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Abstract

Let H be a Hilbert space and (Ω,F ,µ) a probability space. A Hilbert point in
Lp(Ω;H) is a nontrivial function ϕ such that ∥ϕ∥p ≤ ∥ϕ+f ∥p whenever ⟨f ,ϕ⟩ = 0.
We demonstrate that ϕ is a Hilbert point in Lp(Ω;H) for some p , 2 if and only
if ∥ϕ(ω)∥H assumes only the two values 0 and C > 0. We also obtain a geometric
description of when a sum of independent Rademacher variables is a Hilbert
point.
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1 Introduction

Suppose that (Ω,F ,µ) is a probability space and that H is a Hilbert space. For
1 ≤ p ≤∞, consider the usual Lp spaces of H-valued Bochner integrable functions
f on Ω. A Hilbert point in Lp(Ω;H) is a nontrivial function ϕ in Lp(Ω;H) which
enjoys the property that

⟨f ,ϕ⟩ = 0 =⇒ ∥ϕ∥p ≤ ∥ϕ + f ∥p, (1)

for every f in Lp(Ω;H). The inner product in (1) is that of the Hilbert space L2(Ω;H),
namely

⟨f ,g⟩ =
∫
Ω

⟨f (ω), g(ω)⟩H dµ(ω). (2)

Every nontrivial function in L2(Ω;H) is evidently a Hilbert point in L2(Ω;H), since
in this case ⟨f ,ϕ⟩ = 0 if and only if ∥ϕ + f ∥22 = ∥ϕ∥22 + ∥f ∥22.

If p < 2, then some care has to be taken when interpreting the inner product in
(1). We declare here that ⟨f ,ϕ⟩ = 0 whenever f lies in the Lp(Ω;H) closure of the set
of functions g in L∞(Ω;H) which satisfy ⟨g,ϕ⟩ = 0. It turns out that this precaution
is unnecessary, in view of our first main result.

1Department of Mathematics, University of Oslo, 0851 Oslo, Norway
2Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU),

7491 Trondheim, Norway

17



Hilbert points in Hilbert space-valued Lp spaces O. F. Brevig and S. Grepstad

Theorem 1 – A nontrivial function ϕ is a Hilbert point in Lp(Ω;H) for some p , 2 if
and only if there is a constant C > 0 and a set E with µ(E) > 0 such that

∥ϕ(ω)∥H =

C, ω ∈ E,
0, ω < E.

(3)

The functions satisfying (3) are the eigenfunctions of the nonlinear operator
associated with Hölder’s inequality discussed in Section 1.2 of Hedenmalm et al.
(2018). Equivalently, if p−1 +q−1 = 1, then the nontrivial functions attaining equality
in Hölder’s inequality

⟨ϕ,ϕ⟩ ≤ ∥ϕ∥p∥ϕ∥q
are precisely those obeying (3). It is therefore hardly surprising that Hölder’s
inequality has a crucial role to play in the proof of Theorem 1.

The requirement (3) does not depend on p , 2, and so we observe the following
corollary to Theorem 1: A nontrivial function ϕ is a Hilbert point in Lp(Ω;H) for
some p , 2 if and only if it is a Hilbert point in Lp(Ω;H) for every 1 ≤ p ≤∞.

The notion of Hilbert points was introduced in a recent paper of Brevig, Ortega-
Cerdà, and Seip (2022). The focus of that paper was on the Hardy spaces of d-
dimensional tori, denotedHp(Td). In contrast to the situation we have just observed,
their results demonstrate that in the context of Hp(Td) a nontrivial function may be
a Hilbert point for only one exponent p , 2.

Another direct corollary of Theorem 1 (with Ω = T
d and H = C) is the following:

If a Hilbert point ϕ in Hp(Td) for some p , 2 extends to a Hilbert point in the
larger space Lp(Td), then ϕ is a constant multiple of an inner function. Theorem 1
similarly provides a new proof of Corollary 2.5 in Brevig, Ortega-Cerdà, and Seip
(2022), which states that constant multiples of inner functions generate Hilbert
points on Hp(Td) for every 1 ≤ p ≤∞.

Information about certain Hilbert points in Hp(Td) was parlayed in Section 5 of
the above-mentioned paper to a new proof of the optimal constants in Khintchine’s
inequality for independent identically distributed Steinhaus variables for 2 < p <∞.

