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Martina Aaltonen University of Helsinki
Statement of research

In the beginning of 2013 1 got my Masters degree at the University of
Helsinki with major in algebra and topology. My Masters thesis [A] is in
PIL-knot theory and concerns the construction of the Alexander invariant
(a covering space) of a knot from a Seifert surface (orientable compact 2-
manifold with a knot representative as its boundary) of the knot. Currently
I am a PhD-student at the University of Helsinki and my advisor is Pekka
Pankka.

My research topic is related to branched coverings (open discrete maps)
and the Berstein-Edmonds construction |[BE|: Assume that f: N — M is
a branched covering between closed manifolds. Then there is such an open
dense subset N’ C N that g := f|[N': N’ — f[N’] is a covering and N \
N’ does not locally separate N, see [V]. If the monodromy group of g is
denoted p, then the Berstein-Edmonds construction gives a space Xy and a
commutative diagram of branched coverings

SN

f

N

where X — M is an orbit map of the monodromy group p and Xy — N an
orbit map of a subgroup 7 < p.

As a consequence of the compactness assumption on N and M all maps
in the diagram above are finite-to-one maps. My first research questions
are: Under which assumptions a Berstein-Edmonds construction exists for
a branched covering f: N — M between manifolds with N not a closed
manifold? What can be said about the branched covering f, the space X,
and the monodromy group p when the construction exists?

Bibliography

[A] M. Aaltonen. Solmukaaviot, Seifertin pinnat ja Aleksanderin invari-
antti. Pro-gradu ty0, Helsingin yliopisto, 2012, 171 sivua,
http://helda.helsinki.fi/handle /10138 /378 72.

[BE] I. Berstein and A. L. Edmonds. The degree and branch set of a
branced covering. Invent. Math., 45(3):213-220, 1978.

[V] J. Viisala. Discrete open mappings on manifolds. Ann. Acad. Sci.
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Anabanti, Chimere Stanley University of Nigeria, Nsukka
Whitehead Algorithm for free groups

I just concluded my M.Sc research on “The Whitehead Algorithm for free
groups” at the University of Warwick.

In 1936, Whitehead [3,4] used topological means to introduce a theorem
which can be used to decide whether two elements of a finitely generated
free group are equivalent under an automorphism of the group. Rapaport in
[2] gave an algebraic proof of Whitehead’s result. Higgins and Lyndon went
further to simplify the result in [1].

In my M.Sc research, I established the corresponding algorithm and GAP
program for classifying all minimal words of any given length in F, up to
equivalence. I went further to study the nature of representatives of the
resulting equivalence classes of minimal words of lengths 2,3,4 and 5 in
F,. The nature of such minimal words of lengths 2 and 3 is trivial. 1
concluded my M.Sc dissertation by establishing some conjectures on the
nature of representatives of the resulting equivalence classes of minimal words
of lengths 4 and 5 in F;,, and introducing new open problems.

Bibliography

[1] Higgins, P. J., Lyndon, R. C.: Equivalence of elements under au-
tomorphisms of a free group. Journal of the London Mathematical
Society, 8, 254-258, 1974.

[2] Rapaport, E. S.: On free groups and their automorphisms. Acta
Math. 99, 139-163, 1958.

[3] Whitehead, J. H. C.: On certain sets of elements in a free group.
Proceedings of London Mathematical Society, 41, 48-56, 1936.

[4] Whitehead, J. H. C.: On equivalent sets of elements in a free group.
Annals of Mathematics, 37, 782-800, 1936.
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Henry Bradford University of Oxford
Expansion in finite groups

My research focuses on the construction of expander graphs. Expanders
are sparse finite graphs which are “well-connected”, in the sense that, for any
partition of the vertex-set into two large components, the number of edges
between the components will be high. Expanders have found diverse appli-
cations in theoretical computer science; group theory; number theory and
hyperbolic geometry [1].

For many years, Cayley graphs of finite simple groups of Lie type have proved
to be a rich source of examples of expanders. In a landmark paper [2], Bour-
gain and Gamburd showed that for an arbitrary finite group G, generated
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by a subset S, the expansion of Cay(G,S) may be quantified in terms of
three pieces of data, namely: the minimal dimension of a non-trivial unitary
representation of G; the growth-rate of product sets of an arbitrary gener-
ating set for G, and the extent to which the random walk on Cay(G,S)
avoids concentrating in proper subgroups of G. For finite simple groups of
Lie type, the first of these three ingredients is taken care of by classical
work, whereas the second (although difficult) is now a well-studied phe-
nomenon, so most current research is focused on establishing the required
“non-concentration” estimates in proper subgroups. The dependence in such
estimates on the choice of the generating set S is a delicate matter: for
instance, when G = PSLs(p), it is not known whether expansion occurs
independent of both S and the prime p, but it is known that there is a
density-one set of primes for which this is the case (though an explicit de-
scription of such a set of primes has never been given)|3].

Currently [ am studying expansion in Cayley graphs of linear groups over
finite fields of fixed characteristic. It has recently been shown that expan-
sion in these groups occurs for generic generating sets S, but as yet few
concrete examples are known [4]. Finding more such examples is the goal of
my research.

Bibliography

[1] A. Lubotzky. Expander Graphs in Pure and Applied Mathematics.
Bull. Amer. Math. Soc. 49 (2012), 113-162

[2] J. Bourgain; A. Gamburd. Uniform Expansion Bounds for Cayley
Graphs of SLy(F,). Ann. Math, 167 (2008), 625-642

[3] E. Breuillard; A. Gamburd. Strong Uniform Expansion in SL(2,p).
Geom. & Funct. Anal., 20, Issue 5 (2010), 1201-1209

[4] E. Breuillard; B. Green; R. Guralnick and T. Tao. Expansion in
finite simple groups of Lie type. arXiv:1309.1975
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Sarah Bray Tufts University

Dynamics of nonstrictly convex divisible Hilbert geometries

We study compact quotients of discrete actions by I' < PGL(n+1,R) act-
ing on convex sets endowed with the Hilbert geometry. Any convex bounded
domain €2 in n-dimensional real projective space, RP", admits a Hilbert ge-
ometry as follows: take an affine slice of the cone over € in R*™! < {0}.
Given two points z,y € €2, to define their 2-distance we first extend the
Fuclidean line segment between x and y to the boundary 02. Let a,b be
the intersection points of Ty and 9. Then we define

1
dQ(SU, y) = 5’ log[CL?x?yv b”
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where [a, z,y, b] is the standard Euclidean cross ratio:

ay| |bx
a,2,y,8] = 122 2]
|az| |by]
It is a classical observation by Hilbert that dgq is a metric such that lines are
geodesic, the boundary is at infinity, and projective transformations preserve
the metric. Thus we can consider discrete subgroups of

Proj(Q) = {g € PGL(n + 1,R) | ¢Q = Q}

acting by isometries on (£2,dq). We define € to be divisible when Q admits
a cocompact action by a discrete I' < Proj(Q2). Equivalently, T' is said to
divide Q.

The first examples of divisible properly convex ) arise from symmetric
spaces. The classical case is an ellipsoid endowed with the Hilbert geometry,
which is the Beltrami-Klein model for hyperbolic space H". The other im-
mediate examples are simplices and symmetric spaces of SL(n, k) where k is
R, C or the quaternions or octonions (see [10] for more). Simplices endowed
with the Hilbert geometry are isometric to R™ with a polygonal norm [6].

These examples provide early evidence for a relationship between regu-
larity of the boundary and hyperbolicity of the acting group and the metric
space. In [1] Benoist showed that strict convexity of divisible Q is equiva-
lent to C! regularity of 99, d-hyperbolicity of the metric space (€2, dq), and
Gromov-hyperbolicity of T'.

Benoist’s work follows Benzecri’s thesis in the 1970’s. Benzecri proved a
strong result on the PGL—-orbits of properly convex €2, and it follows that the
only divisible  with boundary of class C? is the ellipsoid, a model for H" [3].

Benoist also studied the dynamics of such strictly convex, divisible €2 in
the following sense: any Hilbert geometry on a bounded convex domain {2
is compatible with a Finsler norm on the tangent space. We thus define
the line flow on T'Q by flowing unit tangent vectors at unit speed along
lines, which are geodesic. More specifically, the flow ¢! is defined by moving
v € T'Q along the geodesic line determined by v over time t.

Benoist proved in [1] that for a strictly convex, divisble €, the line flow
on the compact quotient M := /I is a mixing Anosov flow. The ergodic
theory of line flows on strictly convex € is well understood.

In fact, it follows from the Anosov property of the flow that the boundary
of a strictly convex divisible 2 must be C'T¢ for some 0 < o < 1 [1,9],
meaning the differential of the local graph f : U C 02 — R is a-Holder
continuous:

[Df(z) = Df(y)| <|z—yl
When 2 is not H”, the maximum such « is strictly less than 1, and explicit
formulas for ay,q, are due to Guichard in [7]. Consequently, examples of di-

visible, strictly convex, non-symmetric € such as those constructed by Kac
and Vinberg [8] have boundary of class C1*¢.



YGGT 3: RESEARCH STATEMENTS 7

Crampon [4,5] further studied the topological complexity of the line flow
on compact projective structures with strictly convex universal cover ). He
proved that topological entropy is bounded above by n — 1 where n is the
dimension of €2, with equality only for the case where Q is an ellipsoid [4].
He also computed directly that the Lyapunov exponents are determined by
the convexity of the local graph of 0 [5].

These same properties have yet to be explored for non-symmetric, non-
strictly convex divisible © of higher dimensions. Benoist showed in [2] the
existence of nontrivial examples of these () and their properties in dimen-
sion 3:

Theorem (Benoist): Let Q be a properly convex open subset of RP3
divisible by discrete I' < Proj(2). If Q is neither a polygon nor strictly
convex, then

(1) There exist countably many open triangles A properly embedded in
2, meaning A C 02 but A C Q.

(2) The triangles are disjoint in €.

(3) The collection vertices of the triangles are dense in 0f2.

(4) The triangles are isolated in Q.

(5) The compact quotient manifold 2/T" has an JSJ decomposition into
atoroidal components connected by finitely many tori or Klein Bottle
boundary components.

(6) The triangles project to boundary tori or Klein Bottles in the quo-
tient.

The existence of such examples leads to natural dynamical questions:

e Is the flow topologically transitive? Mixing?

e Is there a measure of maximal entropy? If so, is it unique?

e Does the flow has some hyperbolicity properties (non-uniform hyper-
bolicity)?

There are some barriers to the study of these examples: the line flow here
is not C! due to the C° continuity of 9. Furthermore, there is no natural
volume measure invariant under the flow.

The existence or non-existence of equilibrium measures is not obvious,
but ergodicity with respect to some equilibrium state is hopeful given the
presence of hyperbolic atoroidal components in the quotient.

Bibliography

[1] Y. Benoist. Convexes divisibles. I. In Algebraic groups and arith-
metic, pages 339-374. Tata Inst. Fund. Res., Mumbai, 2004.
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[5] M. Crampon. Lyapunov exponents in Hilbert Geometry. Ergodic
Theory and Dynamical Systems, doi:10.1017/etds.2012.145. 2012
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Julie Brénnimann Université de Neuchéatel
Geodesic growth of groups

Let G = (S|R) be a finitely presented group. For a word W over S,
we denote by £g(W) the word length of W, and by |W|g the length of the
element of G represented by W. A word W is geodesic if {g(W) = |W|s.
For a group element g € G, the length |g|s is the length of a shortest word
W that represents g.

We define the spherical growth function of G to be the function ag : N — N
given by

as(n) = #{ge€G|lgls=n},

and we define the geodesic growth function of G, with respect to the given
presentation, to be vg5 : N — N, where

vs(n) = #{ geodesics of length n }.

A lot is known about the spherical growth function: for example, the
growth type (such as polynomial, intermediate, or exponential) is indepen-
dent of the generating set, Gromov showed that the groups with polynomial
growth are exactly the virtually nilpotent ones, and the list of beautiful
results goes on.

For the geodesic growth very little is known. One reason for the lack of
results is that the geodesic growth is generating set dependent. My research
is centered around products of groups. I would know how the number of
geodesics in a direct product of groups, a free product, an amalgamated prod-
uct and a HNN-extension grow. Particularly, I'm interested in the growth
rate v(G,S) = limp—oo V/vs(n). I would like to find bounds or a precise
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formula for the minimal growth rate, over all possible generating sets, of
these products.

Bibliography

[1] A. Mann, How Groups Grow, Cambridge University Press.

[2] M. R. Bridson, J. Burillo, E. Murray and S. Zoran, On groups whose
geodesic growth is polynomial, International Journal of Algebra and
Computation, (2012) Number 5, Volume 22.

* ok ok ok ok

Claire Burrin ETH Zurich

Rademacher functions and winding numbers

In [1], Atiyah identifies a number of functions on SL(2,Z) of different
origins that however coincide, at least on hyperbolic elements. Motivated
by this paper, Barge and Ghys pursued in [2] the unification of this family
of functions via bounded cohomology, with the purpose of identifying var-
ious forms that the generator of the second cohomology group of SL(2,R)
may take — Euler class, Rademacher function, Poincaré translation number,
among others. Their insight was that the generators, albeit their very differ-
ent nature (topologic, geometric, arithmetic, etc), share a common feature;
they correspond to a quasimorphism on SL(2,7Z).

There appears to be a similar unified approach to treat generalizations of
the latter functions to some discrete subgroups of PSL(2,R). More precisely,
consider a hyperbolic surface with a finite number of cusps, realized by the
quotient of the Poincaré upper half-plane under the action of a particular
Fuchsian group I'. To each cusp, an analytical construction associates a non-
vanishing section of the unit tangent bundle of the surface. This section is
obtained by perturbing a generalization of the Dedekind n-function, whose
logarithm is invariant under I'-transformation up to an integer multiple of
mi. This ambiguity defines an integer-valued quasimorphism on I' that is the
appropriate analog of the classical Rademacher function.

Such a Rademacher quasimorphism turns out to have a very simple geo-
metric interpretation. It describes the winding number for closed geodesics
parametrized by arc length, computed with respect to the non-vanishing sec-
tion mentioned above. As such, the function has a finite sum representation
in terms of a counting formula involving the values on the generators of the
free group I'. Moreover, it also coincides with the rotation quasimorphism
introduced by Thomas Huber in his thesis [3]; a canonical rotation number
living on the fundamental group of the unit tangent bundle that trivializes
the Fuler class.
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Bibliography
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Ayala Byron Hebrew University, Jerusalem

Logic and geometry in free and hyperbolic groups

I am interested in geometric structures associated with free and hyperbolic
groups, and in understanding the logical properties of such groups, using
those structures.

On the way to solving Tarski’s question about the first order theory of
non-abelian free groups, Zlil Sela showed that to every limit group, and
in particular to torsion-free (=tf) hyperbolic groups, one can associate a
tower structure. Let us (very roughly) describe this structure for a torsion-
free hyperbolic group G: the ground floor is a subgroup Gy < G (and one
can choose G so that it has no non-trivial tower structure over one of its
subgroups. In this case G is called the core of G). Each floor G; is obtained
from the previous one G;_1 < G; by gluing surfaces to G;_1 along their
boundaries in a particular way, so that G; is the fundamental group of the
resulting graph of groups, and the last floor is G. Such a tower structure
is made possible by the existence of a JSJ—decomposition for torsion-free
hyperbolic groups. It turns out that those structures are very powerful in
reflecting logical properties of the groups they represent. For example, Sela
proved that a tf hyperbolic group is elementarily equivalent to its core, and
that two tf hyperbolic groups are elementarily equivalent iff their cores are
isomorphic. With Chloe Perin, we wish to understand how homogeneity of
a tf hyperbolic group can be read out of a tower structure for it.

Going back to the free group (F'), Sela proved the existence of an envelope
for a definable set in F'. This is a finite collection of towers, allowing one
to understand which elements belong (or more commonly, do not belong) to
the definable set, using sequences of morphisms from those towers to a free
group. Together with Rizos Sklinos, we try to understand which definable
algebraic structures a definable set in F' can have. In particular, we can show
that a definable set cannot be an abelian group.

