
GENUS ZERO ACTIONS ON RIEMANN SURFACES

SADOK KALLEL AND DENIS SJERVE

1. Introduction

In this paper we solve the following problem:

Problem. Which finite groups G admit an action on some compact connected Riemann surface M so
that if H is any non-trivial subgroup of G then the orbit surface M/H has genus zero, that is

1 6= H ⊆ G =⇒ M/H = P
1(C).(1)

Any finite group G will admit infinitely many actions G × M → M so that M/G = P1(C). It will turn
out that very few groups G satisfy (1).

The action G× M → M is supposed to be analytic and effective. Thus G is a subgroup of Aut(M),
the group of all analytic automorphisms of M. For any action G×M → M , if M/H1 = P

1(C) for some
H1 ⊆ G, then automatically M/H2 = P

1(C) if H1 ⊆ H2 ⊆ G. This means that we can reduce the
problem to the consideration of cyclic subgroups Zp ⊆ G, where p is a prime dividing the order of G.

Our problem thus becomes:

Problem. Which finite groups G admit an action on some compact connected Riemann surface M so
that if H is any cyclic subgroup of prime order p then the orbit surface M/H has genus zero, that is

M/Zp = P
1(C), for all Zp ⊆ G, where p is a prime dividing |G|.(2)

All Riemann surfaces considered in this paper, with just a few exceptions, will be compact and con-
nected. The exceptions are the complex plane and the upper half plane. The groups being studied in
this paper will always be finite.

In our solution of this problem not only do we describe the groups G admitting such actions, but we
also determine all possible actions for each group. This amounts to describing all admissible epimor-
phisms θ : Γ → G, where Γ is a Fuchsian group of signature (0 | n1, . . . , nr). See Section (2).

In Section (3) we consider the low genera cases g = 0, 1, where g is the genus of M. Other than these
exceptions we will usually assume that g > 1.

Definition 1.1. A group G is said to have genus zero if there exists a Riemann surface M and an
action of G on M satisfying (1), or equivalently (2) . We also say that the action has genus zero.

To explain the significance of the above problem, and to give it some motivation, we recall the
definition of a fixed point free linear action on a C vector space V .

Definition 1.2. A linear action G × V → V is said to be fixed point free if

S ∈ G, S 6= 1 =⇒ S(v) 6= v for all v ∈ V, v 6= 0.

Now let V be the vector space of holomorphic differentials on M . V is a C vector space of dimension
g, where g is the genus of M . The action of G on M induces a linear action on the vector space V. If
S ∈ G is an element of order p then the induced linear transformation S∗ : V → V also has order p,
assuming g > 1. It follows that the eigenvalues of S∗ are pth roots of unity. In particular +1 might be
an eigenvalue of T ∗. Part of the proof of the Eichler trace formula, see Farkas and Kra [2], states that
the dimension of the +1 eigenspace of S∗ is the genus of M/H , where H ∼= Zp is the cyclic group of
order p generated by S.
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Therefore the induced action G×V → V is fixed point free if, and only if, G×M → M is a genus-zero
action. We can impose a metric on V so that the action becomes unitary. Thus the action G×M → M
has genus zero if, and only if, S2g−1/G is an elliptic space form. This equivalence assumes that g > 1.
Here S2g−1 denotes the unit sphere in V .

The converse problem of when a fixed point free linear action G × V → V arises from a genus-zero
action on some Riemann surface is not considered in this paper.

Groups G which admit fixed point free linear actions have been classified, see Wolf [5]. In particular
they must satisfy a strong condition on their Sylow p-subgroups. First recall that the generalized
quaternion group Q(2n) is defined as follows:

Definition 1.3. The generalized quaternion group is the group with the presentation:

(3) Q(2n) =
〈

A, B | A2n−1

= 1, B2 = A2n−2

, BAB−1 = A−1
〉

.

We will always assume n ≥ 3, since otherwise Q(2n) is cyclic.

Definition 1.4. We say that a group G satisfies the Sylow conditions if the following two conditions
hold.

(1) For an odd prime p the Sylow p-subgroups are cyclic.
(2) The Sylow 2-subgroups are either cyclic or generalized quaternion.

The Sylow conditions are equivalent to the following:

Definition 1.5. We say that a group G satisfies the p2 conditions if every subgroup of order p2 is
cyclic, where p is any prime.

Every group G admitting a fixed point free linear action satisfies these conditions. In fact these
groups must satisfy the even stronger pq conditions.

Definition 1.6. A group G satisfies the pq conditions if every subgroup of order pq is cyclic, where
p and q are arbitrary primes.

Let D2n denote the dihedral group of order 2n. If n is odd then D2n satisfies the p2 conditions but
not the pq conditions. In fact any group G of even order which admits a fixed point free linear action
must have exactly one element of order 2, and this element generates the center of G.

To describe our results we need another definition and some notation.

Definition 1.7. We let Gm,n(r) denote the group presented as follows:

generators : A, B;

relations : Am = 1, Bn = 1, BAB−1 = Ar;(4)

conditions : GCD((r − 1)n, m) = 1 and rn ≡ 1 (mod m).

These groups are precisely the groups having all Sylow subgroups cyclic, see Burnside [1]. To avoid
the trivial cases where the group is cyclic we will usually assume that m > 1, n > 1. Note that the
conditions imply r 6≡ 1 (mod m).

If d denotes the order of r modulo m then Zassenhaus [6] proved that Gm,n(r) satisfies the pq

conditions if, and only if, every prime divisor of d also divides
n

d
. He also proved that Gm,n(r) admits

a fixed point free linear representation if, and only if, the pq conditions hold. The groups Gm,n(r) are
known as Zassenhaus metacyclic groups (abbreviated to ZM groups).

Let I∗ denote the binary icosahedral group. It has order 120 and admits a fixed point free linear
representation. I∗ is non-solvable, and if G is a non-solvable group admitting a linear fixed point free
representation then G contains I∗ as a subgroup.