In the present paper, we will investigate independent identically distributed
Rademacher variables. Let (ωj )j≥1 be a sequence of independent random variables
taking the values ±1 with equal probability and consider the H-valued function

ϕ(ω) =
∞∑
j=1

ωjxj . (4)

From the definition of the inner product (2) and a computation, it follows that if ϕ
denotes a function of the form (4), then

∥ϕ∥22 =
∞∑
j=1

∥xj∥2H . (5)
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1. Introduction

Our second main result is a characterization of the Hilbert points of the form (4).

Theorem 2 – Let Ω = {−1,1}∞ be the Cantor group and µ its Haar measure. The
function (4) is a Hilbert point in Lp(Ω;H) for some p , 2 if and only if either

(a) (xj )j≥1 is an orthogonal sequence satisfying
∑
j≥1 ∥xj∥2H <∞.

(b) x1 = x2 for a nonzero vector x1 and xj = 0 for all j ≥ 3.

(c) u and v are nonzero vectors satisfying ∥u∥H = ∥v∥H and u⊥ v, and

x1 = u, x2 =
1
2
u+

√
3

2
v, x3 =

1
2
u−
√

3
2

v,

and xj = 0 for all j ≥ 4.

We close out this introduction with a probabilistic interpretation of Theorem 2.
Let us therefore think of H-valued functions f on Ω as H-valued random variables.
We refer to Section 6.1 in Hytönen et al. (2017) for the definitions of some standard
concepts used below. In particular, a function is called real symmetric if ϕ and
−ϕ have the same distribution. Functions of the form (4) are real symmetric,
as are analogous sums of independent Steinhaus variables. It thus follows from
Proposition 6.1.5 in Hytönen et al. (2017) that if ϕ is of the form (4) and f and ϕ
are independent, then

∥f ∥p ≤ ∥f +ϕ∥p (6)

for every 1 ≤ p ≤∞. If f is an integrable H-valued or scalar-valued random variable,
then the expectation E(f ) =

∫
Ω
f (ω)dµ(ω) exists. The covariance of two H-valued

random variables f and g is defined by

Cov(f ,g) = E(⟨f ,g⟩H )− ⟨E(f ),E(g)⟩H ,

and twoH-valued random variables are said to be uncorrelated if Cov(f ,g) = 0. Since
the real-symmetric variables ϕ from (4) satisfy E(ϕ) = 0, we have the following
reformulation of Theorem 2 which should be compared with (6): Fix p , 2. The H-
valued random variables of the form (4) satisfying the requirement ∥ϕ∥p ≤ ∥f +ϕ∥p
for every f which is uncorrelated to ϕ are precisely those given by Theorem 2.

Organization

This paper is comprised of two further sections. Section 2 is devoted to the proof of
Theorem 1. The proof of Theorem 2 can be found in Section 3.
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2 Proof of Theorem 1

We split the proof of Theorem 1 into three parts, and present these in order of
increasing difficulty.

Proof (Theorem 1: Sufficiency). Assume that (3) holds, meaning that there is a con-
stant C > 0 and a set E with µ(E) > 0 such that

∥ϕ(ω)∥H =

C, ω ∈ E,
0, ω < E.

Our goal is to show that ϕ is a Hilbert point in Lp(Ω;H). Since ϕ is bounded, it
is clear that ϕ is in Lp(Ω;H) for every 1 ≤ p ≤ ∞. In particular, the orthogonal
projection

Pϕf =
⟨f ,ϕ⟩
∥ϕ∥22

ϕ (7)

extends to a bounded operator on Lp(Ω;H). Using Hölder’s inequality, we find that

∥Pϕ∥Lp(Ω;H)→Lp(Ω;H) ≤
∥ϕ∥q
∥ϕ∥22

∥ϕ∥p = 1.

The final equality follows from the fact that ϕ satisfies (3). Now if ⟨f ,ϕ⟩ = 0, then

∥ϕ∥p = ∥Pϕ(ϕ + f )∥p ≤ ∥ϕ + f ∥p,

which demonstrates that ϕ is a Hilbert point in Lp(Ω;H). □

The necessity part in the proof of Theorem 1 requires a separate argument for
the case p =∞.