Bibliography

[1] Zlil Sela, Diophantine geometry over groups VI: The elementary the-
ory of a free group, GAFA 16(2006), 707-730.
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[2] Zl1il Sela, Diophantine geometry over groups VII: The elementary
theory of a hyperbolic group, Proceedings of the LMS, 99(2009),
217-273.
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Caterina Campagnolo University of Geneva

Bounded cohomology and surface bundles

I am a third year PhD student, working under the supervision of Michelle
Bucher.

The main topic of my thesis is the study of surface bundles via their
characteristic classes, as defined by Morita (see [2]). A result of Gromov
implies that these classes are bounded in degree 2(k + 1), or in other words,
that they can be represented by cocycles which are uniformly bounded. The
question of boundedness for the remaining classes in degree 2k is open from
degree 4 already.

One advantage of the theory of bounded cohomology, initiated by Gromov
in the beginning of the 80’s [1], is that good bounds for norms of cohomology
classes naturally give rise to Milnor-Wood inequalities. One aspect of my
work is thus to try to compute the norms of the characteristic classes of
surface bundles, with as aim to produce new inequalities between classical
invariants of surface bundles, such as the signature, the simplicial volume
or the Euler characteristic of the total space of the bundle. At the moment
I am focussing on surface bundles over surfaces, ¥;, — E — Y , using the
information provided by the first Morita class to approach these questions.

An important object in my research is the mapping class group of surfaces.
In fact, characteristic classes of surface bundles are, in the universal case,
cohomology classes of the mapping class group.

I am also interested in learning more about the Teichmiiller space of sur-
faces. Indeed, it encodes much information on the configuration of the curves
in a surface and it could help finding a geometric interpretation for repre-
sentatives of cohomology classes of the mapping class group of the surface.

Bibliography
[1] M. Gromov, Volume and bounded cohomology, Inst. Hautes Etudes
Sci. Publ. Math. No. 56, (1982), 5-99 (1983).
[2] S. Morita, The Geometry of Characteristic Classes, American Math-
ematical Society, 2001.
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Mike Cantrell University of Illinois at Chicago
Research statement

I am a Phd student at the University of Illinois at Chicago working with
Alex Furman. My research interests include: ergodic theory, amenable
groups, group actions and geometric group theory, random walks on finitely
generated groups, and symbolic dynamics over non-amenable groups.

I am working on a project that fits under the heading of “The Zimmer
Program”, which has been described as the study of large group actions
on compact manifolds. My project seeks to limit the possible actions of
complicated amenable groups on compact manifolds. Precisely, suppose you
have a finitely generated amenable group with the property that all of its
finite index subgroups have no non-trivial homomorphisms into the reals.
Suppose that this group acts by volume-preserving diffeomorphisms on a
compact Riemannian manifold. Then I would like to show that there is
a sequence of almost invariant Riemannian metrics for the action, in the
sense that given epsilon and any finite subset of the acting group, there is a
Riemannian metric that is epsilon-invariant under each of the elements from
the given finite subset.

Juschenko and Monod have recently provided examples of finitely gener-
ated simple amenable groups, so the scope of our theorem would be non-
empty.

One of the primary ingredients in the proof involves examining ergodic
behavior of cocycles over amenable groups, which I find interesting and dif-
ficult. Motivation for the study of such behavior is to find an analog(s) of
Kingmann’s subadditive ergodic theorem for amenable groups, after Linden-
strauss. I have been working directly in these directions as well. For example,
I am pursuing a subadditive ergodic theorem for cocycles over ergodic actions
of Z% and of nilpotent groups.

Bibliography
[1] D. Fisher, Groups Acting On Manifolds: Around The Zimmer Pro-
gram, preprint arXiv:0809.4849
[2] K. Juschenko and N. Monod, Cantors Systems, Piecewise Transla-
tions and Simple Amenable Groups, preprint arXiv:1204.2132
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Sandrine Caruso Université Rennes 1

Geometric and algebraic aspects of braid groups

The theory of braid groups is at the intersection of several areas of math-
ematics, especially algebra and geometry. The current research extends in
each of these directions, leading to rich developments.
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From a geometrical point of view, the braid group on n strands is seen
as the mapping class group of a disc with n punctures, with boundary com-
ponent. A braid can be represented by a curve diagram, that is to say, the
image of a family of arcs attached to the disc, by the corresponding map-
ping class. In my thesis [1], I presented the algorithm of relaxations from
the right, which, given a curve diagram, determines the braid from which it
was obtained. This algorithm helps me to make the link between geometric
properties of the curve diagram and algebraic properties of the braid word,
allowing me to identify great powers of a generator as spirals in the curve
diagram.

From an algebraic point of view, the braid group is the classical example
of a Garside group. One of the objectives of current research in Garside
theory is to obtain a polynomial time algorithm to solve the conjugacy prob-
lem in braid groups. For this, a possibility is to exploit the properties of
some finite sets of conjugates of a braid, which are invariants of the conju-
gacy classes. One of my results ([1], [2]) concerns the size of one of these
invariants, the super summit set: we construct a family of pseudo-Anosov
braids whose super summit set has exponential size. Gonzalez-Meneses had
already established the similar result for a family of reducible braids [5].
These results implies that we cannot hope to solve the conjugacy problem
in polynomial time through this set, and it is better to try to use smaller
invariants. In the case of pseudo-Anosov braids, one may hope that the
so-called sliding circuit set is more useful. With B. Wiest, we presented a
polynomial time algorithm based on this last set which generically solves the
conjugacy problem, that is to say, it solves it for a proportion of braids that
tends exponentially fast to 1 as the length of the braid tends to infinity ([1],
[4]). We also showed that, in a ball of the Cayley graph with generators the
simple braids, a braid is generically pseudo-Anosov, which was a well-known
conjecture for the specialists in Garside theory ([1], [4]).

Bibliography

[1] S. CARUSO, Algorithmes et généricité dans les groupes de tresses,
PhD thesis (2013)
http://perso.univ-rennesl.fr/sandrine.caruso/these.pdf.
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sets grow exponentially, J. Knot Theory Ram. (2013), 22(9).

[3] On the genericity of pseudo-Anosov braids I: rigid braids
http://arxiv.org/abs/1306.3757

[4] S. Caruso, B. WIEST, On the genericity of pseudo-Anosov braids
1I: conjugations to rigid braids
http://arxiv.org/pdf/1309.6137

[5] J. GONZALEZ-MENESES, On reduction curves and Garside properties
of braids, Topology of algebraic varieties and singularities, Contemp.
Math., 538, Amer. Math. Soc., Providence, RI, (2011), p. 227-244
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Corina Ciobotaru Université Catholique de Louvain

Positivity of the renormalized volume of quasi-Fuchsian
hyperbolic 3-manifolds
—joint project with Sergiu Moroianu—

Let S be a closed surface of genus g > 2. A quasi-Fuchsian manifold is
S x R endowed with a complete hyperbolic metric. This metric induces a
conformal structure on the boundary at infinity of S x R, which is the union
of two copies of S. Conversely, by the Bers Simultaneous Uniformization
Theorem, for any two points ¢y, c_ in the Teichmiiller space associated to .S,
there exists a unique quasi-Fuchsian manifold with ¢y, c_ being, respectively,
the induced conformal structures on its two boundaries at infinity.
Motivated by physicists needs, one aims to replace the quasi-Fuchsian infi-
nite volume with a finite quantity. This is due to Schlenker [2] and Krasnov—
Schlenker [1]. They introduce the notion of the renormalized volume, which
turns out to be the log of a Kédhler potential for the Weil-Peterson metric
on the Teichmiiller space. Their idea is to associate a finite number to each
metric in the conformal structure at infinity of the quasi-Fuchsian manifold.
This is done by foliating accordingly the two ends of the manifold, calcu-
lating the intermediate volume at time ¢ determined by the foliation and
then taking the finite part from the asymptotic expression of the interme-
diate volumes when t — oo. In general, the renormalized volume cannot
be computed explicitly, given a metric in the conformal structure at infinity.
This is because the definition of the renormalized volume really depends on
the equidistant foliation associated to the metric in the conformal structure.
Nevertheless, Krasnov—Schlenker prove that, under variations of the metric
in its conformal class that keep the area of boundary at infinity fixed, the ex-
tremum of the renormalized volume occurs only for the metrics at infinity of
constant negative curvature. Furthermore, by considering the second varia-
tion, those critical points are local maxima. But a natural question arises. Is
the renormalized volume corresponding to the hyperbolic metric in the con-
formal class a positive quantity? In a joint project with Sergiu Moroianu we
aim to study whether the renormalized volume is indeed a ‘genuine volume’
quantity for a quasi-Fuchsian manifold.
Bibliography
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Antoine Clais Université Lille 1

Combinatorial Loewner Property on boundaries of right-angled
hyperbolic buildings.

We are working on groups called graph products, acting on right-angled
hyperbolic buildings. The definition of graph products generalizes the classes
of right-angled Coxeter and Artin groups. Let G be a simplicial graph. We
denote GO = {v1,--+ ,v,}. To each vertex v; we associate an element g; of
the set N\{0,1} U {oco}. The graph product I' = (G,{q;}i=1..n) is defined by
the following presentation :

= (s1, -+ ,sp|s? =1 and [s;,s;] =1 if v; adjacent to v; in G) .

We now assume that " is Gromov hyperbolic and we denote 0T its visual
boundary. Using a construction due to Davis and Moussong, I' acts on a
right-angled hyperbolic building . This action is transitive and free on the
set of chambers of ¥ and 0% ~ 0T

We would like to find some examples of boundaries of such groups satisfy-
ing the Combinatorial Loewner Property (CLP). To define this property we
first need to define the combinatorial modulus which is essentially a measure
(in a weak sense) on the set of all the curves in OI'. Then, denoting by A and
B two connected compact and disjoint subsets of OI" the CLP is satisfied if :
the combinatorial modulus of the set of all curves joining A to B is controlled
by A(A, B) the relative distance belween A and B,

dist(A, B)
min{diam(A), diam(B)}’

A(A, B) =

This may be proved thanks to the large amount of symmetries that the
building structure and the action of I induce on the curves of OT'.

Recently Bourdon and Kleiner found a necessary condition for the bound-
ary of a hyperbolic Coxeter group to satisfy the CLP. In their paper they
present lots of examples of Coxeter groups that verify this condition and
they use the CLP to give a new proof of the Cannon conjecture for Cox-
eter groups. Their criterion may be adapted to the case of graph products.
Now we are looking for examples of graph products that satisfy the criterion.
Then finding the CLP on the boundary of some hyperbolic buildings could
lead to show some rigidity results on the buildings.

Bibliography
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Matthew Cordes Brandeis University
Contracting boundaries

While boundaries of hyperbolic spaces are invariant under quasi-isometry,
Croke and Kleiner showed this is not the case in CAT(0) spaces. If one
restricts attention to rays with hyperbolic-like behavior, so-called “contract-
ing” rays, then one can define a boundary on CAT(0) spaces that is a quasi-
isometry invariant [1]. (Given a fixed constant D, a geodesic 7 is said to be D-
contracting if Yo,y € X, dx(x,y) < dx(z, 7 (x)) = dx(ny(z), 7 (y)) < D
where 7, (x) is the nearest point projection of z onto v.) My research inter-
ests lie in using this boundary to identify quasi-isometry classes of groups.
Currently, T am looking into what the “contracting boundary” can tell us
about about the quasi-isometry classes of right-angled Coxeter groups.

I have also generalized the contracting boundary so that it is defined for
any geodesic metric space, not just CAT(0) spaces. In the case of this bound-
ary, I looked at quasi-geodesic rays that were “Morse”-quasi-geodesic rays.
(A quasi-geodesic vy is M-Morse if for any constants K > 1, L > 0, there is
a constant M = M (K, L), such that for every (K, L)-quasi-geodesic o with
endpoints on v, we have 0 C Nps(y).) In the case of a CAT(0) space, Morse
and contracting rays are equivalent and this boundary is homeomorphic to
the contracting boundary. In the case of a hyperbolic space, this Morse
boundary is homeomorphic to the visual boundary.

Bibliography
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ArXiv e-prints, August 2013.
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Ruben Dashyan Institut de Mathématiques de Jussieu, Paris

Groups and deformation in complex hyperbolic geometry

The subjects that I am interested in fall within the context of hyperbolic
geometry, which could refer in particular to the study of the Riemannian
manifolds modelled on hyperbolic space Hp and more generally to that of
hyperbolic metric spaces in the sense of Gromov. Another class of objects
appears in complex hyperbolic geometry, which proves quite different from
a mere translation of real hyperbolic space into the language of complex
numbers.

In the continuous world of Lie groups, one may try to deform a lattice into
another while estimating to which extent a specific property is preserved.
For instance, a lattice of the group of orientation-preserving isometries of
H% is quasi-Fuchsian whenever it is obtained from a Fuchsian group by a
quasi-conformal deformation. Although one may decide whether a lattice is
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quasi-Fuchsian in special cases, raising the hope that a more general answer
exists, there is still no such method.

The answer to a special case was part of the proof of the surface subgroup
conjecture by Kahn and Markovic [1]. However the ingredients do not seem
peculiar to real hyperbolic geometry nor to dimension 3. For example, the
variational formula of Wolpert-Kerckhoff-Series [2| admits a counterpart in
HZ [3]. On the other hand, some arguments belong in the discrete world of
Gromov hyperbolic groups. However, in the latter context, the deformation
tools become inappropriate.
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Jonas Deré KU Leuven Kulak
Anosov diffeomorphisms on infra-nilmanifolds

One of the first examples of a dynamical system with global hyperbolic
behavior was given by Arnold’s cat map, the diffeomorphism of the 2-torus
T? which is induced by the matrix

A:G 1)

Note that A only has eigenvalues of absolute value different from 1. This
diffeomorphism has interesting dynamical properties, e.g. the periodic points
are dense in 72 and the map is structurally stable, meaning that every small
distortion is topologically conjugate to the original map.

Roughly said, a diffeomorphism of a closed manifold is called Anosov if the
tangent bundle splits into two df-invariant vector bundles E® and E* such
that f contracts £° and expands E". The example above is an Anosov dif-
feomorphism where the vector bundles are induced by the eigenspaces of the
matrix A. Every Anosov diffeomorphism has similar properties as Arnold’s
cat map and thus they form an interesting type of dynamical systems to
study.

All known examples of Anosov diffeomorphisms are of algebraic nature.
For example, every Anosov diffeomorphism on an n-torus is topologically
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conjugate to a diffeomorphism induced by an integer matrix on the uni-
versal cover R", just like the example above. It is conjectured that ev-
ery Anosov diffeomorphism is topologically conjugate to a hyperbolic infra-
nilautomorphism, where infra-nilmanifolds form the natural generalization
of tori.

My research is focused on the classification of all compact manifolds (up
to homeomorphism) which admit an Anosov diffeomorphism. Since every
manifold with an Anosov diffeomorphism is conjectured to be homeomor-
phic to an infra-nilmanifold, we focus our attention on these manifolds. By
studying a rational representation of the holonomy group, I was able to clas-
sify all infra-nilmanifolds modeled on a free nilpotent Lie group which admit
an Anosov diffeomorphism. This is a generalization of a statement of Por-
teous (see [1] for more details). Currently, I am working on a classification
of infra-nilmanifolds with Anosov diffeomorphisms in low dimensions and on
some minimality questions concerning the dimensions of £° and E".
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Bruno Duchesne Institut Elie Cartan, Université de Lorraine

Groups acting on infinite dimensional
non-positively curved spaces

Groups are usually better understood through their actions on nice spaces.
Groups acting on non-positively curved spaces have been widely studied, in
particular when spaces on which groups act are locally compact. If one re-
moves the assumption on local compactness, results can become false but
there are nice spaces which are not locally compact but which seem to be
nice enough to let actions of certain groups be understood.