The main results of this paper are contained in the following theorems. In particular the first theorem
implies that I∗ does not have genus zero, and therefore neither does any non-solvable group admitting
a fixed point free linear representation.
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Theorem 1.8. The groups having genus zero are the cyclic groups, the generalized quaternion groups
Q(2n), the polyhedral groups and the ZM groups Gp,4(−1), where p is an odd prime.

The cyclic and polyhedral groups have genus zero because they can act on P1(C). Some cyclic groups
admit genus zero actions on surfaces of higher genus, but most do not. See Theorems (1.9), (1.11),
(5.2), and Corollary (5.1).

This theorem gives a solution to Problem (1) but does not describe the actions involved. To do this
we need some more notation. Let Γ(0 | n1, . . . , nr) denote the abstract group presented by

〈
X1, X2, . . . , Xr

∣
∣ Xn1

1 = Xn2

2 = · · · = Xnr
r = X1X2 · · ·Xr = 1

〉
.(5)

For a more detailed explanation of the notation see Section (2).
If G × M → M is an action satisfying M/G = P1(C), and the genus of M is g, then there exists a

short exact sequence

1 → Π → Γ
θ

−→ G → 1,(6)

where Π ∼= π1(M) and Γ = Γ(0 | n1, . . . , nr) for some choice of nj . We say that the signature of the
action is (0 | n1, . . . , nr). The signature of the action, together with the epimorphism θ : Γ → G and
the particular realization of Γ as a Fuchsian group, completely determines the action.

Theorem 1.9. All genus-zero actions of the cyclic group Zpe , where p ≥ 2 is any prime, have signature
(0| p, . . . , p

︸ ︷︷ ︸

r

, pe, pe), where r is arbitrary. The genus is g = 1
2r

(
pe − pe−1

)
.

If e = 1 this means that the signature of the action is (0| p, . . . , p
︸ ︷︷ ︸

r

), where r ≥ 2, and the genus is

g = 1
2 (r − 2)(p − 1).

Theorem 1.10. All genus-zero actions of the generalized quaternion group Q(2n) have signature
(0| 2, . . . , 2

︸ ︷︷ ︸

r

, 4, 4, 2n−1), where r is odd. The genus is g = 2n−2(r + 1).

Theorem 2 shows there are infinitely many signatures for genus-zero actions by cyclic p−groups.
This is not true for other cyclic groups.

Theorem 1.11. Suppose p, q are distinct primes. Then the genus-zero actions of Zpq have signature
and corresponding genus given by

(1) sig(Γ) = (0 | pq, pq), in which case g = 0.

(2) sig(Γ) = (0 | p, q, pq), in which case g =
1

2
(p − 1)(q − 1).

3. sig(Γ) = (0 | p, p, q, q), in which case g = (p − 1)(q − 1).

See Section (4) for the proofs of Theorems (1.9), (1.10) and Section (5) for the proof of Theorem
(1.11). These sections also give details of the epimorphisms θ : Γ → G classifying the actions.

Theorem 1.12. All genus-zero actions of the ZM group Gp,4(−1), where p is an odd prime, have
signature (0 | 4, 4, p). The corresponding genus is g = p − 1.

This theorem is proved in Section (6). In Section (7) we complete the proof of Theorem (1).

2. Preliminaries

In this section we collect some preliminary material and review some of the material on Riemann
surfaces that we need later.

Let U denote a simply connected Riemann surface, that is P1(C), C or the upper half plane H.
A Fuchsian group Γ is any finitely generated discrete subgroup of PSL2(R), the group of analytic
automorphisms of H. By abuse of terminology we shall also call a finitely generated discrete subgroup
of Aut(U) Fuchsian.
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To every Fuchsian group Γ we associate a signature (h | n1, n2, . . . , nr), where h is the genus of
the orbit surface U/Γ and n1, . . . , nr are the orders of the distinct conjugacy classes of maximal cyclic
subgroups of Γ. The nj are called the periods. In general it is possible that some of the nj are infinite,
but the Fuchsian groups Γ considered in this paper will all have the property that U/Γ is compact, and
so the periods nj will be finite. We use the notation sig(Γ) for the signature of Γ.

The notation Γ(h | n1, . . . , nr) denotes any Fuchsian group of signature (h | n1, n2, . . . , nr). If r = 0
this group is torsion free and we use the notation Γ(h |−). In fact the Fuchsian groups with r = 0 are
just the fundamental groups of Riemann surfaces.

Of particular interest to us will be those Fuchsian groups Γ = Γ(0 | n1, . . . , nr) since they play
a seminal role in actions G × M → M satisfying M/G = P1(C). As an abstract group Γ has the
presentation (5). The geometry of Γ is spherical, euclidean or hyperbolic according as

∑r
j=1

1
nj

> 1, = 1

or < 1. In the hyperbolic case, for any realization of Γ as a Fuchsian group, the Xj are elliptic and
so are rotations about vertices Vj ∈ H. Up to conjugation by elements of Aut(U) the space of all such
realizations is a cell of dimension 2r − 6.

Let G be a group acting on a Riemann surface M of genus g and let U be the universal covering
space of M. Then there exists a short exact sequence of groups

1 → Π → Γ
θ

−→ G → 1,(7)

where

(1) Γ is a Fuchsian group with signature (h | n1, n2, . . . , nr).
(2) Π = Ker(θ) is a torsion free Fuchsian group with signature (g |−).
(3) M = U/Π and the action of an element S ∈ G on M is given by S[z] = [γ(z)], where the

brackets [ ] indicate the Π equivalence class of points in U and γ ∈ Γ is any element such that
θ(γ) = S.

(4) The orbit surface M/G has genus h and is naturally isomorphic to U/Γ.