Proof (Theorem 1: Necessity for p =∞). Since ϕ is in L∞(Ω;H) the orthogonal pro-
jection Pϕ in (7) is a bounded operator on L∞(Ω,H). Every f in L∞(Ω;H) can be
orthogonally decomposed as f = cϕ + g, so the assumption that ϕ is a Hilbert point
in L∞(Ω;H) implies that

∥Pϕf ∥∞ = ∥cϕ∥∞ ≤ ∥cϕ + g∥∞ = ∥f ∥∞.

Here we tacitly used the fact that ϕ is Hilbert point if and only if cϕ is a Hilbert
point for every constant c , 0. This shows that ∥Pϕ∥L∞(Ω,H)→L∞(Ω;H) ≤ 1. Consider

ψ(ω) =

 ϕ(ω)
∥ϕ(ω)∥H

, if ϕ(ω) , 0,

0, if ϕ(ω) = 0.
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2. Proof of Theorem 1

Since ϕ is nontrivial, it is clear that ∥ψ∥L∞(Ω,H) = 1. Hence ∥Pϕψ∥∞ ≤ 1, which means
that

∥ϕ∥1
∥ϕ∥22

∥ϕ∥∞ ≤ 1 ⇐⇒ ∥ϕ∥1∥ϕ∥∞ ≤ ⟨ϕ,ϕ⟩.

The final inequality is actually an equality, since the reverse inequality is Hölder’s
inequality. This is only possible if (3) holds. □

The proof we have just given can easily be adapted to work also for 2 < p <∞.
However, we run into problems for 1 ≤ p < 2 since we cannot guarantee that the
orthogonal projection Pϕ in (7) is well-defined. The issue is simply that we cannot
guarantee a priori that ϕ is in L2(Ω;H). We circumvent this problem by using the
Riesz representation theorem for Lp(Ω;H), which holds in our context since every
Hilbert space enjoys the Radon–Nikodym property. We refer broadly to Chapter IV
in Diestel and Uhl (1977). The following proof is inspired by arguments from
Section 4.2 in Shapiro (1971).

Proof (Theorem 1: Necessity for p <∞). Suppose that ϕ is a Hilbert point in Lp(Ω;H)
where 1 ≤ p < 2 or 2 < p <∞. Our first goal is to show that we may assume without
loss of generality that ϕ does not vanish. (This reduction is technically only needed
in the proof of the case p = 1, but it simplifies the overall exposition also for p > 1.)
SetN = ϕ−1({0}). The behavior of f onN does not affect the inner product ⟨f ,ϕ⟩ and
may only increase the norm ∥ϕ + f ∥p. When checking the Hilbert point condition, it
is therefore sufficient to consider only f that vanish on N . Replacing Ω with Ω \N ,
we may therefore assume that ϕ does not vanish.

Let X be the subspace of Lp(Ω;H) formed by taking the closure of the set of
bounded functions g which satisfy ⟨g,ϕ⟩ = 0. The assumption that ϕ is a Hilbert
point in Lp(Ω;H) means that if f is in X, then ∥ϕ∥p ≤ ∥ϕ + f ∥p. This implies that

∥ϕ∥p = dist(ϕ,X) = inf
f ∈X
∥ϕ + f ∥p. (8)

It follows from (8) and the Hahn–Banach theorem that there exists a linear func-
tional Φ on Lp(Ω;H) such that Φ(ϕ) = 1, Φ(f ) = 0 for every f in X and ∥Φ∥ = ∥ϕ∥−1

p .
In particular, the norm of Φ is attained at ϕ. Now we bring into play the Riesz
representation theorem, which tells us that Φ(·) = ⟨·,ψ⟩ for some unique function ψ
in Lq(Ω;H) where p−1 + q−1 = 1. However, this means that

1
∥ϕ∥p

= ∥Φ∥ = ∥ψ∥q and 1 = Φ(ϕ) = ⟨ϕ,ψ⟩,

which shows that ⟨ϕ,ψ⟩ = ∥ϕ∥p∥ψ∥q. Since we have attained equality in Hölder’s
inequality and since ϕ does not vanish, we necessarily conclude that

ψ(ω) =
∥ϕ(ω)∥p−2

H

∥ϕ∥pp
ϕ(ω).
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In view of what we have just established, it follows that if g is in L∞(Ω;H), then

⟨g,ϕ⟩ = 0 =⇒ ⟨g,∥ϕ∥p−2
H ϕ⟩ = 0. (9)

Let F1 and F2 be sets of positive measure and define

g =
(∫

F1

∥ϕ∥H dµ
)−1

χF1

ϕ

∥ϕ∥H
−
(∫

F2

∥ϕ∥H dµ
)−1

χF2

ϕ

∥ϕ∥H
.

