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Arithmetic quotients of the complex ball

and a conjecture of Lang

Mladen Dimitrov, Dinakar Ramakrishnan

Abstract. We prove that various arithmetic quotients of the
unit ball in Cn are Mordellic, in the sense that they have only
finitely many rational points over any finitely generated field
extension of Q. In the previously known case of compact hy-
perbolic complex surfaces, we give a new proof using their Al-
banese in conjunction with some key results of Faltings, but
without appealing to the Shafarevich conjecture. In higher di-
mension, our methods allow us to solve an alternative of Ullmo
and Yafaev. Our strongest result appeals to Rogawski’s theory
and establishes the Mordellicity of the Baily-Borel compactifi-
cations of Picard modular surfaces of some precise levels related
to the discriminant of the imaginary quadratic fields.
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Introduction

Let F be a totally real number field of degree d and ring of integers o,
and let M be a totally imaginary quadratic extension of F with ring of
integers O. Let G be a unitary group over F defined by a hermitian
form on Mn+1 of signature (n, 1) at one infinite place ι and (n + 1, 0)
or (0, n + 1) at the others. A subgroup Γ ⊂ G(F ) is arithmetic if it is
commensurable with G(o) – the stabilizer in G(F ) of On+1 – and we
will denote by YΓ the quotient of the n-dimensional complex hyperbolic
space by the natural action of ι(Γ) ⊂ G(Fι) = U(n, 1). If F 6= Q, then
the hermitian form is anisotropic and YΓ is a projective variety defined
over a number field (see Proposition 1.2).
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A projective variety X over C is said to be Mordellic if it has only
a finite number of rational points in every finitely generated field ex-
tension of Q over which X is defined. Lang conjectured in [L, Con-
jecture VIII.1.2] that X is Mordellic if and only if the corresponding
analytic space X(C) is hyperbolic, meaning that any holomorphic map
C→ X(C) is constant, which by Brody [B] is equivalent to requiring the
Kobayashi semi-distance on X(C) to be a metric. It is a consequence
of a conjecture of Ullmo (see [U, Conjecture 2.1]) that a projective va-
riety X defined over a number field k is Mordellic if it is arithmetically
Mordellic, meaning that it has only a finite number of rational points in
every finite extension of k.
Our first result establishes that many arithmetic compact surfaces pre-
viously only known to be arithmetically Mordellic by [U, Théorème 3.2]
are in fact Mordellic. To state it precisely we need to fix a Hecke char-
acter λ of M as in Definition 3.1. The existence of such characters is
known (see Lemma 3.5). Denote by C the conductor of λ and, if the
extension M/F is everywhere unramified, we multiply C by any prime q
of F which does not split in M . Moreover, fix an auxiliary prime p of F
which splits in M and is relatively prime to C. Finally, for every ideal
N ⊂ O we consider the standard congruence subgroups Γ0(N), Γ1(N)
and Γ(N) of G(F ) (see Definition 1.3).

Theorem 0.1. Let n = 2 and G over F as above. Then for every choice
of (C, p), and for any torsion free subgroup Γ ⊂ Γ1(C) ∩ Γ0(p) of finite
index, YΓ is Mordellic.

A consequence of this is that for any arithmetic subgroup Γ ⊂ G(F )
there exists a finite explicit cover of YΓ which is Mordellic. Note also that
even though the theorem only concerns arithmetic subgroups, because
F and M can vary, it can be applied to infinitely many pairwise non-
commensurable cocompact discrete subgroups in U(2, 1). In order to
apply our method to the analogous case of a unitary group G′′ defined by
a division algebra of dimension 9 over M with an involution of the second
kind, one would need to find a (cocompact) arithmetic subgroup Γ ⊂
G′′(F ) such that the Albanese of YΓ is non-zero. This is an open question
for any G′′ since, in contrast to our case, it is known by Rogawski [R1]
that the Albanese of YΓ is zero for any congruence subgroup Γ ⊂ G′′(F ).
While Ullmo’s approach uses the Shafarevich conjecture, ours is based
instead on the Mordell-Lang conjecture proved by Faltings [F2] and on
the key Proposition 3.6, which we hope is of independent interest.
Consider now the case when the hermitian form is isotropic, which nec-
essarily implies that F = Q and M is imaginary quadratic. Then YΓ

is not compact and, for Γ arithmetic, we denote by Y ∗Γ the Baily-Borel
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compactification which is a normal, projective variety of dimension n. A
smooth toroidal compactification XΓ of YΓ can be defined over a num-
ber field (see [F3]), and it is not hyperbolic even if Γ is torsion-free; for
example, if n = 2, then XΓ is a union of YΓ with a finite number of
elliptic curves – one above each cusp of Y ∗Γ . However, by a result of Tai
and Mumford [Mu, §4], XΓ is of general type for Γ sufficiently small.
The Bombieri-Lang conjecture asserts then that the points of XΓ over
any finitely generated field extension of Q over which XΓ is defined are
not Zariski dense. We prove this in Proposition 4.3 which allows us to
solve an alternative of Ullmo and Yafaev [UY] regarding the Lang locus
of Y ∗Γ .

Theorem 0.2. For all Γ ⊂ G(Q) arithmetic and sufficiently small, Y ∗Γ is
arithmetically Mordellic.

Keeping the assumption that M is imaginary quadratic, say of funda-
mental discriminant −D, let us now suppose in addition that n = 2.
The corresponding locally symmetric spaces YΓ are called Picard mod-
ular surfaces. We state here our main theorem.

Theorem 0.3. Let D =


3O , if D = 3,√
−DO , if D 6= 3 is odd,

2
√
−DO , if 8 divides D,√
−DP2 , otherwise, where P2

2 = 2O.

(i) Let Γ =


Γ(D2) , if D ∈ {3, 4, 7, 11, 19, 43, 67, 163},
Γ(D) , if D ∈ {8, 15, 20, 23, 24, 31, 39, 47, 71},
Γ1(D) , otherwise.

Then Y ∗Γ is Mordellic, while XΓ is a minimal surface of general
type.

(ii) Let N > 2 be a prime inert in M and not equal to 3 when D = 4.
Then Y ∗Γ(N)∩Γ1(D) is Mordellic, while XΓ(N)∩Γ1(D) is a minimal
surface of general type.

The fact that one can take Γ(D) instead of Γ(D2) when D ∈
{15, 20, 23, 24, 31, 39, 47, 71} in Theorem 0.3(i) depend on a preprint of
Džambić [D] which is being considered for publication elsewhere (see the
proof for details).
At the heart of our proof stand some arithmetical computations using
certain key theorems of Rogawski [R1, R2]. They yield, for each imag-
inary quadratic field M , an explicit congruence subgroup Γ such that
the smooth compactification XΓ does not admit a dominant map to
its Albanese variety. A geometric ingredient of the proof is a result of
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Holzapfel et al that XΓ is of general type, though not hyperbolic, im-
plying by a theorem of Nadel [N] that any curve of genus ≤ 1 on it is
contained in the compactifying divisor.
If there is anything new in our approach, it lies in the systematic use
of the modern theory of automorphic representations in Diophantine
geometry.
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1. Basics: lattices, general type and neatness

For any integer n > 1, let HnC be the n-dimensional complex hyperbolic
space, represented by the unit ball in Cn equipped with the Bergman
metric of constant holomorphic sectional curvature −4/(n+1), on which
the real Lie group U(n, 1) acts in a natural way.
Given a lattice Γ ⊂ U(n, 1) we denote by Γ̄ = Γ/Γ ∩ U(1) its image
in the adjoint group PU(n, 1) = U(n, 1)/U(1), where U(1) is centrally
embedded in U(n, 1). Conversely any lattice Γ̄ ⊂ PU(n, 1) = PSU(n, 1)
is the image of a lattice in U(n, 1), namely the lattice U(1)Γ̄∩ SU(n, 1).
We consider the quotient YΓ = YΓ̄ = Γ̄\HnC.

