of group G).

The diagram in §3 displays a number of IGT properties for a finite group G
over a given number field k. The abbreviations used for these properties refer to
our two part glossary where they are fully defined: §1 for the classical ones and §2
for the more recent ones. For example:
IGP (Inverse Galois Problem): There is a Galois extension E/k of group G.

Left side of our diagram is more geometric than the right side; indeterminates
are the recognition sign. Specialization connects the two. We specialize a k-regular
Galois extension F/k(T ) or the corresponding k-cover f : X → P1

T in two ways:
- for t0 ∈ k, Ft0/k, also denoted by ft0 , is the classical specialized extension of
F at t0: the residue field extension at some prime ideal above t0 in the extension
F/k(T ). As number fields are Hilbertian (HIT), the extension Ft0/k is Galois of
group G for “many” t0 ∈ k.
- if T0 ∈ k(U) \ k, fT0

: XT0
→ P1

U is the pull-back of f along T0 : P1 → P1. As
k(U) is Hilbertian, for “many” T0 ∈ k(U), XT0 is connected and the function field
extension k(XT0)/k(U), which is equivalently obtained by specializing T to T0(U)
in k(X)/k(T ), is Galois of group G.

1. Classical properties

RIGP (Regular IGP): There is a k-regular Galois extension F/k(T ) (k-regular:
F ∩ k = k), or, equivalently, a k-regular Galois cover f : X → P1

k, of group G.
HIT (Hilbert Irreducibility Thm): For every polynomial P (T, Y ), irreducible in
k(T )[Y ], there are infinitely many t0 ∈ k such that P (t0, Y ) is irreducible in k[Y ].
G has a parametric extension F/k(T ): There is a Galois extension F/k(T ) of
group G that is k-parametric, i.e., every Galois extension E/k of group contained
in G is the specialized extension Ft0/k of F/k(T ) at some point t0 ∈ k.
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G has a generic extension F/k(T ): There is a Galois extension F/k(T ) of
group G such that FK/K(T ) is K-parametric for every field extension K/k.
G has a generic extension F/k(T1, . . . , Ts): as above with T replaced by
T1, . . . , Ts and t0 by t0 = (t01, . . . , t0s).
Noether: If Y = Y1, . . . , Yd are d = |G| indeterminates, the fixed field k(Y)G of
G in k(Y), with G ↪→ Sd acting via its regular representation, is a pure transcen-
dental extension of k. Equivalently the Noether variety Ad/G is k-rational.
Noether has WWA: The variety V = Ad/G has the Weak Weak Approximation
property: there is a finite set Sexc of finite places of k such that for every finite
set S of finite places of k s.t. S ∩Sexc = ∅, the set V (k) is dense in

∏
v∈S V (kv).

2. More recent properties

W-Grunwald: There is a finite set Sexc of finite places of k such that for every fi-
nite set of Galois extensions Ei/kvi of group Hi ⊂ G with vi /∈ Sexc (i = 1, . . . ,m),
there is a Galois extension E/k of group G such that Ekvi/kvi = Ei/kvi , i =
1, . . . ,m. (The original property, with Sexc = ∅, is denoted by Grunwald).
W-Grunwaldur: The property W-Grunwald above but with the additional con-
dition that the extensions Ei/kvi , i = 1, . . . ,m, are unramified.
BB-N (Beckmann-Black lifting property): For the given N ≥ 1 and every N Ga-
lois extensions E1/k, . . . , EN/k of group contained in G, there is a k-regular Galois
extension F/k(T ) of group G that specializes to the extensions E1/k, . . . , EN/k.
G has a regularly parametric extension F/k(T ): The corresponding k-regular
Galois cover f : X → P1

k (of function field extension F/k(T )) has this property:
every k-regular Galois cover g : Y → P1

k of group G is some rational pullback
fT0

: XT0
→ P1

k of f (for some T0 in k(U) \ k). Equivalently, every k-regular
Galois extension L/k(U) of group G can be obtained from the k-regular Galois
extension F/k(T ) by specializing F (U)/k(U, T ) at some T0 in k(U) \ k.
reg-BB-N (Regular Beckmann-Black lifting property): For the given N ≥ 1 and
every N k-regular Galois covers g1, . . . , gN of P1 of group G, there is a k-regular
Galois cover f of P1 of group G such that g1, . . . , gN are rational pullbacks of f .
Malle: The number N(G, y) of sub-Galois extensions E/k of k of group G and
discriminant of norm |Nk/Q(dE)| ≤ y satisfies

c1 y
a(G) ≤ N(G, y) ≤ c2 ya(G)+ε for every y ≥ y0

Here a(G) = (|G|(1− 1/`))−1 with ` the smallest prime divisor of |G| and c1, c2,
y0 > 0 depend on G for c1 and on G, ε for c2 and y0.
LB-Malle (Lower Bound part of Malle conjecture):

N(G, y) ≥ yα(G) for every y ≥ y0

Here α(G) and y0 are positive constants depending on G.
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3. The diagram

Groups appearing above a given box satisfy the corresponding property, those
appearing below do not, both over k = Q. The symbol . . . (resp. .) means that
the list is open (resp. closed), possibly as a question if used with a question mark.

Cn(n≤3) ,S3
.

G has a generic
extension F/k(T )

(all other groups)

Sn ,An(n≤5) ,H8 , ...

Noether
C8 ,C47 ,C113 ,C223 ...

G finite group
k a number field
k = Q in examples

↙↙

wwww� ↘↘

wwww� ↘↘

. . .?

G has a
regularly
parametric
extension
F/k(T )

. . .

. . .?

G has a
parametric
extension
F/k(T )

Sn&An(n≥4)

D2n(n 6=1,9,p)

abelian 6=C4,Cp

... [6 ]& [7 ]

abelian: 8 6 | exp .
D2n (n odd) ,D16 ...

G has
a generic
extension

F/k(T1, ..., Ts)

. . .?

hypersolvable

e.g. nilpotent [5]

Noether
has

WWA
. . . ?

wwww� ↘↘ ↙↙ ↘↘ ↙↙

. . . ?

reg-BB-2
Sn&An (n≥7)

many PSL2(Fp)

Monster , ... [2 ]

abelian , An

BB-1
. . . ?

A1o(A2o···oAn)

(Ai abelian) [4]&[3]
odd solvable

W-Grunwald
. . . ?

nilpotent ,D2p

Malle
. . . ?

↘↘ ↙↙ ⇓ ⇓

[1 ]&[8 ]
======⇒ W-Grunwaldur

. . . ?

& LB-Malle
. . . ?

Sn ,An

abelian,D2n

many simple ...

RIGP
. . . ?

↘↘ ↙↙

wwww�
======⇒

HIT

solvable

IGP
. . . ?

The main recent results are those assertions about groups satisfying or not a
property which come with a reference. References are given below.
Complement: We refer to http://math.univ-lille1.fr/~pde/pub.html – item
57 for the sequence of slides (converging to the diagram) used during the talk and
for a more detailed description of our research project.
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Arithmetic and Homotopy of Moduli Stacks of Curves
Benjamin Collas

Let Mg,[m] be the moduli stacks of genus g curves with m-unordered marked
points, that we consider endowed with their complementary divisorial and stack
stratifications. The former is a stratification at infinity and is given by the topo-
logical type (g′,m′) of curves in the Deligne-Mumford compactification of stable
curves Mg,[m], while the later is local and is given by the flat stratification by the
automorphisms of curves.

As Q-stacks, the moduli spaces accept some Geometric Galois Representations

(GGR) ρ~s : Gal(Q̄/Q) −→ Aut[πet1 (Mg,[m] ⊗ Q̄, ~s)]

where ~s : Q̄{{q}} → Mg,[m] is a tangential base point associated to a chosen
Q-rational structure onMg,[m] – tangential base points define at once some geo-
metric base points for the fundamental group and some Q-rational π1-sections.
They allow to bypass Falting’s limitation on rational markings on curves, and also
to benefit for the study of (GGR) from the rational Knudsen-Mumford lower di-
mensional (g′,m′)-embeddings in terms of limit Galois representations. The stack
structure, via Hurwitz spaces, draw some connections between Geometric Galois
Representations and the Regular Inverse Problem.

By providing accessible geometries that capture key arithmetic properties, the
moduli stacks of curves are fundamental spaces in arithmetic geometry, in an-
abelian geometry – e.g. the unordered markedM0,m are anabelian–, and in mo-
tivic theory – see the category of Mixed Tate motives.

We report on recent results on the stack arithmetic of these spaces, and on
works in progress on the use of homotopical methods: how this leads to a motivic
interpretation of these higher symmetries, and to a finer understanding of the
operadic and arithmetic properties of the divisorial stratification.
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1. Stack Arithmetic of Curves (joint with S. Maugeais.)

The Deligne-Mumford stack structure of Mg,[m] is recovered through the inertia
group sheaf IM,x, which for a given point x : SpecQ → Mg,[m] geometrically
identifies with the finite automorphism group IM,x̄ ' AutC(Cx̄) of a Riemann
surfaces represented by x̄. By Noohi’s uniformization Theorem, it follows that

IM,x̄ ↪→ πet1 (Mg,[m] ⊗ Q̄, ~s),

i.e. the automorphisms of curves form some local ghost loops subgroups of the étale
fundamental group. This raises the question of describing the Gal(Q̄/Q)-action of
(GGR) on the stack inertia groups of Mg,[m], which is indeed of local-vs-global
nature.

Because they form the first non-trivial stack stratas, we consider in what follows
the case of the cyclic stack inertia group IM,x̄ ' 〈γ〉 that we study via their
associated special loci.

1.1. Special Loci, Irreducible Components of Hurwitz Spaces. Let thus
Mg,[m](G) denote the special loci attached to a finite order group G: Mg,[m](G) is
the Q-stacks of curves C/S that admit a faithful G-action G ↪→ AutS(C). In terms
of Galois action, we notice that an irreducible components ofMg,[m](G) is a priori
defined over a number field K: this implies the stability of the πet1 (Mg,[m] ⊗ Q̄)-
conjugacy classes of G under the action of the absolute Galois group Gal(K̄/K).
In genus 0 and for G cyclic, one proves that every such component is of the form
M0,[m]+k – with m permuted points and k fixed points, k ∈ {0, 1, 2} – thus defined
over Q. This implies that the Gal(Q̄/Q)-action stabilizes the conjugacy classes of
the cyclic stack inertia in genus 0.

In higher genus, this raises the question of finding arithmetic coarse invariants
of the irreducible components ofMg,[m](γ). The identification of the normalization
of the special loci M̃g,[m](G) 'Mg,[m][G]/Aut(G) as quotient of the Hurwitz space
of G-covers Mg,[m][G] reduces this question to the characterization of S-families
of G-cover, which draws a first connection with the geometry of Hurwitz spaces.

For G = 〈γ〉, an answer is provided in terms of étale cohomology with the
definition on the geometric fibers of some branching datas kr, which allows to
establish:

Theorem ([5] - Th. 4.3). The stack of γ-special loci admits a finite decomposition
in irreducible components given by:

Mg,[m](γ) =
∐
Mg,[m],kr(γ),

where Mg,[m],kr(γ) denotes the Q-stack of curves inducing γ-covers with given
branching datas kr.

In a similar way to the Deligne-Mumford proof of the irreducibility ofMg,[m],
this result relies on the existence of a Teichmüller space that parametrizes un-
marked curves with given kr-datas. An arithmetic property of G-covers appears
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for the general case, to ensure that the field of moduli K of certain γ-covers is
indeed a field of definition – see (Seq/Split)-condition of [8].

As in genus 0, this implies this time in every genus the conjugacy-stability of
IM = 〈γ〉 under a certain local Gal(K̄/K)-action. The comparison with the global
Gal(Q̄/Q)-action of (GGR) and its complete description requires the use of the
divisorial stratification.

1.2. Inertial Limit Galois Actions, a Tate-like Action. Let η denote the
generic point of an irreducible componentMg,[m],kr(G) of a special lociMg,[m](G),
and let κ(η) denote its residue field. After rigidification, one obtains an inertial
Galois action ρIη : Gal[κ(η)/κ(η)] → Aut(Iη) on the generic stack inertia group
Iη > G of the component. Since a tangential structure on Mg,[m] is a formal
neighbourhood of a singular stable curve, the comparison of this local Galois action
to the global (GGR) is provided by a specialization result for Deligne-Mumford
stacks – see §3.2 and §4.2 of [6]:

For any component of cyclic special loci, there exist a K-point of
Mg,[m],kr(G) and a tangential base point ~s of Mg,[m], such that the
Gal(Q̄/Q)-action ρ~s of (GGR) induces the inertial action ρIη.

For G cyclic, the local inertial Galois action can indeed be proven to be given
by a certain extension of the field of definition K discussed in the previous section.
From the Q-definition of the cyclic irreducible components given by the Theorem
above, one establishes more precisely:

Theorem ([5] – Th. 5.4 & [6] – Cor. 4.6, Th. 4.8). The Gal(Q̄/Q)-representation
of (GGR) induces a χ-conjugacy Gal(Q̄/Q)-action on the cyclic stack inertia of
Mg,[m]. For σ ∈ Gal(Q̄/Q):

(1) σ.γ = h−1
γ,σ.γ

χσ .hγ,σ where hγ,σ ∈ πet1 (Mg,[m] ⊗ Q̄, ~s).

This result surprisingly depends on the geometry of the Hurwitz components
and of their stable compactification: if the kr-data corresponds to a class of G-
covers whose G-isotropy groups span G, the result then follows from Fried’s branch
cycle argument; the general case requires a fine deformation argument of G-covers
which allows to compare G-stratas of Mg,[m],kr and Mg−1,[m]+2,kr′ of different
topological and ramification types. This comparison requires the choice of tangen-
tial Gal(Q̄/Q)-actions which are compatible at the level of the stack inertia groups.
We refer to this process under the term inertial limit Galois action.