The relationship between the genera g, h is given by the Riemann-Hurwitz formula:

(8) 2g − 2 = |G|



2h − 2 +

r∑

j=1

(

1 −
1

nj

)


 .

Definition 2.1. The signature of the action of G on M is defined to be the signature of Γ.

Suppose S ∈ G is an element of order p, where p is a prime, and H is the cyclic subgroup generated
by S. Then Γ

′

= θ−1(H) is a Fuchsian group and there exists a short exact sequence

(9) 1 → Π → Γ
′ θ
−→ H → 1.

The signature of Γ
′

will have the form (k | p, . . . , p
︸ ︷︷ ︸

t

), where t is the number of fixed points of S : M → M.

The Riemann-Hurwitz formula (8) gives

2g − 2 = p

(

2k − 2 + t

(

1 −
1

p

))

.(10)

A comparison between Formulas (8) and (10) then gives a numerical restriction on the possible genera
and the number of fixed points.

If G × M → M is an action satisfying M/G = P1(C) then the signature of Γ will be given by
sig(Γ) = (0 | n1, . . . , nr), and so Γ will be given abstractly by the presentation in (5). In this case let

Tj = θ(Xj) and Gj = the subgroup of G generated by Tj, 1 ≤ j ≤ r.

Then

(1) T1, T2, . . . , Tr generate G ( θ is an epimorphism).
(2) T n1

1 = T n2

2 = · · · = T nr
r = T1T2 · · ·Tr = 1 (θ must preserve the relations in Γ).

(3) The order of Tj is nj , 1 ≤ j ≤ r (the kernel of θ is torsion free).
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The converse is true. In other words if we are given T1, T2, . . . , Tr satisfying these conditions then
there is an action G×M → M satisfying M/G = P1(C) and having signature (0 | n1, . . . , nr). It follows
that every group G admits infinitely many actions G × M → M satisfying M/G = P1(C).

Remark 2.2. The key to the study of actions G×M → M satisfying M/G = P1(C) is the determination
of the number of fixed points of the action. Let S ∈ G, S 6= 1, and choose any γ ∈ Γ such that θ(γ) = S.
Then a point [z] ∈ M will be a fixed point of S if, and only if, there exists µ ∈ Π such that µγ(z) = z.
Now the elements of Γ that have fixed points are the conjugates of powers of the elliptic generators.
That is we must have

µγ = δX
kj

j δ−1, where 1 ≤ j ≤ r, 1 ≤ kj < nj , δ ∈ Γ,

in which case z = δ(Vj). Thus the fixed points of S are those Π equivalence classes [δ(Vj)], any δ ∈ Γ,
satisfying

S = dT
kj

j d−1, for some kj , 1 ≤ j ≤ r, where d = θ(δ).(11)

Condition (11) is especially easy to use if S ∈ G, S 6= 1, is in the center.

Lemma 2.3. Suppose G is a group admitting an action G × M → M satisfying M/G = P1(C) and
let S ∈ G, S 6= 1, be a central element. Then the fixed points of S are the Π equivalence classes
[δ(Vj)], 1 ≤ j ≤ r, any δ ∈ Γ, such that S ∈ Gj.

Corollary 2.4. Suppose G is a group admitting an action G × M → M satisfying M/G = P
1(C) and

let S ∈ G be a central element of order p. Then the number of fixed points of S is |G|
∑

j

′ 1

nj

, where the

prime indicates we sum only over those j such that S ∈ Gj .

Proof. According to Lemma (2.3) the fixed points of S are those Π equivalence classes [δ(Vj)], 1 ≤ j ≤ r,
any δ ∈ Γ, such that S ∈ Gj . If S ∈ Gj ∩ Gk then

[δ(Vj)] = [ǫ(Vk)] ⇐⇒ µδ(Vj) = ǫ(Vk) for some µ ∈ Π

⇐⇒ j = k and θ(δ) ≡ θ(ǫ)(mod Gj).

Thus the fixed points of S, for a fixed j with S ∈ Gj , are in one-to-one correspondence with the cosets
of Gj in G. �

In a similar fashion we can prove the next corollary.

Corollary 2.5. Suppose G is a group admitting an action G × M → M satisfying M/G = P1(C).
Suppose G has a unique subgroup of order p, where p is a prime, and let S be any element of order p.

Then the number of fixed points of S is |G|
∑

j

′ 1

nj

, where the prime indicates we sum over those j so

that p|nj.

The cyclic groups Zpe have unique subgroups of orders p, p2, . . . , pe and the generalized quaternion
goup Q(2n) has a unique subgroup of order 2, the subgroup generated by the central element B2. In fact
the only p-groups which contain a unique subgroup of order p are the cyclic groups and the generalized
quaternion groups.

Let G denote either of these groups and suppose S ∈ G is an element of order p. If G acts on a
Riemann surface M so that M/G = P

1(C) then there is a short exact sequence as in (6), and moreover
the signature of Γ must have the form

sig(Γ) = (0| p, . . . , p
︸ ︷︷ ︸

r1

, p2, . . . , p2

︸ ︷︷ ︸

r2

, . . . , pe, . . . , pe

︸ ︷︷ ︸

re

) if G = Z
e
p.(12)

sig(Γ) = (0| 2, . . . , 2
︸ ︷︷ ︸

r1

, 4, . . . , 4
︸ ︷︷ ︸

r2

, . . . , 2n−1, . . . , 2n−1

︸ ︷︷ ︸

rn−1

) if G = Q(2n).(13)
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Not all signatures are realizable since there are restrictions on the rj that must be satisfied in order
that θ : Γ → G be well defined, onto and have torsion free kernel. See Section (4).

Corollary 2.6. Let G denote either Zpe or Q(2n), and S an element of order p. Suppose G acts on a
Riemann surface M so that M/G = P1(C). Then the number of fixed points of S is

pe

e∑

j=1

rj

pj
=

e∑

j=1

rjp
e−j if G = Zpe and 2n

n−1∑

j=1

rj

2j
=

n−1∑

j=1

rj2
n−j if G = Q(2n).