Lemma 1.1. Let Γ be a lattice in U(n, 1).
(i) The analytic variety YΓ is an orbifold and one has the following

implications:

Γ neat⇒ Γ torsion-free⇒ Γ̄ torsion-free⇒ YΓ hyperbolic manifold.

(ii) Assume that Γ̄ is torsion-free. Then the natural projection HnC →
YΓ is an etale covering with deck transformation group Γ̄.

Proof. The stabilizer in U(n, 1) of any point of HnC is a compact group,
hence its intersection with the discrete subgroup Γ is finite, showing that
YΓ is an orbifold.
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Recall that Γ is neat if the subgroup of C× generated by the eigenval-
ues of any γ ∈ Γ is torsion-free. In particular Γ is torsion-free. Since
Γ∩U(1) is finite, this implies that Γ̄ is torsion-free too. Under the latter
assumption, Γ ∩ U(1) acts trivially on HnC, and Γ̄ acts freely and prop-
erly discontinuously on it, hence YΓ is a manifold. Since HnC is simply
connected, it is a universal covering space of YΓ with group Γ̄. Hence
any holomorphic map from C to YΓ lifts to a holomorphic map from
C to HnC which must be constant because HnC has negative curvature.
Thus YΓ is hyperbolic. �

Deligne’s classification [De] of Shimura varieties implies, when Γ is a
congruence subgroup, that YΓ admits an embedding in a Shimura vari-
ety. Hence, by Shimura’s theory of canonical models, YΓ can be defined
over a finite abelian extension of the reflex field M .
We claim that this is also true for Γ arithmetic, when sufficiently small.
Indeed any such YΓ is a finite unramified cover of a congruence quotient
YΓ′ which we have seen is defined over a number field. By Grothendieck,
the finite index subgroup Γ̄ of the topological fundamental group Γ̄′ of
YΓ′(C) gives rise to a finite index subgroup of the algebraic fundamental
group of YΓ′ , yielding a finite algebraic (etale) map from a model of YΓ

to YΓ′ .
In the cocompact case, this remains true even when Γ is not arithmetic.

Proposition 1.2. Assume that Γ̄ is cocompact and torsion-free. Then
the projective variety YΓ̄ is of general type and can be defined over a
number field.

Proof. The existence of the positive Bergman metric on HnC implies by
the Kodaira embedding theorem that any quotient by a free action such
as YΓ̄ has ample canonical bundle, which results in YΓ̄ being of general
type; it even implies that any subvariety of YΓ̄ is of general type. For
surfaces one may alternately use the hyperbolicity of YΓ̄ to rule out
all the cases in the Enriques-Kodaira classification where the Kodaira
dimension is less than 2, thus showing that YΓ̄ is of general type.
Calabi and Vesentini [CV] have proved that YΓ̄ is locally rigid, hence by
Shimura [S1] it can be defined over a number field.
In order to highlight the importance of rigidity of compact ball quotients,
we provide a short second proof when n = 2 and Γ is arithmetic, based
on Yau’s algebro-geometric characterization of compact Kähler surfaces
covered by H2

C. Since YΓ̄ has an ample canonical bundle it can be em-
bedded in some projective space, hence is algebraic over C by Chow.
Since YΓ̄ is uniformized by H2

C, the Chern numbers c1, c2 of its complex
tangent bundle satisfy the relation c2

1 = 3c2. Since everything can be
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defined algebraically, for any automorphism σ of C, the variety Y σ
Γ̄

also
has ample canonical bundle and cσ2

1 = 3cσ2 . By a famous result of Yau
[Y, Theorem 4], this is equivalent to the fact that Y σ

Γ̄
may be realized

as Γ̄σ\H2
C for some cocompact torsion-free lattice Γ̄σ.

Since Γ̄ is arithmetic, it has infinite index in its commensurator in
PU(2, 1), denoted by Comm(Γ̄). For every element g ∈ Comm(Γ̄) there
is a Hecke correspondence

(1) YΓ̄ ← YΓ̄∩g−1Γ̄g
∼−→
g·

YgΓ̄g−1∩Γ̄ → YΓ̄

and the correspondences for g and g′ differ by an isomorphism
YgΓ̄g−1∩Γ̄

∼−→ Yg′Γ̄g′−1∩Γ̄ over YΓ̄ if and only if g′ ∈ Γ̄g. By Chow (1) is
defined algebraically, hence yields a correspondence on Y σ

Γ̄
= YΓ̄σ :

YΓ̄σ ← YΓ̄1

∼−→ YΓ̄2
→ YΓ̄σ ,

for some finite index subgroups Γ̄1 and Γ̄2 of Γ̄σ. By the universal
property of the covering space H2

C, the middle isomorphism is given by
an element of gσ ∈ PU(2, 1) ' Aut(H2

C). Since Aut(H2
C/YΓ̄i

) = Γ̄i
(i = 1, 2), it easily follows that Γ̄2 = gσΓ̄1g

−1
σ , and by applying σ−1

one sees that Γ̄1 = Γ̄σ ∩ g−1
σ Γ̄σgσ. It follows that gσ ∈ CommG(Γσ)

and one can check that g′σ ∈ Γ̄σgσ if and only if g′ ∈ Γ̄g. Therefore
Comm(Γ̄σ)/Γ̄σ ' Comm(Γ̄)/Γ̄ is infinite too, which by a major theorem
of Margulis implies that Γ̄σ is arithmetic, providing an alternative proof
of a result of Kazhdan.
Thus Aut(C) acts on the set of isomorphism classes of cocompact arith-
metic quotients YΓ̄, or equivalently, on the set of equivalence classes of
cocompact arithmetic subgroups Γ̄ (up to conjugation by an element
of PU(2, 1)). The latter set is countable for the following reason. The
group U(2, 1) has only countably many Q-forms, classified by central
simple algebras of dimension 9 over M , endowed with an involution of a
second kind and verifying some conditions at infinity (see [PR, pp. 87-
88]). Moreover, there are only countably many arithmetic subgroups for
a given Q-form, since those are all finitely generated and contained in
their common commensurator, which is countable.
Finally, by [G, Corollary 2.13], the fact that YΓ̄ has a countable orbit
under the action of Aut(C) is equivalent to YΓ̄ being defined over a
number field. �

It is a well known fact that any orbifold admits a finite cover which is
a manifold. In view of Lemma 1.1, the two lemmas below provide such
covers explicitly for arithmetic quotients.
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Definition 1.3. For every ideal N ⊂ O we define the congruence sub-
group Γ(N) (resp. Γ0(N), resp. Γ1(N)) as the kernel (resp. the inverse
image of upper triangular, resp. upper unipotent, matrices) of the com-
posite homomorphism:

G(o) ↪→ GL(n+ 1,O)→ GL(n+ 1,O/N).