Here χF1
and χF2

are the characteristic (scalar) functions of F1 and F2, respectively.
Since ϕ does not vanish and since ϕ is in L1(Ω;H) by Hölder’s inequality, it is clear
that g is in L∞(Ω;H) and that ⟨g,ϕ⟩ = 0. It therefore follows from (9) that

⟨g,∥ϕ∥p−2
H ϕ⟩ = 0 =⇒

∫
F1
∥ϕ∥p−1

H dµ∫
F1
∥ϕ∥H dµ

=

∫
F2
∥ϕ∥p−1

H dµ∫
F2
∥ϕ∥H dµ

. (10)

There are now two cases. If p > 2, then it follows from (10) that

inf
ω∈F1
∥ϕ(ω)∥p−2

H ≤

∫
F1
∥ϕ∥p−1

H dµ∫
F1
∥ϕ∥H dµ

=

∫
F2
∥ϕ∥p−1

H dµ∫
F2
∥ϕ∥H dµ

≤ sup
ω∈F2

∥ϕ(ω)∥p−2
H . (11)

Since F1 and F2 are arbitrary sets of positive measure, we deduce from this that
∥ϕ(ω)∥p−2

H = C for almost every ω in Ω which means that (3) holds. The same
argument works for 1 ≤ p < 2, provided we first swap inf and sup in (11). □

As discussed in Brevig, Ortega-Cerdà, and Seip (2022), the term Hilbert point is
meant to indicate that we are dealing with points in a Banach space around which
the geometry of the Banach space behaves like a Hilbert space. In the present paper,
we restrict ourselves to mentioning the following immediate corollary of Theorem 1.

Corollary 1 – A nontrivial function ϕ is a Hilbert point in Lp(Ω;H) for some p , 2 if
and only if ϕ is in L2(Ω;H) and the orthogonal projection

Pϕf =
⟨f ,ϕ⟩
∥ϕ∥22

ϕ

extends to a norm 1 operator on Lp(Ω;H).

Proof. If ϕ is a Hilbert point in Lp(Ω;H), then it follows from Theorem 1 that ϕ
is in L2(Ω;H) and that ∥Pϕ∥Lp(Ω;H)→Lp(Ω;H) ≤ 1 by Hölder’s inequality. To see that
actually ∥Pϕ∥Lp(Ω;H)→Lp(Ω;H) = 1 it is sufficient to set f = ϕ.

Conversely, suppose that ϕ is in L2(Ω;H) and that the orthogonal projection Pϕ
extends to a norm 1 operator on Lp(Ω;H). It now follows at once that ϕ is a Hilbert
point since if ⟨f ,ϕ⟩ = 0, then ∥ϕ∥p = ∥Pϕ(ϕ + f )∥p ≤ ∥ϕ + f ∥p. □
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3. Proof of Theorem 2

3 Proof of Theorem 2

Let it be known that all norms and inner products in the present section will be
with respect to some fixed Hilbert space H . This is a notational departure from
what has been previously employed.

To warm up, we use Theorem 1 to check that the three cases (a), (b) and (c) of
Theorem 2 indeed describe Hilbert points ϕ.

Proof (Theorem 2: Sufficiency). We are going to use Theorem 1.

(a) If the sequence (xj )j≥1 is orthogonal and
∑
j≥1 ∥xj∥2 <∞, then

∥ϕ(ω)∥2 =
∞∑
j=1

∥xj∥2 = C

for every ω in Ω since | ± 1| = 1. Hence ϕ is a Hilbert point.

(b) If ϕ(ω) = ω1x1 +ω2x1, then ϕ(±1,±1) = ±2x1 and ϕ(±1,∓1) = 0. Since either
∥ϕ(ω)∥ = 0 or ∥ϕ(ω)∥ = 2∥x1∥ = C, we see that ϕ is a Hilbert point.