Proof. This is an immediate consequence of the last corollary. �

3. Actions on a Surface of Genus 0 or 1

In this section we determine all genus-zero actions on either P1(C) or a torus. Such actions on P1(C)
are very easy to describe since the possible groups are just the finite subgroups of PSL2(C). These are
well known to be either cyclic or polyhedral. In terms of our notation for Fuchsian groups the finite
subgroups of PSL2(C) are:

(1) Γ(0 | n, n), the cyclic group of order n.
(2) Γ(0 | 2, 2, n), the dihedral group of order 2n.
(3) Γ(0 | 2, 3, 3), the tetrahedral group of order 12.
(4) Γ(0 | 2, 3, 4), the octahedral group of order 24.
(5) Γ(0 | 2, 3, 5), the icosahedral group of order 60.

This also gives the possible signatures of the actions. Moreover, up to conjugacy in PSL2(C), each
of these groups admits a unique embedding and so a unique genus-zero action on P1(C).

Now suppose G acts on a torus M so that (1) is satisfied. It is well known that the group of
automorphisms Aut(M) contains M as a normal subgroup, acting on itself by translations, and that
the quotient group is cyclic of order 2, 4 or 6. In other words there is a short exact sequence

1 → M → Aut(M) → K → 1, where K ∼= Z2, Z4, or Z6.

The elements of the subgroup M act fixed point freely and therefore finite subgroups of M will not
satisfy (1). In fact the quotient by any finite subgroup will again be a torus. It follows that G is a
subgroup of Z2, Z4 or Z6, and so G ∼= Z2, Z3, Z4 or Z6.

The next theorem summarizes the situation.

Theorem 3.1. The groups acting on a torus M and satisfying (1) are given as follows:

Z2 with signature (0 | 2, 2, 2, 2).

Z3 with signature (0 | 3, 3, 3).

Z4 with signature (0 | 2, 4, 4).

Z6 with signature (0 | 2, 3, 6).

In all cases the epimorphism θ : Γ → G is unique up to automorphisms of G.

4. Sylow Group Actions

In this section we prove Theorems (1.9) and (1.10), that is we classify all genus-zero actions of the
cyclic groups Zpe , where p ≥ 2 is any prime, and the generalized quaternion groups Q(2n). For each of
these groups there are infinitely many possible signatures.

First we consider the case G = Zpe . Let T be a generator of G and suppose G acts on a Riemann
surface M so that M/G = P1(C). For the moment we do not assume that the action has genus zero.
Then there exists a short exact sequence as in (6) and sig(Γ) is given by (12).

We choose elliptic generators of Γ as follows:

Xj,k corresponding to the period pj, 1 ≤ j ≤ e, 1 ≤ k ≤ rj .
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Then the epimorphism θ : Γ → Zpe is given by:

(14) θ(Xj,k) = T aj,kpe−j

, where 1 ≤ j ≤ e, 1 ≤ k ≤ rj and aj,k 6≡ 0 (mod p).

The conditions on the aj,k guarantee that Π= Ker(θ) is torsion free. To ensure that θ is onto and
well defined we also need the conditions:

(15) re ≥ 2 and

e∑

j=1

rj∑

k=1

aj,kpe−j ≡ 0 (mod pe).

Suppose the signature of Π is (g | −). Then the Riemann-Hurwitz formula (8) gives

(16) 2g − 2 = pe



−2 +

e∑

j=1

rj

(

1 −
1

pj

)


 .

Let H = Zp be the cyclic group of order p generated by some element S ∈ Zpe of order p. According to
Corollary (2.6) the number of fixed points of S is

t =
e∑

j=1

rjp
e−j .

Using this value of t in Equation (10) and then comparing Equations (10) and (16) we get

k = 1 − pe−1 +
1

2

e∑

j=1

rjp
e−j

(
pj−1 − 1

)
=

1

2

e−1∑

j=2

rjp
e−j

(
pj−1 − 1

)
+

1

2

(
pe−1 − 1

)
(re − 2) .

All terms on the right hand side of this equation are non-negative since re ≥ 2. Therefore, if the
genus of the action is zero, that is if k = 0, we conclude that

r1 ≥ 0 is arbitrary, r2 = · · · = re−1 = 0 and re = 2.

If e = 1 we interpret this to mean that the signature of the action is (0 | p, . . . , p
︸ ︷︷ ︸

r

), where r ≥ 2. When

e = 2 the interpretation is that the signature is (0 | p, . . . , p
︸ ︷︷ ︸

r

, p2, p2), where r is arbitrary.

The calculation of the genus is a simple consequence of the Riemann-Hurwitz formula (8). This
concludes the proof of Theorem (1.9).

We can say more about these actions. Recall that T ∈ Zpe is a generator. To simplify notation let
the elliptic generators of Γ = Γ(0| p, . . . , p

︸ ︷︷ ︸

r

, pe, pe) be denoted by

X1, . . . , Xr of period p,

Y1, Y2 of period pe.

Then the epimorphism θ : Γ → Zpe will satisfy

θ(Xj) = T ajpe−1

, where aj 6≡ 0 (mod p), 1 ≤ j ≤ r,

θ(Y1) = T b1 and θ(Y2) = T b2 , where b1 6≡ 0 (mod p) and b2 6≡ 0 (mod p),

pe−1
r∑

j=1

aj + b1 + b2 ≡ 0 (mod pe).

Now we prove Theorem (1.10). Let Q denote the generalized quaternion group Q(2n) and assume
n ≥ 4. The case n = 3 will be considered at the end of this section.