The following lemma is well-known (see [H1, Lemma 4.3]).

Lemma 1.4. For any integer N > 2 the group Γ(N) is neat.

Lemma 1.5. Suppose that n = 2 and that M is an imaginary quadratic
field of fundamental discriminant −D /∈ {−3,−4,−7,−8,−24}. Then
Γ1(
√
−DO) is neat.

Proof. Suppose that the subgroup of C× generated by the eigenvalues
of some γ ∈ Γ1(

√
−DO) contains a non-trivial root of unity. Note first

that det(γ) ∈ O× ∩ (1 +
√
−DO) = {1}.

If γ is elliptic then it is necessarily of finite order. Otherwise γ fixes a
boundary point of H2

C ⊂ P2(C) and is therefore conjugated in GL(3,C)

to a matrix of the form
( ᾱ ∗ ∗

0 β ∗
0 0 α−1

)
, where β is necessarily a root of unity.

If β = 1, then det(γ) = 1 implies that α ∈ R, leading to α = −1. Hence,
in all cases, one may assume γ has a non-trivial root of unity ζ as an
eigenvalue.
By the Cayley-Hamilton theorem we have [M(ζ) : M ] ≤ 3 and since
D 6= 7 we may assume (after possibly raising γ to some power) that ζ
has order 2 or 3. By the congruence condition, each prime p dividing D
has to divide also the norm of ζ − 1, hence D can be divisible only by
the primes 2 or 3. Thus D ∈ {3, 4, 8, 24}, leading to a contradiction. �

2. Irregularity of arithmetic varieties

Let z 7→ z̄ be the non-trivial automorphism of M/F and let ω be the
quadratic character of M/F , viewed as a Hecke character of F . Put
M1 = {z ∈M× | zz̄ = 1}, which we will view as an algebraic torus over
F and denote by A1

M its AF -points.
We denote by q(X) the irregularity of X, given by the dimension of
H0(X,Ω1

X).

2.1. Automorphic forms contributing to the irregularity. Fix a
maximal compact subgroup K∞ ' (U(n) × U(1)) × U(n + 1)d−1 of the
real linear Lie group G∞ = G(F ⊗Q R) ' U(n, 1) × U(n + 1)d−1. Let
Γ ⊂ G(F ) be a lattice such that Γ̄ is torsion free.
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Since YΓ is the Eilenberg-MacLane space of Γ, there is a decomposition:

(2) H1(YΓ,C) ' H1(Γ̄,C) '
⊕
π∞

H1(Lie(G∞),K∞;π∞)⊕m(π∞,Γ),

where π∞ runs over irreducible unitary representations of G∞ occurring
in the discrete spectrum of L2(Γ\G∞) with multiplicity m(π∞,Γ), and
H∗(Lie(G∞),K∞;π∞) is the relative Lie algebra cohomology. When Γ
is cocompact, the entire L2-spectrum is discrete and this decomposition
follows from [BW, XIII]. When Γ is non-cocompact, one gets by [BC,
§4.4-4.5] such a decomposition, but only for the L2-cohomology of YΓ.
However, one knows (see [MR, §1]) that H1(YΓ,C) is isomorphic to the
middle intersection cohomology (in degree 1) of Y ∗Γ , which is in turn
isomorphic to the L2-cohomology (in degree 1) of YΓ.
By [BW, VI.4.11] there are exactly two irreducible non-tempered unitary
representations of SU(n, 1) with trivial central character, denoted J1,0

and J0,1, each of whose relative Lie algebra cohomology in degree 1 does
not vanish and is in fact one dimensional. Since U(n, 1) is the product
of its center with SU(n, 1), J1,0 and J0,1 can be uniquely extended to
representations π+ and π−, say, of U(n, 1) with trivial central characters
(when n = 2 those are the representations J± from [R1, p.178]). It
follows that at the distinguished Archimedean place ι, where G(Fι) =
U(n, 1), we have

H1(Lie(U(n, 1)),U(n)×U(1);πι) =

{
C , if πι = π±,

0 , otherwise.

Moreover the only irreducible unitary representation with non-zero rel-
ative Lie algebra cohomology in degree 0 is the trivial representation 1,
which does not contribute in degree 1; in particular π± 6= 1. This allows
us to deduce from (2) the following formula

(3) dimC H1(YΓ,C) = m(π+ ⊗ 1
⊗d−1,Γ) +m(π− ⊗ 1

⊗d−1,Γ),

where π± are viewed as representations of G(Fι) = U(n, 1) and 1
⊗d−1

denotes the trivial representation of U(n+ 1)d−1.
By [MR, §1], H1(YΓ,C) is isomorphic to H1(XΓ,C), hence admits a pure
Hodge structure of weight 1 and its dimension is given by 2q(XΓ). In
particular, the natural map H0(XΓ,Ω1

XΓ
) → H0(YΓ,Ω1

YΓ
) is an isomor-

phism, i.e.,

(4) q(YΓ) = q(XΓ).

It is known that π+ ⊗ 1
⊗d−1 (resp. π− ⊗ 1

⊗d−1) contributes to
H0(YΓ,Ω1

YΓ
) (resp. H1(YΓ,Ω0

YΓ
)). Since the latter two groups have the
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same dimension, it follows from (3) that

(5) q(YΓ) = m(π+ ⊗ 1
⊗d−1,Γ) = m(π− ⊗ 1

⊗d−1,Γ).

We will now focus on the case when Γ is a congruence subgroup and
switch to the adelic setting which is better suited for computing the
irregularity. For any open compact subgroup K of G(AF,f ), where AF,f

denotes the ring of finite adeles of F , we consider the adelic quotient

(6) YK = G(F )\G(AF )/KK∞.

Let G1 = ker(det : G → M1) be the derived group of G. Since G1 is
simply connected and G1

∞ is non-compact, G1(F ) is dense in G1(AF,f )
by strong approximation (see [PR, Theorem 7.12]). It follows that the
group of connected components of YK is isomorphic to the idele class
group:

(7) π0(YK) ' A1
M/M

1 det(K)M1
∞.

To describe each connected component of YK , choose ti ∈ G(AF,f ), 1 ≤
i ≤ h, such that (det(ti))1≤i≤h forms a complete set of representatives
of A1

M/M
1 det(K)M1

∞, and let Γi = G(F ) ∩ tiKt−1
i G∞. Then

(8) G(F )\G(AF )/K =
h∐
i=1

Γi\G∞ and YK =
h∐
i=1

YΓi .