A large class of non-positively curved spaces is given by spaces associ-
ated to semi-simple algebraic groups over local fields. Those are symmetric
spaces of non-compact type in the Lie case and Bruhat-Tits buildings in the
non-Archimedean case. There exist analogs in infinite dimension that are in-
finite dimensional symmetric spaces of finite rank and non-discrete Euclidean
buildings. Using differential geometric methods or ergodic theory one can
prove rigidity theorems in the spirit of Mostow rigidity and Margulis super-
rigidity theorems for actions of lattices in semi-simple algebraic groups on
these spaces.
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Infinite dimensional spaces of non-positive curvature appear in some sit-
uations naturally. For example, the famous invariant subspace problem for
operators on the separable Hilbert space can be rephrased using the geom-
etry of an analog of the symmetric space SL,(R)/SO,(R). Some actions
on the circle can be studied using the universal Teichmuller space which
has a component which is a Riemannian manifold of negative curvature and
infinite dimension.
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Thibaut Dumont Ecole Polytechnique Fédérale de Lausanne

Polynomially bounded cohomology for p-adic groups

Bounded cohomology was first introduced by Gromov [2] for smooth man-
ifolds. Later Monod [4] studied bounded cohomology for groups with arbi-
trary coefficients. In his article he addresses many problems, notably the
Problem P (see below) which T am most interested in.

Let G be a reductive p-adic group. The standard cohomology is well-
known for such groups at least for irreducible admissible coefficient modules,
see Casselman’s famous unpublished notes [1]. In the almost simple case,
Klingler [3] built natural cocycles using the Bruhat-Tits building associated
to G. The later is a G-space X which captures most of the geometric infor-
mation of G, e.g. X and G are quasi-isometric. But bounded cohomology
remains largely unknown.

While investigating the bounded cohomology of these groups Monod sug-
gested one should use a generalized concept of polynomially bounded coho-
mology. Our aim is to fully answer the following problem when the local
field is Q.

Problem P. Let G = G(F) be a simple group of F-rank r > 0 over a
local field F. Quasify Klingler’s cocycles in order to obtain new classes in
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degree v+ 1 for cohomology with polynomial growth degree r — 1 (in suitable
module).

The problem implicitly asks to define properly the G-modules involved
and the cohomology with polynomial growth. Ogle [6] has results in this
direction for countable groups. Quasification of cocycles was first perform
by Monod and Shalom in [5].
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Yen Duong University of Illinois at Chicago
RESEARCH STATEMENT

I am in my second year of the Ph.D. program, studying developments
in geometric group theory. In particular, Stallings’ work with coverings of
graphs [1] has been the inspiration behind very, very many papers — includ-
ing fairly direct applications to pairs of finitely generated subgroups [2] and
less obvious applications with special cube complexes [3].

In [1], Stallings builds a canonical completion of a graph to a cover in
order to prove Marshall Hall’s theorem that any finitely generated subgroup
of a free group is a free factor in a subgroup of finite index. In [3], the
authors constructs an analogue of this canonical completion, using special
cube complexes rather than graphs, which yields a number of fun results.
For instance, quasi-convex subgroups of fundamental groups of special cube
complexes are separable. Another technique in [1] is to examine the core
of a graph, which proves that if the intersection of two finitely generated
subgroups has finite index in both, then it also has finite index in the join
of the two. A similar technique is applied in [2], which addresses pairs of
finitely generated subgroups of infinite index in free groups.
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Certainly there will be even more analogues and extensions of the remark-
able [1] to other properties of groups. I have yet to choose a research project.
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Matthew Durham University of Illinois at Chicago
Coarse geometry of Teichmiiller spaces and mapping class groups

I am currently a 5th year graduate student at the University of Illinois
at Chicago, under the supervision of Daniel Groves. My research is focused
on understanding the coarse geometry of Teichmiiller space — the space of
hyperbolic metrics on a surface S up to isotopy, 7 (S) — with both the Teich-
miiller and Weil-Petersson metrics. [ am also quite interested in the mapping
class group — the group of orientation-preserving homeomorphisms of S up
to isotopy to the identity, MCG(S) — which is closely related and shares
strong coarse geometric features with 7(S) with both metrics.

Using work of Rafi [8], my first paper [1| adapts the Masur-Minsky hier-
archy machinery [6] to build a graph called the augmented marking complex
which is MCG(S)-equivariantly quasiisometric to 7 (S) with the Teichmiiller
metric. Very briefly, 7(S) with the Teichmiiller metric can be thought of as a
hyperbolic space (the uniformly thick part) with many interconnected prod-
uct regions (the thin parts) |7] glued on in a complicated fashion determined
by the curve complex [5]. I use the Masur-Minsky marking complex [6] as a
model for the thick part and build out the augmented marking complex as
a model for the thin parts. The augmented marking complex was recently
used by Eskin-Masur-Rafi [2] to prove the rank conjecture for 7(S) with the
Teichmiiller metric.

In my second paper, I study the action of finite order subgroups of MCG(S5)
acting on 7(S) with the Teichmiiller metric. In his famous solution [4] to
the Nielsen Realization Problem, Kerckhoff showed that any such subgroup
H < MCG(S) fixes at least one point in Teichmiiller space.



22 YGGT 3: RESEARCH STATEMENTS

Denote the set of H-fixed points by Fiz(H). Given any point X €
Fixz(H), H preserves the metric on X and Fiz(H) is an isometrically em-
bedded copy of the Teichmiiller space of the quotient orbifold X/H inside
of T(S). As a subspace of 7(S), Fix(H) is convex. Given the dearth of
convex subsets of 7(S) with the Teichmiiller metric — other than such fixed
point sets, only Teichmiiller geodesics and special isometrically embedded
copies of H? called Teichmiiller disks are known to be convex — one might
ask whether Fiz(H) can be enlarged in a natural way to a larger convex or
quasiconvex set.

For any constant R > 0, set Fizg(H) = {X € T7(5)|diamrpeich(H - X) <
R} to be the R almost-fized points of H. In a negatively curved space, one
would expect Fizr(H) to be a convex regular neighborhood of Fix(H), but
given the product structure of the thin parts of 7(5), it is a priori unclear

that Fizg(H) is even connected, let alone convex or contained in a bounded
neighborhood of Fiz(H).

My work answers some of these questions. First, I show that for any R,
Fizgr(H) is contain in a uniformly bounded regular neighborhood of Fix(H).
I also show that any point X € 7(S) has a fixed barycenter. Both of these
results are easy in a nonpositively curved space, such as 7 (S) with the Weil-
Petersson metric. By contrast, I build a large family of examples which show
that Fizg(H) is generally not quasiconvex, which strongly uses the product
structure of the thin parts of 7(5).

I am also quite interested in hyperbolic 3-manifolds, CAT(0) cubical ge-
ometry, RAAGs, and Out(F,).
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Elisabeth Fink Université Paris-Sud 11 (Orsay)
Growth and other properties of branch groups

I have just finished my thesis in Oxford and am now a PostDoc at Paris-
Sud. My research focuses on branch groups, in particular their growth.
These are groups of automorphisms acting on a rooted tree, which does
not necessarily have to be regular. 1T further studied word-relations in such
branch groups and other rare algebraic properties they have.

My thesis evolved mostly around a group acting on a spherically homoge-
nous tree, which is given by a sequence {l;},- of distinct primes, [; > 3. A
group acting on such a tree has a generator of infinite order and is virtu-
ally torsion free. However, it also falls into the class of branch groups and
constitutes a first known example of a branch group that has exponential
growth but does not contain any free subgroups as the following Theorems
[1] imply:

Theorem A. Let G be a certain branch group acting on a spherically
homogenous rooted tree given by a sequence {l;},~, of distinct odd primes.
Then if l; is such that l; > 36° for each i, then there exists for every g,h € G
a word 1 # wgp(x,y) € F(x,y), where F(x,y) is the free group on two
generators, such that wyp(g,h) =1€ G.

The proof of this Theorem gives an explicit construction of such a word,
which only depends on the length of the chosen elements g and h.

Using the self-similarities within G, it is also possible to prove that G has
exponential growth under certain assumptions:

Theorem B. Let G be a group as above. Then G has exponential growth,
if l; is such that [; > O3 (2+)+1,

Similar methods can be applied to obtain growth estimates for a wider
class of branch and self-similar groups.
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Giovanni Gandini University of Copenhagen
Finiteness properties of groups

My research is mostly concerned with questions regarding cohomological
dimensions and other finiteness properties of groups. At the moment I am
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thinking about the Bridson-Kropholler conjecture, which claims that every
group of rational homological dimension one is a filtered colimit of groups
of rational cohomological dimension one. I am also interested in the Farrell-
Jones conjecture, and in homological stability for sequences of automorphism
groups.
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Lukasz Garncarek Mathematical Institute, University of Wroctaw
Irreducibility of quasiregular representations

Consider a group G acting on a measure space (X, u), in such a way
that the push-forward measure 7,u has a density p, with respect to u, for
all v € G. In such a setting we may define a series {ms}ser of unitary
representations of G on the space L?(X, i) by the formula

ms(7)f = pi/ P fony,

I am interested in irreducibility of such representations, coming from some
natural actions of groups on measure spaces. It is a mixing property stronger
than ergodicity, and can be thought of as “quantum ergodicity”. In my MSc
thesis [1] I established it for the group of symplectomorphisms of a symplectic
manifold, and the group of contactomorphisms of a contact manifold. In [2]
I did it for Thompson’s groups F' and T, acting on the interval and the
circle, respectively. Currently, I am looking into the case of the action of a
0-hyperbolic group on its boundary.
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Maxime Gheysens Ecole Polytechnique Fédérale de Lausanne
Structure of CAT(0) spaces and of their isometry groups

I am mostly interested in the geometry of CAT(0) spaces and in group
actions on these spaces, especially rigidity of the latter (i.e. fixed point prop-
erties). Several beautiful results are known to hold in the locally compact
setting, for instance:

(1) equivariant splitting as a product of Euclidean spaces, symmetric
spaces and spaces with totally disconnected isometry group (see [3,
Theorem 1.1]);

(2) characterization of symmetric spaces and buildings in that setting
(see [3, Theorem 1.3, Theorem 1.4]);

(3) superrigidity of actions of irreducible uniform lattices in product of
groups (this holds without local compactness, see |2, Theorem 6]);

(4) characterization of amenable isometry groups of proper cocompact
CAT(0) spaces (see [5, Theorem A]).

However, very few results are known in the much wilder realm of non locally
compact CAT(0) spaces. Most of my research focuses on understanding these
more pathological spaces.
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Anne Giralt Institut de Mathématiques de Jussieu, Paris
Special cubes complexes and ramified covering

I begin my second year of PHD and I'm interested in groups acting on
CAT(0) cube complexes. In my first year of PHD, I worked on fundamental
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groups of manifolds constructed by Gromov and Thurston in [1]. Theses con-
structions provide examples of manifolds of dimension n > 4 with sectional
curvature as close to —1 as we want, but which do not admit a Riemannian
metric with constant curvature. To do that, Gromov and Thurston consider
some cyclic ramified cover of simple arithmetic manifolds. We have a lot
of examples of groups of hyperbolic manifold which are virtually special,
due to Agol [2] and Wise, all 3-manifold groups are virtually special. Other
examples are the simple arithmetic manifolds. It’s a result of Bergeron,
Haglund and Wise [3]|. So I prove, using simple ramified coverings of cube
complexes, that Gromov and Thurston’s examples are virtually special too.
I am curently trying to generalise the notion of ramified coverings of cube
complexes, and find conditions to keep the special property, in order to find
new special groups.
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Dominik Gruber University of Vienna

Graphical small cancellation groups

My research is focused on (infinitely presented) graphical small cancel-
lation groups. Graphical small cancellation theory is a generalization of
classical small cancellation theory that allows constructions of groups with
prescribed embedded subgraphs in their Cayley graphs. It was introduced
by Gromov, extending ideas of Rips and Segev.

Using a geometric version of this new theory, Gromov constructed Gro-
mov’s monster, a lacunary hyperbolic group that coarsely contains an ex-
pander graph [1, 2]. This group is currently the only known group that does
not coarsely embed into a Hilbert space, and it is a promising candidate for
a counterexample to the Baum-Connes conjecture. (It already provides a
counterexample to a stronger variant of the conjecture, the Baum-Connes
conjecture with coefficients [4].)

I am interested in the combinatorial interpretation of graphical small can-
cellation theory. In this context, the graphical generalizations of the classical
non-metric C(n) small cancellation conditions are natural. I will briefly give
definitions and first results.
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Let S be a finite set. A labelled graph I' over the alphabet S is a graph
each edge of which is assigned an orientation and an element of S. The
group defined by T', denoted G(T'), is given by the presentation G(I') :=
(S| words read on closed paths on T').

A piece on I'is a labelled path that can be read from two distinct vertices of
I'. The labelled graph I satisfies the graphical C'(n) condition if no nontrivial
closed path on I' is the concatenation of fewer than n pieces and if the labels
of reduced paths are freely reduced words.

In my paper [3], I established basic properties of graphical C'(6) and C(7)
groups. Besides generalizations of fundamental facts about classical C(6)
and C(7) groups, the following are main results:

Theorem. Let I' be a C(7)-labelled graph. Then G(I') contains a non-
abelian free subgroup unless it is trivial or infinite cyclic.

Theorem. Let (I'),)nen be a sequence of finite, connected graphs such that
their disjoint union I' is C'(6)-labelled. Then the coarse union of the I',
coarsely and injectively embeds into Cay(G(T'),S). If, moreover, I' is C(7)-
labelled, then there exists an infinite subsequence of graphs (I'x, )nen such
that G(UpenI't,) is lacunary hyperbolic.

Thus the C(7) condition permits constructions of non-amenable, lacunary
hyperbolic groups that coarsely contain prescribed infinite sequences of finite
graphs.

Most existing constructions of graphical small cancellation groups with
extreme properties use geometric small cancellation conditions and rely on
probabilistic arguments, whence they are non-explicit. One of my main ob-
jectives is to construct such groups explicity using the more easily accessible
graphical C(n) conditions. In this context, expander graphs in particular
have drawn my interest.

Another main objective is to establish further group-theoretic and analytic
properties of (infinitely presented) graphical small cancellation groups to
better understand this class of groups.

My research is supervised by my advisor Goulnara Arzhantseva and sup-
ported by her ERC grant “ANALYTIC” no. 259527.
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Thomas Haettel Université Montpellier 2

Asymptotic geometry of homogeneous spaces and nonpositive
curvature of braid groups

I am interested in understanding the asymptotic geometry of homogeneous
spaces, such as the space of maximal flats of a symmetric space of non-
compact type or of a Euclidean building ([1],[2]).

I am also interested in CAT(0) spaces and groups. With Dawid Kielak
and Petra Schwer, we have been studying simplical K (7, 1)’s for braid groups
and other Artin groups of finite type, described by Tom Brady and Jon
McCammond ([3],[4]). We have proved that some of them are CAT(0) ([5]).
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Tobias Hartnick Technion, Haifa

Cohomological boundary rigidity

At the moment I am interested in the following problem: Let G be a
topological group, H?(G;R) its continuous group cohomology and H3(G; R)
its continuous bounded group cohomology. What can you say about the
natural comparison map

a(GR) — HZ(G;R)?

For a discrete group G, the right hand side captures topological information
about the classifying space BG, while the left hand side captures informa-
tion about the possible outcomes of random walks on the group. Thus the
comparison map relates asymptotic probabilistic information to topological
information. It is far from understood even in the simplest non-amenable
cases, such as for free groups. In this specific case, one can try to use the fact
that a free group is a lattice in SLo(R) and coamenable to a lattice in SLg(C)
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in order to obtain cohomological information. Thus, even if one is originally
only interested in discrete groups, one is naturally led to study the com-
parison map for Lie groups. In this case, techniques from analysis (partial
differential equations, harmonic analysis, integral transforms) are available.
This machinery has only very recently been set up properly (see [1]), and we
are now curious to see what our Lie theoretic computations imply for the
study of discrete groups.
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Jestis Hernandez Hernandez Université Aix-Marseille

Rigidity of the mapping class group and associated structures

I have just started my PhD supervised by Dr. Hamish Short and Dr.
Javier Aramayona at the Aix-Marseille Université. My research focuses on
the rigidity phenomena of the mapping class group and combinatorial struc-
tures associated to compact surfaces.

