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1. Introduction

Let

z : Fÿÿÿ!i Eÿÿÿ!p B

be a ®bration with a section Bÿ!s E. One of the main results of this paper asserts
that the differentials on the spherical classes in the Serre spectral sequence for z
are entirely determined by `brace products' in z.

Brace products for a ®bration with section were originally de®ned by James
[6]. Given a 2 pp�B� and b 2 pq�F �, one can take the Whitehead product
�s��a�; i��b�� in pp�qÿ1�E�. Since p���s��a�; i��b��� � 0, one deduces from the
long exact sequence in homotopy associated to z that �s��a�; i��b�� must lift to a
class (unique once the section is chosen)

fa; bg 2 pp�qÿ1�F �;
the so-called brace product of a and b. Note that this class depends on the choice
of section. The brace product operation then gives a pairing

f ; g: pp�B� ´ pq�F � ÿ! pp�qÿ1�F �:
Let h: p��X � ÿ! H��X; Z� denote the Hurewicz homomorphism. Our ®rst main
observation can now be stated.

Theorem 1.1. Let F ÿ! E ÿ! S p, with p > 1, be a ®bration with section.
Then in the Serre spectral sequence for E (with integral coef®cients), the
following diagram commutes:

pp�S p� 
 pq�F �ÿÿÿÿÿ!
f ; g

pp�qÿ1�F �???y ???yh

Hp�S p; Hq�F �� Hp�qÿ1�F �???y>
???y>

E p
p;qÿÿÿÿÿÿÿÿÿÿÿ!d p

E
p

0; p�qÿ1
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For general ®brations F ÿ! E ÿ! B with section and with B simply connected,
similar (long) differentials exist on the product of spherical classes that survive to
the E p

p; q term.

Remarks. The map pp�B� 
 pq�F � ÿ! Hp�B; Hq�F �� is of course the composite

pq�B� 
 pq�F �ÿÿÿÿÿ!h 
 h
Hp�B� 
 Hq�F �ÿ!n Hq�F; Hp�B��;

where n is a universal coef®cient homomorphism. Note that even though the brace
product does depend on the choice of section s, commutativity of the above
diagram does not (cf. § 3).

Theorem 1.1 relies in its proof on a beautiful and classical theorem of George
Whitehead [13] relating the boundary homomorphism in the homotopy long exact
sequence of a free loop ®bration on a space X to the Whitehead products in X.
More precisely, let X be a ®nite CW complex (based at x0) and consider the
evaluation ®bration

Q k Xÿÿÿ!i L kXÿÿÿ!ev
X�1:2�

where L kX � Map�S k; X � is the space of all continuous maps from S k to X (the
`k th free loop space'), and Q k X is the subspace of basepoint-preserving maps. We
let Ln

f �X � denote the component containing a given map f .

Theorem 1.3 [13]. The homotopy boundary

¶: pp�X � ÿ! ppÿ1�Q k
f �X ��> pp� kÿ1�X �

in the long exact sequence in homotopy associated to

Q k
f �X � ÿÿÿ!L k

f �X �ÿÿÿ!ev
X

is given (up to sign) by the Whitehead product ¶a � �a; f � for a 2 pp�X �.

We use this theorem in § 3 to prove Theorem 1.1.

Free loop spaces. A particularly interesting application of Theorem 1.1 occurs
for the evaluation ®bration (1.2) when the connectivity of X is greater than k. In
this case (1.2) admits a section and Theorem 1.1 applies.

In addition to loop sum, the homology ring H��Q k X � admits a second
homology operation on two variables called the Browder operation and denoted
by lk . This operation is essential in the calculation of the homology of iterated
loop spaces (cf. [3] for extensive details). We quickly sketch its construction: ®rst
there is an operad map

v: S kÿ1 ´ Q k X ´ Q k X ÿ! Q k X

given as follows: a map f 2 Q k X can be thought of as a map of the closed unit
disc in R k into X which sends the boundary to a basepoint. If one identi®es S kÿ1

with the space of pairs of closed non-overlapping discs in R k, then to each pair
�D1; D2� and to � f ; g� 2 Q k X one associates the map v� f ; g� which is f on the
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®rst disc, g on the second and sends the complement and boundary of D1 t D2 to
the basepoint. One then de®nes l k�x; y� :� v��ik ; x; y� 2 H jx j� j y j� kÿ1�Q k X �.

Let rk be the map

p��X �ÿÿÿ!
adk

p�ÿ k�Q k X �ÿÿÿ!h H�ÿ k�Q k X �
where adk is the adjoint isomorphism and h the Hurewicz map. If we identify the
spherical classes in Hp�X � with classes (of the same name) in pp�X �, then r

determines a map from the spherical classes in Hp�X � to Hpÿ k�Q k X �. The second
main observation of this article is the following.