1.3. Towards the Stack Arithmetic of Higher Stratas. By analogy with the
divisorial arithmetic of Mg,[m], this Tate-like action motivates further studies of
the higher arithmetic of the stack stratification. The inertial limit Galois action
provides for example a mean of comparing the conjugacy factors of the Gal(Q̄/Q)-
action between stratas of different topological types.

We mention two immediate directions of research:
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(i) determines some discrete arithmetic invariants of the irreducible compo-
nents ofMg,[m](G) for non-abelian groups G;

(ii) complete the description of the Gal(Q̄/Q)-action Eq. (1) by determining
relations for the conjugacy factors.

As shown in the case of the cyclic strata, progress will certainly rely on a fine
understanding of the arithmetic of G-covers and of the Hurwitz spaces. As more
concrete examples, let us mention for (i) the use in [7] of H2-data in terms of
mixed cohomology that complete the monodromy invariants for cyclic extensions.
For (ii), relations could come either from the comparison of different stack inertia
groups and follow either from (i), or from the use of the topological type: equations
(?)-(??) of [21], and their generalization (R) in [3], are some examples of such com-
parisons – in these cases ofM0,[5](Z/2Z) with respect toM0,[4], ofM0,[6](Z/3Z)
with respect toM0,[4], and ofM1,[2](Z/2Z) with respect toM1,1 –, see also [19].

In another direction, and always by analogy with the Galois divisorial arith-
metic, the Tate-like action of Eq. (1) raises the question of a motivic interpretation
of this result.

2. Motivic Stack Considerations

Let k be a number field, and letMT (k) denote the category of Mixed Tate motives
over k. This is a Tannakian category of group GMT , neutralized by the canonical
Adams weight fibre functor, whose properties are tightly related to the divisorial
arithmetic of the moduli schemesM0,m: it is motivically generated by theM0,ms
[2], a p+2q-motivic weight comes from a p-codimensional component of M0,m and
of a q-Tate twist, relation between periods are induced by the Knudsen morphisms
[22].

Motivated by the Tate-like Gal(Q̄/Q)-action on the cyclic stack inertia, we
present how Morel-Voedsky’s motivic homotopy provides a convenient context
where to develop motivic properties for the stack inertia that are Tate-compatible.
We present the main difficulties, illustrate the approach in the case of repre-
sentable, and generally refer to the forthcoming [4] for the case of stacks.

2.1. Motivic Homotopy Theory and Stacks. The motivic context is given
by the unstable-stable motivic categories H(Q) � SH(Q), respectively defined
as the homotopy categories of spaces Sp(Q) = sPr(SmQ) and P1-spectras over
Sp(Q) endowed with their A1-local injective model category with respect to the
étale topology. The category SH(Q) is triangulated, equivalent to Voevodsky’s
DM(Q), and has the Lefschetz motive inverted at the level of morphisms as a
result of the ΣP-stabilization.

A first connection between the Gal(Q̄/Q)-stack inertia framework and theH(Q)
context is given by replacing the Galois category formalism of SGA1 by Artin-
Mazur and Friedlander [12] simplicial étale topological type one: we attache to the
stackMg,[m] – and similarly to its stack inertia IM – first a pro-space {Mg,[m]}et,
then by Isaksen’s étale realization functor [16] a A1-type {Mg,[m]}A1 in sPr(SmQ)
.
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A more intrinsic context is indeed given by considering Mg,[m] as a specific
object of sPr(SmQ), whose Giraud’s descent property is characterized in terms
of hypercovers [10]: within this context, the (group) stack inertia identifies to a
derived loop space IM ' RHom(S1,M) (resp. to a homotopy group sheaf).

This approach places in particular the stack motivic study of Mg,[m] within
Toën-Vezzosi’s Homotopical Algebraic Geometry theory (HAG) [24]. Since P1 '
S1∧Gm within H(Q), and since Gm is the Lefschetz motivic divisorial monodromy
ofMg,[m], one concludes that:

the motivic homotopy theory ofMg,[m] gives a favourable context where to
illustrate how the S1-loops encode the ghost 2-structure of motivic spectras.

2.2. Mixed Tate Motives and Beyond. By contrast, we now illustrate the
relevance and the non-triviality of this approach on the specific examples of rep-
resentable stacksM0,m ∈ SmQ. On one side, the homotopical Mixed Tate frame-
work is given by [17] and follows Spitzweck’s representation theorem for cells mod-
ules over an Adams graded cycles algebra, as provided by Bloch-Kriz’s NBK – see
op.cit.

On the other side, the HAG context is provided by Toën’s Spec -functor of [23]
Spec : Alg4

o

Q → sPr(Q), and by Hitchin’s Quillen equivalence Alg4
o

Q � cdgaQ.
As a result, since the Bar complex is an homotopy colimit of diagrams, one obtains
that (the prounipotent part of) GMT is weakly equivalent to the derived loop space
of SpecNBK . Since the prounipotency of the homotopy group sheaf characterizes
the schematic image in sPr(SchQ), notice that a similar construction forMg,[m]

that realizes IM as motivic object requires to enlarge the aforementioned Quillen
equivalence. This lead to the DAG-context that allows to capture the S1-motivic
inertia.

Despite the relevance of this approach, a final and fundamental difficulty is
still given by the question of a neutralizing fibre functor, which must induces
non-2-trivial geometrical de Rham-Betti comparison isomorphisms: as an étale-
locally quotient stack, the rational cohomology of Mg,[m] is whose of its coarse
scheme Mg,[m]. An answer is here again provided by the HAG context, that gives
computable stack inertia periods in terms of iterated integrals that are compatible
with the Tannakian weight – via M0,m → M0,[m] and the choice of tangential
structures as involved for Galois andMg,[m],kr(γ) see [4].

3. Arithmetic of Operads

We present how the divisorial stratification ofMg,[m] supports some fundamental
arithmetic and geometric properties. The question is two fold: from the geometric
point of view, it is related to the fundamental question of defining on smooth objects
an operadic structure that is given by singular degeneracies; from the arithmetic
point of view it is related to Grothendieck-Teichmüller theory that is to determine
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how Gal(Q̄/Q) is encoded within the geometric symmetries of Mg,[m]. More pre-
cisely, GT theory provides a finitely presented group ĜT that contains Gal(Q̄/Q)
and factorizes the (GGR) [9, 14].

We report on how the homotopy theory of spaces and the notion of tangential
structures on M0,m provides some insight on these questions. We were recently
informed that K. Wickelgren and C. Westerland developed an independent and
similar approach in the case of configuration spaces – see K. Wickelgren, Operad
Structure on Confn in this volume.

3.1. Genus Zero Moduli Spaces. Motivation for this work comes from the
recent operadic result of B. Fresse and G. Horel [11, 13], that interprets Drinfel’d
definition of ĜT in terms of operad in prospaces.

Theorem (Fresse, Horel). The group ĜT is isomorphic to the homotopy group of
(pro) little 2-discs operads E∧2 .

Here E∧2 denotes either the Sullivan rational model or the completion in prospaces.
Their fundamental groups are respectively given by the Malčev and the profinite
completion of the parenthesized braid operad in groupoids PaB∧. Since the Ga-
lois group Gal(Q̄/Q) is contained in ĜT , this induces a Gal(Q̄/Q)-action on PaB∧
that is group-theoretically defined and from topological origin.

We deal with the question of recovering this result – more precisely the refine-
ment of [1] – in terms of an arithmetic Gal(Q̄/Q)-action at the level of a Q-operadic
structure onM0,m thenM0,[m]. To fix some (GGR) or Gal(Q̄/Q)-actions requires
to specify some Q-tangential structures on M0,m, i.e. to choose a formal neigh-
bourhood SpecQ[[q]] → M0,m of some singular curves in the Deligne-Mumford
compactification ofM0,m [15, 6].

In terms of operads, the choice of a tangential structure on the spaces defines the
geometric operadic composition morphisms and ensures that they are Gal(Q̄/Q)-
equivariant. We obtain a refinement of the Theorem above, that is from arithmetic
origin.

Theorem (conjecture). The set of Q-tangential structures {~s} over M0,m de-
fines an operad MQ = {(M0,m, ~s)}m,~s in Q-Proschemes whose geometric étale
homotopy type is endowed with a Gal(Q̄/Q)-action – see Eq. (GGR).

The approach is based on Grothendieck’s formal-algebraization deformation
theory for curves; the operadMQ is defined in terms of Friedlander Artin-Mazur
étale topological type. As a result, we obtain after completion an operad in
prospaces MQ(Q̄)∧ which encodes some arithmetic a priori not distinguished by
ĜT . More precisely, MQ(Q̄)∧ is weakly equivalent to the framed little 2-discs
operads FE∧2 , while ĜT ' Auth(E∧2 ) and Auth(E∧2 ) ' Auth(FE∧2 ).

This property can already be seen at the level of configuration spaces and braids
groups – PaB is a model for E2 –, by providing a Gal(Q̄/Q)-action on an extension
of PaB∧ that descends to the classical Gal(Q̄/Q)-action of Ihara-Matsumoto on
Braids groups [14].
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Following Mac Lane’s coherence Theorem, this approach provides in particular
a computable Gal(Q̄/Q)-action which is entirely defined in 1, 2 and 3-arity. Let
us mention that Serre’s anabelian bonté ofM0,m plays a key role in defining the
operadic composition onMQ.

3.2. Towards Higher Symmetries. Because this approach is close to the ge-
ometry of curves and already provides some refinement in genus zero, it motivates
and gives access to further developments in the direction of stack and higher genus
symmetries.

In terms of stack, this motivates our work in progress on defining a similar
rational operad for the genus zero moduli stack of curves with unordered marked
points M0,[m]. The ∞-model category of [20] provides the necessary context to
connect the tangential arithmetic and the 2-structure ofM0,[m]. In this case, the
homotopy groups are not torsion-free – unlike the braid groups in the previous
case – but contains some stack torsion like πorb1 (M0,[m](C)) does.

Regarding the moduli spaces in higher genus, the operad MQ already comes
with additional commutativity- and associativity-like constraints at the level of
braided monoidal category. This provides additional GT-like equations, which
while already included in the pentagon-hexagon equations I, II and III defining
ĜT , motivates in higher genus the study of a potential refinement of the original
group IΓ of [18].

(3.2.1) Define in higher genus a Grothendieck Teichmüller group IΓR given
by relations based on the tangential refined associativity and commutativity
constraints:

IΓ � u

((
Gal(Q̄/Q)

' �
55

� w

))

ĜT

IΓR

) 	

66

?�

'?

OO
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`-adic representationa, the O(pen)I(mage)T(heorem) and the
R(egular) I(nverse)G(alois)P(roblem)

Michael D. Fried

The talk started with the fiber product construction of both the arithmetic and
geometric Galois closures of a cover of the projective line P1. At the beginning
that line was P1

z, the z-line from Graduate complex variables.
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At the end of the talk, the line was P1
j , the classical j-line used as a surrogate

for the compactification of Ur/PGL2(C), with Ur the space of distinct unordered
points on P1

z. These we regarded as the configuration space for reduced Hurwitz
spaces of r-branch point covers.

In between the beginning and end we took two of the premier unsolved problems
in the last few decades – the RIGP and generalizing Serre’s OIT and showed
how these two problems are halves of a paradigm that joines by a generalization
– M(odular)T(ower)s – of the classical tower of modular curves that comes from
the universal abelianized cover of any finite group G with at least one prime ` for
which it is `-perfect.

The talk featured the value of MTs as a gadget, appropriate to the RIGP, for
visualizing, connecting and analyzing arithmetic geometry problems.

1. Nielsen Classes and Galois Closures of Covers

Applications often require sophisticated understanding Galois closures and moduli
properties of collections of sphere covers. The key interpretation tool is the action
of the braid group on Nielsen classes of covers attached to any finite group G
and collection C of (r ≥ 3) conjugacy classes of G. The notation for Nielsen
classes is Ni(G,C) Depending on the equivalence relation on the covers, the result
of this braid action by through the Hurwitz monodromy group, Hr, is a Hurwitz
space, denoted H(G,C). Extra decoration indicates the equivalence choice. The
two main types of equivalence are absolute (the one most are accustomed to)
and inner (which figures in the RIGP); then reduced versions (modding out by
PGL2(C) as above) for both.

Lots of definitions call for an example that illustrates the theory – especially
around that braid group action – that has been developed since 2002. We used
(A4,C±32) as an example. By §3, this appears as a good choice; the conjugacy
class notation indicates the repetition twice of each of the 3-cycle classes in A4.

The H4 (in this case) orbits, denoted by O, and cusp orbits, denoted by cO,
orbits of q2 – where qi is the image in H4 of the ith string twist braid element from
B4, i = 1, 2, 3 – acting on reduced Nielsen classes combine in a graphical device.
We call this the sh(ift)-incidence matrix, named for the shift

(g1, . . . , gr) 7→ (g2, . . . , gr, g1) on product-one r-tuples comprising Ni(G,C).

The device pairs cusps of reduced Hurwitz spaces illustrating the following theorem
[3, §4.2]. Here Q′′ = 〈q1q

−1
3 , sh〉 and the † superscript indicates the equivalence

choice of absolute or inner.

Theorem 1 (Riemann-Hurwitz for j-line covers). Suppose a component H
′
, of

H(G,C)†,rd corresponds to a braid orbit, O, on Ni(G,C)†,rd = Ni(G,C)†/Q′′.
Ramified points, respectively over 0, 1,∞, of H′ → P1

j ⇔ disjoint cycles of

γ0 = q1q2, γ1 = q1q2q1, γ∞ = q2 (cusps).