(c) Suppose that u and v are vectors of equal length with u⊥ v and set

ϕ(ω) = ω1u+ω2

(
1
2
u+

√
3

2
v
)

+ω3

(
1
2
u−
√

3
2

v
)
.

There are eight choices of ω. We first compute

ϕ(1,1,1) = 2u, ϕ(−1,1,1) = 0, ϕ(1,±1,∓1) = u±
√

3v.

The four remaining choices of ω produce the same vectors multiplied by −1.
For our purposes it is therefore sufficient to consider these four. Since u⊥ v
and ∥u∥ = ∥v∥ we get

∥u±
√

3v∥ =
√
∥u∥2 + 3∥v∥2 = 2∥u∥ = C,

and hence ϕ is a Hilbert point. □

The more difficult “necessity” part of the proof requires some preparation in the
form of a trio of lemmas on elementary Hilbert space geometry.

Lemma 1 – Suppose that u0,u1,u2 are nonzero vectors in H such that

∥u0∥ = ∥u0 +u1∥ = ∥u0 +u2∥.
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(a) If ∥u0 +u1 +u2∥ = 0, then

u1 = −1
2
u0 +

√
3

2
v and u2 = −1

2
u0 −

√
3

2
v,

where v is a vector which satisfies v⊥ u0 and ∥v∥ = ∥u0∥.

(b) If ∥u0 +u1 +u2∥ = ∥u0∥, then u1 ⊥ u2.

Proof. For (a) we see that ∥u0 + u1 + u2∥ = 0 implies that u1 = −(u0 + u2). Since
∥u0 +u2∥ = ∥u0 +u1∥ by assumption, we see that ∥u1∥ = ∥u0 +u1∥. Expanding, we
obtain

∥u1∥2 = ∥u0∥2 + 2⟨u0,u1⟩+ ∥u1∥2,

which means that u1 = −1
2u0 + ũ1 where ũ1 ⊥ u0. It follows that

u2 = −(u0 +u1) = −1
2
u0 − ũ1,

and since ∥u1∥ = ∥u0∥ we conclude that ∥ũ1∥ =
√

3
2 ∥u0∥. This implies the stated

result.
For (b) we compute

∥u0 +u1 +u2∥2 = ∥u0 +u1∥2 + 2⟨u0 +u1,u2⟩+ ∥u2∥2

= ∥u0 +u1∥2 + 2⟨u1,u2⟩+ ∥u0 +u2∥2 − ∥u0∥2.

Since ∥u0 +u1 +u2∥ = ∥u0 +u1∥ = ∥u0 +u2∥ = ∥u0∥, we see that ⟨u1,u2⟩ = 0. □

Lemma 2 – Suppose that u0,u1,u2,u3 are nonzero vectors in H such that

∥u0∥ = ∥u0 +u1∥ = ∥u0 +u2∥ = ∥u0 +u3∥

and that

∥u0 +u1 +u2∥, ∥u0 +u1 +u3∥, ∥u0 +u2 +u3∥ and ∥u0 +u1 +u2 +u3∥

are (independently) equal either to 0 or to ∥u0∥. Then

∥u0 +u1 +u2∥ = ∥u0 +u1 +u3∥ = ∥u0 +u2 +u3∥ = ∥u0 +u1 +u2 +u3∥ = ∥u0∥.

Proof. We begin by demonstrating that

∥u0 +u1 +u2 +u3∥ = 0 (12)

is impossible. If (12) holds, then u1 = −(u0 +u2 +u3). Hence ∥u1∥ = ∥u0 +u2 +u3∥
is equal to either 0 or ∥u0∥. By our assumption that u1 is nonzero it follows that
∥u1∥ = ∥u0∥. Combining this with the assumption that ∥u0 + u1∥ = ∥u0∥ as in the
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3. Proof of Theorem 2

proof of Lemma 1 (a), we conclude that u1 = −1
2u0 + ũ1 where ũ1 ⊥ u0. By symmetry,

the same holds also for u2 and u3. By orthogonality, we find that

∥u0 +u1 +u2 +u3∥ ≥
1
2
∥u0∥,

contradicting the assumption that u0 is nonzero in view of (12). Hence

∥u0 +u1 +u2 +u3∥ = ∥u0∥. (13)