The parallels between the behaviour of the mapping class group of a com-
pact surface of negative Euler characteristic and that of arithmetic/algebraic
groups and arithmetic lattices, have raised many analogies between proper-
ties of one and the other. In particular, the rigidity (and superrigidity)
problem of the mapping class group is related to the rigidity result in semi-
simple Lie groups known as Mostow rigidty (Margulis superrigidity). While
there have been several advances pertaining the rigidity problem by N.V.
Ivanov, J. Behrstock, D. Margalit, E. Irmak, K.J. Shackleton, among others,
I will be focusing on extending the rigidity results of several combinatorial
structures, such as the Curve complex and the Hatcher-Thurston complex,
into superrigidity results; this will have the benefit of not only being applied
to the rigidity of the mapping class group, but also to that of other struc-
tures associated to a compact surface such as the Teichmiiller space and the
Moduli space, among others.

Among the techniques used here, are those developed on the study of
large-scale geometry and hyperbolic (and relatively hyperbolic) groups. The
reason for this is the need of the study of different kinds of elements of the
mapping class group and the study of the different properties needed in the
homomorphisms between (a priori) different mapping class groups to achieve
the rigidity.

Given that I have just started my PhD not too long ago, I have no results
to present here as my own yet.
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Camille Horbez Université de Rennes 1

Horoboundary of outer space, random walks, and
Out(Fy)-complexes

My research concentrates on the study of the group Out(F),) of outer
automorphisms of a finitely generated free group via its action on several
geometric complexes, such as Culler and Vogtmann’s outer space CV,,, or
complexes of splittings of F),.

I have been studying a compactification of outer space via horofunctions
for the asymmetric metric. This was motivated by a desire to understand the
behaviour of random walks on Out(Fy): a theorem of Karlsson and Ledrap-
pier provides conditions under which a random walk on a group acting on a
metric space follows a random direction directed by some horofunction. This
can be used to derive an Oseledets-like theorem for random automorphisms
of free groups.

Describing the horocompactification of outer space turns out to be related
to the question of spectral rigidity of the set Py of primitive elements of Fy
in Fy-trees: what can we say of two trees T,T" € cvy whose translation
length functions are equal in restriction to Px? I have constructed a class of
examples of trees having this property, and shown that this class of exam-
ples provides the only obstruction to spectral rigidity of the set of primitive
elements of Fyy in cuy.
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I am more generally interested in developing tools for studying random
walks on Out(Fly), in particular adapting Kaimanovich and Masur’s tech-
niques for mapping class groups to the Out(Fy) case. For instance, one
might ask conditions under which a random walk on outer space converges
to some boundary point, or ask for generic properties of elements of Out(Fy)
obtained by following a sample trajectory during sufficiently long time. Ran-
dom walks can be used for instance to study subgroups of Out(Fy), or to
describe the Poisson boundary of Out(Fy).

Finally, I have some interest in investigating the geometry of some hy-
perbolic Out(Fy)-complexes, among which stand the complexes of free or
cyclic splittings of Fy. In a joint work with A. Hilion, we gave a new proof
of the hyperbolicity of the free splitting complex FSy, due to Handel and
Mosher, by understanding the geometry of surgery paths in a dual model of
FS,, defined in terms of spheres. I am now interested in questions such as
describing the Gromov boundaries of these complexes.
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David Hume Université Catholique de Louvain
Research statement

Coarse embeddings of discrete metric spaces into Banach spaces have been
an important topic in computer science for many years and more recently
became so in geometric group theory, combinatorics and K-theory. At the
suggestion of Gromov, Yu and later Kasparov and Yu proved that any group
admitting a coarse embedding into any uniformly convex Banach space sat-
isfies the Novikov and coarse Baum-Connes conjectures. However, Gromov
proved that there exist finitely generated groups which do not admit a coarse
embedding into any Hilbert space.

A stronger notion was introduced by Guentner and Kaminker, called the
compression exponent, aj (X ). This is defined as the supremum over o €
[0, 1] such that there exists a map ¢ : X — Y such that, for some C' > 1,

Cldx (1, 22)% — C < dy (d(x1), ¢(21)) < Cdx (21,22 + C

We denote by o, (X) the value () (X), and call this value the /P compres-
sion exponent.

My previous work has been to calculate the compression exponent of var-
ious important families of groups (cf. [Hum11, Hum12]).

Theorem 1  Let G be a finitely generated group which is hyperbolic relative
to a collection of subgroups {H; | i = 1,...,n}. For allp > 1, ay(G) =
min{ay(H;) |i=1,...,n}.

Theorem 2 Let S be a compact oriented surface. Then ay(MCG(S)) =1
for every p > 1.
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The same questions can be asked for equivariant embeddings, that is em-
beddings ¢ : G — X such that for some action of G on X, (g,z) — g-x, ¢ is
the orbit map of the action with respect to some point e € X, i.e. ¢(g9) =g-e
for every g € G. The equivariant ¢’ compression exponent a;’f& (@) is then
given by the same supremum as a;,(G) but taken over only equivariant em-
beddings. Unlike the situation for a;(G) very few real numbers are known
to be the equivariant compression exponent of a finitely generated group.
This is one of my current research interests.

My other current interests include the geometry of (permutation) wreath
products, spaces with no convex splittings, and constructions of relatively
hyperbolic groups with given peripheral subgroups.
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Andrew Kelley Binghamton University

Research statement

Earlier in 2013, I started studying the Banach-Tarski paradox and amena-
bility from Stan Wagon’s book [1]. T then spent the summer studying the pa-
per by Kate Juschenko and Nicolas Monod [2], demonstrating the amenabil-
ity of a known uncountable collection of finitely generated simple groups
(which are infinite). Each group arises from a homeomorphism 7" of the
Cantor set, which is minimal, that is, that for every point p in the Cantor
set, {T"(p)|n € Z} is dense, or equivalently, that there is not proper subset
of the Cantor set, invariant under 7.

After this paper, I was planning on reading the newer paper [3|, which
“gives a more straightforward and conceptual proof of [the previous paper]|.”
In this paper, amenability of a larger class of groups is connected to whether
or not a certain natural random walk is recurrent.
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Dawid Kielak RFW-Universitiat Bonn

Recent activity

Out(F,) AND Out(RAAG)

I am interested in the outer automorphism groups of free groups. In
particular T would like to understand their linear representations and rigidity
of homomorphisms between different groups in the family. T am also very
much interested in property (T) and property FAb for this class of groups.

More recently I started thinking (together with Sebastian Hensel and Piotr
Przytycki) about the Nielsen realisation theorem for Out(RAAG). Fascinat-
ing as it is in its own right, it is also an important tool that should allow a
lot of techniques from Out(F},) to be adapted to this more general collection
of groups.

CURVATURE OF BRAID GROUPS

I am also investigating simplicial K (7, 1)’s for braid groups (defined by
Brady-McCammond). Together with Thomas Haettel and Petra Schwer we
managed to prove that this space associated to the 6-strand braid group is
CAT(0).

LEFT-INVARIANT ORDERINGS AND FRACTIONS

Another area of my recent activity is the theory of left-invariant orderings,
and associated problems in the structure of semigroups of groups. In partic-
ular I am interested in geometric ideas that would help answering questions
related to the structure of spaces of left-orderings for groups, which can be
understood via their geometry (e.g. (relatively) hyperbolic groups, groups
with infinitely many ends).
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Juhani Koivisto University of Helsinki,

Department of Mathematics and Statistics
Analysis in metric spaces

My area of research is curvature in metric spaces and rigidity properties
of groups. In particular, I have looked into generalizations of Kazhdan’s
Property (T) in the setting of reflexive Banach spaces obtaining a vanishing
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condition for 1-cohomology with coefficients in uniformly bounded represen-
tations, [1]. Currently, I have been looking for a similar vanishing condition
for isometric representations, and as an intermediate step, at the higher
cohomology groups with coefficients in uniformly bounded representations.
In the metric space setting, [ have been looking at possible obstructions to
weighted Poincaré inequalities using the controlled coarse homology of P. W.
Nowak and J. Spakula describing “how amenable” a space is [2].
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Christian Lange Universitdt zu Koln

The underlying space of an orbifold

I am a first-year PhD student of Alexander Lytchak in Cologne. I started
my PhD project by answering the question posed by Davis: “When is the un-
derlying space of an orbifold a topological manifold?” [1]. It amounts to the
classification of finite groups acting isometrically on a Fuclidean vector space
such that the quotient space is homeomorphic to the original vector space.
The solution to this problem requires techniques from geometry, topology
and group theory. I obtained the following result [2].

Theorem. For a finite subgroup I' < O(n) the quotient space R"/I" is
homeomorphic to R™ if and only if I' has the form

'=Tps x Py x...x Py

for a pseudoreflection group I'ys and binary icosahedral groups P; < SO(4),
i =1,...,k, such that the factors act in pairwise orthogonal spaces and such
that n >4 if k= 1.

Pseudoreflection groups are finite linear groups generated by rotations, i.e.
by orthogonal transformations with codimension two fixed point subspaces.
Examples are orientation preserving subgroups of real reflection groups and
unitary reflection groups considered as real groups.

Currently, I am working on extensions of my result to other categories and
on the analogous question for manifolds with boundary. A related problem is
a question by Gromov, if there are compact manifolds in arbitrary dimensions
that can be written as a quotient of a hyperbolic space by an isometric and
discrete group action.
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In general, I am interested in connections between geometry, topology and
group actions and I would like to learn more about geometric group theory,
in particular.
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Nir Lazarovich Technion, Haifa
Regular CAT(0) polygonal/cubical complexes

My main research interest is group actions on polygonal and cube com-
plexes.

Given a natural number £ > 3 and a finite graph L (respectively a fi-
nite flag simplicial complex L), it is natural to consider the CAT(0) (k, L)-
complexes (resp. CAT(0) L-cube-complexes); these are polygonal complexes
(resp. cube complexes) obtained by gluing regular k-gons (resp. cubes)
such that at each vertex the link is isomorphic to L. The study of these
complexes may provide various examples for geometric group actions which
exhibit interesting algebraic and geometric properties.

A natural question arises: can one give a necessary and sufficient condition
on the pair (k, L) (resp. on the complex L) such that there is a unique, up
to isomorphism, CAT(0) (k, L)-complex (resp. L-cube-complex)? The few
known examples of unique (k, L)-complexes have provided a fertile ground
for many theorems.

Thus far, we were able to answer this question fully for the pair (k, L)
when k is even and for cube complexes. The main result describes a simple
combinatorial condition, called superstar-transitivity, on L for which there
exists at most one (k, L)-complex (resp. L-cube-complex). This condition is
also sufficient for uniqueness in pairs (k, L) where k is odd.

In light of these results, it is clear that complexes with superstar-transitive
links play a special role in the world of polygonal/cube complexes. The aim
of this research is to investigate the special properties of these complexes
through the study of the general theory.

* Kk k k ok
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Adrien Le Boudec Université Paris-Sud 11 (Orsay)
Large scale geometry of groups

My research has been so far mainly concerned with the asymptotic geom-
etry of discrete and locally compact groups.

Asymptotic cones. An asymptotic cone of a locally compact group G
endowed with some word metric is a metric space which is a sort of picture
of G seen from infinitely far away. The construction of asymptotic cones
depends on the choice of a scaling sequence and a non-principal ultrafilter,
and therefore a group G may have different asymptotic cones, not containing
the same information about large scale geometric properties of G.

One of the main question I am focusing on is the study of the existence
of cut-points in asymptotic cones. Recall that a point in a connected metric
space is a cut-point if we get a disconnected space when we remove it. Having
cut-points in some asymptotic cones is closely related (Drutu-Mozes-Sapir)
to a geometric property of the group G called divergence, which, roughly,
estimates how hard it is to connect points in G while avoiding a large ball.

Almost automorphisms of trees. Recently [ have also been interested
in the group AAut(T") of almost automorphisms of a locally finite tree T
This group does not act on the tree but on its boundary 90T. Roughly
speaking, an almost automorphism of T" is a homeomorphism of 9T which is
piecewise a tree automorphism. This group carries a natural locally compact
and totally disconnected topology.

In the case of the non-rooted regular tree 7, the almost automorphism
group AAut(7;) was introduced by Neretin and later Kapoudjan proved
that AAut(7;) is a simple group. Recently, the work of Bader, Caprace,
Gelander and Mozes shed light on some very interesting property of this
group: although locally compact simple groups usually tend to have lattices,
they proved that AAut(7;) does not follow this rule. Actually AAut(7y)
turned out to be the first example of a locally compact simple group without
lattices.

When T is a quasi-regular tree, the almost automorphism group of T con-
tains R. Thompson’s groups and their generalizations usually called Higman-
Thompson’s groups. One of the reasons why people became interested in
these finitely generated groups is because of the combination of simplicity
and finiteness properties. While simplicity results for AAut(7') have already
been studied, I recently proved that the group AAut(7) is compactly pre-
sented. Additionally, I also obtain an upper bound on its Dehn function in
terms of the Dehn function of the embedded Higman-Thompson’s group.

* K k kK
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Nils Leder Universitat Miinster
Research statement

I am a second year Master student at the WWU Miinster, Germany, but
spend the winter semester 2013/14 as an ERASMUS student at Paris 13.
My interest for (geometric) group theory arose from lectures by Prof. Linus
Kramer and by Prof. Arthur Bartels on this topic.

I wrote my bachelor thesis on “The Complex of Free Factors of a Free Group”
related to the equally named article of Allen Hatcher and Karen Vogtmann.

I am also interested in the structure of group rings (in particular Ka-
plansky’s conjecture that for each torsion-free group G the group ring C[G]
contains only the trivial idempotents 0 and 1) and connections between group
theory and algebraic topology as graphs of groups.

My master thesis is planned to be about homological stability for Coxeter
groups.

* kK k k

Robin Loose Universitat Miinster
Statement of interests

This year is my second year as a master student at the WWU Miinster. So
far I have attended several courses in Group Theory, Geometry and Topology
in Miinster and Barcelona, where I studied for half a year as an Erasmus
student last year. For me one of the most fascinating features of modern
mathematics is exchanging methods and techniques of different areas. On the
one hand to develop new theories and raise interesting questions, on the other
hand in order to solve pure (algebraic/geometric/topological) problems. At
the moment I am studying Spaces of Non-positive Curvature, Characteristic
Classes, Index theory, L2-Invariants and Algebraic K-Theory.
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John Mackay University of Bristol
Analysis on boundaries of hyperbolic groups

I am interested in using tools from analysis to study hyperbolic and rela-
tively hyperbolic groups.
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The boundary at infinity of a hyperbolic group is a canonically defined
topological space, and there are many interesting links between the topolog-
ical properties of the boundary and algebraic properties of the group. For
example, local cut points in the boundary correspond to splittings of the
group over virtually cyclic subgroups [Bowditch)|.

However, the boundary has a metric structure too, which is canonical up to
‘quasisymmetric’ homeomorphisms (these are kind of like conformal or quasi-
conformal homeomorphisms in the plane). Pansu’s conformal dimension is
a variation on Hausdorff dimension which is relevant for these spaces, and
gives a quasi-isometric invariant of the hyperbolic group.

I'm interested in using conformal dimension to study random groups
(which typically are hyperbolic). Other tools from analysis like quasi-circles
are useful in this context too. I'm also working with Alessandro Sisto on ex-
tending some of these applications from hyperbolic to relatively hyperbolic
groups.

* ok K Kk Kk
Alba Marina Malaga Sabogal Université Paris-Sud 11 (Orsay)

Some properties of a family of transformations on a discrete
cylinder

I work on a family of (discrete) dynamical systems which is heuristically
related to a billiard on a parallelogram. This family is defined on the discrete
cylinder S' x Z where T! = R/Z is the one-dimensional torus (i.e. the circle).
For any bi-infinite sequence o € T%, we define the transformation F, almost
everywhere on the cylinder as follows:

Fa([z]z,n):([$+04n]z,n+{ 1 Zf x+an€(_§,0)+Z

When the sequence « is constant and irrational, Conze and Keane showed
in [1] that F, is ergodic.