The genus of gH̄′ , appears from the formula

2(|O|+ gH̄′ − 1) = ind(γ0)+ind(γ1)+ind(γ∞).
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Ni+0 Orbit cO
4
1,1 cO

2
1,2 cO

3
1,3

cO
4
1,1 1 1 2

cO
2
1,2 1 0 1

cO
3
1,3 2 1 0

Ni−0 Orbit cO
4
2,1 cO

1
2,2 cO

1
2,3

cO
4
2,1 2 1 1

cO
1
2,2 1 0 0

cO
1
2,3 1 0 0

Applying this, I computed the genus of the two reduced Hurwitz space compo-
nents of 4-branch point covers; a graphic look at very different components of one
Hurwitz space. Each cusp cO

k
i,j has ggg with entries {g, g−1} or {g, g}

resp. HM in Ni+0 , or D(ouble) I(dentity) in Ni−0 .
- cO

4
1,1 = (g1,1)q2,•, ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3))

cO
3
1,3 = (ggg1,3)q2,•, ggg1,3 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4)).

- cO
4
2,1 = (g2,1)q2,•, ggg2,1 = ((1 2 3), (1 3 4), (1 2 4), (1 2 4)).

cO
1
2,2 and cO

1
2,3 seeded by DI s repeated in positions 2 and 3.

After the well-known tests for † fine moduli, reduced fine moduli for a braid
orbit requires thatQ′′ acts as the Klein 4-group on that orbit. Then that neither γ0

or γ1 have fixed points. You can read the degree (resp. 9 and 6) of the components
over P1

j , their genuses (both 0) and precisely whether the components have reduced
fine moduli (they don’t) directly from the blocks.

Denote (γ0, γ1, γ∞) on Ni+0 (resp. Ni−0 ) orbit by (γ+
0 , γ

+
1 , γ

+
∞)(resp. (γ−0 , γ

−
1 , γ

−
∞)).

The distinction between the two components is in their cusp types, here calledHM
that appeared in the Ni+ orbit and DI that appeared in the Ni− orbit.

2. The Geometry Behind RIGP Unknowns

Problem: Most groups are neither simple nor solvable. Example: Take G, `-perfect
and centerless. Then, their exists ν(G, `) > 0 (> 1, outside supersolvable G) and
an extension

1→ (Z`)ν(G,`) → `G̃ab
`ψ̃ab−−−−→G→ 1 :

This `G̃ab is universal for covers of G with abelian ` group kernel.
Subex.: Even for G = A5, where v(G, 2) = 5, for no k > 0 has

2Ã5,ab/2
k ker(`ψ̃ab) = k

2A5

been realized (regularly or not) over Q. Assume r conjugacy classes, C of G; all
containing elements of order `′ (prime to `).

Schur-Zassenhaus lifts these classes uniquely to `G̃ab.
From this we form the Nielsen classes that gives MTs:

This makes sense of `H(G,C)in,rd
def
= {H(k`G,C)in,rd}∞k=0.

A MT is a projective sequence of components on `H(G,C)in,rd.
Assume: For a finite group G, any prime ` for which G is `-perfect, and any
bound B on the number of branch points, that each k

`Gab (analog of the group for
A5 above) has a Q regular realization with no more than B branch points.
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A “Yes” answer implies there exists r (≤ B) conjugacy classes C of G with `′
elements , and a natural MT of spaces constructed from (G, `,C);

with each tower level having a Q point.

The Main Conjecture: HighMT tower levels have general type and no Q points.
A special case (joint with Pierre Debes) is G = D`, ` an odd prime. That interprets
as existence of `k+1 cyclotomic points for each k, on hyperelliptic jacobians of a
fixed dimension d (independent of k, but the Jacobian may change with k).

Theorem 2 (Outlined in [5]). The Main Conjecture is true for r = 4, based on the
genus formula and methods for distinguishing different types of cusps. It suffices
to show the genus rises with the MT levels.

[2] proved the disappearance of rational points at high levels, without engaging
the reduced Hurwitz spaces or their cusps. [1] showed the Torsion Conjecture on
abelian varieties =⇒ Q statement of the Main Conjecture in general.

3. Using MTs for Generalizing Serre’s OIT

Serre’s case is on decomposition groups of projective sequences of points on the
modular curve tower {X1(`k+1)}∞k=0. We interpret that as the MT attached to
D` with C four repetitions of the involution conjugacy class.

I used the Fried-Serre lift invariant for An and odd order cycles on the (A4,C±32)
case to explain the two components as having different lift – these are braid –
invariants, computable just from any cusp orbit in a braid orbit.

The phrasing of a general OIT based on MTs requires this definition. An
eventually (`)-Frattini sequence of group covers, {Hk}∞k=0:

∃k0 with Hk0+k → Hk0 Frattini (resp. `-Frattini) for k ≥ 0.

Weak OIT Conj.: For a MT {Hk}∞k=0 ≤ `H(G,C), Φk : Hk → Jr, with Hk =
GΦk (geom. monodromy of Φk), then

`Gj(Φ)
def
= lim∞←kHk is eventually `-Frattini.

Weak OIT Conclusion: Then, the decomposition group `Ĝj′(Φ) of a general
j′ ∈ Q̄ equals `Ĝj(Φ) (arith. mon.).

In Serre’s system, Ni`k+1,2
def
= Ni(Z/`k+1 ×sZ/2,C24), k ≥ 0:

2 types of decomposition groups: CM and GL2.
I concluded with the (Z/`)2 ×sZ/3 example. The A4 example above is level 0 for
` = 2, with C two repetitions each of the class of the two 3-cycles.

We know the tower levels in the (Z/`)2 ×sZ/3 and the definition fields of all
their components. I explained the level 0 case for all ` (joint with Mark Hoeij).

Theorem 3 (Level 0 Main Result). For ` > 3 prime and level k = 0:
- K` braid orbits with trivial (0) lift invariant. All HM orbits.
- Braid orbits with nontrivial lift invariant consist of DI cusps.
each such braid orbit distinguished by its lift invariant.

All DI components are conjugate over Q(e2πi/`).
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The lift invariant – which in these cases comes from two different Heisenberg
groups – and often its relation with the Weil Pairing , explains all the definition
fields of components in these cases.

The Weil Pairing (which manifests in several ways), appears as a deus ex
machina in Serre’s theory. Here it has a direct interpretation from MTs, which I
hadn’t quite grasped until the end of our Oberwolfach conference. Also, as here,
it common that cusps have structure coming from their braid orbits that is not
visible, say, just from the Hurwitz space components (when r = 4) being upper
half-plane quotients by finite index subgroups of PSL2(Z) [3, §2.2].

[8], either reference, has a much more comprehensive bibliography.
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Lifting Problems and Specializations
François Legrand

In inverse Galois theory, specializing a finite Galois extension of the function field
Q(T ) is a central tool, going back to Hilbert. Namely, suppose a given finite group
G is a regular Galois group over Q, i.e., there is a Galois extension E/Q(T ) of group
G that is Q-regular (i.e., such that E ∩ Q = Q). Then, by Hilbert’s irreducibility
theorem, there are infinitely many t0 ∈ Q such that the specialization of E/Q(T )
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at t0 (i.e., the residue extension at any prime ideal above 〈T − t0〉 in the extension
E/Q(T )) is of group G; thus solving the inverse Galois problem for the group G.
Many finite groups have been realized by this method; see, e.g., [8].

The Beckmann-Black problem is a classical issue on the converse: can every
finite Galois extension F/Q be lifted to a Q-regular Galois extension E/Q(T )
(possibly depending on F/Q) with the same Galois group? That is, is F/Q a spe-
cialization of E/Q(T )? This question remains widely open: it has a positive answer
for a few groups (see, e.g., the survey paper [1] for more details and references)
and has no known counter-example.

Another classical lifting issue asks whether a given Q-regular Galois extension
E/Q(T ) of group G is generic, that is, whether every Galois extension of any field
of characteristic zero of group G occurs as a specialization of E/Q(T ) (after proper
scalar extension). In fact, this very strong property occurs very rarely: only the
subgroups of the symmetric group S3 have a generic extension E/Q(T ); see [4].

The main aim of the talk was to explore the gap between the genericity property
and the Beckmann-Black problem, by discussing some intermediate new lifting
issues studied in a series of works by P. Dèbes, J. König, D. Neftin, and the speaker.
These issues were briefly presented during the introductory talk of P. Dèbes to the
subtopic “Specialization and Lifting Problems” of the mini-workshop.

We first proposed the following terminology (introduced in [5]):

Definition 1. Say that a (non-empty) set S of Q-regular Galois extensions of
Q(T ) of group G is N -parametric if any given N Galois extensions F1/Q, . . . , FN/Q
of group G occur as specializations of some extension E/Q(T ) ∈ S.

Remark 1.

(1) If S consists of a single extension E/Q(T ), then, the above definition does
not depend on N ; we then say that E/Q(T ) is a parametric extension.

(2) The Beckmann-Black problem over Q for the group G has a positive answer
iff G has a 1-parametric set over Q.

(3) If G has a generic polynomial over Q (see [4]), then, the set of all Q-regular
Galois extensions of Q(T ) of group G is N -parametric for every N ≥ 1.

The first part was devoted to the study of the case of a single Q-regular qua-
dratic extension E/Q(T ). In this situation, a diophantine viewpoint can be used.
Namely, if E = Q(T )(

√
P (T )) for a separable polynomial P (T ) ∈ Z[T ], then,

E/Q(T ) is parametric iff, for every squarefree integer d, the twisted hyperelliptic
curve Cd : y2 = dP (t) has a “non-trivial” Q-rational point.

While the situation is well-understood in the genus at most 1 case, it is unknown
in general whether at least one quadratic twist of a given hyperelliptic curve over
Q of genus at least 2 has only trivial Q-rational points. By results of A. Granville
[3], under some conjectures (e.g., the abc-conjecture), this property always holds
(and the number of quadratic twists with a non-trivial Q-rational point is “small”).

We then presented this theorem [7], which gives an evidence for this conclusion:
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Theorem 2. Given an even integer N ≥ 4, the proportion f(H) of all Q-regular
quadratic extensions of Q(T ) with N branch points, “height" at most H, and which
are not parametric tends to 1 as H tends to ∞. In fact, one has f(H) = 1 −
O(log(H)/

√
H) as H →∞.

Whether the error term can be unconditionally removed remains to be seen.

The second part was devoted to the presentation of the following theorem, which
provides the first examples of finite groups with no finite 1-parametric set over Q:

Theorem 3. These finite groups G have no finite 1-parametric set over Q:
(1) G is of order prime to 6 but not of prime order,
(2) G is abelian, not of prime order and not Z/4Z,Z/6Z,Z/12Z,
(3) G = Dn if n 6= 9 and n is not a prime,
(4) G = Sn or An with n ≥ 4,
(5) G = GLn(Fq) with n ≥ 2, q ≥ 3, and (n, q) 6= (2, 3).

Determining the list of all finite groups G with a finite 1-parametric set over Q
(or with a parametric extension over Q) seems to be a more challenging problem.
Also, let us mention that no finite Q-regular Galois extension of Q(T ) that is
parametric, but not generic, seems to be known.

Theorem 3 is the outcome of two different methods, developed independently
in [5] and [6]. In [5], the “global” method consists in showing that, under the
assumption that there is a finite 1-parametric set over Q for some groups G, then,
via the twisting lemma, there are smooth projective curves over Q of genus at least
2 and with infinitely many Q-rational points, which cannot happen by Faltings’
theorem. This approach was presented in details, as well as further consequences.
In particular, we gave a variant of Theorem 3, with “1-parametric” replaced by
“N -parametric for large N ”, for sets of regular realizations of a given group G
with bounded number of branch points, conditionally under a “uniform Faltings’
theorem” (asserting that the number of Q-rational points on a smooth projective
curve over Q of genus at least 2 depends only on the genus). As to the method
developed in [6], that is called “local” as it relies on a study of decomposition
groups in specializations, it was presented in details in J. König’s talk.

The last part was devoted to a geometric variant of the specialization notion.
For a field k, a k-regular Galois cover f : X → P1

k of group G, and T0 ∈ k(U)\k, the
pullback of f along T0 is the cover fT0 : XT0 → P1

k obtained by pulling back f along
the rational map T0 : P1

k → P1
k. If XT0 is connected (which is true for “almost all”

T0), then, fT0
is Galois of group G and can be viewed as a specialization: the func-

tion field extension k(XT0
)/k(U) of fT0

is the specialization of k(U)(X)/k(U)(T )
at T = T0, where k(X)/k(T ) denotes the function field extension of f .

Definition 2. Given a finite group G, say that a subset H of the set HG(k) of
all k-regular Galois covers f : X → P1

k of group G is k-regularly parametric if
HG(k) ⊆ PB(H) = {fT0

| f ∈ H, T0 ∈ k(U) \ k}.
We then presented the following result, due to P. Dèbes [2]:
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Theorem 4.

(1) Suppose k is algebraically closed of characteristic zero. Then, finite sub-
groups of PGL2(C) have a k-regularly parametric cover f : X → P1

k.
(2) Suppose k is of characteristic zero. Then, the following finite groups G

have no k-regularly parametric cover f : X → P1
k: Sn with n ≥ 6, An

with n ≥ 7, PSL2(Fp) with either (2/p) = −1 or (3/p) = −1, the Monster
group M, etc.

A main tool to prove (2) (see [2]) is to show that the number of branch points
cannot drop by taking pullbacks of a given k-regular Galois cover f : X → P1

k of
group G. Consequently, to be k-regularly parametric, f should have “a few” branch
points. However, by using a classical result of Beckmann about inertia groups in
specializations, the ramification type of f should contain “many” conjugacy classes
of G, thus implying that f should have “many” branch points.