Therefore (2) and (5) can be rewritten as:

(9) H1(YK ,C) '
⊕

π=π∞⊗πf

(
H1(Lie(G∞),K∞;π∞)⊗ πKf

)⊕m(π)
and

(10)
q(YK) =

∑
π=π∞⊗πf

π∞=πι⊗1⊗d−1,πι'π+

m(π) dim(πKf ) =
∑

π=π∞⊗πf
π∞=πι⊗1⊗d−1,πι'π−

m(π) dim(πKf ),

where π runs over all automorphic representation of G(AF ) occurring
discretely, with multiplicity m(π), in L2(G(F )\G(AF )).

2.2. Irregularity growth. Non-vanishing of q(YΓ) for sufficiently
small congruence subgroups is known by a theorem of Shimura [S2,
Theorem 8.1], extending earlier works of Kazhdan and Borel-Wallach
[BW, VIII]. Our Diophantine results require however the stronger as-
sumption that q(YΓ) > n, which we establish as a corollary of the next
proposition.
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Proposition 2.1. For every open compact subgroup K ⊂ G(AF,f ) such
that q(YK) 6= 0 there exist infinitely many primes p of F for which one
can find an explicit finite index subgroup K ′ ⊂ K differing form K only
at p, such that π0(YK′) = π0(YK) and q(YK′) > q(YK).

Proof. Since q(YK) 6= 0 by assumption, formula (10) implies that there
exists an automorphic representation π with π∞ = πι⊗1⊗d−1, πι ' π+,
such that m(π) 6= 0 and πKf 6= 0.
Let p be a prime of F which splits in M , so that G(Fp) = GL(n +
1, Fp). Assume that K = K0

p × K(p) where K0
p = GL(n + 1, op) is

the standard maximal compact subgroup of G(Fp) and K(p) is the part
of K away from p. In particular πp is unramified. Moreover πp is a
unitary representation, since it is a local component of an automorphic
representation. By the main result of [T], πp is then the full induced
representation of GL(n + 1, Fp) from an unramified character µ of a
parabolic subgroup P (Fp).
We claim that, in our case, P is a proper parabolic subgroup. Otherwise
πp will be one dimensional, hence G1(Fp) will act trivially. Since by
strong approximation G1(F )G1(Fp) is dense in G1(AF ), the latter will
act trivially on any smooth vector in π, contradicting the fact that πι 6'
1.
Let Fq = o/p be the residue field of Fp and denote by P (Fq) the
corresponding parabolic subgroup of G(Fq). Let K0,P (p) is the in-
verse image of P (Fq) under the reduction modulo p homomorphism
GL(n+ 1, op)→ GL(n+ 1,Fq).
Consider K ′ = K0,P (p)K(p). Since det(K ′) = det(K), (7) implies that
π0(YK′) = π0(YK). Moreover, formula (10) implies that

q(YK′) ≥ q(YK)+dim(πK0,P (p)
p )−dim(π

K0
p

p ) = q(YK)+dim(πK0,P (p)
p )−1,

hence it suffices to show that the K0,P (p)-invariants in πp form at least
a 2-dimensional space. We claim that we even have

(11) dim(πK0,P (p)
p ) ≥ n+ 1.

Indeed, since µ is unramified, its restriction to P ∩K0
p is trivial. There-

fore by the Iwasawa decomposition G(Fp) = P (Fp) ·K0
p the restriction

of πp to K0
p is isomorphic to Ind

K0
p

P (Fp)∩K0
p
(1).

The subspace of K0,P (p)-invariant vectors in Ind
K0

p

P (Fp)∩K0
p
(1) identifies

naturally with the space of C-valued functions on the set:(
P (Fp) ∩K0

p

)
\K0

p/K0,P (p) ' P (Fq)\G(Fq)/P (Fq).
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and the number of such double cosets is the number of double cosets of
the Weyl group of G relative to the subgroup attached to P . We may
assume, for getting a lower bound, that P is maximal (and proper). The
smallest number appears for P of type (n, 1) and it is n+ 1. The claim
follows. �

Corollary 2.2. For every arithmetic subgroup Γ ⊂ G(F ) there exists
an explicit subgroup Γ′ of finite index in Γ such that q(YΓ′) > q(YΓ).

Proof. By [S2, Theorem 8.1] there exists an open compact subgroup K of
G(AF,f ) such that q(YK) 6= 0 (one might take the principal congruence
subgroup of level 2N , which is included in the index 4 subgroup of
the principal congruence subgroup of level N considered by Shimura).
Denote by h the cardinality of π0(YK). Applying recursively Proposition
2.1 yields a finite index subgroup K ′ ⊂ K, such that π0(YK′) = π0(YK)
and

q(YK′) > h · q(YΓ).

Write YK′ =
∐h
i=1 YΓ′i

as in (8), and let Γ′ = ∩hi=1Γ′i. Since the irregu-
larity cannot decrease by going to a finite cover, one has:

q(YΓ′∩Γ) ≥ q(YΓ′) ≥ max
1≤i≤h

q(YΓ′i
) ≥ 1

h

h∑
i=1

q(YΓ′i
) =

1
h
q(YK′) > q(YΓ).

�

One can simplify the final step of the proof above and use any Γ′i instead
of ∩hi=1Γ′i, since Shimura’s theory of canonical models implies that the
connected components of YK′ are all Galois conjugates, hence share the
same irregularity.

3. Irregularity of arithmetic surfaces

The positivity of q(YΓ) is an essential ingredient in the proof of our
Diophantine results.
The starting point for the arithmetic application of this paper was our
knowledge that Rogawski’s classification [R1, R2] of cohomological au-
tomorphic forms on G, combined with some local representation theory,
would allow us to compute q(YΓ) precisely and show that it does not van-
ish for some explicit congruence subgroups Γ. Marshall [Ma] gives sharp
asymptotic bounds for q(YΓ) when Γ shrinks, also by using Rogawski’s
theory.
In this section we assume that n = 2.
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3.1. Rogawski’s theory. Rogawski [R1, R2] gives an explicit descrip-
tion, in terms of global Arthur packets, of the automorphic representa-
tions π of G(AF ) occurring in (10), which we will now present.
Let T denote the maximal torus of the standard upper-triangular Borel
subgroup B of G.
Let G′ denote the quasi-split unitary group associated to M/F , so that
G is an inner form of G′. Note that Gv ' G′v for any finite place v and
that G ' G′ only for d = 1.
Let λ be a unitary Hecke character of M whose restriction to F is ω,
and let ν be a unitary character of A1

M/M
1.

At a place v of F which does not split in M , which includes any
Archimedean v, the local Arthur packet Π′(λv, νv) consists of a square-
integrable representation πs(λv, νv) and a non-tempered representation
πn(λv, νv) of G′(Fv). These constituents of the packet can be described
(see [R1, §12.2]) as the unique subrepresentation and the corresponding
(Langlands) quotient representation of the induction of the character of
B(Fv) which is trivial on the unipotent subgroup and given on T (Fv)
by:

(12) (ᾱ, β, α−1) 7→ λv(ᾱ)|α|3/2Mv
νv(β), where α ∈M×v , β ∈M1

v .