Some elementary facts about Q are:

(1) The elements of Q are Aj and BAj , 1 ≤ j ≤ 2n−1.
(2) The orders of the elements of Q are 1, 2, 4, . . . , 2n−1.
(3) There is a unique element of order 2, namely B2, and it generates the center of Q.
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(4) The elements of order 4 are Aα2n−3

and BAa, where α is odd and a is arbitrary.

(5) The elements of order 2j, where 3 ≤ j ≤ n − 1, are Aα2n−1−j

, where α is odd.

Now suppose M is a Riemann surface with an action by Q so that M/Q = P1(C). For now we do
not assume that the genus of the action is zero. Then there exists a short exact sequence 1 → Π →

Γ
θ

−→ Q → 1, as in (6), and sig(Γ) is given by (13).
We need some notation in order to characterize the epimorphism θ : Γ → Q. Thus let

Xj,k, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ rj ,

be elliptic generators of Γ chosen to satisfy the relations

(1) X2j

j,k = 1, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ rj .
(2) X1,1 · · ·X1,r1

X2,1 · · ·X2,r2
· · ·Xn−1,1 · · ·Xn−1,rn−1

= 1.

Then θ must preserve the order of the elliptic generators and therefore we have

(1) θ(X1,k) = B2, 1 ≤ k ≤ r1.

(2) θ (X2,k) = Aα2,k2n−3

or BAa2,k , where α2,k is odd and a2,k is arbitrary.

(3) θ (Xj,k) = Aαj,k2n−1−j

, where 3 ≤ j ≤ n − 1, 1 ≤ k ≤ rj and the αj,k are odd.

Let the number of X2,k mapping to elements of the form BAa be r. Then we must have r > 0 in order
that θ be onto. Moreover, in order that θ be well defined we must have

2r1 + r ≡ 0 (mod 4).(17)

This follows from counting the number of B’s in the product relation obtained by applying θ to
X1,1 · · ·Xn−1,rn−1

= 1. There is also a restriction coming from the power of A, but we do not need it
yet.

¿From Equation (17) we see that r must be even, and since r > 0, we get r2 ≥ r ≥ 2.
Now Q has a unique subgroup H of order 2, namely < B2 >, and therefore we need only consider

the genus of M/H in order to answer Problem (1). Again according to Corollary (2.6), the number of
fixed points of B2 is given by

t =

n−1∑

j=1

rj2
n−j .

Assume the signature of Π is (g | −). Then the Riemann-Hurwitz formulas (8) and (10) give

2g − 2 = 2n



−2 +
n−1∑

j=1

rj

(

1 −
1

2j

)




= 2

(

2k − 2 + t

(

1 −
1

2

))

= 4k − 4 +
n−1∑

j=1

rj2
n−j .

Assuming k = 0 we easily derive the following equation

r2

(
2n−1 − 2n−2

)
+ r3

(
2n−1 − 2n−3

)
+ · · · + +rn−1

(
2n−1 − 2

)
= 2n − 2.(18)

It follows that rn−1 must be odd, since the right hand side of Equation (18) is congruent to −2 modulo
4. But then we must have rn−1 = 1, for otherwise the left hand side would be greater than 2n − 2 (this
uses r2 ≥ 2).

Now it follows that the only solutions of Equation (18) are

r2 = 2, r3 = · · · = rn−2 = 0 and rn−1 = 1.

If n = 4 we interpret this to mean r2 = 2 and r3 = 1.
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Thus r = 2, and then from Equation (17) we see that r1 must be odd. This means that the only
possible signatures are (0| 2, . . . , 2

︸ ︷︷ ︸

r1

, 4, 4, 2n−1), where r1 is odd. All of these signatures can be realized

by genus-zero actions.
If n = 3 then the above, suitably interpreted, remains valid. In particular r1 must be odd and r2 = 3.
The statement about the genus of the action follows easily from the Riemann-Hurwitz formula (8).

This concludes the proof of Theorem (1.10).
To simplify the notation let the elliptic generators of Γ be denoted by

X1, . . . , Xr of period 2

Y1, Y2 of period 4

Z of period 2n−1

The homomorphism θ : Γ → Q(2n) must be onto, respect the relations in Γ and have a torsion free
kernel. Therefore, for n ≥ 4 :

θ(X1) = · · · = θ(Xr) = B2, θ(Y1) = BAa1 , θ(Y2) = BAa2 , θ(Z) = Aα

where a1, a2 are arbitrary, α is odd, r is odd, and a2 − a1 + α ≡ 0 (mod 2n−1).

There are similar restrictions for n = 3.

5. Cyclic Groups

In this section we determine all genus-zero actions for all cyclic groups. In particular we prove
Theorem (1.11). Every cyclic group has genus zero since they can act on P1(C). Moreover the cyclic
groups Zpe , where p ≥ 2 is any prime, admit actions of genus zero on Riemann surfaces of arbitrarily
high genus. See Theorem (1.9). This will not be true for other cyclic groups.

Now we begin the proof of Theorem (1.11). Thus let G = Zpq, where p, q are distinct primes, and
choose the presentation

G = 〈A, B | Ap = 1, Bq = 1, AB = BA〉 .

Suppose G acts on a Riemann surface M so that M/G = P1(C). Then there is a short exact sequence

1 → Π → Γ
θ

−→ G → 1, as in (6), where Π is a torsion free Fuchsian group of signature (g |−) and

sig(Γ) = (0 | p, . . . , p
︸ ︷︷ ︸

r

, q, . . . , q
︸ ︷︷ ︸

s

, pq, . . . , pq
︸ ︷︷ ︸

t

).

The Riemann-Hurwitz formula (8) gives

2g − 2 = pq

(

−2 + r

(

1 −
1

p

)

+ s

(

1 −
1

q

)

+ t

(

1 −
1

pq

))

.

Let the elliptic generators of Γ be

X1, . . . , Xr of order p; Y1, . . . , Ys of order q; Z1, . . . , Zt of order pq.