Finally, we briefly mentioned a work in progress, joint with P. Dèbes, J. König
and D. Neftin, where it is shown that, if k is algebraically closed of characteristic
zero and G 6⊂ PGL(C), then, G has no k-regularly parametric cover f : X → P1

k

(thus providing the converse of (1) in Theorem 4). In fact, for every r0 ≥ 1, the
set of all k-regular Galois covers f : X → P1

k of group G with at most r0 branch
points is not k-regularly parametric. In particular, for G 6⊂ PGL2(C), letting the
number of branch points grow provides an endless source of “new” Galois covers
of group G (i.e., not mere rational pullbacks of some with a bounded number of
branch points), and so truely new candidates to be defined over Q.
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Some Aspect of Arithmetic of Profinite Fundamental Groups
Hiroaki Nakamura

The Grothendieck-Teichmüller tower of moduli stacks Mg,n (of smooth curves of
genus g with n-ordered marked points) is a complex of two types of exact sequences
of profinite fundamental groups for g, n ∈ Z≥0, 2− 2g − n < 0:

(A) 1→ Γ̂g,n → π1(Mg,n)→ GQ → 1;

(B) 1→ π̂g,n → π1(Mg,n+1)→ π1(Mg,n)→ 1,

where Γ̂g,n, π̂g,n are respectively the profinite completion of the mapping class
group resp. of the surface group of type (g, n), and GQ = Gal(Q/Q) = π1(M0,3).
Noting that (A) splits according to a choice of Q-rational (tangential) base point
on Mg,n, we obtain from (B) the universal monodromy representation

ϕg,n : π1(Mg,n) = Γ̂g,n oGQ −→ Out(π̂g,n)

which is conjectured to be injective (true for g = 0, 1 by Belyi [B79], Asada [A01],
Matsumoto-Tamagawa [MT00]). In fact, the above (A) and (B) can be regarded
as special cases of the exact sequence

(C) 1→ π̂(r)
g,n → π1(Mg,n+r)→ π1(Mg,n)→ 1

with π̂(r)
g,n the profinite braid group with r strings on an n-point punctured Riemann

surface of genus g. It is observed from (C) that the associated universal represen-
tations into certain ‘special’ outer automorphism subgroups Out∗(π̂(r)

g,n) (r > 1)
that respect fiber subgroups ker(π̂(r)

g,n → π̂
(r−1)
g,n ) form the following (conjectually

injective) sequence of homomorphisms factoring through the above ϕg,n:

ϕ(∗)
g,n : π1(Mg,n)→ · · · → Out∗(π̂(r)

g,n)→ Out∗(π̂(r−1)
g,n )→ · · · → Out(π̂g,n).

One may expect the stable image ĜT g,n :=
⋂
r Out

∗(π̂
(r)
g,n) in Out(π̂g,n) to be a

combinatorial model approximating the arithmetic fundamental group π1(Mg,n).
In this talk, I focused on the meta-abelian reductions of ϕg,n (viz. modulo

the double commutator subgroup π̂′′g,n) in the special cases (g, n) = (0, 3), (1, 1).
For ϕ′′0,3 : GQ → Out(π̂0,3/π̂

′′
0,3), Anderson-Ihara theory created the adelic beta

function B : ĜT → Ẑ[[Ẑ2]]× that recovers ϕ′′0,3 and holds a number of arithmetic
properties related to Jacobi sums, `-adic Soule characters on GQ ⊂ ĜT .

For the case of ϕ′′1,1 : π1(M1,1) = ŜL2(Z) oGQ → Out(π̂1,1/π̂
′′
1,1), I introduced

an adelic Eisenstein periods in the form E : ĜT ell×Q2
f → Ẑ, where ĜT ell(= ĜT 1,~1)

is Enriquez’s elliptic Grothendieck-Teichmüller group, and Qf = Q ⊗ Ẑ is the
ring of finite adeles. It recovers ϕ′′1,1, and has explicit formulas on components
of B̂3 o GQ ⊂ ĜT ell in relation to generalized Dedekind sums and `-adic Soule
characters. At a technical point, the property “ĜTK = ĜT ” (which was posed
by Ihara [I00] and settled by Enriquez [E07]) was applied for the extension of our
invariant E from π1(M1,~1) = B̂3 oGQ to ĜT ell,
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Cohomological Obstructions over Function Fields
David Harari

Let X be an algebraic variety defined over a field K. In the classical case when K
is a number field, deciding whether X has a K-point is in general a difficult task.
An obvious necessary condition is that X has a point over every completion Kv

of K, but except in very specific cases (e.g. quadrics) this “local” condition is not
sufficient. Indeed obstructions related to étale cohomology of the variety have been
put forward in the last 40 years : some of them (like the Brauer-Manin obstruction)
are of abelian nature, others (like the descent obstruction [3], which is related to
the geometric fundamental group of X) are not. Some of these obstructions can
also be linked (at least conjecturally) to homotopic obstructions, see Schlank’s
talk.

An important question is to determine classes of varieties such that these ob-
structions to the existence of a K-point or to approximation properties (like weak
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approximation) are the only ones. For example, a conjecture due to Colliot-
Thélène predicts that for a geometrically rationally connected (e.g. unirational)
variety X, Brauer-Manin obstruction to weak approximation is the only one; in
particular such an X should satisfy weak approximation outside a “bad” set of
places of K and applying this to quotients of SLn by a finite group G, this would
imply a positive answer to the inverse Galois problem for G (see Wittenberg’s
talk for recent results about this special case, and also for an extension of Colliot-
Thélène’s conjecture to zero-cycles). Actually it is even sufficient to have “hyper-
weak approximation” on SLn/G as defined in [1] (roughly speaking, this means
approximation for integral local points) to conclude that G is a Galois group over
K.

It is of course possible to extend this framework to global fields of characteristic
p, that is: function fields K of a curve over a finite field k. In the last few years,
wide generalisations have been developped when the base field k is more compli-
cated, but has good arithmetic duality properties. In this talk, I explain recent
results (joint work with Szamuely [4] and work by Izquierdo [5], [6]) about local-
global principles and approximation properties on K-algebraic groups for various
k. The methods strongly rely on new arithmetic duality theorems and higher de-
gree cohomological obstructions. For example, we describe (with a detailed proof
of the main result) the obstruction to the local-global principle for a principal
homogeneous space under a linear algebraic group in terms of a degree 3 étale
cohomology group when k is a p-adic field. This can be viewed as an extension of
a classical theorem by Sansuc [7] over global fields, where the obstruction (Brauer-
Manin) is of degree 2. We also describe the adelic space of a K-torus when k
is algebraically closed of characteristic zero [2], which has a flavor of global class
field theory in this context. Many open problems about local-global questions over
function fields remain, like relating these cohomological methods to patching tech-
niques (developped by Harbater, Hartmann, Krashen) and describing the defect
of weak approximation for arbitrary (non commutative) algebraic groups.
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The Fundamental Theorem of Weil II for Curves with Ultraproduct
Coefficients

Anna Cadoret

Let k0 be a finite field of characteristic p > 0 with geometric Frobenius F0. Fix an
algebraic closure k of k0. In this note a variety over k0 always means a reduced
scheme separated and of finite type over k0. For a variety X0 over k0, write
X := X0 ×k0

k.

Given a field K of characteristic 0, an embedding ι : K ↪→ C and q ∈ R>1,
one defines the ι-weights (with respect to q) of an automorphism F of a finite-
dimensionalK-vector space V to be the w ∈ R such that |ια| = q

w
2 for α describing

the set of eigenvalues of F acting on V ⊗K.

Given a prime `(6= p), we always denote by Q` a finite extension of Q` and by
Z`, λ` and F` the corresponding ring of integers, uniformizer and residue field .

1.1. Fix an infinite set of primes L not containing p. For a map n : L → Z≥1,
`→ n`, set Fn :=

∏
`∈L F`n` , F :=

∏
`∈L F` = lim−→Fn. Given a (non principal)1 ul-

trafilter U on L, let Fn � Fn,U and F � FU = lim−→Fn,U denote the corresponding
ultraproducts. One has the following parallelism

Q` FU
torsion coefficients Z`/λ

n
` , n ≥ 1 F`n` , n : L → Z≥1

lim←− (to char 0 ring) Z` Fn
localization (exact) (to char 0 field) Z` ↪→ Q` Fn � Fn,U
lim−→ (to alg. closed char 0 field ' C) Q` ↪→ Q` Fn,U ↪→ FU

Recall also that the kernel of Fn →
∏
U Fn,U is the ideal of elements with finite

support. This translates to the general principal that a property which, for every
ultrafilter U , holds over a set S ∈ U actually holds for all but finitely many ` ∈ L.

1.2. Let X0 be a smooth and geometrically connected variety over k0. For n :
L → Z≥1, let Slcc,n(X0) denote the abelian (not full!) subcategory of étale torsion
sheaves whose objects F are direct products of locally constant constructible (lcc
for short) sheaves F` of F`n` -modules and let Slcc(X0) := 2-lim−→Slcc,n(X0). For
every ultrafilter U on L let StU (X0) ⊂ Slcc(X0) denote the full subcategory of
almost U-tame sheaves that is of those F such that (1) Fx,U := Fx⊗FU has finite
FU -rank and (2) there exists a connected étale cover X ′0 → X0 for which the set of
primes ` ∈ L such that F`|X′0 is curve-tame is in U . Here, ‘curve-tame’ means that
for every smooth curve C over k and morphism C → X, F`|C is tamely ramified in
the usual sense. StU (X0) is an abelian category admitting internal Hom, ⊗, stable
under arbitrary pull-back and finite direct image and StU (X0) ⊗ FU is Tannakian
with fiber functor F → Fx,U . In contrast StU (X0) is not stable under higher direct
image by smooth-proper morphisms.

1In this note, an ultrafilter always means a non principal ultrafilter.
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1.3. The finiteness condition (1) allows to define Frobenius weights. Given an
isomorphism ι : FU→̃C, the (U , ι)-weights of F at x0 ∈ |X0| are the ι-weights with
respect to |k(x0)| of Fx0

acting on Fx,U . If for every x0 ∈ |X0| the (U , ι)-weights
of F at x0 are all equal to w ∈ R one says that F is (U , ι)-pure of weight w.

1.4. The tameness condition (2) ensure that the FU -vector spaces Hi?,U (X,F) :=

(
∏
`∈LH

i
c(X,F`))⊗ FU , ? = c, ∅, i ≥ 0 are finite-dimensional, which is enough to

get the cohomological interpretation of attached L-functions:

∏
x0∈|X0|

det(1− TFx0
|Fx,U )−1 =

∏
i≥0

det(1− TF0|Hic,U (X,F))(−1)i+1

.

Condition (2) also ensures that the global and local unipotent monodromy theo-
rems hold and that the canonical functor StU (X0) → StU (X0) ⊗ FU is essentially
surjective.2

1.5. With these tools in hands, one can adjust Deligne’s proof of [D80, Thm.
(3.2.1)] to FU -coefficients. Fix an ultrafilter U on L and an isomorphism ι : FU→̃C.
Let X0 be a smooth curve over k0 and F ∈ StU (X0).

Theorem 1. If F is (U , ι)-pure of weight w then, for every i ≥ 0, Hic,U (X,F) has
ι-weights ≤ w + i. Equivalently, HiU (X,F) has ι-weights ≥ w + i.

1.6. Combined with geometric method (Bertini, Lefschetz pencils), Theorem 1
is enough for most applications. Let X0 be a smooth, geometrically connected
variety and let F ∈ StU (X0) be (U , ι)-pure of weight w.

- (Purity) Assume furthermore X0 is proper over k0. Then for every i ≥ 0,
Hi(X,F) is (U , ι)-pure of weights w + i.

- (Geometric semisimplicity) π1(X) acts semisimply on Fx,U (equiva-
lently, the set of primes ` ∈ L such that F`|X is semisimple is in U).

- (Cebotarev) Let F ,F ′ ∈ StU (X0) be (U , ι)-pure. Assume that for every
closed point x0 ∈ |X0|, tr(Fx0 ,Fx,U ) = tr(Fx0 ,Fx,U ). Then the set of
primes ` ∈ L such that Fss` ' F

′ss
` is in U .

1.7. Integral models in E-RCS. Let X0 be a smooth variety. Sheaves F in
StU (X0) naturally arise when taking Z`-models and reducing modulo λ` in pure
E-RCS of lcc Q`-sheaves.

1.7.1. E-RCS. Given a number field E, an E-RCS of lcc Q`-sheaves on X0 is a
system F`∞ , ` ∈ L of lcc Q`-sheaves on X0 such that for every x0 ∈ |X0| the
characteristic polynomial of Fx0

acting on F`∞,x is in E[T ] and independent of
`. If for every x0 ∈ |X0| and isomorphism ι : Q`→̃C, the ι-weights with respect
to |k(x0)| of Fx0 acting on F`∞,x are all equal to w one says that F`∞ is pure of
weight w.

2The delicate point is to show that subobjects lift; this requires the fact that the tame étale
fundamental group in the sense of Kerz-Schmidt is topologically finitely generated.
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By definition, a lcc Q`-sheaf F`∞ on X0 is obtained as F`∞ = H`∞ ⊗ Q` for
some lcc sheaf of Z`-modules H`∞ . Call such an H`∞ a Z`-model for F`∞ and
write H` := H`∞ ⊗ F` for its reduction modulo λ`. Given an E-RCS F`∞ , ` ∈ L
and a choice of Z`-models H`∞ , ` ∈ L, write H = (H`) ∈ Slcc(X0). Then for
every ultrafilter U on L, H is in StU (X0) and for every closed point x0 ∈ |X0|, the
characteristic polynomials of Fx0

acting on Fx,U and F`∞,x coincide.

1.7.2. Arbitrary coefficients. E-RCS provide the right setting to define ‘arbitrary
coefficients’ in the category of lcc Q`-sheaves. More precisely, consider the follow-
ing isomorphism classes

(G) irreducible lcc Q`-sheaf of rank r with finite determinant on X0;
(RCS) irreducible E-RCS of lcc Q`-sheaves pure of weight 0.