If one considers unitary induction, then one has to divide the above
character by the square root of the modular character of B(Fv), that is
to say by (ᾱ, β, α−1) 7→ |α|Mv .
At any finite place v of F which splits in M , Gv ' G′v also splits and
is isomorphic to GL(3, Fv). The local Arthur packet Π′(λv, νv) has a
unique element πn(λv, νv) which is induced from the character: h2

∗
∗

0 0 h1

 7→ λv(det(h2))|det(h2)|3/2v νv(h1)

of the maximal parabolic of type (2, 1) in GL(3, Fv) (see [R2, §1]).
For almost all v, πn(λv, νv) is necessarily unramified. We set

Π′(λ, ν) =
{
⊗vπv|πv ∈ Π′(λv, νv) for all v , and πv ' πn(λv, νv) for almost all v

}
.

Recall that a CM type Φ on M is the choice, for each Archimedean place
v of F , of an isomorphism M ⊗F,v R ' C.

Definition 3.1. Let Ξ denote the set of pairs (λ, ν) where λ is a unitary
Hecke character of M whose restriction to F is ω, and ν is a unitary
character of A1

M/M
1, such that

(13) λ∞(z) =
∏
v∈Φ

z̄v
|zv|

, for all z ∈M∞ and
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ν∞(z) =
∏
v∈Φ

zv , for all z ∈M1
∞,

for some CM type Φ on M .

Theorem 3.2 (Rogawski [R1, R2]). (i) For every (λ, ν) ∈ Ξ,
Π′(λ, ν) is a global Arthur packet for G′ such that for all
infinite v, πn(λv, νv) = π+ or π−.

(ii) Π′(λ, ν) can be transferred to an Arthur packet Π(λ, ν) on G such
that Π(λv, νv) = {1} at all the Archimedean places v 6= ι, and
Π(λv, νv) = Π′(λv, νv) at the remaining places.

(iii) Denote by W (λνM ) ∈ {±1} the root number of Hecke character
λνM , where νM (z) = ν(z̄/z) for z ∈ A×M , and by s(π) the number
of finite places v such that πv ' πs(λv, νv). Then

π ∈ Π(λ, ν) is automorphic if and only if W (λνM ) = (−1)d−1+s(π).

Moreover, in this case the global multiplicity m(π) is 1.
(iv) Any automorphic representation π of G(AF ) such that πι ' π±

and πv = 1 at all the Archimedean places v 6= ι, belongs to
Π(λ, ν) for some (λ, ν) ∈ Ξ.

Proof. Let H = U(2) × U(1) be the unique elliptic endoscopic group,
shared by G′ and all its inner forms over F . The embedding of L-groups
LH ↪→ LG = LG′ depends on the choice of a Hecke character µ of M ,
whose restriction to F is ω, and allows one to transfer discrete L-packets
on H to automorphic L-packets on G (see [R2, §13.3]). The character
µ being fixed, any pair of characters (λ, ν) ∈ Ξ uniquely determines a
(one-dimensional) character of H, whose endoscopic transfer is Π′(λ, ν)
(see [R2, §1]).
Denote by WF (resp. WM ) the global Weil group of F (resp. M). By
loc.cit., the restriction to WM of the global Arthur parameter

WF × SL(2,C)→ LG = GL(3,C) o Gal(M/F )

of Π′(λ, ν) is given by the 3-dimensional representation (λ⊗St)⊕(νM⊗1),
where St (resp. 1) is the standard 2-dimensional (resp. trivial) represen-
tation of SL(2,C). By [La, p.62] the restrictions to C× of the Langlands

parameters of π+ and π− are given by z 7→
(
z̄ 0 0
0 z/z̄ 0

0 0 z−1

)
and its complex

conjugate, hence for every Archimedean place v one has πn(λv, νv) = π+

or π−, depending on the choice of isomorphism M ⊗F,v R ' C in the
CM type Φ. It follows that for every Archimedean place v, Π′(λv, νv)
is a packet containing a discrete series representation of G′v, and thus
by [R1, §14.4], there will be a corresponding Arthur packet Π(λ, ν) of
representations of G(AF ) such that at any Archimedean place v 6= ι,
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Π(λv, νv) is a singleton consisting of a finite-dimensional representa-
tion of the compact real group G(Fv) = U(3). In the notation of [R2,
p.397] the representations π+ and π− have parameters (r, s) = (1,−1)
and (r, s) = (0, 1), respectively, and hence, by the recipe on the same
page, the highest weight of the associated finite-dimensional represen-
tation equals (1, 0,−1). Therefore at every Archimedean v 6= ι we have
Π(λv, νv) = {1}.
So far we have established (i) and (ii), while (iii) is the content of [R2,
Theorem 1.1].
Conversely, any π as in (iv) is discrete, hence belongs to an Arthur packet
Π on G, which can be transferred to an Arthur packet Π′ on G′ (see [R1,
§14.4 and Proposition 14.6.2]). By definition, Πv = Π′v at v = ι and at
all the finite places v (where, as noted earlier, Gv = G′v). In particular
π+ or π− belongs to Πι = Π′ι, hence Π′ arises by endoscopy from H,
that is to say equals Π′(λ, ν) for some unitary Hecke character λ of M
whose restriction to F is ω, and some unitary character of A1

M/M
1 (see

[R1, Theorem 13.3.6]). Since Πv = {1} for all the Archimedean places
v 6= ι, by the above mentioned recipe Π(λv, νv) contains either π+ or
π−, implying that (λ, ν) ∈ Ξ (see Definition 3.1). �

3.2. Irregularity of the connected components. Let K be an open
compact subgroup of G(AF,f ). Using Theorem 3.2(iii) one can transform
(10) into the formula:

(14) 4q(YK) =
∑

(λ,ν)∈Ξ

∑
π∈Π(λ,ν)

dim(πKf )(W (λνM ) + (−1)d−1+s(π)).

We will now deduce a similar formula for the irregularity of the connected
component of identity YΓ of YK , where Γ = G(F ) ∩KG∞.
Recall (see (7)) that π0(YK) ' A1

M/M
1 det(K)M1

∞, and denote by
π̂0(YK) its (finite, abelian) group of characters. Consider the free ac-
tion of π̂0(YK) on the set Ξ given by (χ, (λ, ν)) 7→ (λχ−1

M , νχ), and
denote by Ξ/π̂0(YK) the quotient set. Since for any π ∈ Π(λ, ν) and any
χ ∈ π̂0(YK) one has π ⊗ χ ∈ Π(λχ−1

M , νχ), the group π̂0(YK) acts freely
on the set of automorphic representations contributing to q(YK). More-
over this action preserves λνM , s(π) and the dimension of πKf . Hence,
in the notations of (8), for any 1 ≤ i ≤ h, the image of the composite
map

H1(Lie(G∞),K∞;π∞)⊗ πKf → H1(YK ,C)→ H1(YΓi ,C),

where the first map comes from (9) and the second from the inclusion
YΓi ⊂ YK , does not change when replacing π by π⊗χ for any χ ∈ π̂0(YK).
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It follows that q(YΓi) ≤ 1
hq(YK) for all 1 ≤ i ≤ h. Since

∑h
i=1 q(YΓi) =

q(YK), we deduce that q(YΓi) = 1
hq(YK) for all 1 ≤ i ≤ h. This estab-

lishes the formula:
(15)

4q(YΓ) =
∑

(λ,ν)∈Ξ/π̂0(YK)

∑
π∈Π(λ,ν)

dim(πKf )(W (λνM ) + (−1)d−1+s(π)).