Let H be the subgroup of G generated by A. Applying Corollary (2.5) we see that there are rq + t

fixed points of A. The signature of Γ
′

= θ−1(H) will have the form (k| p, . . . , p
︸ ︷︷ ︸

rq+t

) and therefore by (10)

we see that

2g − 2 = p

(

2k − 2 + (rq + t)

(

1 −
1

p

))

.

If k = 0 then a comparison of these formulas for 2g − 2 gives s + t = 2. The same argument applied to
the subgroup generated by B gives r + t = 2. The only solutions of these equations are

(r, s, t) = (0, 0, 2), (1, 1, 1), (2, 2, 0).

All 3 solutions yield actions with genus zero. The genus in each case is computed by the Riemann-
Hurwitz formula. This completes the proof of Theorem (1.11).
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It is simple enough to describe the epimorphism θ in each of these 3 cases.

(1) θ(Z1) = AaBb and θ(Z2) = A−aB−b, where 1 ≤ a ≤ p − 1 and 1 ≤ b ≤ q − 1.
(2) θ(X1) = Aa, θ(Y1) = Bb and θ(Z1) = A−aB−b, where 1 ≤ a ≤ p − 1 and 1 ≤ b ≤ q − 1.
(3) θ(X1) = Aa, θ(X2) = A−a, θ(Y1) = Bb and θ(Y1) = B−b, where 1 ≤ a ≤ p−1 and 1 ≤ b ≤ q−1.

Corollary 5.1. Suppose G is a cyclic group Zn with at least 3 distinct primes dividing n. Then G does
not admit a genus-zero action on a Riemann surface of positive genus.

Proof. If G did admit such an action so would Zpqr , where p, q, r are distinct primes dividing n. Ac-
cording to Theorem (1.11) we would have

2α(p − 1)(q − 1) = 2β(p − 1)(r − 1) = 2γ(q − 1)(r − 1),

where α, β, γ are either 0 or −1. This is not possible. �

The next theorem is proved in a similar fashion, but requires a tedious case-by-case analysis. We
omit the details.

Theorem 5.2. Zp2q, where p, q are distinct primes, does not admit a genus-zero action on a Riemann
surface of positive genus.

6. Zassenhaus Metacyclic Groups

In this section we determine which ZM groups Gm,n(r) have genus zero and then prove Theorem
(1.12). First note that Gm,2(−1), where m is odd, is the dihedral group D2m and therefore acts on
P1(C). Thus Gm,2(−1), for m odd, has genus zero. By a routine, but lengthy computation, it is possible
to show that the only ZM groups acting on P1(C) are Gm,2(−1).

Let G be a ZM group G other than Gm,2(−1). Then, according to Theorem (3.1), any genus-zero
action must be on a surface of genus g > 1. Thus the pq-conditions, see Definition (1.6), must hold.

Therefore a necessary condition for G to admit an action of genus zero is that m, n have at most 2
primes in their prime power factorizations. See Corollary (5.1). Moreover, according to Theorem (5.2),
both m and n must be either prime powers or a product of distinct primes.

On the other hand, if our goal is to show that a certain G does not admit an action of genus zero
then we may assume m is a prime p since G contains the ZM subgroup generated by Ak and B, where
k is chosen so that the order of Ak is p. If the subgroup does not admit a genus-zero action neither will
G. There are then 2 cases to consider. First we could have n = qe and secondly we could have n = q1q2,
where q1, q2 are distinct primes.

Assume n = q1q2. If d is the order of r modulo p then there are 3 choices for d, namely d = q1, q2 or

q1q2. The possibilities for
n

d
are then q2, q1 or 1 respectively. However, the pq conditions are equivalent

to the statement that every prime divisor of d also divides
n

d
. Thus there are no choices of d satisfying

the pq conditions and so n = qe.
Therefore we first consider the case of a ZM group G where m = p and n = qe, where p, q are primes.

The numerical restrictions on m, n, see (1.7), imply that p, q are distinct primes. Moreover we may
assume that e ≥ 2 since otherwise G would be cyclic. In fact we will start with the special case of a
ZM group G with m = p and n = q2, where p and q are distinct odd primes. The case where one of
the primes is 2 will be treated later in this section. The group G will then satisfy the conditions in
Definition (1.6) if, and only if, d = q.

In other words we are considering the group G presented by

generators : A, B

relations : Ap = 1, Bq2

= 1, BAB−1 = Ar, p, q distinct odd primes(19)

conditions : GCD((r − 1)q, p) = 1, rq ≡ 1 (mod p), and r 6≡ 1 (mod p).

Lemma 6.1. The ZM group in (19) does not admit a genus-zero action.
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Proof. By induction we easily prove that
(
AiBj

)k
= Ai(1 + rj + r2j + · · · + r(k−1)j)Bjk .

Thefore the possible orders of elements of G are 1, p, q, q2 and pq. In particular the order of the
element ABq is pq. Let H ∼= Zpq be the subgroup generated by ABq.

Assume G admits an action of genus zero on some Riemann surface M . Then there exists a short

exact sequence 1 → Π → Γ
θ

−→ G → 1 as in (6), where Π = Γ(g | −) for some g ≥ 0, and

sig(Γ) = (0 | p, . . . , p
︸ ︷︷ ︸

r

, q, . . . , q
︸ ︷︷ ︸

s

, q2, . . . , q2

︸ ︷︷ ︸

t

, pq, . . . , pq
︸ ︷︷ ︸

u

),

for some choice of non-negative integers r, s, t, u. These integers must be chosen so that θ : Γ → G is
a well defined epimorphism with torsion free kernel. In particular this means that

t ≥ 2, and if t = 2 then r + s + u > 0.