By symmetry, it remains to show that

∥u0 +u1 +u2∥ = 0 (14)

is impossible. If (14) holds, then u1 = −(u0 +u2). As in the proof of Lemma 1 (a)

we get that u1 = −1
2u0 + ũ1 where ũ1 ⊥ u0 and ∥ũ1∥ =

√
3

2 ∥u0∥. By (14) we find that
u2 = −1

2u0− ũ1. By (13), we know that ∥u3∥ = ∥u0∥, which means that u3 = −1
2u0 + ũ3

where ũ3 ⊥ u0 and ∥ũ3∥ =
√

3
2 ∥u0∥. We now look at the final two expressions

∥u0 +u1 +u3∥ = ∥ũ1 + ũ3∥ and ∥u0 +u2 +u3∥ = ∥ − ũ1 + ũ3∥,

which are by assumption either equal to 0 or to ∥u0∥. There are two possible cases.

1. If (at least) one is equal to 0, say ∥ − ũ1 + ũ3∥ = 0, then ũ3 = ũ1 and hence

∥ũ1 + ũ3∥ = 2∥ũ1∥ =
√

3∥u0∥.

This contradicts the assumption that ∥ũ1 + ũ3∥ is equal to 0 or ∥u0∥, since u0
is nonzero by assumption. A similar contradiction is reached if we start by
assuming that ∥ũ1 + ũ3∥ = 0.

2. If both are equal to ∥u0∥, then

0 = ∥ũ1 + ũ3∥2 − ∥− ũ1 + ũ3∥2 = 4⟨ũ1, ũ3⟩.

This shows that ∥ũ1 + ũ3∥2 = 3
2∥u0∥2 which cannot be equal to ∥u0∥2 since u0

is nonzero by assumption.

We conclude that (14) is false and hence ∥u0 +u1 +u2∥ = ∥u0∥. □

For a sequence of vectors (uj )j≥1 in H and a subset J of N, let

u(J) =
∑
j∈J

uj ,

and let |J | denote the cardinality of J . We are now ready to establish the third and
final geometric lemma.
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Lemma 3 – Let u0 be a nonzero vector in H , and for an index set J with |J | ≥ 3 suppose
that (uj )j∈J is a sequence of nonzero vectors in H with

∥u0 +uj∥ = ∥u0∥

for all j in J . If ∥u0 +u(K)∥ is (independently) equal to either 0 or ∥u0∥ for every finite
subset K of J , then ∥u0 +u(K)∥ = ∥u0∥ for every finite subset K of J .

Proof. The proof is based on Lemma 2 and induction. If |K | = 0 or |K | = 1, then
there is nothing to prove. If |K | = 2 or |K | = 3, then the result follows directly from
Lemma 2. Suppose therefore that |K | ≥ 4. Without loss of generality, we may assume
that {1,2,3} ⊂ K and write

u(K) = u1 +u2 +u3 +u(K̃),

where K̃ = K \ {1,2,3}. By the induction hypothesis,

∥u0 +u(K̃)∥ = ∥u0 +u(K̃) +u1∥ = ∥u0 +u(K̃) +u2∥ = ∥u0 +u(K̃) +u3∥ = ∥u0∥.

By Lemma 2 (with u0 replaced by u0 +u(K̃)), we find that ∥u0 +u(K)∥ = ∥u0∥. □

Proof (Theorem 2: Necessity). Suppose that ϕ is a Hilbert point in Lp(Ω;H) of the
form

ϕ(ω) =
∞∑
j=1

ωjxj .

Since ϕ is in Lp(Ω;H) by assumption, we can combine (5) with Khintchine’s inequal-
ity (see e.g. Corollary 3.2.24 in Hytönen et al. (2016)) for 1 ≤ p < 2 or with Hölder’s
inequality for 2 < p ≤∞, to conclude that

∞∑
j=1

∥xj∥2 <∞.

It now follows from Theorem 3.2 in Kahane (1985) that the series ϕ(ω) converges in
H for almost every ω in Ω. We may replace xj by −xj without affecting whether ϕ
is a Hilbert point, which allows us to assume without loss of generality that

ϕ(1) =
∞∑
j=1

xj

converges in H . If ϕ is not identically equal to 0, we may also assume that ϕ(1) , 0.
Let us for simplicity set u0 = ϕ(1).