This formula shows the importance of calculating dim(πKf ) which, when
K is of the form

∏
vKv with v running over all the finite places of F ,

can be reduced to a local computation of dim(πKvv ). This will be taken
up in the following section at places v where Kv is not the hyperspecial
maximal compact subgroup K0

v .

3.3. Levels of induced representations. Let p be a prime of F divis-
ible by a unique prime P of M and let Fq be the residue field o/p. In
this section we exhibit open compact subgroups Kp of G(Fp) for which
πn(λp, νp) (resp. πs(λp, νp)) admit a non-zero Kp-invariant subspace,
and compute in some cases the exact dimension of this space.
For every integer m ≥ 1, we define the open compact subgroup K(Pm)
(resp. K0(Pm), resp. K1(Pm)) of G(Fp) as the kernel (resp. the in-
verse image of upper triangular, resp. upper unipotent, matrices) of the
composite homomorphism:

(16) G(op) ↪→ GL(3,OP)→ GL(3,O/Pm).

Lemma 3.3. Let m ∈ Z>0 be such that the character (12) is trivial on
K1(Pm)∩T (Fp). Then both πn(λp, νp) and πs(λp, νp) have non-zero fixed
vectors under K1(Pm).

Proof. Let J denote the Jacquet functor sending admissible G(Fp)-
representations to admissible T (Fp)-representations. The Jacquet func-
tor is exact and its basic properties imply:

J(πs(λp, νp)) : (ᾱ, β, α−1) 7→ λp(ᾱ)νp(β)|α|3/2Mp
= λp(ᾱ)νp(β)|α|1/2Mp

|α|Mp ,

J(πn(λp, νp)) : (ᾱ, β, α−1) 7→ λp(ᾱ)νp(β)|α|1/2Mp
= λp(ᾱ)νp(β)|α|−1/2

Mp
|α|Mp .

(17)

One knows that K1(Pm) admits an Iwahori decomposition:

K1(Pm) = (K1(Pm) ∩N(Fp)) · (K1(Pm) ∩ T (Fp)) · (K1(Pm) ∩ N̄(Fp)),

where N(Fp) (resp. N̄(Fp)) denotes the unipotent of the standard (resp.
opposite) Borel containing T (Fp). This is proved for the principal con-
gruence subgroup K(Pm) in [C, Proposition 1.4.4] and the extension to
K1(Pm) is straightforward. Now by the proof of [C, Proposition 3.3.6],
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given any admissible G(Fp)-representation V , one has a canonical sur-
jection:

V K1(Pm) � J(V )K1(Pm)∩T (Fp).

Since both characters in (17) are trivial on K1(Pm) ∩ T (Fp), the claim
follows. �

Lemma 3.4. Suppose that p is inert in M and that (λp, νp) is unramified.
Then the dimension of the K0(p)-fixed subspace of both πs(λp, νp) and
πn(λp, νp) is 1. Moreover the dimension of the K(p)-fixed subspace of
πs(λp, νp) (resp. πn(λp, νp)) is q3 (resp. 1).

Proof. Since (λp, νp) is unramified, restriction to the standard hyperspe-
cial maximal compact subgroup K0

p of G(Fp) yields, by Iwasawa decom-
position G(Fp) = B(Fp) ·K0

p , the following exact sequence:

0→ πs(λp, νp)|K0
p
→ Ind

K0
p

B(Fp)∩K0
p
(1)→ πn(λp, νp)|K0

p
→ 0.

The subspace of K(p)-invariant vectors in Ind
K0

p

B(Fp)∩K0
p
(1) identifies nat-

urally with the space of C-valued functions on the set:(
B(Fp) ∩K0

p

)
\K0

p/K(p) ' B(Fq)\G(Fq),

on which K0
p/K(p) = G(Fq) acts by right translation. By the Iwahori

decomposition, since G(Fq) has rank 1, the representation IndG(Fq)
B(Fq)(1)

has exactly two irreducible constituents which are the trivial representa-
tion and the Steinberg representation, implying that both πn(λp, νp)K0(p)

and πs(λp, νp)K0(p) are one-dimensional. Since πs(λp, νp)K
0
p = 0, it fol-

lows that πn(λp, νp)K(p) (resp. πs(λp, νp)K(p) ) is isomorphic to the trivial
(resp. Steinberg) representation of G(Fq), hence its dimension equals 1
(resp. q3). �

3.4. Surfaces with positive irregularity. The existence of Hecke
characters λ of M satisfying (13) goes back to Chevalley and Weil. We
will show that there are still such characters if one further imposes their
restriction to F to be ω.

Lemma 3.5. For any CM extension M/F and any CM type Φ on M ,
there exist Hecke characters λ of M whose restriction to F equals ω,

such that λ∞(z) =
∏
v∈Φ

z̄v
|zv|

for all z ∈M×∞.

Proof. Since M is totally imaginary, λ∞ and ω agree on F×∞, hence there
is a character λ0 of A×FM

×
∞ extending both.
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We show now that λ0 can be extended to a Hecke character λ of M ,
which will obviously satisfy the assumptions of the lemma. Since M/F is
totally imaginary, o×2 has finite index in O×. By [Ch, Théorème 1] there
exists an open compact subgroup U of A×M,f such that U∩O× ⊂ o×2. We
may, and we will, assume that U is contained in the congruence subgroup
whose level is the relative different of M/F and by replacing U by U ∩ Ū
we can further assume that U = Ū . Since the Artin conductor of ω is
the relative discriminant of M/F , it follows that ω is trivial on U ∩A×F,f .
Hence one can extend λ0 to a character of A×FUM

×
∞ by letting it be

trivial on U .
Suppose we knew that

(18) M× ∩ A×FUM
×
∞ = F×.

Then there is a unique character of M×A×FUM
×
∞ extending both λ0

and the trivial character of M×U . Since A×M/M
×A×FUM

×
∞ is a finite

abelian (idele class) group, the character above can be further extended
to a character λ of A×M/M

×, and any such extension has the desired
properties.
It remains to prove (18). Let x ∈M× ∩ A×FUM

×
∞. Then

x̄/x ∈M1 ∩ UM1
∞ = O× ∩ UM1

∞ ⊂ o×2.

Since F×2 ∩M1 = {1}, we have x = x̄ ∈ F×. �

Proposition 3.6. Fix any Hecke character λ of M satisfying (13) whose
restriction to F is ω. Let p be a prime of F which splits in M and is
relatively prime to the conductor C of λ. If W (λ3) = (−1)d we choose
a prime q of F which does not split in M ; if not, we take q = o. Then
q(YΓ1(C)∩Γ0(pq)) > 2.