If X0 is a curve

(A)
cuspidal automorphic representations of GLr(A), unramified on X0 and
whose central character is of finite order (where A denotes the adèle ring
of k(X0))

Then

(1) Up to semisimplification, twist and isomorphism every lcc Q`-sheaf on X0

is a direct sum of objects in (G).
(2) There is a (necessarily unique) 1-1 correspondence (G) ←→ (RCS) and,

if X0 is a smooth curve, there is also a (necessarily unique) 1-1 correspon-
dence (A) ←→ (G). Both correspondences are characterized by the fact
that the local factors of the involved objects coincide.

While (1) is formal, (2) when X0 is a curve follows from the Langlands corre-
spondance for GLr [L02]; the higher dimensional case of (2) reduces to the case
of curves by geometric arguments [Dr12]. To sum it up, one has the following
parallelism

(G) E-RCS Z`-models reduction
constant coefficients Q` Q`, ` ∈ L Z`, ` ∈ L F`, ` ∈ L
arbitrary coefficients F`∞ F`∞ , ` ∈ L H`∞ , ` ∈ L H`, ` ∈ L

Note that in the case of arbitrary coefficients, there is a priori no canonical choice
for the Z`-models hence for their reduction. But see 1.7.3 (5) below.

1.7.3. The following summarizes the main applications of Theorem 1 to E-RCS.
Let F`∞ , ` ∈ L be a pure E-RCS of lcc Q`-sheaves on X0. There exists a prime `0
such that for ` ≥ `0 and every system of integral models H`∞ , ` ∈ L the following
holds.

(1) H`|X is semisimple on X;
(2) Hπ1(X)

`∞,η ⊗Z` F` = Hπ1(X)
`,η (equivalently, H1(X,H`∞) is torsion-free);

(3) The Zariski-closure of π1(X) acting onH`∞,η is a semisimple group-scheme
over Z`;
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(4) F`∞ |X is irreducible (resp. F`∞ is semisimple, resp. irreducible) (if and)
only if H` ⊗ F`|X is irreducible (resp. H` is semisimple, resp. H` ⊗ F` is
irreducible).

(5) (Resp. if F`∞ is semisimple for ` � 0) for any two Z`-models H`∞ , H′`∞
of F`∞ , H`∞ |X ' H′`∞ |X (resp. H`∞ ' H′`∞).

(6) For every Z`-model H`∞ of F`∞ , Hi(X,H`∞) is torsion-free, i ≥ 0.
(1), (2), (3) (resp. (6)) (reprove and) extend the main results of [CHT17a] (resp.
of Gabber’s torsion-freeness theorem [G83]) to arbitrary coefficients. The fact that
`0 can be taken independently of the choice of system of Z`-models and the asymp-
totic unicity of such in (5) are formal output of the definition of ultraproducts. (5)
shows in particular that the correspondence (G)←→ (RCS) automatically extends
at the level of systems of integral models modulo ‘asymptotic’ isomorphisms and
that for every ultrafilter U on L the sheaf F := H ∈ StU (X0) is well-defined inde-
pendently of the choice of the system of Z`-models. When X0 is a smooth curve,
this combined with (5) and weak Cebotarev provides a unique and well-defined
injective map (A) −→ (G) satisfying the expected local compatibility conditions
of a Langlands correspondence for GLr with FU -coefficients.

1.8. Questions.
(1) Simplify the proof of Theorem 1 following Laumon’s strategy.
(2) Prove the Langlands correspondence for GLr with FU -coefficients (namely

that the injective map (A) −→ (G) is surjective);
(3) Define a good notion of constructibility (see [O17]) so that one can de-

velop a systematic formalism of ultraproduct coefficients paralleling the
one of Q`-coefficients (and in particular, get a relative theory of Frobenius
weights).
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Brauer-Wall Group Poitou-Tate Sequence in Spectra and Zero Cycles
Tomer Schlank

(joint work with Vesna Stojanoska)

We started by reviewing classical problems in arithmetic geometry and Galois the-
ory specifically Diophantine equations and embedding problems. We also discussed
the “linearised” versions which are the existence of degree one zero cycles for Dio-
phantine equations and the index problem for an embedding problem. We showed
how translating these problems to question about sections in Topoi theory allows
one to use homotopical theoretic methods. On the other hand we discussed re-
lated classical local -global methods. Specifically the Brauer-Manin obstruction is
probably the best-known obstruction to the existence of points on an algebraic va-
riety. The Brauer-Manin obstruction can also be used to obstruct the existence of
zero cycles (. For rational points, stronger obstruction exists. In 99’ Skorobogatov
defined the more refined étale-Brauer-Manin obstruction, which is a finer obstruc-
tion to the existence of such points. However, this obstruction cannot be applied
to zero cycles. The theory of étale homotopy gives us a way to understand this
fact. The difference between Brauer-Manin and étale-Brauer-Manin lies in the
difference between homotopy and homology, and it is homology’s abelian nature
and relation to complexes that allows extending the obstruction to zero-cycles. In
the eyes of a homotopy theorist this suggests a natural question: can one give a
stronger obstruction to zero cycles that exist in stable étale homotopy?

Indeed, Modern Homotopy theory teaches us that spectra rather than complexes
are the correct “higher” abelian objects in homotopy theory and this observation
can indeed be used to defined a “Spectral” analog of the Brauer-Manin obstruction.
To drive the analogy closer and really compare that homological and spectral
versions one needs to produce analogs to different characters in the Brauer-Manin
story. These include Spectral analogs of the Poitou-Tate 9-terms exact sequence
in spectra and the Brauer group itself. This allows to explicitly describe the
additional information detected by the spectral obstruction.

The additional spectral “Arithmetic” information can be seen to relate to the
Brauer wall groups and to maps in the stable motivic homotopy category. The
main additional challenge in the way to exploiting this information then lies with
analysing bounded ramification results, which are “free” in the homological ver-
sion but raises natural and non-trivial questions about the behaviour of bounded
ramification in Chow groups and their twisted counterparts in the spectral realms.
Additionally the definitions at hand can be used not only of number fields but also
for fields of higher cohomological dimension. This higher cohomological dimension
allows to differentiate even more between the unstable, stable and homological
obstructions. Much of this is a work in progress with V. Stojanoska.
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Anabelian Geometry with Étale Homotopy Types I
Alexander Schmidt

(joint work with Jakob Stix)

Let k be a finitely generated field extension of Q. Grothendieck’s anabelian philos-
ophy (developed in a letter to G. Faltings [Gr83]) predicts the existence of a class
of anabelian varieties X/k that are reconstructible from their étale fundamental
group πet1 (X, x̄). He made the following conjectures:

Conjecture 1. C smooth, hyperbolic curve ⇒ C anabelian.

Conjecture 2. X smooth ⇒ every x ∈ X has basis of Zariski neighbourhoods
which are anabelian.

Conjecture 3. X anabelian: X(k) = (X
s

� Speck) is reconstructible from

S(πet
1 (X)) = (πet

1 (X)
s

� Gk).

What does “reconstructible from πet
1 (X)” mean? Here are three conditions of

increasing intricacy:
a) πet

1 (Y ) ∼=
Gk

πet
1 (X)⇒ Y ∼=

k
X.

b) Isok(Y,X) ∼= IsoGk(π1(Y ), π1(X))π1(Xk̄).
c) ∀ Y smooth: Homdom

k (Y,X) ∼= Homopen
Gk

(π1(Y ), π1(X))π1(Xk̄).

Amongst others, the following results were achieved so far:
- Nakamura [Na90]: Conjecture 1 with a) for C ⊆ P1

k r {0, 1,∞}
- Tamagawa [Ta97] /Mochizuki [Mo96]: Conjecture 1 with b)
- Mochizuki [Mo99] Conjecture 1 with c) and Conjecture 2 with b) in di-
mension ≤ 2

- Hochi [Ho14]: Conjecture 2 with b) in dimension ≤ 4.
Today (joint work with J. Stix):

- There are “many” anabelian varieties of higher dimension (in the sense of
a)).

- Conjecture 2 with b) in arbitrary dimension.

The topological point of view suggests that reconstruction from πet
1 (X) is only

plausible if X is of type K(π, 1). Therefore one should ask the modified question:
Can X be reconstructed from its étale homotopy type Xet ∈ Ho(pro-spc) (defined
by Artin-Mazur [AM69], Friedlander [Fr82])? Here “spc” means “simplicial sets”
and the model structure is that defined by Isaksen [Is01]. Notation:

[X,Y ] = HomHo(pro-spc)(X,Y ).

The present talk will provide necessary background on pro-spaces to translate
Mochizuki’s result [Mo99] to this setting.

For (X,x) ∈ pro-spc∗ we put πtop
n (X,x)

df
= [(Sn, ∗), (X,x)].
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Theorem 1 (Schmidt-Stix [SS16]). Let (X,x), (Y, y) ∈ pro-spc∗ and assume that
πtop

0 (Y, y) = 0. Then there is a natural isomorphism

[(X,x), (Y, y)]πtop
1 (Y,y)

∼−→ [X,Y ].

Theorem 2 (Schmidt-Stix [SS16]). Assume that π0(X,x) = 0 and πn(X,x) is
profinite ∀n ≥ 1. Then

πtop
n (X,x)

∼−→ limπn(X,x).

Theorem 3 (Schmidt-Stix [SS16]). (Existence of classifying spaces) Let G ∈
pro-gps. There exists a (canonical) object BG ∈ Ho(pro-spc∗) with

[X,BG] = Hompro-gps(π1(X), G)

for all connected X ∈ pro-spc∗.

Recall that a profinite group G is called strongly center-free if every open sub-
group of G has a trivial center.

Theorem 4 (Schmidt-Stix [SS16]). Let k be a field with Gk strongly center-free,
X,Y connected and of finite type /k, Y normal and geometrically connected. Let
K/k be a separably closed field extension and let x̄ : Spec(K)→ X, ȳ : Spec(K)→
Y be geometric points. Let k̄ be the separable closure of k in K. Then

HomHo(pro-spc∗)↓(ket,k̄et)((Xet, x̄et), (Yet, ȳet))πet
1 (Yk̄,ȳ)

∼−→
HomHo(pro-spc)↓ket

(Xet, Yet).

The above (and some more) allow the following reformulation of Mochizuki’s
theorem:

Theorem 5 (Mochizuki [Mo99] + Schmidt & Stix [SS16]). Let p be a prime
number, k a sub-p-adic field, X a smooth, connected k-variety and Y a smooth,
hyperbolic curve over k. Then

Homdom
k (X,Y )

∼−→ Homπ1-open
Ho(pro-spc)↓ket

(Xet, Yet).

Here “dom” means dominant and a map is “π1-open” if it induces a homomorphism
with open image on π1 for any choice of base points. In particular, we have

Isomk(X,Y )
∼−→ IsomHo(pro-spc)↓ket

(Xet, Yet).
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Anabelian Geometry with Étale Homotopy Types II
Jakob Stix

(joint work with Alexander Schmidt)

We report on the second of two consecutive talks. Therefore we keep the no-
tation of [Sch18]. In particular Xet denotes the étale homotopy type of X and
Ho(pro-spc) ↓ ket denotes the over-category of the homotopy category of pro-
spaces over Spec(k)et. The first result is a weakly anabelian statement:

Theorem 1 (Schmidt-Stix, [SS16]). Let k/Q be a finitely generated field. Let X
and Y be smooth geometrically connected varieties over k such that for both X and
Y we have a locally closed embedding into a product of hyperbolic curves over k.
Then there is a map

r : Isom(Xet, Yet) −→ Isomk(X,Y )

such that
(i) r is a retraction: r(fet) = f for all isomorphisms f : X ∼= Y over k,
(ii) r is functorial: if Z is a further such variety and γ : Xet

∼= Yet and
δ : Yet

∼= Zet are isomorphisms in the homotopy category over ket, then
r(δγ) = r(δ)r(γ),

(iii) for all dominant maps f : Y → C with C a hyperbolic curve over k, we
have for all γ : Xet

∼= Yet

fetγ = fetr(γ)et.

Note that property (iii) determines the retraction r uniquely, and that (i) and
(ii) follow at once from (iii).

Corollary 2. Let X and Y be as in Theorem 1. Then X and Y are isomorphic
as varieties over k if and only if Xet

∼= Yet as pro-spaces over ket up to homotopy.

The proof of Theorem 1 proceeds in several steps. Let γ : Xet
∼= Yet be an

isomorphism. We first embed Y ↪→ W :=
∏
Ci in a product of hyperbolic curves

such that each projection pri : Y → Ci is dominant. Applying Mochizuki’s an-
abelian theorem to priγ in the form of Theorem 5 of [Sch18] we obtain a map
f : X →W . Spreading out over a scheme S of finite type over Spec(Z) as Y ↪→W
and f : X → W we must show that Y ×W X → X is surjective on Fq-points for
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sufficiently many q. This follows by applying a technique pioneered by Tamagawa
in [Ta97]: auxilliary étale covers of W separate rational points, and the existence
of rational points can be computed by the Lefschetz trace formula (a special har-
poon in the body of the whale of algebraic geometry as mentioned several times
during the workshop). Here we use crucially that the étale homotopy type of the
special fibre of X → S determines the étale cohomology also of finite étale covers
as a Galois representation, hence the isomorphism γ induces an isomorphism with
the corresponding Galois representation for Y → S. The factorization of f yields
the desired map r(γ) : X → Y .

A refined version based on Chebotarev’s theorem yields some modest control
about the extent to which the retraction r might actually be an inverse.