Theorem 1.4. Let X be k-connected, and let b 2 Hj�Q k�X �� and a 2 Hp�X � be
two spherical classes. Then in the homology Serre spectral sequence for

Q k X ÿÿÿ!L k Xÿÿÿ!ev
X ;

the following relation holds:

d p�a
 b� � l k�rk�a�; b�:

In the case where X � S n is a sphere and 1 < k < n, general arguments show
that the spectral sequence collapses at E 2 with mod-2 coef®cients (§ 4.2). When n
is odd, the same collapse occurs with mod-p coef®cients. The case n even is then
of greater interest and we show the following.

Let x 2 Hn�S n� be the orientation class and e 2 Hnÿ k�Q k S n� be the in®nite

cyclic generator representing the class of the inclusion S nÿ k ÿ! Q k S n which is
adjoint to the identity map of S n. When n is even, let a 2 H2 nÿ kÿ1�Q kS n� be the
torsion-free generator (see § 4).

Corollary 1.5. Assume that 1 < k < n and n is even. Then in the homology
Serre spectral sequence (with integral coef®cients) for the ®bration

Q kS nÿÿÿ!i L k S nÿÿÿ!ev
S n;

we have

d n
n; nÿ k�x ´ e� � 2a:

Corollary 1.6. Suppose 1 < k < n and n is even. Then the PoincareÂ series
for H ��L kS n; Q� is given as follows:

1� �xn � xnÿ k�=�1ÿ x2 nÿ kÿ1� if k is odd,

�1� x3 nÿ kÿ1�=�1ÿ xnÿ k� if k is even.

(

Corollary 1.7. Suppose n > 2 is even and p is odd. Then in the cohomology
Serre spectral sequence for L 2S n, the mod-p differentials are generated by
dn�x ´ e� � x0 , where H ��Q2S n; Zp� is a tensor product of a divided power
algebra on generators e, yi , and an exterior algebra on generators xi , with
dim�xi� � 2�nÿ 1�pi ÿ 1 � dim�yi� � 1 for i > 0.

Corollary 1.7 has also been obtained by Fred Cohen using con®guration space
model techniques (cf. [1]).
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We can carry out similar calculations for L s�W � where W is a bouquet of
spheres. In this paper we focus on the s � 1 case and there easily recover the
cyclic homology description of J. Jones and R. Cohen [4]. More explicitly, let

W � Wk S ni�1 be a bouquet of k spheres, with ni > 1, let ai 2 Hni�1�W � be the

class of the i th sphere, and ei � r�ai� 2 Hni
�QW � � T�e1; . . . ; ek� (where T is the

tensor algebra). The map r � r1: Hni�1�W � ÿ! Hni
�QW � is as de®ned earlier.

We prove the next proposition in § 5.

Proposition 1.8. In the Serre spectral sequence for QW ÿ!LW ÿ!W,
where W � Wk S ni�1, the differentials are given by the cyclic operators

d�ar ; ei 1

 ei 2


 . . .
 eis
�

� er 
 ei1

 . . .
 eis

ÿ �ÿ1�j er j� j ei 1
j� ...�j ei s

j�ei 1

 ei 2


 . . .
 ei s

 er ;

where er � r�ar� and jej j � nj is the dimension of ej .

This description yields an effective method for calculating the homology of
W with mod-2 coef®cients and also rational coef®cients. Following some ideas
of Roos, and in the case when the spheres are equidimensional, we can show
the following.

Proposition 1.9. Let W � Wk S n�1 and denote by P�LW ; F� the PoincareÂ
series for H��LW ; F�. Then

P�LW ; Z2� � 1� �1� z�
�X

m > 1

am z mn

�
where

am �
X
d j m

1

d

X
e j d

m

�
d

e

�
k e �

X
e j m

1

m
f

�
m

e

�
k e;

f being the Euler f-function.

The rational case is slightly different in the case of even spheres.

Proposition 1.10. Let W � Wk S n�1. Then

P�LW ; Q� � 1� �1� z�
�X

m > 1

am zmn

�
where

am �

X
e j m

1

m
f

�
m

e

�
k e; for n odd, or n even and m odd,

X
d j m

d even

1

d

X
e j d

m

�
d

e

�
k e; for n even and m even.

8>>>>><>>>>>:
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Remark. As was pointed out to us by N. Dupont, the above calculations
recover (in particular) the following beautiful result of Roos and Parhizgar:

dim H 2 n�L�S3 _ S 3�; Q� � 1

n

Xn

i�1

2�i;n�

where �i; n� is the greatest common divisor of i and n.

Acknowledgement. Part of this work originated at the CRM of MontreÂal
during the ®rst author's visit. The ®rst-mentioned author would like to thank the
center for its hospitality. He would also like to thank Fred Cohen for informing
him about some unpublished work and for the proof of Lemma 4.6.