Proof. Let K = K1(C) ∩ K0(pq), so that Γ = G(F ) ∩ KK∞. Let
Π(λ, λ−1

|M1) be the global Arthur packet on G associated to λ. Let

π = ⊗vπv ∈ Π(λ, λ−1
|M1) be such that πι = π+, πv = 1 for every infinite

place v 6= ι, πv = πn,v for every finite v 6= q, and finally if W (λ3) = (−1)d

then πq = πs,q. By Theorem 3.2(iii), π is automorphic, and by Lemma
3.3, we have πKvn,v 6= 0 for all finite places v 6= p, q. Moreover, if q 6= o,
then π

Kq
s,q 6= 0 by Lemma 3.3 (resp. Lemma 3.4 ) if q divides (resp.

does not divide) C. Finally (11) implies that dim(πK0(p)
p ) ≥ 3, hence

q(YΓ) ≥ 3 by (15) as claimed. �

Remark 3.7. Since restriction of λ to A×F equals ω, its conductor C is
divisible by the different of M/F . Hence, unless M/F is unramified
everywhere, one might take as q a place where M/F is ramified and
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Proposition 3.6 applies then to K = K1(C)∩K0(p). Given a totally real
number field F , there exists a totally imaginary quadratic extension
M/F unramified everywhere if and only if all the units in F have norm
1.

For the rest of this section we assume that F = Q, so that G is quasi-
split.

Proposition 3.8. Any Γ as in Theorem 0.3 is neat and q(YΓ) > 2.

Proof. There exists an open compact subgroup K of G(AQ,f ) such that
Γ = G(Q) ∩KG(R).
We claim that there exists a Hecke character λ of M of conductor D
satisfying (13), whose restriction to F equals ω. If D 6= 3 is odd or if
8 divides D such characters, called canonical, are proved to exists by
Rohrlich [Ro]. If D > 4 is even but not divisible by 8, then by Yang
(see [Ya, p.88]) there are such characters, called the simplest. Finally
for D = 3 (resp. D=4) the claim follows from the existence of a CM
elliptic curve over Q of conductor 27 (resp. 32).
By definition, (λ, λ−1

|M1) ∈ Ξ and is trivial on K1(D) ∩ T (AQ,f ). Then
Lemma 3.3 implies that:

(19) π
K1(D)
f 6= 0, for all π ∈ Π(λ, λ−1

|M1).

In case (ii) of Theorem 0.3 where Γ = Γ(N) ∩ Γ1(D) we fix a prime p
dividing D and π = ⊗vπv ∈ Π(λ, λ−1

|M1) such that πv = πn(λv, λ−1
|M1

v
) for

all v 6= p,N , πN = πs(λN , λ−1
|M1

N
) and

πp =

{
πn(λp, λ−1

|M1
p
) , if W (λ3) = −1,

πs(λp, λ−1
|M1

p
) , if W (λ3) = 1.

Since Γ(N) is neat by Lemma 1.4, we can apply (15) which, when com-
bined with Lemma 3.4, yields

q(YΓ(N)∩Γ1(D)) ≥ dim(πK(N)
N ) ≥ N3 ≥ 3.

We now turn to case (i) and suppose first that M has class number
h ≥ 3. For any class character ξ one has (λξ, λ−1

|M1) ∈ Ξ giving h pairwise

distinct elements in Ξ/ ̂π0(YK1(D)). Fix a prime p dividingD and consider
π = ⊗vπv ∈ Π(λξ, λ−1

|M1) such that πv = πn(λvξv, λ−1
|M1

v
) for all v 6= p and

πp =

{
πn(λpξp, λ−1

|M1
p
) , if W (λ3) = 1,

πs(λpξp, λ−1
|M1

p
) , if W (λ3) = −1.



Arithmetic quotients and a conjecture of Lang 19

Since Γ1(D) is neat by Lemma 1.5, one can apply (15) which combined
with (19) yields q(YΓ1(D)) ≥ h ≥ 3.
If M is one of the 18 imaginary quadratic fields of class number 2, then
its fundamental discriminant D has (exactly) two distinct prime divisors
p < q. For each character λ on M as above, consider π ∈ Π(λ, λ−1

|M1)

such that πv = πn(λv, λ−1
|M1

v
) for all v 6= p, q, and moreover if W (λ3) = 1,

then

(πp, πq) = (πn(λp, λ−1
|M1

p
), πn(λq, λ−1

|M1
q
)) or (πs(λp, λ−1

|M1
p
), πs(λq, λ−1

|M1
q
)),

whereas if W (λ3) = −1, then

(πp, πq) = (πn(λp, λ−1
|M1

p
), πs(λq, λ−1

|M1
q
)) or (πs(λp, λ−1

|M1
p
), πn(λq, λ−1

|M1
q
)).

If D 6= 24 then Γ1(D) is neat by Lemma 1.5 and (15) implies that
q(YΓ1(D)) ≥ 2 · 2 = 4. If D = 24 then Γ(D) is neat by Lemma 1.4, since
4 divides D, and again q(YΓ(D)) ≥ 4.
Finally, we consider the nine imaginary quadratic fields of class number
1.
For D ∈ {7, 11, 19, 43, 67, 163} there is a unique character λ as in the
beginning of the proof. Any character of (1+

√
−DO/1+DO) ' Z/DZ

lifts to a finite order Hecke character ξ of M with trivial restriction to
Q, hence (λξ, λ−1

|M1) ∈ Ξ. Let π = ⊗vπv ∈ Π(λξ, λ−1
|M1) be such that

πv = πn(λvξv, λ−1
|M1

v
) for all v 6= D and

πD =

πn(λDξD, λ−1
|M1

D
) , if W (λ3) = 1,

πs(λDξD, λ−1
|M1

D
) , if W (λ3) = −1.

Since Γ(D) is neat by Lemma 1.4, by (15) we get q(YΓ(D)) ≥ D ·
dim(πK(D)

D ) ≥ D.
For D = 3 the same argument with D2 instead of D, implies that
q(YΓ(9O)) ≥ 3.
For D = 4 (resp. D = 8) the group Γ(8O) (resp. Γ(2

√
−8O)) is neat by

Lemma 1.4 and it is an exercise on idele class groups to show that there
are at least three Hecke characters of M satisfying (13) whose restriction
to Q is ω, and whose conductor divides 8 (resp. 2

√
−8). It follows then

from (15) and (19) that for D = 4 (resp. D = 8) one has q(YΓ(8O)) ≥ 3
(resp. q(YΓ(2

√
−8O)) ≥ 3). �

Remark 3.9. The computation of the smallest level K for which there
exists an automorphic representation π ∈ Π(λ, ν) such that πKf 6= 0 is
analyzed in detail in [DR]. In particular, if λ is a canonical character,
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we check that the level subgroup at any p dividing D is precisely the one
conjectured by B. Gross, namely the index 2 subgroup of the maximal
parahoric subgroup with reductive quotient PGL(2).

4. The Albanese map and Mordellicity

A major ingredient in the proof of our theorems is the Mordell-Lang con-
jecture for abelian varieties in characteristic zero, established by Faltings
[F2] using some earlier work of himself [F1] and Vojta [V] (see Mazur’s
detailed account [M]).

Theorem 4.1 (Mordell-Lang conjecture : theorem of Faltings). Suppose
A is an abelian variety over C and Z ⊂ A a closed subvariety. Then for
any finitely generated field extension k of Q over which Z ⊂ A is defined,
the set Z(k) is contained in a union of finitely many translates of abelian
subvarieties of A, each of which is defined over k and contained in Z.