Theorem 3 (Schmidt-Stix, [SS16]). Let X be as in Theorem 1, and let γ be an
automorphism of Xet as pro-spaces over ket up to homotopy with r(γ) = idX. Then
(upon choosing base points and lifting to a pointed homotopy, see [Sch18])

ϕ = π1(γ)

is a class-preserving automorphism of π1(X), i.e., ϕ(σ) is conjugate to σ for all
σ ∈ π1(X).

Recall that a good Artin neighbourhood is a smooth variety X that admits the
structure of an iterated fibration

X = Xn → Xn−1 → . . .→ X1 → X0 = Spec(k),

such that for all i the fibration Xi → Xi−1 is an elementary fibration in hyperbolic
curves. In characteristic 0, good Artin neighbourhoods are K(π, 1)-spaces. We
define a strongly hyperbolic Artin neighbourhood to be a good Artin neighbourhood
such that furthermore all Xi admit locally closed embeddings into a product of
hyperbolic curves. Refining the classical argument, we obtain that for a variety
over an infinite field any smooth point admits a Zariski open neighbourhood that
is also a strongly hyperbolic Artin neighbourhood. Therefore the following strong
anabelian statement establishes a positive answer to Conjecture 2 mentioned in
[Sch18].

Theorem 4 (Schmidt-Stix, [SS16]). For strongly hyperbolic Artin neighbourhoods
X and Y the retraction r of Theorem 1 is a bijection.

Note that Theorem 4 was obtained by Hoshi [Ho14] by different means and
restricted to dim(X) ≤ 4.

The proof proceeds by induction on the dimension. The compatibility with
a choice of a fibration structure follows from Theorem 3 above. The induction
hypothesis simplifies the situation of the last fibration Xn → Xn−1 to the extent
that we have an induced map on homotopy types for the generic fibres. Here we
are back in the case of hyperbolic curves and Mochizuki’s theorem applies again
in the form of Theorem 5 of [Sch18]. This shows that all homotopy equivalences
are geometric and a posteriori that the retraction r is an inverse.
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Arithmetic of Elliptic Function Fields and Elliptic Convolution
Michael Dettweiler

(joint work with Benjamin Collas, Stefan Reiter)

The use of Hilbert’s irreducibility theorem has been proven to be very fruitful in
hindsight of the inverse Galois problem: if L/Q(x) is a finite Galois extension of
the rational function field then one may specialise this at infinitely many points in
a way that the Galois group is preserved. In many cases it has been proven easier
to obtain a regular realisation of a given group G as G = Gal(L/Q(x)) and then
to specialise it in order to realise G over Q.

This has resulted in Galois extensions of Q with finite groups of Lie type [5].
In particular, a result by H. Völklein [6], S. Reiter and M. Dettweiler [2] is the
statement that the general linear groups GLn(Fq) is the Galois group of a regular
Galois extension L/Q(x) if n > c · q (where c is a constant independent of n, q).
The approach is given by Katz’ algorithm for the middle convolution product of
perverse sheaves on P1 [4, 3]. Unfortunately, in this context one has a certain
rational rigidity barrier: due to the branch cycle argument, one can not extend
these results to n ≤ cq without violating rationality.

We can consider a similar context by replacing the function field of the projective
line as above by those of an elliptic curve: for elliptic function fields Q(E) one may
also specialise a given finite Galois extension L/Q(E) at infinitely many rational
points as soon as the Mordell-Weil rank is positive. If the Galois group G =
Gal(L/Q(E)) is perfect then it can be shown that the Galois group is preserved
for almost all specialisations. The convolution K ∗ L of perverse sheaves K,L on
an elliptic curve E is the pushforward along the addition map. In this way, one
can construct from easy to handle perverse sheaves (e.g. those which come from
étale local systems of rank one) more complicated ones, resulting in nontrivial
Galois extensions of Q(E). The geometric monodromy of such convolutions can be
determined following [1].

In this talk we presented that one can use these methods in order to break
the above mentioned rational rigidity barrier in some cases, leading to Galois
realizations of certain groups of the type PSU(4, p6) and PGL(4, p6). This is done
by using convolutions of perverse sheaves related to the existence of rational p-
torsion (Mazur’s theorem) in conjunction with a positive Mordell-Weil rank.
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Hilbert Irreducibility and Ritt Decompositions
Danny Neftin

Let f(t, x) ∈ Q[t, x] be an irreducible polynomial and n := degx f its x-degree.
For simplicity assume Q is algebraically closed in the Galois closure Ω of f over
Q(t). A fundamental question arising from Hilbert’s irreducibility theorem is to
describe the sets Redf = {a ∈ Q | f(a, x) ∈ Q[x] is reducible} and Redf ∩ Z. In
particular when are those sets finite?

Hilbert’s proof shows that the set Redf is thin. That is, there are finitely many
maps φi : Xi → P1 (resp., polynomials fi ∈ Q[t, x]), i ∈ I, such that

Redf ⊆
⋃
i∈I

φi(Xi(Q)) ∪ finite set.

However, it is unknown how many φi’s are needed and what are their degrees.
The latter is need to determine the growth rate of Redf ∩ Z. Note that the case
where Redf is finite corresponds to I = ∅.

Previous results mainly concern the indcomposable case and separate between
the low and high genus cases. Let φf : Xf → P1 be the natural projection
(x, t) → t from the curve Xf corresponding to f(x, t) = 0. In low genus, the
results typically show that Redf or Redf ∩ Z is the union of one value set and
a finite set. For example, Fried’s theorem assumes that φf is an indecomposable
polynomial map P1 → P1 of degree > 5, and asserts that Redf ∩Z is φf (Z) union
a finite set. In higher genus, these result typically show that Redf or Redf ∩ Z
is finite. For example, Mueller’s theorem assumes g(Xf ) ≥ 1 and either that n is
prime or the “general case" where the monodromy group of φf is Sn, and asserts
that Redf∩Z is finite. In fact, an extensive work of Mueller studies Redf∩Z in the
indecomposable case, in particular describing it in the case of simple monodromy
groups.

In the indecomposable case, the passage from Redf ∩ Z to the entire set Redf
and from polynomials to the general low genus case became possible in view of
the classification of monodromy groups. The latter program, which was initiated
by Guralnick–Thompson, has been recently completed by the author and Zieve
for coverings φ : X → P1 of large degree in comparison to the genus of X. As a
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consequence of this result, we get that if n is sufficiently large in comparison to
the genus of Xf , then Redf is the union of φf (Xf (Q)) and a finite set. Note that
φf (Xf (Q)) is finite if the genus of Xf is at least 2.

In contrast to previous work which mainly focuses on the indecomposable case,
we describe here recent advancements in the decomposable case obtained jointly
with König. Namely, we show that for a polynomial map φf which decomposes
as φf = φ1 ◦ · · · ◦ φr for indecomposable polynomials φ1, . . . , φr with noncyclic
and nondihedral monodromy, degree > 9, and deg φ1 > 20. Then either Redf
is the union of φ1(Q) and a finite set, or the ramification of φ1 is in an explicit
list and Redf = φ1(Q) ∪ φ̃1(Q)∪ finite set, for some rational function φ̃1 whose
ramification is determined by that of φ1. The result partially extends to low genus
coverings, with the “bottle neck" of the proof being the availability of analogues
of Ritt’s decomposition theorem for such coverings.

Zero-cycles on Homogeneous Spaces and the Inverse Galois Problem
Olivier Wittenberg

(joint work with Yonatan Harpaz)

Let Γ be a finite group and k be a number field. It has been understood since
Hilbert and Noether that the problem of realising Γ as a Galois group over k is
really a problem about the arithmetic of the unirational variety Am

k /Γ, where Γ
acts by permuting the coordinates once an embedding Γ ↪→ Sm has been chosen.
Equivalently, it is really a problem about the arithmetic of the homogeneous space
SLn,k/Γ, where Γ acts by multiplication on the right, an embedding Γ ↪→ SLn(k)
having been chosen. (Indeed, by Speiser’s lemma, these two varieties are stably
birational.) Letting X denote a smooth compactification of SLn,k/Γ, a positive
answer to the inverse Galois problem for Γ would follow, in particular, from the
density of X(k) in the Brauer–Manin set X(Ak)Br(X).

Theorem 1. Let X be a smooth compactification of a homogeneous space V of a
connected linear algebraic group G over k. Let x̄ ∈ V (k̄) be a geometric point and
let Hx̄ ⊆ G(k̄) denote its stabiliser.

(1) The image of the natural map CH0(X) →
∏
v∈Ω CH0(X ⊗k kv), where Ω

denotes the set of places of k, consists of those families (zv)v∈Ω in the
kernel of the Brauer–Manin pairing such that deg(zv) is independent of v.
In particular, if X(Ak)Br(X) 6= ∅, then X admits a zero-cycle of degree 1.

Assume now that G is semi-simple and simply connected ( e.g., that G = SLn,k)
and that Hx̄ is finite.

(2) Assume that [4, Conjecture 9.1] is true. If Hx̄ is solvable, then X(k) is
dense in X(Ak)Br(X).

(3) If Hx̄ admits a filtration, with cyclic graded quotients, by normal subgroups
of Hx̄ which are stable under the natural outer action of Gal(k̄/k), then
X(k) is dense in X(Ak)Br(X).
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The density of X(k) in X(Ak)Br(X) may well hold for all rationally connected
varieties (a conjecture put forward by Colliot-Thélène) and was previously known
for smooth compactifications of homogeneous spaces of linear algebraic groups with
connected geometric stabiliser and for smooth compactifications of homogeneous
spaces of semi-simple simply connected linear algebraic groups with finite abelian
geometric stabiliser (Sansuc, Borovoi). Assertion (1) was previously known under
these same assumptions (Liang). Furthermore, Neukirch had proved the density
of X(k) in X(Ak) when V = SLn,k/Γ and the order of Γ and the number of roots
of unity contained in k are coprime (a condition which excludes, e.g., 2-groups).

Assertion (3) applies to V = SLn,k/Γ when Γ is supersolvable (e.g., when it is
nilpotent). Both (2) and (3) rely on an induction on the order of Hx̄. Even if one
focuses on the inverse Galois problem, and therefore on homogeneous spaces of
the form SLn,k/Γ, it is an essential point for this induction that the theorem can
be applied to homogeneous spaces of SLn,k which need not have a rational point
and whose geometric stabiliser need not be constant.

Assertions (2) and (3) thus recover Shafarevich’s theorem on the inverse Galois
problem for finite solvable groups, in the supersolvable case (and, conditionally, in
general). They also go further, as they yield answers to Grunwald’s problem, which
asks for Galois extensions of k with group Γ whose completions at a finite set S of
places of k are prescribed. In particular, combining (2) and (3) with recent work of
Lucchini Arteche on the bad places for the Brauer–Manin obstruction on such X
shows that Grunwald’s problem admits a positive answer when Γ is supersolvable
(conditionally, when Γ is solvable) and S avoids the places dividing the order of Γ.
We recall that some condition on S must appear even in the simplest situations:
Wang gave a counterexample for k = Q, Γ = Z/8Z, S = {2}.

The strategy of the proof of Theorem 1 relies on a geometric dévissage of these
homogeneous spaces, which we now explain. For the sake of simplicity, we focus
on (2) and assume that G = SLn,k and that [4, Conjecture 9.1] holds. In this
situation, we establish the following inductive step, which does not require any
assumption on the finite group Hx̄ and which clearly implies (2): if X ′(k) is dense
in X ′(Ak)Br(X′) for any smooth compactification X ′ of any homogeneous space
of G with geometric stabiliser isomorphic to the derived subgroup of Hx̄, then
X(k) is dense in X(Ak)Br(X).

The starting point is a version, for rationally connected varieties, of the theory
of descent that Colliot-Thélène and Sansuc developed in the 80’s for geometrically
rational varieties. Just as in the theory of descent for elliptic curves, the idea is
to reduce questions about the rational points of a given variety X to the same
questions for auxiliary varieties which lie above it. The auxiliary varieties we use
are the universal torsors of Colliot-Thélène and Sansuc; for a smooth and proper
variety X over k such that Pic(X ⊗k k̄) is torsion-free, they are torsors Y → X
under the torus over k whose character group is Pic(X ⊗k k̄).

Proposition 2. If X is a smooth and proper variety over k such that Pic(X⊗kk̄) is
torsion-free, then X(Ak)Br(X) is contained in the union, over all universal torsors
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f : Y → X, of f ′
(
Y ′(Ak)Br(Y ′)

)
, where Y ′ denotes a smooth compactification of Y

such that f extends to a morphism f ′ : Y ′ → X.

This statement, which can also be deduced from recent work of Cao, was first
proved by Colliot-Thélène and Sansuc when X is geometrically rational, a general-
ity which is insufficient for our purposes since there exist finite nilpotent groups Γ
such that SLn,k/Γ fails to be geometrically rational (Saltman, Bogomolov). Here,
the point is that the full Brauer group of X is taken into account. Dealing with the
algebraic subgroup Br1(X) = Ker

(
Br(X)→ Br(X ⊗k k̄)

)
is not enough, as recent

examples of transcendental Brauer–Manin obstructions to weak approximation on
SLn,k/Γ for certain p-groups Γ show (Demarche, Lucchini Arteche, Neftin [2]).

The next result elucidates the geometry of the universal torsors in our situation.

Proposition 3. Let V and X be as in Theorem 1, with G = SLn,k and Hx̄ finite.
Let f : Y → X be a universal torsor of X. There exist a dense open subsetW ⊆ Y ,
a quasi-trivial torus Q and a morphism π : W → Q whose fibres are homogeneous
spaces of G with geometric stabiliser isomorphic to the derived subgroup of Hx̄.

Putting together the above two propositions, we see that in order to prove
assertion (2) of Theorem 1, the only missing ingredient is a positive answer to the
following question, where Z, B are smooth compactifications of W , Q such that π
extends to a morphism p : Z → B.