The restriction t ≥ 2 follows from the fact that Gab
∼= Zq2 , and therefore there is an epimorphism

Γ → Zq2 .
The Riemann-Hurwitz formula becomes

2g − 2 = pq2

(

−2 + r

(

1 −
1

p

)

+ s

(

1 −
1

q

)

+ t

(

1 −
1

q2

)

+ u

(

1 −
1

pq

))

= −2pq2 + rq2(p − 1) + spq(q − 1) + tp(q2 − 1) + uq(pq − 1)

= (t − 2)pq2 + (r + s + u)pq2 − rq2 − spq − tp − uq.

The action of the subgroup H ∼= Zpq on the Riemann surface M has genus-zero and therefore,
according to Theorem (1.11), there are only 3 possibilities for g:

g = 0, g =
1

2
(p − 1)(q − 1) or g = (p − 1)(q − 1).

We will analyze each case separately and conclude that the group G does not admit an action of genus
zero.

(1) Assume g = 0. Then necessarily

r

(

1 −
1

p

)

+ s

(

1 −
1

q

)

+ t

(

1 −
1

q2

)

+ u

(

1 −
1

pq

)

< 2.

The left hand side will be larger than what we get by putting p = q = 3 and using t = 2. This
leads to the inequality 6r + 6s + 8u < 2, and so r = s = u = 0. But then θ will not be an
epimorphism.

(2) Assume g =
1

2
(p − 1)(q − 1). Then the Riemann-Hurwitz equation becomes

(t − 2)pq2 + (r + s + u)pq2 − rq2 − spq − tp − uq = (p − 1)(q − 1) − 2,

which can be rewritten in the form

(t − 2)p(q2 − 1) + rq2(p − 1) + (s + 1)pq(q − 1) + (u − 1)q(pq − 1) = p − 1.

¿From this equation it follows that u = 0, for otherwise the left hand side would be greater
than p − 1. Recall that t ≥ 2. Thus the equation becomes

(t − 2)p(q2 − 1) + rq2(p − 1) + (s + 1)pq(q − 1) − q(pq − 1) = p − 1,

which is equivalent to

(t − 2)p(q2 − 1) + rq2(p − 1) + spq(q − 1) = (p − 1)(q + 1).

Now it is simple to see that there are no solutions.
(3) The last case to consider is g = (p − 1)(q − 1). By arguments similar to the second case there

are no solutions of the Riemann-Hurwitz equation.
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�

Next we show that a ZM group of odd order does not admit actions of genus zero. Note that by the
above considerations we need only prove this when m = p and n = qe, where p and q are distinct odd
primes and e > 2.

That is suppose G is the ZM group presented by

generators : A, B

relations : Ap = 1, Bqe

= 1, BAB−1 = Ar, e > 2(20)

conditions : GCD((r − 1)q, p) = 1, rqe

≡ 1 (mod p).

Lemma 6.2. A ZM group of odd order does not admit genus-zero actions.

Proof. We need only show that the group G presented in (20) does not have genus zero. The order d of

r modulo p will be qf for some f , 1 ≤ f < e. If f = 1 then A commutes with Bq, . . . , Bqe−1

, and since
e > 2, it follows that G has a subgroup isomorphic to Zpq2 , namely the subgroup < A, Bq > . But this
contradicts Theorem (5.2).

Thus suppose f > 1. Then consider the subgroup G1 generated by A and B1 = Bqf−1

. This is a ZM
group with presentation

Ap = 1, Bqe−f+1

1 = 1, B1AB−1
1 = Ar1 , where r1 = rqf−1

.

But now the order of r1 is q, and again we arrive at a contradiction. Therefore a ZM group of odd order
does not admit actions of genus zero. �

The last case to consider is the case of a ZM group G of even order. Thus G has a presentation
as in (4), where one of m, n is even. In fact the conditions in (4) imply that m is odd and n is even.
According to Corollary (5.1) and Theorem (5.2) the only possibilities for m, n are

m = pe or pq, where p, q are odd primes and p 6= q,

n = 2f or 2q′ where q′ is an odd prime.

If n = 2q′ then d = 2, q′ or 2q′. In all cases the pq conditions can not be satisfied. Therefore n = 2f .
Moreover we must have f ≥ 2 to satisfy the pq conditions. In fact d = 2j for some j, 1 ≤ j ≤ f − 1.

Now assume m = pq. Then the subgroup generated by A and B2f−1

is cyclic of order 2pq. This
contradicts Corollary (5.1) and so m = pe. But now Theorem (5.2) implies that e = 1. Finally we must
have f = 2 and d = 2. In other words the only possible ZM group satisfying (1) is Gp,4(−1).

Next we show that G = Gp,4(−1) admits genus-zero actions. The following statements are easy to
prove.

(1) The order of G is 4p and the orders of the elements of G are 1, 2, 4, p and 2p.
(2) There is a unique subgroup of order 2, namely the subgroup generated by B2.
(3) There is a unique subgroup of order p, namely the subgroup generated by A.

Assume there is a genus-zero action G × M → M, where M has genus g. Then there is a short exact
sequence

1 → Π → Γ
θ

−→ G → 1

as in (6), where Π = Γ(g | −) and

sig(Γ) = (0 | 2, . . . , 2
︸ ︷︷ ︸

r

, 4, . . . , 4
︸ ︷︷ ︸

s

, p, . . . , p
︸ ︷︷ ︸

t

, 2p, . . . , 2p
︸ ︷︷ ︸

u

).

The Riemann-Hurwitz formula becomes

2g − 2 = 4p

(

−2 + r
1

2
+

3s

4
+ t

(

1 −
1

p

)

+ u

(

1 −
1

2p

))

= −8p + 2pr + 3ps + 4t(p − 1) + 2u(2p− 1).

Applying Corollary (2.5) we see that
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(1) The number of fixed points of B2 is 2pr + ps + 2u.
(2) The number of fixed points of A is 4t + 2u.