I am trying to understand what are the typical properties of F, in the
following meaning. Namely, what properties hold for almost any « or for
a generic « in the parameter space? For the moment I have proved that
conservativity is both generic and almost-sure, whereas the minimality is
generic. I would like to understand also the diffusion properties of this family.

1 if z+a,€(0,3)+2Z >
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Michal Marcinkowski Wroclaw

My research interests include:

(1) Biinvariant word length. Let G be a group generated by a sym-
metric set S and let S be the minimal conjugacy invariant set con-
taining S. The biinvariant word metric, denoted [|.||, is the word
metric defined with respect to the (in most cases infinite) set S. It
may be dramatically different from the standard word metric (e.g.
SL(n,Z) is bounded in ||.||). I am interested in the geometry of
groups equipped with the biinvariant metric, especially in metric be-
havior of cyclic subgroups (i.e. distorsion).

(2) Coarse homology and macroscopic dimension. Recently coarse
homology theories were used to give homological characterisations of
geometrical notions such as macroscopic dimension (A.Dranishnikov)
and topological amenability (J. Brodzki, P.W. Nowak, G.A. Niblo,
N. Wright). I am interested in possible further applications of coarse
homologies in these directions.

(3) a-T-m property. We say that a group is a-T-m(enable) if it admits
a proper affine action on a Hilbert space. Every such action consists
of a linear transformation and a 1-cocycle. T am interested in meth-
ods of constructing affine representations as well as in growths of
1-cocycles.
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Marco Marschler Bielefeld University
Classical finiteness properties of certain families of groups

My research focuses on classical finiteness properties of groups. Recall
that a group G is said to be of type F), if it admits an Eilenberg-MacLane
space with finite n-skeleton and it is of type F if it is of type F,, for all n.

The class of groups I am mainly interested in are parabolic subgroups of
S-arithmetic subgroups of reductive algebraic groups over function fields.
My PhD-project, under supervision of Prof. Kai-Uwe Bux, is to determine
the finiteness properties of such groups. Another project, joint with Bux,
Martin Fluch, Stefan Witzel and Matthew Zaremsky, was concerned with
the finiteness properties of some generalizations of Thompson’s groups, such
as the braided versions Vp,. and Fp,. of V and F and the higher-dimensional
Brin—Thompson groups sV, s € N. Both projects include the proof of these
groups being of type F..
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Parabolic subgroups: A subgroup P of a Chevalley group G is called
parabolic if it contains a Borel subgroup B. Let S denote a finite set of
places of the global function field K and let Og be the ring of S-integers.
By work of Bux, Ralf Kéhl and Witzel, G(Og) is known to be of type Fg_1
but not of type Fy, where d equals the sum over the local ranks of G over
the completions K,,p € S. On the other hand, Bux proved in his thesis,
that the groups B(Ogs) are of type F|g_; but not of type F|g. In particular
the finiteness properties of the Borel subgroups only depend on the number
of places, not on the local ranks. It is therefore a natural thing to ask for
the finiteness properties of proper parabolic subgroups in between B and
G and the behaviour of the finiteness length as the groups P grow. Both
of the above results were obtained by considering actions of the groups on
affine buildings and using tools like discrete Morse theory to analyze these
actions. It stands to reason that the same tools can be used to determine
the finiteness properties of the parabolic subgroups.

Thompson’s groups: Elements of Thompson’s group F' can be heuris-
tically described in terms of “strands”. A single strand can split into two
and two adjacent strands can merge into one. This point of view leads to
the well-known description of F' by paired tree diagrams or “split-merge”
diagrams. If in addition the strands in these diagrams are allowed to braid
with each other, one obtains a description of the braided Thompson group
Vi as intoduced by Brin and shown to be finitely presented. In joint work
with Bux, Fluch, Witzel and Zaremsky we recently proved that Vj, is even
of type Fo. This was done by considering the action of Vj,. on a space X
that is termed the Stein space for Vp,.. This space is a retract of the “nat-
ural” Vp,.-space, that is the realization of the poset of the split-braid-merge
diagrams. The retraction to the Stein space proved to be one of the key
steps in proving Fo. In particular the descending links in X are closely
related to the well-studied matching complexes of graphs and lead to the
notion of matching complexes of arcs on surfaces. The same idea of passage
to a Stein space also allowed us to proof F, for the pure braided Thompson
group Fjp. and another generalization of V', namely the higher dimensional
Brin—-Thompson groups sV.

In recent years Thompson’s groups have been generalized in various ways
and directions, so that there are a lot more “Thompson-like” groups in the
literature. For example Belk and Forrest introduced a Thompson group for
the Basilica in 2012. This group Tp can be viewed as a generalization of
Thompson’s group T but instead of acting by homeomorphisms on the unit
circle, it acts on the Julia set known as the Basilica. Belk and Forrest have
shown this group to be finitely generated, that is Tp is of type Fi. But it
is conjectured by Belk to be not finitely presented, i.e. not of type Fo. This
would show, that there are Thompson-like groups that are not of type Fo,
which in turn renders the question of the finiteness length of generalized
Thompson groups even more interesting.

It stands to reason that one could learn about the finiteness properties
themselves by understanding their behaviour with respect to the different
methods of generalization.
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Alexandre Martin Fakultdt fiir Mathematik, University of Vienna
Combination problems in geometric group theory

I am currently interested in the following combination problem: given a
group G acting cocompactly on a simplicial complex X, what can we say
about G out of the geometry of X, the dynamics of the action, and the var-
ious inclusions of stabilisers of simplices?

I proved a combination result for hyperbolic groups [1] which generalises
the acylindrical version of the Bestvina—Feighn theorem for graphs of groups
to complexes of groups of arbitrary dimension.

Theorem. Let G be a group acting cocompactly without inversion by
simplicial isomorphisms on a simplicial complex X. Suppose that:

e all the stabilisers of simplices are hyperbolic, and all the inclusions
of stabilisers are quasiconvex embeddings,

e the complex is CAT(0) and hyperbolic,

e the action of G on X is acylindrical.

Then G is hyperbolic and the stabilisers of simplices embed in G as quasi-
convex subgroups.

I am currently trying to drop the CAT(0) assumption to allow actions on
complexes with a more combinatorial geometry, such as systolic complexes
(joint project with D. Osajda) and quotient of trees under the action of a
very rotating family.

Such cocompact but non-proper actions arise naturally in geometric group
theory. Two examples I am particularly interested in are the following:

e given a group admitting a codimension one subgroup, the action on
the associated CAT(0) cube complex;
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e the action of a small cancellation group over a graph of groups on
some appropriate 2-complex.

I am also studying other types of properties, such as the existence of a
cubulation and residual finiteness.
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Francesco Matucci Université Paris-Sud 11 (Orsay)
Measuring finiteness in groups

Growth functions in groups have been widely studied and provide tools to
discriminate groups. In his celebrated 1981 theorem, Gromov showed how
the word growth function (which counts the number of elements in the n-
th ball of a finitely generated group) describes completely finitely generated
virtually nilpotent groups as those with growth function bounded above by a
polynomial. A similar result has been obtained in 1993 by Lubotzky, Mann
and Segal (see [7]) which classified residually finite virtually solvable groups
of finite rank using the subgroup growth function (which counts all finite
index subgroups of at most at most a given index).

Recently Bou-Rabee [3] has introduced the residual finiteness growth func-
tion for finitely generated residually groups which attempts to quantify the
residual finiteness of a group in an efficient way. More precisely, for a resid-
ually finite finitely generated group I' = (X), one can define the residual
finiteness growth function Fr x(n) as the minimal natural number N such
that any element of word length < n with respect to X can be detected in a
quotient @ of cardinality < N. It can be shown that the function Fr x(n) is
essentially independent of the generating set X. This function has been stud-
ied for several groups and it has been shown by Bou-Rabee and McReynolds
[4] that, for the case of linear groups, it gives a Gromov-like characterization
for virtually nilpotent groups. In joint work with Kassabov [5] we worked on
the case of the free group by rephrasing the study of the growth in terms of
laws in groups. Morever, we established a connection of the residual finite-
ness growth to a second growth called intersection growth which allows one
to obtain information about the residual finiteness growth.

The intersection growth function ip(n) is defined to be the index of the the
intersection of all subgroups of index at most n inside the finitely generated
group I" and can be seen as a variant of the subgroup growth function, but in
many cases it is better behaved. In a current joint work with Biringer, Bou-
Rabee and Kassabov [1, 2] we have estimates for the intersection growths for
free groups, lamplighter groups, and finitely generated torsion-free nilpotent
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groups some arithmetic groups. Moreover, in the case of finitely gener-
ated torsion-free nilpotent groups, we are in the course finding parallels to
Grunewald, Lubotzky, Segal and Smith’s work on the relation between the
subgroup growth and the nilpotency of a group (see [7]). Finally we observe
that intersection growth can behave badly by constructing a residually finite
group I'" where ip(n) is super linear on infinitely many numbers and which
is below any strictly increasing function for infinitely many others (see the
joint work with Kassabov [6])
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Thomas Morzadec Université Paris-Sud 11 (Orsay)
Measured flat laminations.

Let ¥ be a connected orientable compact surface and m a hyperbolic
metric on X. A hyperbolic lamination on (X, m) is a (non empty) closed
subset of 3 which is disjoint union of simple local geodesics. A measured
hyperbolic lamination is a hyperbolic lamination endowed with a tranverse
measure, which is a family of Radon measures on transverse arcs to the
lamination, whose support is their intersection with the lamination, and
that have certain invariance properties (see for example [1]).

A flat structure on ¥ is a Euclidean metric with conical singularities of
angles k7, with & > 3, such that the holonomy of any piecewise C' loop is
contained in {£1Id}. We will denote its distance by d. In a series of two pa-
pers ([3] and [4]), I proposed an analog of measured hyperbolic laminations
on surfaces endowed with a flat structure, that I have called measured flat



44 YGGT 3: RESEARCH STATEMENTS

laminations. The main goal is then to study the degeneration of flat struc-
tures on X, pursuing the approach of [2], but in terms of geometric objects
instead of geodesic currents on the boundary at infinity.

Let p : (3,d) — (2,d) be a locally isometric universal covering. We
denote by DsoX the boundary at infinity of the CAT(0) space (i, J) Two
local geodesics of (X, d) are said to be interlaced if they have some preimages
whose pair of endpoints separate each other in dsoX. We endow the set of
oriented local geodesics (defined up to reparametrization) with the quotient
topology of the compact-open topology, by the action of R by translations.

Definition. A flat lamination on (3, d) is a (non empty) set A of oriented
local geodesics (defined up to reparametrization), whose elements are called
leaves, such that:

e leaves are not self-interlaced and two by two not interlaced;
e A is invariant by reversing the orientation of leaves;
e A is closed.

We will call support of A the union of the image of its leaves.

The main difficulties compared with hyperbolic laminations come from
the fact that leaves are not necessarily disjoint and that the flat laminations
are not determined by their support. It forces to define transverse measures
to a flat lamination as a family of measures on local geodesics transverse to
the transverse arcs to the lamination instead of measures on the transverse
arcs.

The main result of these papers is a classification theorem of flat lam-
inations on a compact surface endowed with a flat structure. I have also
showed that every finite metric graph, except four, is the support of a geo-
desic lamination with uncountably many leaves, none of whose is eventually
periodic.

We can define a natural (but non bijective) correspondence between mea-
sured flat laminations and measured hyperbolic laminations, that shows,
among other properties, that the projective space of measured flat lamina-
tions is compact and that the images of measured flat laminations that are
the union of finitely many periodic local geodesics, are dense in it. Moreover,
we can define a dual tree to a measured flat lamination, and we show that
it is isometric to the dual tree of the corresponding measured hyperbolic
lamination.
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Duc-Manh Nguyen University of Bordeaux
Flat surfaces and dynamics in moduli space

I am interested in the theory of translation surfaces and related problems
in Teichmiiller theory. By a translation surface we mean a pair (X,w) where
X is a compact Riemann surface (complex curve) and w is a holomorphic one-
form on X. It is well known that such a pair defines an Euclidean metric with
conical singularities, and trivial linear holonomy on the underlying surface
of X. For any fixed positive integer g > 2, the space of translation surfaces
of genus g is the vector bundle Q91, over the moduli space M, of Riemann
surfaces of genus g, the fiber over a point X € M, is the (complex) vector
space (X)) of holomorphic one-forms on X. Note that dim¢ Q(X) = g.

The space Q9N is naturally stratified by the orders of the zeros of the one-
form. Namely, for any integer vector k = (k1, ..., ky) with k; > 0, we denote
by QM (k) the set of pairs (X,w) where w has exactly n zeros with degrees
given by k. The space Q9 (k) is called a stratum. It is well known that
QM (k) is a complex algebraic orbifold of dimension 2g+mn —1 which admits
a complex affine structure, and carries a natural volume form pu. Moreover,
there exists an action of GL™(2,R) on Q90,(k), which preserves the complex
affine structure, such that the volume form pu is preserved by SL(2,R).

It turns out that the understanding of this action of GLT(2,R) on Q90,
can provide us with precious information on dynamical behavior of individ-
ual translation surfaces, as well as the geometry and topology of the moduli
space My, it also has profound connections with numerous domains such as
the dynamics of billiards in rational polygons, Teichmiiller theory (geometry,
topology, and dynamics in Teichmiiller space), interval exchange transforma-
tions...

The questions that I am currently interested in concern the classification
of GL™(2,R)-orbit closures in various strata, geometric and dynamical prop-
erties of translation surfaces called Prym eigenforms which are discovered by
McMullen, topology of strata and GL™ (2, R)-orbit closures. T am also inter-
ested in related domains such as Mapping Class Groups (for instance, which
subgroups of the MCG can be realized as the stabilizer of a Techmiiller disc),
spaces of different geometric structures on surfaces, representations of sur-
face groups into Lie groups, moduli space of flat metric structures on surfaces
with non-trivial linear holonomy...

* ok kk ok
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Henning Niesdroy Bielefeld University
Geometric reduction theory

One year ago I started my Ph.D. studies under supervision of Prof. Dr.
Kai-Uwe Bux. Before I graduated, I was particularly interested in topology
and group theory. In order to combine these two topics I joined the group
of my supervisor to work in geometric group theory.

In the following, I give a short introduction of what my thesis is about:

Consider SL,(R), the hyperbolic space H" := SL,(R)/SO,(R) and the
action of SL,(Z) on H". Reduction theory describes a fundamental domain
Sp C H™.

Generalizing reduction theory to s-arithmetic groups, Godement found
an adelic formulation treating all places simultaneously. Let K be a global
number field, G be a reductive group (think of SL,), and let A be the ring
of adeles of K. Then G(K) is discrete in G(A), and Godement finds a fun-
damental domain (coarsly) for the action of G(K) on G(A). Later, Behr and
Harder transferred this to the case when K is not a global number field, but
a function field.

In 2012 Bux-Kohl-Witzel gave a geometric reformulation of Behr-Harder.
Now the natural question arises, whether this geometric reformulation can
be transferred back to the case of a number field. My task is to actually do
that.

Further we just started a new project in our group. The question is,
whether SLo(Z[t,t71]) is finitely generated or not. This question has been
open for more than thirty years, though I cannot tell who came up with it
first.
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Damian Osajda Universitdt Wien
Combinatorial nonpositive curvature

In a joint project with J. Chalopin, V. Chepoi, and H. Hirai we explore
various notions of combinatorial nonpositive curvature. This refers to local
combinatorial conditions on cell complexes that imply nonpositive-curvature-
like properties of their universal covers. One of the goals is to understand
groups acting nicely on such complexes. Examples of combinatorially non-
positively curved complexes are: CAT(0) cubical complezxes [2], i.e. simply
connected cubical complexes with flag links; and systolic complezes [3], i.e.
simply connected simplicial complexes with 6-large links.
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A common generalization of the two above classes — bucolic complezxes
— was investigated in [1]. One-skeleta of bucolic complexes are the so-called
weakly modular graphs. Currently, we are studying various nonpositive-
curvature-like aspects of such graphs. It includes: a local-to-global char-
acterization, the quadratic isoperimetric inequality, conditions implying hy-
perbolicity. For certain subclasses of graphs and associated complexes we
obtain stronger results, e.g. existence of a canonical CAT(0) metric (not
true in general, even for systolic complexes).