Question 4. Let p : Z → B be a dominant morphism between smooth and proper
varieties over k. Assume that B and the generic fibre of p are rationally connected.
If B(k) is dense in B(Ak)Br(B) and Zb(k) is dense in Zb(Ak)Br(Zb) for all rational
points b of a dense open subset of B, is Z(k) dense in Z(Ak)Br(Z)?

An answer in a very special case (the case in which B = P1
k and in which for any

b ∈ P1(k)\{0,∞}, the variety Zb is smooth and the map Br(k)→ Br(Zb) is onto)
was a key step in Hasse’s proof of the Hasse–Minkowski theorem on the rational
points of quadrics—namely, the step which relies on Dirichlet’s theorem on primes
in arithmetic progressions (see [5, Proposition 3.17]). More general situations have
been considered ever since. The general case, however, seems entirely out of reach.
In [4], we provide a positive answer when B is rational over k, assuming the validity
of [4, Conjecture 9.1], and we provide a positive answer to the analogous question
for zero-cycles, under the same assumption on B, unconditionally.

As the torus Q is quasi-trivial, it is rational over k, and so is B. This completes
the strategy for establishing the first two assertions of the theorem in the case of a
homogeneous space of SLn,k with finite solvable geometric stabiliser. To deduce (1)
in full generality, a first reduction, using Sylow subgroups, allows us to deal with
homogeneous spaces of SLn,k with arbitrary finite geometric stabiliser; the general
case then follows thanks to the work of Demarche and Lucchini Arteche [1]. The
proof of (3) rests on a variant of this strategy. Universal torsors are replaced with
torsors of a certain intermediate type built out of the cyclic quotients appearing
in (3); they lead to fibrations π : W → Q admitting a rational section over k̄. On
the other hand, for fibrations into rationally connected varieties which are smooth
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over a quasi-trivial torus and which admit a rational section over k̄, we provide an
unconditional positive answer to Question 4, by performing a descent (in the form
of a slight generalisation of Proposition 2) and applying the work of Harari [3].
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Canonical Paths on Algebraic Varieties
Daniel Litt

(joint work with Alexander Betts)

Let K be a local field (archimedean or non-archimedean) and X a normal vari-
ety over K. Then, in several settings, there exist canonical linear combinations
of paths between any two points in X. I explained several applications of this
observation.

1. Galois actions on fundamental groups

In joint work with Alexander Betts, I prove new structural results about Galois
actions on the fundamental group of X, in both the `-adic and p-adic setting; for
example

Theorem 1 (Betts, L-). Let X be a smooth variety over a p-adic field K. Then
(1) Let ` be a prime different from p. Then any Frobenius element of the

absolute Galois group of K acts semi-simply on the Lie algebra of the
Q`-pro-unipotent fundamental group of X.

(2) Suppose X admits a simple normal crossings compactification with semi-
stable reduction. Then the crystalline Frobenius acts semi-simply on the
Lie algebra of the log-crystalline pro-unipotent fundamental group of the
special fiber of X.

This theorem is a generalization of a theorem of Weil/Tate, essentially; i.e. that
Frobenius acts semi-simply on H1(XK̄ ,Q`). Applications include results on the
representation theory of fundamental groups, related to work of Cadoret and to
the geometric torsion conjecture. For example (see [L]):
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Theorem 2 (L–). Let X be a normal, geometrically connected variety over a
finitely generated field k of characteristic zero, and let ` be a prime. Then there
exists an integer N = N(X, `) such that for any non-trivial, semi-simple represen-
tation

ρ : π1(Xk̄)→ GLm(Z`)

which extends to a finite index subgroup of πét
1 (X), one has that ρ is non-trivial

mod `N .

2. Results on the Chabauty-Kim method (in particular, the
Chabauty-Kim method at primes of bad reduction)

After some work, Theorem 1 above implies that Kim’s Selmer varieties (see e.g. [K])
are irreducible at all primes (the interesting case being primes of bad reduction).
This is the zero-th step in trying to run the non-Abelian Chabauty method at
a prime of bad reduction. Some motivation for wanting to do this: (a) in real
life, one likes to work with small primes (which may be primes of bad reduction)
and (b) more seriously, if one hopes to prove the uniform Mordell conjecture (a
reasonable end goal for the non-Abelian Chabauty method), one needs to be able
to work at a small prime, regardless of reduction type. For a recent success of the
(Abelian) Chabauty method in proving uniform bounds (by using primes of bad
reduction), see recent work of Katz-Rabinoff-Zureick-Brown [KZB].

3. Applications of p-adic Hodge theory to "explicit" computation of
Galois actions on fundamental groups

The theorem I mentioned above indicates that certain operators (either Galois
Frobenii or crystalline Frobenii) act diagonalizably on some infinite-dimensional
vector spaces — the Lie algebras of some pro-unipotent fundamental group. Know-
ing this, the natural questions are (a) what are the eigenvalues? (this question is
easy), and (b) what are the eigenvectors? This latter question is very hard and
interesting. In the crystalline case, I can give an explicit description of the eigen-
vectors of the crystalline Frobenius (say, if X = P1\D for some divisor D) in terms
of p-adic iterated integrals on X (some caution is needed here, since the crystalline
Frobenius is only semi-linear). Via p-adic Hodge theory, this gives a complete de-
scription of the action of the absolute Galois group of K on the Qp-pro-unipotent
(etale) fundamental group of X, and with some integral p-adic Hodge theory, quite
a bit of information about the Galois action on the usual pro-p fundamental group
of X (no pro-unipotent completion). This is related to work of Nakamura.

4. Monodromy-free iterated integrals

Finally, I explained an archimedean analogue of some of the results above, which
gives a monodromy-free theory of iterated integrals on complex varieties. Indeed,
I described the following so-called “canonical path":
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Theorem 3 (L–). Let X be a normal, connected complex algebraic variety, and
let x, y ∈ X. Then there exists a unique element p(x, y) ∈ C[[π1(X;x, y)]], such
that:

(1) ε(p(x, y)) = 1,
(2) p(x, y) ∈ F 0C[[π1(X;x, y)]], and
(3)

p(x, y) ∈
⋂
i>0

(W−i−1 + F−i+1).

Here p(x, y) is the complex conjugate of p(x, y).

Here C[[π1(X;x, y)]] is the Mal’cev completion of the space of (based homotopy
classes of) paths from x to y, and F i,W j are the Hodge and weight filtrations,
respectively. I explained how to construct, for each r-tuple of holomorphic forms
ω1, · · · , ωr on a Riemann surface, a single-valued function

f(z) =

∫
p(x0,z)

ω1 · · ·ωr

and how this recovers many classical real-analytic special functions constructed by
Bloch, Wigner, Ramakrishnan, Zagier, etc. (the single-valued polylogarithms) [Z].
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Tamely Ramified Torsors and Parabolic Bundles
Niels Borne

(joint work with Indranil Biswas)

Mehta and Seshadri have shown that a unitary representation of the topological
fundamental group of a punctured Riemann surface gives rise to a (polystable)
parabolic vector bundle (of degree 0): roughly, an ordinary vector bundle, and for
each cusp, a weighted filtration of the corresponding stalk (see [4]). This associa-
tion is explicit, algebraic in nature, and, in fact, one to one. This gives an algebraic
approach of étale fundamental groups, namely if X/k is a proper scheme over an
algebraically closed field of characteristic 0, endowed with a (simple) normal cross-
ings divisor, representations of the étale fundamental group of the complement are
identified with the category of essentially finite parabolic vector bundles. This
holds in positive characteristic as well if one replaces the étale fundamental group
by a tamely ramified version of Nori’s fundamental group scheme ([6, 2]).
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More or less by construction, if one fixes a tamely ramified Galois cover, the
denominators of the weights of the associated parabolic vector bundles divide
the ramification indices. The other way round, if one starts from a finite set of
essentially finite parabolic vector bundles, one can ask how the weights relate to
the ramification indices of the minimal tamely ramified Galois cover trivializing
them all. In a recent joint work with Indranil Biswas, we give an answer to this
question in the abelian case.

More precisely, starting from X/k a base scheme over a field, endowed with a
simple normal crossings divisor, we define tamely ramified torsors Y → X under
an abelian finite group scheme G as fppf locally induced by Kummer covers. We
relate the existence of such torsors with prescribed ramification data (but allowing
G to vary) with the existence of essentially finite parabolic vector bundles with
prescribed weights along the ramification locus.

Let us now give precise definitions and our statement. We fix a scheme X of
finite type over a field k, and D a simple normal crossings divisor on X, meaning
D = ∪i∈IDi is the union of a finite family of irreducible, smooth divisors, crossing
normally. We denote the corresponding family by D = (Di)i∈I and add to our
data a family r = (ri)i∈I of positive integers. Given a closed point x of X, we set
(rx)i as ri if x belongs to Di and 1 otherwise; this defines a local multi-index rx.

Definition 1. Let G/k be a finite abelian group scheme. A tamely ramified G-
torsor with ramification data (D, r) is the data of a scheme Y endowed with an
action of G and a finite and flat G-invariant morphism Y → X such that for
each closed point x of X, there exists a monomorphism µrx → G defined over an
extension k′/k such that in a fppf neighbourhood of x in X, the morphism Y → X
is isomorphic to Z ×µrx G, where Z → SpecR is a Kummer cover locally defined
by the choice of equations of D at x.

Definition 2 (C.Simpson around 1990). A parabolic bundle E· on (X,D) with
weights in

∏
i∈I

1
ri
Z is the data

(1) For all m ∈
∏
i∈I

1
ri
Z of a locally free sheaf Em, verifying Em′ ⊂ Em for

m ≤m′ (for the component-wise partial order)
(2) For m ∈

∏
i∈I

1
ri
Z, and n ∈ ZI , of pseudo-period isomorphisms

Em+n ' Em ⊗OX OX(−
∑
i∈I

niDi)

compatible between themselves, and with inclusions above.

The category Par(X,D) of parabolic vector bundles with arbitrary rational
weights form an abelian tensor category, the tensor product being given by a
convolution formula. Nori defines finite parabolic vector bundles as objects of
this category satisfying a non trivial tensor relation ([6]). In order to get an
abelian category in positive characteristic as well, one introduces essentially finite
parabolic vector bundles as the kernels of morphisms between two finite parabolic
vector bundles ([3]). Under the assumptions of our theorem, the corresponding full
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subcategory EF Par(X,D) is even tannakian, so that it makes sense to consider
the monodromy group of an essentially finite parabolic vector bundle.

Given a closed point x of D, and l ∈ ZI , we will write that a parabolic vector
bundle E· on (X,D) admits l/r as a weight at x if

(
E(l+1)/r

)
x
⊂
(
El/r

)
x
is not an

equality.

Theorem 1 (I.Biswas-B., 2017). Assume that X/k is proper, of finite type, geo-
metrically {connected and reduced}. The two following statements are equivalent :

(1) There exists a finite abelian group scheme G/k and a tamely ramified G-
torsor Y → X with ramification data (D, r),

(2) for each closed point x of D, and for all l ∈ ZI , such that 0 ≤ l < rx, there
exists an object E· in EF Par(X,D) with abelian monodromy and weights
in 1

rZ
I , such that E· admits l/rx as a weight at x.

It is certainly natural to ask if the theorem holds for G/k finite but possibly
non abelian, but this is still an open question.

The main difficulty is to identify tamely ramified torsors with ordinary torsors
on natural orbifolds associated to X and the ramification data, the so-called stack
of roots, that are fppf locally quotient stacks of Kummer covers. Some tools we
use are closely related to the main topics of the conference. For instance, to
avoid assuming that X/k has a rational point, or having to pick up one, we use
Nori fundamental gerbe ([3]), whose rational points are the sections of the section
conjecture (see reports by A. Schmidt and J. Stix). Another key ingredient is a
Nori version ([1]) of Noohi’s uniformization criterion for algebraic stacks ([5]), that
was used by Sylvain Maugeais and Benjamin Collas in their study of the Galois
action of the inertia stack of the moduli spaces of curves (see report by B. Collas
and references therein).
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Grunwald Problems and Specialization of Galois Covers
Joachim König

(joint work with François Legrand, Danny Neftin)

This talk summarized the results of the two papers [8] and [6] on the local behaviour
of specializations of Galois covers. The underlying question, informally stated, is:
Given a number field k and a finite group G, to which extent is it possible to
impose local conditions on a Galois extension F/k with group G, with the extra
requirement that F/k be a specialization of some prescribed k-regular G-extension
E/k(t)? The topic is part of a larger ongoing project investigating in various ways
the structure of the sets of specializations of a Galois cover.

Grunwald problems. The Grunwald problem (over a number field k) is a strength-
ening of the inverse Galois problem, asking about the existence of Galois extensions
of k with prescribed Galois group which approximates finitely many prescribed lo-
cal extensions. There are several variants which can be considered as Grunwald
problems. The most classical is the following one:

Definition (Grunwald problem). Let k be a number field, G be a finite group and
S be a finite set of primes of k. For each p ∈ S, let Fp/kp be a Galois extension
of kp whose Galois group embeds into G. Does there exist a Galois extension of k
with group G whose completion at p equals Fp/kp for all p ∈ S?

If we consider only sets S which are disjoint from a certain finite set S0 of primes
of k (depending on G), we speak of a weak Grunwald problem.
Weak Grunwald problems are known to have positive answers for several important
classes of groups. In particular, the Grunwald-Wang theorem gives a positive
answer for all abelian groups, exempting at most the primes of k extending the
rational prime 2 (see [13]). Results by Harari ([4]) give positive answers for weak
Grunwald problems for groups which are iterated semidirect products of abelian
groups. Recent work of Harpaz and Wittenberg ([5]) gives a positive answer for all
supersolvable groups (in particular, for all nilpotent groups). A different direction
was exhibited by Saltman, who showed that all Grunwald problems have a positive
answer if the group G has a generic Galois extension over k ([10]).