Now applying the Riemann-Hurwitz formula (10) to each of these cases gives

2g − 2 = 2

(

−2 + (2pr + ps + u)
1

2

)

= p

(

−2 + (4t + u)(1 −
1

p
)

)

Working with these equations we see that the only solution is

r = 0, s = 2, t = 1, u = 0.

This completes the proof of Theorem (1.12).
To describe the epimorphism θ : Γ → G associated to the genus-zero action let the elliptic generators

of Γ be X, Y and Z, chosen so that

X4 = Y 4 = Zp = XY Z = 1.

Then all admissible epimorphisms θ : Γ → G are given by

θ(X) = BǫAa, θ(Y ) = B−ǫAb, θ(Z) = Ac,

where a, b are arbitrary, 1 ≤ c ≤ p − 1,

and − a + b + c ≡ 0 (mod p).

We conclude this section with an example illustrating the action when a = 1, b = 0, c = 1 and ǫ = 1.
In this case the action of Γ on the Poincaré disc can be described as follows. Consider the triangle with
vertices E, F and G and angles α = π/p, β = π/4 and β (respectively) centered at the origin of the
hyperbolic disc. Let X and Y be rotations by an angle 2π/4 about the vertices F and G respectively,
and let Z be rotation about E with angle 2π/p. A fundamental domain for Γ is a copy of the shaded
triangle (p, 4, 4) together with its reflection along the side EG. See Figure 1.

α

β

β

β

β

α α
β

β

β

α

E

H

Figure 1.

G

F

The translates under the rotations X , Y and Z of this fundamental domain tessellate the hyperbolic
disc. Each rotation corresponds to the composition of two reflections along a pair of sides. Fig. 1 shows
four copies of the fundamental domain corresponding to four rotations about the vertex G.

Recall that G acts on a Riemann surface M of genus p−1 and one has the following tower of quotients
and group actions



14 SADOK KALLEL AND DENIS SJERVE

M

Π

U

Γ

Σ

G

A fundamental domain for Π consists of a choice of 4p copies of the fundamental domain of Γ (here
|G| = 4p). An explicit choice can be obtained from the fundamental domain for Γ (Figure 1) by rotating
p times about the vertex E. See Figure 2. The surface M is obtained from this fundamental domain by
making certain boundary identifications.

Figure 2.

p rotations
about E

G

F

H

E

Let H ⊂ G be the subgroup of order p generated by A. Then there is a short exact sequence
1 −→ Π −→ Γ′ −→ H −→ 1, where [Γ : Γ′] = [G : H ] = 4 and U/Γ′ = M/H . A fundamental domain
of Γ′ in U will consist of four copies of the fundamental domain for Γ, and this is depicted in Figure
1. Rotation by 2π/p about every second vertex in Fig. 1 represents a generator of H , see Fig. 3. The
quotient U/Γ′ is obtained by identifying the sides as depicted, and is easily seen to be P1(C).

A

A

A

A

Figure 3.
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The same analysis can be carried out for the unique subgroup of order 2, 〈B2〉 ⊂ G. In this case the
fundamental domain consists of 2p copies of the fundamental domain of Γ and the identifications are
given as follows (Figure 4).

B

B

B2

2

2

p copies

Figure 4.

Contiguous pairs of sides on the boundary are identified by B2. The quotient surface is again P1(C),
as expected.

7. The General Case

In this section we complete our analysis of groups G satisfying (1) by establishing Theorem (1).
There are two possibilities to consider, either G is solvable or it is non-solvable.

First we suppose G is a finite non-solvable group satisfying the pq conditions, see Definition (1.6).
We want to show that G does not admit actions of genus zero. A typical example of such a group is
the binary icosahedral group I∗, see Wolf [5]. In fact any such G must contain I∗ as a subgroup and
therefore we need only show that I∗ does not admit an action of genus zero.

The binary icosahedral group has order 120 and contains elements of orders 1, 2, 3, 4, 5, 6 and 10. By
applying Theorem (1.11) we see that if I∗ did admit an action of genus zero on some Riemann surface
M the genus of M would have to be 2. Moreover the signature of the action would be

sig(Γ) = (0 | 2, . . . , 2
︸ ︷︷ ︸

r

, 3, . . . , 3
︸ ︷︷ ︸

s

, 4, . . . , 4
︸ ︷︷ ︸

t

, 5, . . . , 5
︸ ︷︷ ︸

u

, 6, . . . , 6
︸ ︷︷ ︸

v

, 10, . . . , 10
︸ ︷︷ ︸

w

).

Applying the Riemann-Hurwitz Formula (8) with g = 2 gives the diophantine equation

30r + 40s + 45t + 48u + 50v + 54w = 121.

It is routine to show that this equation does not have any non-negative integral solutions.
This proves the following theorem.

Theorem 7.1. If G admits an action of genus zero then G is a solvable group.

Now suppose G is a solvable group satisfying the pq conditions. According to the table on page 179
of [5] there are 4 types of such groups G, ( denoted I, II, III and IV), and every type contains some ZM
subgroup Gm,n(r). According to Theorem (1.12) m must be an odd prime p, n = 4 and r = −1 if there
is to be a genus-zero action. This rules out types III and IV.

Type I is just the ZM group Gp,4(−1) and type II is the group G with the following presentation:
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generators : A, B, R;

relations : Ap = 1, B4 = 1, BAB−1 = A−1,

R2 = B2, RAR−1 = Al, RBR−1 = B−1;

conditions : l ≡ ±1 (mod p).

In fact we must have l = −1 since otherwise the subgroup 〈 A, R 〉 would be cyclic of order 4p, con-
tradicting Theorem (5.2). But now (RAB)4 = A4 and therfore RAB has order 4p. Again this is a
contradiction.

This completes the proof of Theorem (1).
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[6] Zassenhaus, Über endliche Fastkörper, Abhandlungen aus dem Mathematischen Seminar der Hambburgischen
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