The main advantage of such combinatorial approach is a possibility of
constructing new examples of groups with interesting properties, e.g. new
high dimensional hyperbolic groups, cf. [3,4,5]. On the other hand one can
use the theory to obtain new results for classical groups, cf. [5].
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Wenyu Pan Yale University

Counting and equidistribution problems for orbits of thin groups
in homogeneous spaces

My current research is the study of counting and equidistribution problems
for orbits of thin groups in homogeneous spaces.

Let G denote the identity component of the special orthogonal group
SO(n,1), n > 2. Let V be a finite dimensional real vector space on which
G acts linearly from the right. Fix vg € V and a subgroup H of G | let
H,, = {h € H: voh = vp} denote the stabilizer of vy in H. Suppose I'
is a discrete subgroup of G such that the orbit vol' is discrete. We want to
understand the asymptotic behaviour of #{v € voI' : |[v|| < T}, where || - ||
is a norm on V.

If I is a lattice, this problem is well understood. For example, when G, is
symmetric and Ty, is a lattice in G, the value of #{v € vo[': |jv|| < T} is
asymptotically proportional to the volume of #{v € voG : ||v| < T} (Duke
et al 1993 [1]).
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In Oh-Shah [2], they extend the problem to a suitable class of discrete
subgroups I of infinite volume in G ; namely , the groups I' with finite Bowen-
Margulis-Sullivan measure mPM> on T\H", where H" is the n-dimensional
hyperbolic space.

Bibliography
[1] Duke, W., Z. Rudnick, and P. Sarnak. “Density of integer points on
affine homogeneous varieties.” Duke Math. J 71.1 (1993): 143-179.
[2] Oh, Hee, and Nimish Shah. “Equidistribution and counting for orbits
of geometrically finite hyperbolic groups.” Journal of the American
Mathematical Society 26.2 (2013): 511-562.

* kK kk

Chloé Perin Université de Strasbourg
Model theory of the free group

Model theory is the study of first-order formulas on a given language,
which depends on the kind of structure studied (e.g.: groups, rings, ordered
sets, ... ). The simplest kind of first-order formula in the language of groups
are equations (for example "xy = yz"), but in general one can also consider
inequations (e.g. "x3 # 1"), use logic connectors "OR" and "AND" (e.g.
"z3 =1 AND 2 # 1") as well as quantifiers on the elements of the group
(e.g. "Vx Vy xy = yx"). In general, some of the properties of a group or of
its elements can be expressed by first-order formulas (such as abelianity, k-
nilpotency, etc.), but others cannot (e.g. being finitely generated): the set of
all first-order formulas satisfied by a group is called its first-order theory. The
long standing Tarski problem asked whether free groups of different ranks
have distinct first-order theory, in other words whether first-order formulas
can detect the rank of a free group. The question was finally answered in
the negative by Sela and independently by Kharlampovich and Miasnikov,
who showed that (apart from the free group of rank one, which is abelian),
all the free groups have the same first order theory.

The tools developped by Sela to tackle this problem relied heavily on geo-
metric groups theory concepts such as the JSJ decomposition for hyperbolic
groups, Rips theory for actions on real trees, etc. The results themselves
show strong geometric connections: for example, the fundamental group of
a closed surface of characteristic at most —2 has the same first-order theory
as the free groups. This connection proved very useful in answering other
model-theoretic questions about free and hyperbolic groups, and this has
been my main research topic so far.

* kK k k
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Catherine Pfaff Université d’Aix-Marseille

Out(F,) Invariants and the Geometry and Dynamics of
Culler-Votmann Outer Space

I study outer automorphisms of free groups. For a rank-r free group F,,
the outer automorphism group Out(F,) consists of equivalence classes of au-
tomorphisms of F., with automorphisms differing by an inner automorphism
deemed equivalent. I have thus far focused on the most common elements
of Out(F,), namely the fully irreducibles. 1 have developed machinery to
construct fully irreducibles with certain invariants (namely index lists and
ideal Whitehead graphs), as well as for proving when such examples cannot
exist.

As with SL(2,R) acting on hyperbolic space, a central method for study-
ing mapping class groups has been to study the action of each mapping class
group on its Teichmiiller space. To extend this analogy to the Out(F}), Culler
and Vogtmann [CV86] constructed a topological space C'V,., outer space, on
which Out(F}) acts properly with finite stabilizers. Some behavior of this
action is much like in hyperbolic or mapping class group settings. For exam-
ple, Levitt and Lustig [LL0O3| proved each fully irreducible ¢ € Out(F}) acts
with North-South dynamics on the natural compactification C'V, of C'V,.. On
the other hand, Handel and Mosher [HM11] proved that, instead of a fully
irreducible acting on C'V,. with a unique axis, as does a loxodromic isometry
acting on hyperbolic space, in many cases the axis for a fully irreducible
is not unique. Handel and Mosher define [HM11], for a nongeometric fully
irreducible ¢ € Out(F;), the axis bundle A4, an analogue of the Teichmiiller
axis for a pseudo-Anosov or the axis for a loxodromic isometry acting on
hyperbolic space. Together with Lee Mosher, in [MP13], we prove precisely
when a fully irreducible behaves more like a pseudo-Anosov or loxodromic
isometry in that its axis bundle is a single axis. The result, in fact, illumi-
nates a setting where one can actually quite easily identify when two fully
irreducibles are conjugate in Out(F}).

In addition to expanding my invariant realization results, much of my
current research focuses on using the automata I used to construct fully
irreducibles to instead construct geodesics and points on the boundary of
Outer Space with various properties.
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Carolin Pomrehn Universitdt zu Koln

Representations of copolarity one

In representation theory one important invariant is the orbit space. Let
W be a finite dimensional vector space and H a connected, compact Lie
group with an effective representation p : H — O(W). In this way we can
regard H as a group acting on the space W. The orbits of H decompose
the space W in equidistant submanifolds. The orbit space H/W inherits a
natural metric induced by the distance of the orbits. Now assume there is
another representation p: G — V of a compact group G of lower dimension
dimG < dim H, such that the orbit spaces are isometric. We call such a
representation (G, V) a reduction of (H, W).

Which properties of H can be transferred to G7 Are there special prop-
erties if the reduction (G,V) is minimal with respect to the dimension of
G?

The first question has some positive answers. For example if (H, W)
has non trivial fixed points, this set forms a maximal Euclidean subspace
in the quotient. Hence (G,V) is forced to have a set of fixed points of
the same dimension. If the representation of H is irreducible, it can be
shown that the same is true for the representation G. For a polar action
the minimal reduction is given by a discrete group G. | am interested in
representations admitting a 1-dimensional minimal reduction. Therefore, I
study S'-representations which admit special properties arising from the fact
that they are assumed to be minimal reductions of some higher dimensional
representation. In the case of (H, W) being an irreducible representation
Lytchak and Gorodski [1] showed that the representation is of codimension
3, i.e. a maximal dimensional orbit has codimension 3. In the reducible
case some similar results can be obtained. T proved that, in most cases,
the representation splits in a codimension 3 representation and a polar one.
To get some further general results on representations which admit minimal
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reductions of low dimension, say dimG = {2,3}, I am interested in low
dimensional and discrete groups.

Bibliography
[1] A. Lytchak and C. Gorodski , On orbit spaces of representations of

compact Lie groups, J. reine angew. Math., de Gruyter 2012, Ahead
of Print, DOI 10.1515/crelle-2012-0085

* kK kk

Tomasz Prytula University of Copenhagen

Homotopy theory of Davis-Januszkiewicz spaces

Given a finite simplical complex K and a pair of spaces (X, A), one con-
structs a topological space called the (generalized) moment-angle complex
Z(K, (X, A)). The Davis-Januszkiewicz space of a complex K can be defined
as DJ(K) = Z(K,(CP>,%)). It has been shown that there are many con-
nections between combinatorial properties of K and homotopy-theoretical
properties of DJ (K), e.g. existence of vertex colorings of K and splitting of
certain line bundles over DJ(K). I have just started my PhD, and I will be
studying these spaces under supervision of Jesper M. Moller.
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Piotr Przytycki Institute of Mathematics
of the Polish Academy of Sciences

Cocompactly cubulated graph manifolds
joint with Mark F. Hagen

A graph manifold is a compact oriented aspherical 3—manifold M that has
only Seifert-fibred blocks in its JSJ decomposition. We say that a torsion-
free group is (cocompactly) cubulated if it is the fundamental group of a
(compact) nonpositively curved cube complex. A (cocompactly) cubulated
group is (compact) special if the complex is (compact) special, i.e. admits a
local isometry into the Salvetti complex of a right-angled Artin group.

Liu proved in [3] that if a graph manifold M admits a nonpositively curved
Riemannian metric, then 71 M is virtually cubulated (and in fact special).
Under the stronger hypothesis that M has nonempty boundary, the same
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conclusion was obtained in [4]. However, the resulting cube complex was in
general not compact.

In our work we answer Question 9.4 of Aschenbrenner, Friedl, and Wilton
[1] by characterizing graph manifolds M with 71 M virtually cocompactly
cubulated, i.e. having a finite-index subgroup that acts freely and cocom-
pactly on a CAT(0) cube complex. We show, moreover, that whenever this
is the case, m M is virtually compact special.

We note that if M has no JSJ tori, i.e. M is Seifert-fibred, then by [2,
Thm 6.12| the group 71 M is cocompactly cubulated if and only if the Euler
number of the Seifert fibration vanishes. In this situation, the cube complex
can easily be seen to be virtually special using [5]. If M is a Sol manifold,
then 71 M is not cocompactly cubulated

We therefore assume that M is not a Sol manifold and has at least one
JSJ torus, so that its underlying graph I' = (V, E') has at least one edge. We
also assume that M does not contain m—injective Klein bottles, so that the
base orbifolds of all Seifert-fibred blocks are oriented and hyperbolic. For
each v € V| we denote by B, C M the corresponding Seifert-fibred block,
and for each edge e € E, we denote by T, the corresponding JSJ torus. For
an edge e incident to v, let Z5 C T, be an embedded circle that is a fiber in
B,.

Definition. A graph manifold M is chargeless if for every block B, we can
assign integers ne to all edges e = (v,v’), so that in integral homology H1(B,)

we have Y, ne[Z5] = 0.

In other words, a graph manifold is chargeless if in each block there is
a horizontal surface whose boundary circles are vertical in adjacent blocks.
Note that if M’ is a finite cover of a graph manifold M, then M’ is chargeless
if and only if M is chargeless. Our first result is the following.

Theorem. Let M be a chargeless graph manifold. Then m M is virtually
compact special.

This theorem is one of few results giving an obstruction to being cocom-
pactly cubulated for a specific class of groups. Another notable result of
this type is Wise’s characterization of tubular groups that are cocompactly
cubulated [6, Thm 5.8]. Our main theorem is the following converse.

Theorem. Let M be a graph manifold. If miM is virtually cocompactly
cubulated, then M 1s chargeless.
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Doron Puder Hebrew University, Jerusalem

Free groups: word maps, representations and growth

Many of the lines of research I have followed and am currently following
are related to the study of free groups (other topics include mainly expan-
sion of random graphs and Ramanujan graphs). Let me mention the main
questions related to free groups which I have considered so far:

Measure-theoretic characterization of words:

Consider the measure induced on finite groups by words. Namely, fix some
word w € Fj, the free group on k generators x1,...,x,. This word induces
a measure on every finite group via the word map w : G¥ — G (here G* is
the Cartesian product of G) and a push forward of the uniform measure on
G*. (Put differently, for each 1 <4 < k, substitute z; with an independent,
uniformly distributed random element of GG and evaluate the product defined
by w to obtain a random element in G.) It is an easy observation that prim-
itive words, namely words belonging to some bagis of Fj, induce the uniform
measure on every finite group G. Several mathematicians have conjectured
that this property actually characterizes primitive elements, i.e. that a word
which induces the uniform measure on every finite group is primitive. In [1]
(to appear in Israel Journal of Mathematics) I have proven the conjecture
for F2, and in [2] (to appear in the Journal of the AMS), together with a
fellow student, Ori Parzanchevski, we proved the conjecture in full.

The most interesting open question in this line of research is the following.
The (now resolved) question about primitive words is actually a special case
of a more general problem. The primitives constitute a single Aut(F},)-orbit
in Fj. In the same manner that they induce the same measure on every
finite (or compact) group, it is an easy observation that any two words be-
longing to the same Aut(F})-orbit induce the same measure on every finite
(compact) group. But does the converse hold? Namely, if w; and ws belong
to different orbits, is there necessarily some (finite? compact?) group on
which they induce different measures?

The role of primitives in Representations of Free groups:
There is a family of challenging questions and conjectures revolving around
(finite-dimensional) representations of free groups and their automorphism
groups. I am currently working on some of these questions. Procesi and For-
manek have shown that Aut(Fy) is non-linear for £ > 3 [FP92]. Their proof
suggests the following stronger statement: For k > 3, in any representation
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p  Aut(Fy) — GL4((C)), the image of Inn(Fy) = Fy is virtually solvable
[Lubl1, Conj. 6.12]. It can be shown (Gelander) that this conjecture follows
from the following one: If p : F, — G is a representation into a complex
simple algebraic group with p(F)) dense in G, then already p(Py) is dense,
where Py is the set of primitive elements in Fj. This explains some of the
motivation to the following concrete question which we are studying:

Let p: Fr, — GL4((C)) be a finite-dimensional representation of the free
group Fj. To what extent do primitive words determine the (character of
the) representation? More concretely, can there be two different characters
of Fj, which coincide on the set of primitives Pj?

Growth and Asymptotics in Free Groups:

I have recently studied a question about the number of primitive elements
in Fj,. Let P, n be the number of primitive elements of length N in Fj,. It
has been well known, at least for a decade now, that primitives are rare, in
the sense that a (uniformly distributed) random word of length N is a.a.s.
non-primitive as N — oo. Moreover, the decay is exponential: several upper
bounds were found for limsupy_,., A/ Pk n, the exponential growth rate of
primitives(e.g. [BMS02b]). (Recall that the total number of words of length
N is roughly (2k — 1)V). Yet the exact growth rate of primitives remained
unknown. Attributed to M. Wicks, this question was the content of one of
the open problems in [BMS02a|. In [PW14], together with Conan Wu, a
PhD student from Princeton University, we answer the question and show
that the exact exponential growth rate of primitives is 2k — 3. Moreover,
we show a somewhat surprising result about a generic primitive element: It
turns out that most primitives are words which are “obviously” primitive,
namely, words which, up to conjugation, contain one of the letters exactly
once. The proof is based on a meticulous analysis of Whitehead’s algorithm
to detect primitive words.

This work has several follow-up questions. For example, what is the
growth rate of other Aut(F})-orbits in Fj,? Which orbits, primitives aside,
have the largest growth? What is the growth of Aut(F}) w.r.t. standard
generating sets such as Nielsen moves or Whitehead automorphisms?
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Kristen Pueschel Cornell University

Mapping tori over right-angled Artin groups

The algebraic mapping torus of the automorphism ¢ : G — G is the
group My = (G,t : t7lat = ¢(z),Vx € G), or G x4 Z. These groups arise
naturally in topology as fundamental groups of topological mapping tori,
and in group theory as ascending HNN extensions. The simplest and most
geometrically relevant cases are those in which the bases are (finitely gen-
erated) free abelian groups, surface groups, and free groups. Indeed these
three types of bases are well studied. It is known that if G is free then My
is coherent, [1] that is finitely generated subgroups are finitely presentable.
By direct analysis, Bridson and Groves proved that My is either hyperbolic
or has quadratic Dehn function when G is free [2].