The following corollary was proved in Moriwaki [Mo, Theorem 1.1]. He
stated it for number fields, but the proof is the same for finitely generated
fields over Q.

Corollary 4.2. Let X be a connected smooth projective variety over C
which does not admit a dominant map to its Albanese variety. Then for
any finitely generated field extension k of Q over which X is defined, the
set X(k) is not Zariski dense in X.

Proof. The conclusion is obvious if X(k) is empty so we may choose a
point of X(k) to define the Albanese map over k:

j : X → Alb(X).

Applying Theorem 4.1 to the closed subvariety Z = j(X) of Alb(X) we
get a finite number, say m ≥ 1, of translates Zi of abelian subvarieties
of Alb(X) defined over k and such that

Z(k) ⊂
m⋃
i=1

Zi(k) and Zi ⊂ Z.

Since j is defined over k, each k-rational point of X is contained in
j−1(Zi) for some i. If j−1(Zi) were not a proper closed subvariety of X,
the universal property of the Albanese map would imply that Z = Zi =
Alb(X), contradicting the assumption that j is not dominant. �

Proposition 4.3. For every arithmetic subgroup Γ ⊂ G(F ) there exists a
finite cover of YΓ whose points over any finitely generated field extension
of Q are not Zariski dense, i.e., the Bombieri-Lang conjecture holds for
that cover.
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Proof. Applying Corollary 2.2 recursively yields a finite index subgroup
Γ′ ⊂ Γ, which one can assume to be torsion free, such that q(YΓ′) > n =
dim(YΓ′). It suffices then to apply Corollary 4.2 to YΓ′ in the compact
case and, in view of (4), to XΓ′ in the non-compact case. �

Proof of Theorem 0.1. By Proposition 3.6, we have q(YΓ) > 2, hence YΓ

does not admit a dominant map to its Albanese variety. Moreover YΓ is
a geometrically irreducible smooth projective surface, hence by Corol-
lary 4.2 YΓ(k) is not Zariski dense in YΓ for any finitely generated field
extension k of Q over which YΓ is defined. If YΓ(k) were infinite, then
YΓ would contain an irreducible curve C defined over k and such that
C(k) infinite. Since C(k) is Zariski dense in C, the curve C is geomet-
rically irreducible and its geometric genus is at most 1 by Theorem 4.1
applied to the Albanese map of C. Taking a complex uniformization of
C would provide a non-constant holomorphic map from C to YΓ, which
is impossible by Lemma 1.1(i) which we can apply as Γ is torsion free.
Therefore YΓ is Mordellic. �

Proof of Theorem 0.2. The Lang locus of a quasi-projective irreducible
variety Z over a number field is defined as the Zariski closure of the
union, over all number fields k, of irreducible components of positive
dimension of the Zariski closure of Z(k). It is clear that Z is arithmeti-
cally Mordellic if and only if its Lang locus is empty. The main theorem
in [UY] asserts that, for Γ neat and sufficiently small, the Lang locus of
Y ∗Γ is either empty or everything.
By Corollary 2.2 one can assume by further shrinking Γ that q(YΓ) > n,
and by (4) we also have q(XΓ) > n for XΓ a smooth toroidal compacti-
fication of YΓ. By Corollary 4.2 the Lang locus of XΓ is not everything,
which forces the Lang locus of Y ∗Γ to be empty. �

Proof of Theorem 0.3. Let us first show that XΓ is of general type, hence
its canonical divisor KX is big in the sense of [N, Definition 1.1]. Note
that just like irregularity, the Kodaira dimension cannot decrease when
going to a finite covering. By Holzapfel [H2, Theorem 5.4.15] and Feustel
[Fe] the surface XΓ1(D) is of general type for all

D /∈ {3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 39, 47, 71}.

Also by [H1, Proposition 4.13], XΓ(N) is of general type for all in-
tegers N > 2, with the possible exceptions of N = 3 and N = 4
when D = 4, implying in particular that XΓ(D2) is of general type for
D ∈ {3, 4, 7, 8, 11, 19}. Finally, the argument from loc. cit. transports in
a straight forward way to the case when the level is an ideal of O, yield-
ing that the remaining varietiesXΓ(D), D ∈ {15, 20, 23, 24, 31, 39, 47, 71},
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are of general type as well. See [D] where this has been carried out (it
should be noted that his argument works also when D = 24).
If g =

∑2
i,j=1 gij̄dzidz̄j denotes the Bergman metric of H2

C viewed as the
unit ball {z = (z1, z2) ∈ C2 , |z| < 1}, normalized by requiring that

Ric(g) =
2∑

i,j=1

−∂
2 log(g11̄g22̄ − g21̄g12̄)

∂zi∂z̄j
dzidz̄j = −g,

then the holomorphic sectional curvature is constant and equals −4/3

(see [GKK, §3.3]), where gij̄ =
3((1−|z|2)δij+z̄izj)

(1−|z|2)2 .
By (4) and Proposition 3.8 we have that Γ is neat and q(XΓ) = q(YΓ) >
2. Corollary 4.2 then implies that XΓ(k) is not Zariski dense in XΓ for
any finitely generated field extension k of Q over which XΓ is defined.
If XΓ(k) is infinite, arguing as in the proof of Theorem 0.1 shows that
XΓ contains a geometrically irreducible curve C whose geometric genus
is at most one. Now applying a result of Nadel [N, Theorem 2.1] with
γ = 1 (so that −γ ≥ −4/3), we see that the bigness of KX implies that
C is contained in the compactifying divisor, which is a finite union of
elliptic curves indexed by the cusps. It follows that Y ∗Γ (k) is finite and
that XΓ does not contain any rational curves at all, let alone just those
of self intersection −1, hence it is a minimal surface of general type. �

References

[BC] A. Borel and W. Casselman, L2-cohomology of locally symmetric manifolds
of finite volume, Duke Math. J., 50 (1983), pp. 625–647.

[BW] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and
representations of reductive groups, vol. 67 of Mathematical Surveys and Mono-
graphs, American Mathematical Society, Providence, RI, 2000.

[B] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., 235
(1978), pp. 213–219.

[CV] E. Calabi and E. Vesentini, On compact, locally symmetric Kähler mani-
folds, Ann. of Math., 71 (1960), pp. 472–507.

[C] W. Casselman, Introduction to the theory of admissible representations of p-
adic reductive groups, preprint (1995).
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[D] A. Džambić, Invariants of some compactified Picard modular surfaces and ap-
plications, arXiv:1411.3381.



Arithmetic quotients and a conjecture of Lang 23

[F1] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math.,
133 (1991), pp. 549–576.

[F2] , The general case of S. Lang’s conjecture, in Barsotti Symposium in Al-
gebraic Geometry (Abano Terme, 1991), vol. 15 of Perspect. Math., Academic
Press, San Diego, CA, 1994, pp. 175–182.

[F3] , Arithmetic varieties and rigidity, Progr. Math., 51, Birkhuser Boston,
Boston, MA (1984), pp. 63–77.

[Fe] J-M. Feustel, Zur groben Klassifikation der Picardschen Modulflächen, Math.
Nachr., 118 (1984), pp. 215–251.
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