If we start from ω = 1 and change the sign of ωj for a finite set of indices, then
the series for ϕ(ω) will remain convergent in H . Specifically, changing the sign of
one ωj we obtain the vectors

ϕ(ω) = u0 − 2xj (15)
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3. Proof of Theorem 2

for j = 1,2,3, . . .. Since ϕ is a Hilbert point by assumption, we know from Theorem 1
that the norms of each of the vectors in (15) are equal to either 0 or to ∥u0∥. Let J
denote the index set of those vectors in (xj )j≥1 which are nonzero and which satisfy
∥u0 − 2xj∥ = ∥u0∥. There are four cases to be considered.

1. If |J | = 0, then any nonzero vector xj satisfies ∥u0 − 2xj∥ = 0, and thus xj = 1
2u0.

Since
∑
j≥1 xj = u0, it follows that xj = 0 for all but two indices, and we are in

case (b) of Theorem 2.

2. If |J | = 1, then we can without loss of generality assume that J = {1}. For all
j ≥ 2 we therefore have either xj = 0 or ∥u0 − 2xj∥ = 0. In the latter case it
follows that xj = 1

2u0. Hence

u0 − x1 =
∞∑
j=2

xj = cu0,

where c = k/2 for a nonnegative integer k. This is only possible if xj = 0 for
all but finitely many j. We get x1 = (1− c)u0, and since ∥u0 −2x1∥ = ∥u0∥ and
x1 , 0, it follows that c = 0. This means that we are in case (a) of Theorem 2
with only one nonzero vector in the sequence.

3. In the case |J | = 2, we use Lemma 1. We assume without loss of generality that
J = {1,2}, and consider two subcases.

First, if

∥u0 − 2(x1 + x2)∥ = ∥u0∥,

then by Lemma 1 (b) we conclude that x1 ⊥ x2. Suppose for the purposes of
contradiction that there is some xk with k ≥ 3 such that ∥u0 − 2xk∥ = 0 and
xk = 1

2u0. Choosing ωj = −1 for j = 1, k and ωj = 1 for every other j, we get

ϕ(ω) = u0 − 2(x1 + xk) = −2x1.

Since ϕ is a Hilbert point and x1 , 0, we must have ∥x1∥ = 1
2∥u0∥. The same

argument shows that ∥x2∥ = 1
2∥u0∥. Choosing ωj = −1 for j = 1,2, k and ωj = 1

for every other j, the assumption that ϕ is a Hilbert point implies that ∥x1 +x2∥
is equal to either 0 or 1

2∥u0∥. Since x1 ⊥ x2, we get that

∥x1 + x2∥ =

√
2

2
∥u0∥,

which is a contradiction. Hence xj = 0 for every j ≥ 3, and we are in case (a) of
Theorem 2 with only two nonzero vectors in the sequence.
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Second, if

∥u0 − 2(x1 + x2)∥ = 0,

then Lemma 1 (a) shows that

x1 =
1
4
u0 +

√
3

4
v and x2 =

1
4
u0 −

√
3

4
v

where v⊥ u0 and ∥v∥ = ∥u0∥. For j ≥ 3 we have either xj = 0 or ∥u0 − 2xj∥ = 0
and xj = 1

2u0. Since

u0 − x1 − x2 =
∞∑
j=2

xj =
1
2
u0,

we see that there is a single index j ≥ 3 such that xj = 1
2u0 and xj = 0 for every

other j ≥ 3, and we are in case (c) of Theorem 2.

4. In the case |J | ≥ 3 we rely on Lemma 3, which says that∥∥∥∥∥u0 − 2
∑
j∈K

xj

∥∥∥∥∥ = ∥u0∥,

for any finite subset K of J . Using Lemma 1 (b) iteratively, we find that (xj )j∈J
is an orthogonal sequence. It remains to show that there are no other nonzero
vectors in (xj )j≥1. Arguing as in the first subcase of the previous case, we
conclude that xj = 0 for every j which is not in J . Thus we are in case (a) of
Theorem 2 with |J | nonzero vectors. □
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