Right-angled Artin groups (RAAGs), also called partially commutative
groups, are groups on n generators in which the relations are commutators
of generators. The free groups and free abelian groups are the two extremes
of this spectrum of bases, but such interesting groups as Fy x Fb are also
examples of RAAGs. These groups have lots of nice structure which makes
them good to work with. For example, they have finite complete rewriting
systems, a tool for easily rewriting words into normal forms [3]. RAAGs have
appeared in many applications, as a source of examples and counterexam-
ples, and their actions on CAT(0)-cube complexes make them a popular tool
in geometric group theory. For instance, RAAGs were an important tool in
Agol’s solution to the Virtual Haken Conjecture.

I am interested in mapping tori which have right-angled Artin base group.
In particular T wish to understand the Dehn functions of these groups and
their finiteness properties. At the moment these problems appear to be out
of reach for general base RAAGs, so [ am working on special cases.
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Yulan Qing Technion, Haifa

Boundaries of CAT(0) Space

My research focuses on the boundaries of CAT(0) spaces, specifically, finite
dimensional, locally finite, cocompact CAT(0) cube complexes with rank-1
isometries. I give an explicit and elementary proof that the Croke-Kleiner
space [1] does not have unique G-equivariant boundary if we fix the gluing
angle at 7/2 and changes the translate lengths of the generators of its fun-
damental group. I also prove that right-angled Coxeter groups do not have
unique G-equivariant boundary. Currently I am studying the connection
between Roller boundary [2] and visual boundary for rank-1, finite dimen-
sional, locally finite, cocompact CAT(0) cube complexes. The study aims
to find a "nice" map between the two that will extend the known properties
of the Roller boundary. I am also highly interested in coarse median spaces
[3] and would like to make connections between coarse median metric and

CAT(0) metric.
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Jean Raimbault Max-Planck-Institut fiir Mathematik, Bonn

Limit multiplicities problems and geometry

Broadly speaking, I am interested in the relations between global geo-
metric invariants (such as the volume) and topological invariants for locally
symmetric spaces, especially hyperbolic manifolds. Particularly interesting
examples among those are the so-called arithmetic ones, and I will now try
to explain a specific problem in the vein mentioned above for this class, the
so-called limit muliplicities problem (which originally comes from the theory
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of automorphic forms, but is also of interest in relation to spectral geometry
and topology).

Let G be a real simple noncompact Lie group. The classical limit mul-
tiplicities (LM) problem asks to show that, for a sequence I',, of nested
congruence subgroups of a given arithmetic lattice I', the multiplicities of
irreducible representations of G in L?(I',\G) (a sequence of atomic mea-
sures on the unitary dual) approximate, when renormalized by the volume
of T',,\G, the Plancherel measure of G. This may be a little unintelligible to
a geometrically-oriented reader, but a nice consequence of it is the following
limit for the Betti numbers of the I';;:

(1) lim bp(rn) — { voi(((I‘F\)G) if p= dim X/2

n W 0 otherwise.

Let the reader know that a general solution to LM is not yet known in
the nonuniform case (for uniform lattices it has been solved in the work of
Delorme for principal congruence subgroups and Abert—Bergeron—Biringer—
Gelander—Nikolov—Samet and myself [1] in general), but there has been re-
cent progress in the case where G = SL,(R)™ by Finis-Lapid-Miiller [2].
I am personally more interested in the following questions, which take the
problem in a different direction:

(a) Does (1) hold for sequences of noncommensurable lattices 7 (Note
that given G, a result of I. Samet asserts that b,(I")/vol(I'\G) is
bounded independently of T'.)

(b) There should be results similar to (1) for the torsion part of the
homology groups — for example, for a sequence I',, of congruence
subgroups of an arithmetic lattice in G = SLy(C), we expect that

. log |H1 (Pn)tors‘ 1
2 lim —S S njtors] 2
(2) W volT\G) 6

holds.

For more on (b) the reader should look at the work of Bergeron—Venkatesh
[3], and my own paper [4] for the nonuniform case. Regarding (a) in rank one
(the higher-rank case is dealt with in [1]) an interesting special case is that of
sequences of maximal arithmetic lattices. Indeed, it seems that the methods
used in [1] to deal with arbitrary sequences of congruence subgroups could
generalize to some such sequences; for example in [5] it is proven that if ',
is a sequence of hyperbolic three-manifolds obtained from maximal orders
in quaternion algebras defined over imaginary quadratic fields (for example
I, = SLa(Z[\/—d,]) for a sequence of square-free d,,) then (1) holds. The
proof of this result — as those in [1] — rests on establishing the convergence
of the sequence to the universal cover H® in a certain geometric sense. This is
a result of interest in its own right and it would be interesting to generalize it
to higher-dimensional real hyperbolic manifolds or complex hyperbolic ones.
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Olga Romaskevich Ecole normale supérieure de Lyon
National Research University
Higher School of Economics, Moscow

Statement of research

I'm a PhD student under the joint supervision of Etienne Ghys and Yulij
Ilyashenko. The broad name for my research is ‘The dynamics of physical
systems’. The research finds motivation in physical systems with interesting
behaviour and uses mathematical tools to explore them: primarily the meth-
ods of dynamical systems coupled with those of geometry. There are three
main directions in which [ am currently working: the dynamics of Joseph-
son equation, search of open classes of diffeomorphisms of manifolds with
boundary possessing thick attractors and the study of integrable mechanical
systems, especially those with close orbits.

First, Josephson equation is a vector field on a 2-torus modelling a sys-
tem with a Josephson junction. This vector field arises from a family of
differential equations on a circle R/27Z of the following form

5 dx  cosx +a+bcost
3) dt 0

The aim of my work is to describe some limit properties of Arnold tongues
for (3) in dependence of the parameters. For ;1 << 1 the methods of the fast—
slow systems theory can be applied in order to study the behaviour of such a
system, see [1], [2]. For b >> 1 the asymptotic behaviour of Arnold tongues
boundaries in terms of Bessel functions can be discovered, see [3].

Second, I am working on generalizing the results of [4] for a wider class of
‘thick’ attractors on the manifolds with boundary. I'm trying to elaborate
the techniques analogous to a classical Sternberg theorem of linearization in
the case of skew products preserving the special structure of a diffeomor-
phism. The obtained normalization theorems are supposed to be applied to
the construction of a wide class of so called ‘thick’ attractors of dynamical
systems on the manifolds with boundary.

Third, I am searching for some new cases of integrable systems as well
as for systems with potentials giving closed orbits. The inspiration is a
clagsical Bertrand’s theorem that states that in the case when the force only
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depends on the distance to the center of attraction, all the bounded velocity
trajectories are periodic only for the newtonian and harmonic potentials.
In a similar way, Zoll surfaces present wonderful examples of manifolds on
which the geodesic flow is periodic. One can also mention the marvelous
Kowaleski top exhibiting a completely integrable dynamics and more recent
results, as for example a spherical ball rolling inside a vertical cylinder and
submitted to its weight [5]. In this case, the ratio of two frequencies of the
motion turns out to be independent of initial conditions. The purpose of my
research is to analyze these examples and to understand them in a common
framework. On the way, I hope to discover new interesting examples.
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Lorenzo Ruffoni University of Bologna
Cube complexes and virtual fibering of 3-manifolds

I am a first year PhD student in Bologna, under the supervision of Ste-
fano Francaviglia and I am mainly interested in Geometric Group Theory
for its applications to low-dimensional geometry and topology. The work of
Thurston and Perelman has shown that the study of 3-dimensional manifolds
can be reduced to the hyperbolic case, where Mostow’s Rigidity Theorem is
available. This theorem essentially says that the geometry of a hyperbolic
manifold in dimension 3 (or higher) is completely determined by its fun-
damental group, so it makes perfectly sense to switch attention from the
properties of the manifold to those of the group.

Through the recent work of Agol and Wise, some of the geometric prop-
erties of these groups (e.g. hyperbolicity) have proven to be crucial in the
solution of two longstanding problems in low dimensional topology (Vir-
tually Haken and Virtually Fibering Conjectures) about the existence and
structure of suitable surfaces in (a finite cover of) a hyperbolic 3-manifold.
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One of the main ingredients in the proofs of the above conjectures has
been the construction of a non-positively curved cube complex with the
same fundamental group as the hyperbolic manifold and some additional
properties about the intersection patterns of its hyperplanes (= codimension-
1 subspaces), known as speciality conditions. These allow to get a virtual
embedding of the fundamental group into a right-angled Artin group, from
which it inherits some useful algebraic properties.
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Andrew Sale Université de Rennes 1
Geometry of the conjugacy problem

Let G be a finitely presented group with finite generating set A. The
word problem on G asks whether there is an algorithm to determine when a
word on AU A~! represents the identity element of G. The Dehn function
of G represents the geometric complexity of the word problem. It measures
the minimal area required to fill a loop in the Cayley 2-complex of G and
to estimate it is an effective version of the word problem. Determining the
Dehn function of groups has been a fundamental question in geometric group
theory.

The word problem is a special case of the conjugacy problem, which is
solvable in G if we can write an algorithm which, on input two elements of
G, determines if they are conjugate. A naturally related question is the so-
called effective conjugacy problem, which quantifies the conjugacy problem.
The word length of an element g in G is the minimal length of a word on
AU A7 representing g. The conjugacy length function gives a measure of
the minimal length of an element ¢ satisfying the relationship ag = gb for
a,b in G, relative to the sum of the lengths of a and b.

Free solvable groups and wreath products. In [2], T studied the
behaviour of conjugacy length under wreath products and what this means
for free solvable groups. For a wreath product A B, I related the length
of short conjugators in the wreath product to the conjugacy length function
in B and the distortion of the word length in cyclic subgroups in B. The
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conjugacy length function of A can also appear, but only if the group B
contains torsion elements. In particular, for free solvable groups, denoted
Sy.d, where 7 is the number of free generators and d is its derived length, I
obtained the following result:

Theorem 1 ([2|). Let r,d > 1. Then the conjugacy length function of the
free solvable group S, q is bounded above by a cubic polynomial.

An important step in the proof of this Theorem concerns the Magnus
embedding. If N is a normal subgroup of a (non-abelian) free group F' of
rank r, whose derived subgroup is denoted N’, then the Magnus embedding
expresses F/N’ as a subgroup of the wreath product Z"? F/N. In particu-
lar, if we take N to be the d-th derived subgroup of F' then we obtain an
embedding of S, 411 into Z"1 S, 4.

Theorem 2 ([3]). The Magnus embedding ¢ : F/N' — Z" { F/N s a bi-
Lipschitz embedding.

Lattices in semisimple Lie groups. While the conjugacy problem ap-
plies to recursively presented groups, the effective conjugacy problem requires
only that the group admits a metric. A long-term project I am working on
is to understand the conjugacy length function of lattices in a higher rank
semisimple real Lie group G. The following two results are for the ambient
Lie group, but they have consequences for conjugacy in the lattice.

A real hyperbolic element of GG is an element which, in the associated sym-
metric space G/ K, translates a biinfinite geodesic and all geodesics parallel
to it. Given such an element a € G, the slope of a corresponds, roughly
speaking, to the location in a Weyl chamber of a geodesic translated by a.
A more accurate definition can be found in [1].

Theorem 3 ([1]). Let G be a higher-rank real semisimple Lie group. Let
a,b be conjugate real hyperbolic elements in G of slope &. Then there exists
a conjugator g € G such that

da(1,9) < le(dg(1,a) + da(1, b))

where L¢ 1s a positive constant depending on the slope §.

The second type of element I looked at are wumipotent elements. These
are elements which in some finite-dimensional, faithful, linear representation
are conjugate to an upper triangular matrix with 1’s on the diagonal. For
these elements we apply a more algebraic approach. We look at pairs of
conjugate unipotent elements for whom, in the matrix representing them,
the superdiagonal entries are bounded away from zero by some § > 0. We
describe these elements as having simple entries of size at least §. Provided
that the Lie algebra of G is split we can obtain the following:

Theorem 4 ([1|). Fiz § > 0. There exists L > 0 depending on § such that,
if uw and v are conjugate unipotent elements in G whose simple entries all
have size at least 0, then we can construct g € G such that gug™ = v and
which satisfies

dG(LQ) < L(dG(Lu) + d(;(l,’l))).
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Andrea Seppi Universita degli Studi di Pavia
Flat Lorentzian structures on 3-manifolds

My research so far has been focused on the study of maximal globally
hyperbolic flat Lorentzian 3-manifolds, supervised by Francesco Bonsante. A
MGH flat Lorentzian manifold M is a 3-manifold endowed with a flat pseudo-
Riemannian metric (of signature 2,1) with some good properties related to
causality. For example, M is homeomorphic to S x R, where S is a closed
surface of genus g > 2. Classification results of such space-times, with a
prescribed topology, were provided by Mess. In particular, their moduli
space was described:

Theorem (Mess). If S is a surface of genus g > 2, future-complete MGH
flat Lorentzian structures on S X R, up to isometry isotopic to the identity,
are parametrized by the tangent bundle T Teich(S) of the Teichmiiller space

of S.

We have extended such result to spacetimes and surfaces with cone sin-
gularities. A hyperbolic surface is said to have a cone singularity of angle
§ < 27 at a point if the local model at that point is a wedge in H?, where the
edges of the wedge are glued by a rotation. An analogous definition holds in
Minkowski space, the wedge being the intersection of two half-planes, and
the rotation being around a time-like line. The techniques used by Mess do
not apply to this case, but by using geometic-differential techniques we have
reobtained Mess’ result and extended it to the singular case.

Theorem. If S is a surface of genus g > 2 with n cone singularities of
angles 01, ...,0, < m, future-complete MGH flat Lorentzian structures with
n cone singularities along time-like lines of angles 01,...,0, on S X R, up
to isometry isotopic to the identity, are parametrized by the tangent bun-
dle T'Teich(S)g,,...0, of Teichmiiller space of hyperbolic surfaces with cone

n

singularities of fized angles.

During my PhD, I plan to continue research on such spacetimes and, more
in general, study several types of Lorentzian structures on 3-manifolds.
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Ilia Smilga Université Paris-Sud 11 (Orsay)
Tilings of affine space

I study discrete subgroups of the affine group GL,,(R) x R™ that act prop-
erly discontinuously on the affine space R". In the case where they preserve
a Fuclidean norm, their behaviour is well-known. In particular, we have the
following classical result:

Theorem (Bieberbach 1911):

e Every I' C O, (R) xR™ with properly discontinuous action is virtually
abelian.

e Every I' C O,(R) x R™ with properly discontinuous and cocompact
action is virtually isomorphic to Z"

(we say that T' virtually has some property if it has a finite index subgroup
with this property).

In the general case, two conjectures were made trying to generalize this
result:

Conjecture (Auslander 1964): Every I' C GL,(R) x R™ with properly
discontinuous and cocompact action is virtually solvable.

Conjecture (Milnor 1977): Every I' C GL,,(R) x R™ with properly dis-
continuous action is virtually solvable.

To put these statements into proper context, we remind the following
theorem:

Tits’ alternative: Every finitely generated linear group is either virtually
solvable or contains a free subgroup of order 2.

In 1983, Margulis disproved Milnor’s conjecture by constructing a free
group of affine transformations acting properly discontinuously, with linear
part Zariski-dense in SO(2,1) (see [4]). My research focuses on such coun-
terexamples: I try to construct as many of them as possible and to study
their properties. If I am ever able to completely classify them, this would
lead to an answer to the Auslander conjecture. For a survey of already known
results, see [1].

My first result dealt with a generalisation of the Margulis counterexample.
In 2002, Abels, Margulis and Soifer found free, properly discontinuous affine
groups with linear part Zariski-dense in SO(d + 1, d), for any odd d (see [2]).
In [5], by adapting an approach developed by Drumm for d = 1 (see [3]),
T explicitly constructed a fundamental domain for these groups, which shed
light on the topology of the quotient manifold.
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Right now, I am trying to construct a new family of free properly discon-
tinuous affine groups, with linear part Zariski-dense in some Lie groups G
and acting on its Lie algebras g by the adjoint action.
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Emily Stark Tufts University
Boundaries and surface group amalgams

I am interested in the visual boundary of hyperbolic groups, quasi-isometry
and commensurability classes, and the abstract commensurator of a group.
My research focuses on hyperbolic surface group amalgams over Z and the
class of limit groups.