The specialization approach. We consider the solvability of Grunwald prob-
lems via specialization of Galois covers. This approach has two motivations:
Firstly, for many non-solvable groups, specializations of regular Galois realiza-
tions (i.e., of Galois covers) using Hilbert’s irreducibility theorem are the only
available Galois realizations. Secondly, the question which extensions can appear
as specializations of one or several given Galois covers is of interest by itself. Con-
crete forms of this question include e.g. the problem of existence of parametric
Galois extensions.

A central result in favor of the specialization approach is Dèbes’ and Ghazi’s
result about solvability of unramified Grunwald problems for a group G via spe-
cialization of any given G-cover ([3]). More precisely, for k a number field and
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G a finite group, one has the following property, denoted in [3], Thm.1.2, as the
Hilbert-Grunwald property :

(HG) Let E/k(t) be a k-regular G-extension. Then there exists a finite set S0

of primes of k such that all unramified Grunwald problems with a set S of primes
which is disjoint from S0 are solvable infinitely many times via specialization from
E/k(t). I.e., there exist infinitely many (linearly disjoint) G-extensions Et0/k,
with t0 ∈ k, solving the given Grunwald problem.

Stronger versions of this result are contained in [2], including counting results for
specializations with local conditions and bounded discriminant. The motivation
for [8] is to extend the investigation to specialization with arbitrary (tamely) ram-
ified local extensions i.e. to investigate the solvability of tamely ramified Grunwald
problems via specialization of Galois covers. The main underlying tool is a precise
statement about the decomposition groups at ramified primes in specializations of
function field extensions ([8], Thm. 4.1), improving in particular on Beckmann’s
theorem on inertia groups in specializations ([1], Prop. 4.2). As a consequence,
one obtains solutions to a certain class of ramified Grunwald problems via special-
ization of a k-regular extension E/k(t) (depending only on the local behaviour at
branch points of E/k(t)).

On the other hand, our results show that (under mild assumptions on the group
G; cf. [8], Thm. 6.2), the Hilbert-Grunwald property can never carry over in full
to ramified Grunwald problems, for any k-regular G-extension E/k(t). As an
application, we obtain a new method for disproving the existence of parametric
Galois extensions for certain groups G. Here, following e.g. [9] or [7], a regular
Galois extension E/k(t) with group G is called parametric if every G-extension of
K occurs as a specialization of E/k(t).
We obtain that a group fulfilling a certain very weak “Grunwald-type" property
cannot have a parametric extension. In particular, this property is fulfilled by the
alternating groups An with n ≥ 4, due to a famous construction of Mestre.We
therefore obtain that the alternating groups do not possess parametric Galois
extensions over any number field (cf. [8], Cor. 7.3). This is the first result of this
kind for finite simple groups. Our results also suggest (using heuristics on the
distribution of Galois extensions with given Galois group) that in general, the set
of all specializations of a single Galois cover, when counted by discriminant, is
“small" compared to the set of all G-extensions of k, which would considerably
strengthen previous non-parametricity results.

The next step logical step is therefore to investigate the behaviour of specializa-
tion sets of infinite families of G-covers. This is the content of [6], which shows that
already for specializations of a one-parameter family of regular G-extensions, i.e., a
k(s)-regular G-extension E/k(s)(t), the obstructions to solvability of all Grunwald
problems by specializing a single regular extension can potentially vanish for all
finite groups. Namely, assuming the existence of a one-parameter family E/k(s)(t)
with certain conditions on the local extensions at the ramified places, one obtains
a tamely ramified analog of the Hilbert-Grunwald property (HG), with the single
regular extension E/k(t) replaced by a family E/k(s)(t) (cf. Theorem 1.1 in [6]).
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While these conditions will be difficult to guarantee in practice, solvability of the
weak Grunwald problem is reduced to a geometric problem in the form of a strong
version of the regular inverse Galois problem. In particular, the notion of one-
parameter families translates to existence of rational curves on suitable Hurwitz
spaces.

Application: Admissibility of finite groups. As an application of our in-
vestigation of local behaviour of specializations, we obtain new results on Q-
admissibility, i.e., existence of G-crossed product division algebras over Q. Re-
call that a group G is called k-admissible, if there exists a division algebra A
over k with Z(A) = k and with a maximal subfield F/k of A such that F/k is
Galois with group G. The admissibility of finite groups over number fields was
investigated extensively by Schacher ([11]), Sonn (e.g.,[12]) and others, leading to
the Q-admissibility conjecture, which states that a finite group is Q-admissible if
and only if it is Sylow-metacyclic. While [12] established the conjecture for solv-
able groups, only a few isolated cases had previously been known for non-solvable
groups.

Applying our results on decomposition groups in specializations, we obtain for
the first time a Q-admissibility result for infinitely many non-abelian simple groups
PSL2(p) (see [8], Section 5).
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Algebraic Cycles in Generalized Cohomology Theories
Gereon Quick

(joint work with Michael J. Hopkins)

Let X be a smooth projective complex variety. It is an important goal in algebraic
geometry to understand the cycle map which associates to an algebraic subvariety
Y ⊂ X a class in the singular cohomology of the space of complex points of X.
In particular, one would like to understand the kernel and the image of the cycle
map.

In this talk we study the following analogue of this problem. Instead of consid-
ering (possibly singular) subvarieties of X, we assume that Y → X is any proper
algebraic map for a smooth proper complex variety Y . We would like to answer
the following questions:

(a) Given a complex compact manifold Y over X, how can we decide whether
Y is an algebraic variety?

(b) Given a smooth compact algebraic variety Y over X, how can we de-
cide whether Y is a boundary of a manifold without being an “algebraic
boundary”?

The goal of the talk is to discuss topological invariants which help to give at
least partial answers to the above questions. As a first step, we explain how to
consider them from the point of view of cobordism theories in the classical and
the motivic homotopy category of Morel and Voevodsky [4].

For question (a), we show how cohomology operations allow to construct exam-
ples of non-algebraic classes in Brown-Peterson cohomology theories which form a
family of cohomologies which interpolate between singular cohomology and cobor-
dism [6]. Geometrically, these theories correspond to the types of singularities
which are allowed for the cycles Y → X. The construction of these examples is
based on the work of Atiyah-Hirzebruch [1] and Totaro [8].

There are similar examples for varieties defined over the algebraic closure of
finite fields. The key is that there is a suitable stable étale realization functor
on the stable motivic homotopy category of smooth varieties over the algebraic
closure of finite fields.

For question (b), we present joint work with Michael J. Hopkins in which we
construct an invariant which plays the role of the classical Abel-Jacobi invariant
for algebraic cobordism of Voevodsky, Levine and Morel [3]. This new invariant
is defined for any smooth complex variety over X which is the boundary of a
compact almost complex manifold. It takes values in a bordism version of Griffiths’
intermediate Jacobian [5].

In fact, there is a Hodge filtered cobordism theory which is an analogue of
Deligne cohomology for smooth complex varieties together with a natural map
from algebraic cobordism [2]. This map restricts to the Abel-Jacobi invariant for
topologically trivial cycles.
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For schemes defined over number rings, the pushforward of this theory receives
a natural map of spectra from the motivic Thom spectrum. The homotopy fiber of
this map represents Arakelov algebraic cobordism. This is related to recent work of
Rodriguez on weak arithmetic cobordism [7]. To give a geometric interpretation of
the Chern classes in Arakelov algebraic cobordism is an interesting open problem.
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Operad Structure on π1-sections of Confn

Kirsten Wickelgren
(joint work with Craig Westerland)

This describes joint work in progress with Craig Westerland. Benjamin Collas has
informed us that he has independent work in progress which overlaps with these
ideas – see his report in this volume.

Let k be a number field, and let Gk = Gal(k/k) denote the absolute Galois
group of k for an algebraic closure k ⊂ k, which we will embed in C. For a
geometrically connected variety X over k, a π1-section of X over k refers to a
conjugacy class of sections of the homotopy exact sequence of étale fundamental
groups

1→ π1(Xk)→ π1(X)→ Gk → 1,

where a section s is conjugate to the section g 7→ γ−1s(g)γ for any γ in π1(Xk).
Let S(π1(X/k)) denote the set of π1-sections of X over k.

By functoriality of π1, k-points of X give rise to π1-sections, as well as k-
rational tangential basepoints in the sense of Deligne [1] and Nakamura [5]. See
also [6]. For example, maps Spec∪∞n=1k((z1/n)) → X. By abuse of notation,
a ∈ k∗ will also refer to the associated element of S(π1(Gm/k)), and a similar
convection applies for X = P1 − {0, 1,∞}. The map k[x, x−1] → k((z)) sending
x to az is the tangential basepoint associated to the tangent vector at 0 pointing
towards a and will be denoted 0a. There is similar notation for the elements of
S(π1(P1 − {0, 1,∞}/k)) associated to tangent vectors at 0, 1 or ∞. Please see [7,
12.2.2] for more information.
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Let Confn denote the scheme parameterizing configurations of n-ordered points
of A1 up to translation

Confn ∼= (An −∆)/A1 ∼= SpecQ[u12, . . . , u1n, (u1i − u1j)
−1 : i 6= j],

where ∆ denotes the union of the closed subspaces where at least two of the
standard coordinate projections of An are equal. The notation uij is borrowed from
[4] and indicates uij = ui−uj where ui denotes the ith coordinate projection. The
spaces of the little 2-disks operad are homotopy equivalent to the analytic space
of C-points of Confn. However, the operad maps do not come from scheme maps.
Instead, we wish to construct operad composition maps on π1-sections of Confn.

We were inspired to look for this by work of Horel [3] and Fresse [2]. Let GT
denote the Grothendieck-Teichmüller group, PaB the parenthesized braid operad,
and PaB∧ its profinite completion. There is an injection GQ → GT and

Theorem (Drinfel’d). GT is the group of automorphism of PaB∧ inducing the
identity on objects.

Conjecture/Theorem in progress (Westerland – W.) For each n, there is a set
Pn of Q-rational tangential basepoints of Confn and a GQ-equivariant isomorphism

π1(Confn,Q, Pn) ∼= PaB∧n

Our set of basepoints Pn are constructed following Ihara-Matsumoto [4].

Corollary. π1(Confn,Q, Pn) is an (explicit) operad in groupoids with an action of
GQ.

Corollary. There are operad composition maps
S(π1(Confn /Q))×(S(π1(Confm1

/Q))× . . .× S(π1(Confmn /Q)))

→ S(π1(Conf∑n
i=1 mi

/Q))
(1)

We expect to compute the maps (1) explicitly on rational points as follows. Let
(a1, . . . an) be a rational point of Confn, and for i = 1, . . . , n, let (bi1, bi2, . . . , bimi)
be a rational point of Confmi . Except for finitely many values of t, the (

∑n
i=1mi)-

tuple

(a1+tb11, a1+tb12, . . . , a1+tb1m1 , . . . , ai+tbi1, ai+tbi2, . . . , ai+tbimi , . . . , an+tbnmn)

determines a rational point of Conf∑n
i=1 mi

. In other words, there is an open set
U of A1 and a map f : U → Conf∑n

i=1 mi
. Under (1), the tuples of sections

corresponding to the tuple of points

(a1, . . . an)× ((b11, b12, . . . , b1m1)× . . .× (bn1, bn2, . . . , bnmn))

is sent to f∗01.

Let’s be more explicit for small values of n and the mi. Note the following.
Conf1

∼= Spec k.
Conf2

∼= Spec k[u21, u
−1
21 ] ∼= Gm.

Conf3
∼= Spec k[u21, u31, u

−1
21 , u

−1
31 , (u21 − u31)−1] ∼= Gm ×Gm −∆.
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It is convenient to use the isomorphism

Gm ×Gm −∆ ∼= Gm × P1 − {0, 1,∞} ∼= Spec k[x, x−1]× Spec k[y, y−1, (y − 1)−1]

given by (u21, u31) 7→ (u21, [u21, u31]) and (x, y) 7→ (x, yx), and then to use the
above notation for tangential basepoints of Gm and P1 − {0, 1,∞} to denote tan-
gential base points of Gm ×Gm −∆.

We have the map

S(π1(Conf2 /Q))× (S(π1(Conf2 /Q))× S(π1(Conf1 /Q)))→ S(π1(Conf3 /Q))

(2) a× b× ∗ 7→ b×∞ b

a
.

As well as

S(π1(Conf2 /Q))× (S(π1(Conf1 /Q))× S(π1(Conf2 /Q)))→ S(π1(Conf3 /Q))

(3) a× ∗ × b 7→ a× 1
b

a
.

To see that the above computations are reasonable, first compute the image of
tangential basepoints under the composition

S(π1(Gm×P1−{0, 1,∞}/Q))→ S(π1(Gm×Gm−∆/Q))
(u12,u13)7→uij→ S(π1(Gm/Q)).

0a× 0b 7→

{
a if (i, j) = (2, 1)

(0 + az)(0 + bz) = abz = ab if (i, j) = (3, 1)

Then note that in case (2), the three points of the configuration have the first
two clustered around 0, the second with tangent direction b. The third point is
at a. Thus the uij coordinates of the image are u21 = b, u31 = u32 = a, whence
x = u21 = b and [1 : y] = [u21, u31] = [0 + bz, a] = [0 + b

az, 1]. Similarly, in case
(3), the uij coordinates of the image are u21 = u31 = a, and u32 = b, whence
x = u21 = b and [1 : y] = [u21, u21 + u32] = [a, a+ bz] = [1, 1 + b

az].
The motivation for studying operad composition maps on π1-sections of con-

figuration spaces is to lift this structure to Hurwitz spaces, thereby producing
operadic operations on Galois covers.

Craig Westerland was partially supported by the National Science Foundation
DMS-1712470. Kirsten Wickelgren was partially supported by the National Sci-
ence Foundation DMS-1552730.
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