A quasi-isometry between d-hyperbolic spaces induces a homeomorphism
between the visual boundary of these spaces, though the converse is false.
For example, OHE‘Q = 8H% >~ §3 but Hﬂ“{ and ]HI(% are not quasi-isometric.
In general, to obtain a quasi-isometry via the boundary, one needs to ex-
hibit a homeomorphism between visual boundaries that is a quasiconformal
or quasi-Md&bius equivalence. I am broadly interested in understanding for
which classes of groups a homeomorphism between their visual boundaries
is sufficient to prove the groups are quasi-isometric.

With this question in mind, I am studying the geometry of limit groups
and groups in C, the class of groups isomorphic to the fundamental group
of two closed hyperbolic surfaces identified along a closed curve in each,
and Cg, the subclass in which the curves that are glued are simple. Groups
in C are d-hyperbolic, so the visual boundary may be used to study the
quasi-isometry classes. For example, the boundary of a lift of the curves
identified is a pair of global cut points in the boundary of the group, and the
number of components in the complement of the boundary of a lift depends
on whether the curves identified have simple representatives on the surface.
One may use this to show not all groups in C are quasi-isometric. As part
of my thesis, we show all groups in Cg are quasi-isometric by exhibiting a a
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bi-Lipschitz map between the universal covers of a K(G, 1) space for these
groups, equipped with a CAT(—1) metric. I am studying the quasi-isometry
clagsification within the broader class C and the class of limit groups, which
intersects C [1].

The commensurability classes in C are finer than the quasi-isometry classes.
Within Cg, we characterize the commensurability classes in terms of the ra-
tio of Euler characteristic of the two surfaces and the topological type of the
curves identified. An important tool in the classification is the topological
rigidity of these groups, which is addressed via the visual boundary in [2]
and [3]. That is, any isomorphism between finite index subgroups of groups
in Cg is induced by a homeomorphism between the K (G, 1) space consisting
of closed surfaces identified along a set of closed curves. I would like to un-
derstand how this rigidity holds for limit groups and within C, and I hope
to understand the commensurability classes and abstract commensurator of
groups in these classes.
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Markus Steenbock University of Vienna
Algebraic properties of random groups

The outstanding Kaplansky zero-divisor conjecture states that the group
ring of a torsion-free group over an integral domain has no non-trivial zero-
divisors. The conjecture is known for

e Groups satisfying the unique product property,
e Torsion-free elementary amenable groups,
e Virtually compact special groups.

Delzant showed that Gromov hyperbolic groups which act with large trans-
lation length on a hyperbolic space satisfy the unique product property.
Rips-Segev have constructed a torsion-free group without the unique prod-
uct property.

We have obtained the following results.

e First examples of Gromov hyperbolic such groups.



66 YGGT 3: RESEARCH STATEMENTS

e A Rips construction without the unique product property. (Joint
with Goulnara Arzhantseva.)

Our groups without the unique product property have various algebraic and
algorithmic properties. The presentations of such groups are not generic
among random finitely presented groups.

My main interest is in the following two open questions:

e Is the unique product property generic among random finitely pre-
sented groups?

e Do the Rips-Segev groups without the unique product property sat-
isfy the Kaplansky zero-divisor conjecture?

The methods 1 use go from small cancellation theories over free products
to the Gromov graphical model as well as the Arzhantseva-Ol’shanskii few
relator model for random groups.

My research is supported by ERC-grant ANALYTIC no. 269527 of Goul-
nara Arzhantseva and a Vienna University Research Grant 2013.
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Thierry Stulemeijer Université Catholique de Louvain

Linear locally compact simple groups

The goal of this research project is to obtain some classifications within
the class S of locally compact, compactly generated and topologically sim-
ple groups. The study of this class is motivated by the results in [1|, which
show that the groups in § act as elementary blocks in the structure theory
of compactly generated groups.

The main known examples of groups in § are: simple Lie groups, simple
algebraic groups over local fields, finitely generated simple groups, complete
Kac-Moody groups over finite fields, some automorphisms groups of trees or
of right-angled buildings, and some generalizations of the latter.

Among those examples, simple Lie groups, simple algebraic groups over
local fields and finite simple groups admits a faithful continuous representa-
tion in some GLy(k), for k a locally compact field. Currently, we hope to
prove that this property characterizes those groups in the class §. To put it
concisely, we hope to prove the following:

Conjecture Let G be a group in the class S. Assume that G has a contin-
uous faithful linear representation in G Ly (k), where k is a local field. Then



YGGT 3: RESEARCH STATEMENTS 67

G is a finite simple group, or a simple Lie group, or a simple algebraic group
over a local field.
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Chun-yi (Jean) Sun University of Oklahoma, Norman
Commutator Words in Mapping Class Groups

Mapping class groups have many flats, that is, subgroups homomorphic to
Z", hence are not §-hyperbolic. But they act naturally on curve complexes,
which are simplicial complexes with simple closed curves as vertices. Ma-
sur and Minsky [1] showed that the curve complex C(S) is d-hyperbolic. In
their second paper on curve complexes [2| they showed subsurface projections
control the behavior of mapping classes. They also stated that subsurface
projections have their own contraction property. They also solved the conju-
gacy word problem for pseudo-Anosov elements and Tao extended this result
to every pair of conjugated elements in the mapping class groups [3].
Theorem ([2],[3]): There exists K > 0. If g and f are conjugated pseudo-
Anosovs, that is, g = ufu™!, then there is v € MCG(S) such that g = vfv"
and that [v] < K(|g| + | f1).

This result leads to the following conjecture.

Conjecture There exists C,M > 0, and K > 1 such that for any w =
[®1,y1] - [zk,yk), if |lw| > M, then there are ay,...,ak, bi,...,br which
satisfy

w = [alvbl] e [akubkL and

k
1
lw| > I Z (Jai| + [bi]) — C.
i—1

Evidence that such a statement is true for d-hyperbolic groups can be
found in [4].
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Krzysztof Swiecicki Texas A&M University
Helly’s theorem for systolic complexes

I am a first year PhD student at the Texas A&M University, interested
in geometric group theory. I recently finished my master degree at the Uni-
versity of University of Warsaw, where my supervisior was Pawet Zawiglak.
In my master thesis I proved the analogue of Helly’s theorem for systolic
complexes.

Recall classical Helly’s theorem concerning convex subsets of Fuclidean
spaces. Suppose that X1, Xo, ..., X, is a collection of convex subsets of R?
(where n > d) such that the intersection of every d 4+ 1 of these sets in
nonempty. Then the whole family has a nonempty intersection. This result
gave rise to the concept of Helly dimension. For a geodesic metric space
X we define its Helly dimension h(X) to be the smallest natural number
such that any finite family of (h(X) + 1)-wise non-disjoint convex subsets of
X has a non-empty intersection. Clearly, Helly’s theorem states that Helly
dimension of the Euclidean space R? is < d. It is very easy to find examples
showing that it is exactly equal to d.

Systolic complexes were introduced by Tadeusz Januszkiewicz and Jacek
Swiatkowski in [1]. They are connected, simply connected simplicial com-
plexes satisfying some additional local combinatorial condition , which is a
simplicial analogue of nonpositive curvature. Systolic complexes inherit lots
of CAT(0)-like properties, however being systolic neither implies, nor is im-
plied by nonpositive curvature of the complex equipped with the standard
piecewise euclidean metric.

There is a well known result for CAT(0) cube complexes which states
that, regardless their topological dimension, they all have Helly dimension
equal to one. This motivates a question about Helly-like properties of systolic
complexes. We obtained the following results:

Let X be a 7-systolic complex and let X1, X9, X3 be pairwise intersecting
convex subcomplexes. Then there exists a simplex ¢ C X such that cNX; #
() for ¢ = 1,2,3. Moreover, the dimension of ¢ is at most two.

In other words 7-systolic complexes have Helly dimension less or equal to
1. It is easy to see that this is not necessarily true for 6-systolic complexes,
but we prove that any systolic complex has Helly dimension less or equal to
2. More precisely:
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Let X be a systolic complex and let X1, Xo, X3, X4 be its convex subcom-
plexes such that every three of them have a nontrivial intersection. Then
there exists a simplex 0 C X such that cNX; # () for i = 1,2, 3,4. Moreover,
the dimension of ¢ is at most three.
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Romain Tessera CNRS — Ecole normale supérieure de Lyon

Analysis in metric spaces

Most of my work is devoted to the study of the large scale geometry of
different kinds of objects, among which: discrete groups, Lie groups, Rie-
mannian manifolds, graphs, and more general metric measure spaces. It has
connexion to topology (rigidity of topological manifolds), geometric group
theory (e.g. word problem, via the study of the Dehn function), embeddings
of (finite or infinite) metric spaces into Banach spaces... More specifically,
here is a list of subjects I am working on.

A fair amount of my research has been devoted to the problem of quan-
tifying, or characterizing how well metric spaces can be coarsely embedded
into various classes of Banach spaces, most interestingly Hilbert spaces. For
instance I gave a precise answer for free groups, and for Lie groups and their
lattices. More recently, I have characterized those metric spaces which can-
not be coarsely embedded in terms of containing a sequence of expanders (in
some weak sense). My last work in the subject is a collaboration with Austin
and Naor, where we prove sharp quantitative obstructions for the Heisenberg
group to quasi-isometrically embed into a uniformly convex Banach space.
Our estimates are new even in the case of Hilbert spaces.

A few years ago, I started a collaboration with Erik Guentner and Guo-
liang Yu on topological rigidity of manifolds. We developed new tools (involv-
ing some large-scale geometry), in order to prove the Stable Borel conjecture
for a wide class of closed manifolds. We are now trying to mix our techniques
with those of Farrel and Jones in order to attack the Borel conjecture.

In a recent work in collaboration with Yves Cornulier, we have been study-
ing the 2-dimensional isoperimetric function on Lie groups. Our main result
is an algebraic characterization of Lie groups with exponential/polynomial
isoperimetric function. In particular we prove that such a dichotomy holds.
We prove similar results for algebraic groups over a local field.

* ok k ok ok
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Dale Winter Brown University

I'm interested in the ergodic theory of frame flow for geometrically finite
rank one manifolds, and in applying that theory to the study of Lie groups.
Here are two examples of the types of questions we try to answer:

Question 1: the orbit counting problem. Consider G = PSLy(C) acting
as the isometry group of H?, and let I' < G be a discrete subgroup without
torsion elements. For a base point zg € H? we define the orbit counting
function by

N(R,zp) = #{y € T : dus (720, 20) < R}.
Clearly we should expect N (R, zp) to go to infinity as R — oo, but how fast?
What are the asymptotics?

Question 2: measure classification for horospherical subgroups. Let
I" and G be as before, and let

o {(10)srech<a

be the subgroup of strictly lower triangular matrices. Classify all the locally
finite Borel measures on I'\G that are invariant and ergodic for the right N
action.

These questions, and their natural generalizations, have good and influ-
ential answers when the quotient T'\H? has finite volume; see [2] and [3] for
the orbit counting problem, and [1| and [6] for the measure classification.

My own focus has been in trying to understand these questions for dis-
crete subgroups I' < G that have a finite-sided fundamental domain (or more
precisely, that are geometrically finite), but don’t necessarily have finite co-
volume. There are a number of Radon measures on the frame bundle I'\G
that become important in this setting: the Bowen-Margulis-Sullivan mea-
sure mBMS, which is finite and invariant for frame flow; the Burger Roblin
measure mPR, which is invariant for N; and the opposite BR measure mBR,
which is invariant for the opposite horospherical group N*. The following
theorem describes a special case of work of Roblin [7] and Flaminio-Spatzier
[4], and gives some flavor of the results that can be proved.

Theorem (cf. [5], Theorem 2.5, Theorem 3.2, Theorem 4.4). Suppose that
I' < G = PSLy(C) is geometrically finite and Zariski dense (considering G

as a real algebraic group). Let 6 = or be the critical exponent of T'. Then:

o the frame flow ¢y is mizing on (I'\G, mBMS)

o for any pair f; € C.(I'\G), the Haar measure matriz coefficients

7

satisfy
BR BR
Jim_e200 /F o 10a) Ralg)dg = m ﬁﬁéﬁs‘ (f2),

e there is an explicit constant c(zy) such that

#{y €T : dys (720, 20) < R} ~ ¢(20)e;
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e mPR s the only N-invariant and -ergodic Radon measure on I'\G

that is not supported on a single closed N orbit.

The key step here is to prove mixing of frame flow for (I'\G, mBMS). This,
together with the product structure of the BMS measure, allows us to deduce
the asymptotics for Haar measure matrix coefficients, and so to establish
the orbit counting estimate. Mixing of (I'\G,mBM3) also implies the N-
ergodicity of (I'\G, mPR), which is a key step in establishing the measure
classification result.

My current project is to generalize these results from real hyperbolic spaces
to other rank one symmetric spaces.
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Maxime Wolff Institut de Mathématiques de Jussieu, Paris

Geometric structures on surfaces

My main area of research is the study of representation spaces of surface
groups (or related groups) in PSL(2,R) (or related groups).

Holonomies of hyperbolic structures on a marked surface of genus g > 2
form a subset of Hom(m ¥4, PSL(2,R))/PSL(2,R), called the Teichmiiller
space T (3,) of the surface. The interpretation of all points in 7(%,) as
hyperbolic structures (as well as complex structures) on X, yields a very
rich understanding of this space, and a general problem consists in gener-
alizing this viewpoint. If one considers PSL(2,C), or PSL(n,R) instead of
PSL(2,R), the “prefered” representations are then the quasi-Fuchsian, or the
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Hitchin representations of the surface group. On the other hand, if one con-
siders non-Teichmiiller representations in PSL(2,R), these can be related to
geometric objects (such as branched hyperbolic structures on ¥, on anti-de
Sitter structures on circle bundles over ¥,), but this geometric interpretation
is not canonical, and the corresponding moduli spaces are still not very well
understood.

Closely related questions are to understand directly the topology of these
representation spaces, and to understand the dynamics of the mapping class
group of X, on these spaces.
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Xiaolei Wu SUNY Binghamton

Geometric group theory and the Farrell-Jones Conjecture

My current research has been focused on the interaction between geomet-
ric group theory and algebraic K-theory, in particular, I am working on the
Farrell-Jones Conjecture. The Farrell-Jones Conjecture plays a very impor-
tant role in geometric topology. It implies for example the Borel Conjecture
and the Novikov Conjecture, which are considered as two of the most impor-
tant unsolved problems in geometric topology nowdays. The conjecture also
has deep connection with other conjectures in algebra, for example, Bass
Conjecure, Kaplansky Conjecture.

My work has been concentrated on verifying the conjecture for certain
classes of groups. This usually involves studying the groups with geometric
group theory techniques, for example find a suitable geometric model that
the groups act on. In more detail, together with my advisor F. T. Far-
rell, we proved in [1] and [3] that the Farrell-Jones Conjecture is true for the
Baumslag-Solitar groups, which is a problem more than ten years old. Later,
we generalized our method in [1], and proved the Farrell-Jones Conjecture is
true for a large class of nearly crystallgraphic groups in [2]. Recently, I ob-
served that the Farrell-Jones Conjecture is true for all elementary amenable
groups with finite Hirsch lengths (|4]). In the future, I mainly plan to study
two classes of groups, free by cyclic groups and groups acting on a CAT(0)
space in a nice way.

Bibliography

[1] F. T. Farrell, X. Wu, Farrell-Jones Conjecture for the solvable Baum-
slag-Solitar groups, arXiv:1304.4779, submitted, 2013.

[2] F. T. Farrell, X. Wu, Farrell-Jones Conjecture for the nearly crys-
tallgraphic groups, in preparation.

[3] F. T. Farrell, X. Wu, Isomorphism Conjecture for Baumslag-Solitar
groups, arXiv:1309.5642, submitted, 2013.

[4] X. Wu, Elementary Amenable Groups and The Farrell-Jones Con-
jecture, submitted, 2013.