2. Brace products: examples and properties

Notation and conventions. We often (but not always) identify a map
f : S p ÿ! X with its homotopy class � f � 2 pp�X �. We do so when there is no risk
of confusion and to ease notation. We also write ad for the adjoint isomorphism

adk : pi� k�X �ÿÿÿ!>
pi�Q k X �:

In the introduction we de®ned brace products for a ®bration

Fÿÿÿ!i Eÿÿÿ!p B

with a section Bÿ!s E. Brace products are related to Whitehead products by the
commutative diagram

pp�B� 
 pq�F �ÿÿÿÿÿ!
f ; g

pp�qÿ1�F �???ys
 i

???yi

pp�E � 
 pq�E �ÿÿÿÿÿ!
� ; �

pp�qÿ1�E �

�2:1�

The next examples compute the brace product pairing for some classes of
®brations with section.

Example 2.2. Let E be a sphere bundle over B � S n with ®ber F � S k and
group O�k � 1�,

S kÿÿÿ!i Eÿÿÿ!p S n:

This ®bration is classi®ed (up to homotopy) by a clutching function

m: S nÿ1 ÿ! O�k � 1�:
If E has a section then the group of the bundle reduces to O�k� (because the
associated vector bundle does). The map m factors (up to homotopy) through
S nÿ1 ÿ! O�k�a O�k � 1�, giving a class a 2 pnÿ1O�k�. Let J be the Hopf±
Whitehead construction

J: pnÿ1�O�k�� ÿ! pn� kÿ1�S k�:
Finally, let in 2 pn�E � be the class of s: S n ÿ! E and ik 2 pk�E� be the class of
the ®ber. Then (up to sign) the following holds.
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Proposition 2.3. In pn� kÿ1�S k�, fin ; ikg � Ja.

Proof. We will make use of some intermediate results that we prove in § 3.
Start with the map a: S nÿ1 ÿ! O�k�. One can think of O�k� as transformations
of the closed unit disc Dk. It follows that a adjoins to a map S nÿ1 ´ Dk ÿ! Dk

and, by pinching the boundary of Dk, we get the following commutative diagram:

S nÿ1 ´ Dkÿÿÿ!a Dk???y ???y
S nÿ1 ^ S kÿÿÿ!J S k

Since S nÿ1 ^ S k � S n� kÿ1, the bottom map can indeed be identi®ed with (and
actually is) the J homomorphism. Consider the composite

f: S nÿ1 ^ S kÿÿÿ!J S kÿÿÿ!i E:

We write its adjoint as a map g: S nÿ1 ÿ! Q kE. Notice that the image of g lies in
the component containing the ®ber inclusion i: S k ÿ! E and hence maps into
Q k

ik
E. Moreover notice that g, when extended to L k

ik
E, is trivial (Lemma 3.4) and

hence the map g factors through the ®ber QE of the inclusion Q kE aL kE
as follows:

S nÿ1ÿÿÿÿ!ad�s�
QE???y� ???y

S nÿ1ÿÿÿ!g Q kEÿÿÿ!L kE

�2:4�

The adjoint of the top map is s: S n ÿ! E and we denote the class of this map by
in . According to Lemma 3.2 we must have f � �ik ; in� 2 pn� kÿ1�E�. Both f and
the Whitehead product map lift to S k. Since the lift of f is J and the lift of
�ik ; in� is fik ; ing, the proof is complete.. . . . . . . . . . . . . . . . . . . . . . . . . .A

Remark. Sphere bundles with section can be constructed by taking a vector
bundle z over B � S n with ®ber F � R k and then compactifying ®berwise the
unit disc bundle. The new bundle (with ®ber S k) has a canonical cross section
(sending each point in S n to the point at in®nity in the ®ber).

Example 2.5. It is known that the ®ber of the inclusion X _ X ÿ! X ´ X is
S�QX ^ QX � (a theorem of Ganea). Taking X � P � P1, the in®nite complex
projective space, we ®nd that there is a ®bration S 3 ÿ! P _ Pÿ! P ´ P, and
hence, after looping, we obtain a ®bration

QS 3 ÿ! Q�P _ P� ÿ! S 1 ´ S 1�2:6�
with a section given by the composite

S 1 ´ S 1 ÿÿÿ! QP ´ QPÿÿÿ!� Q�P _ �� ´ Q�� _ P�

aQ�P _ P� ´ Q�P _ P�ÿÿÿ!� Q�P _ P�:
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It turns out that (2.6) has trivial brace products since Q�P _ P� is an H-space and
Whitehead products vanish in H-spaces.

Example 2.7 (Saaidia). Suppose F ÿ! E ÿ! B is a ®bration with section, and
F is a G-space with a G-invariant basepoint. Consider the classifying bundle

F ÿ! EG ´G F ÿ! BG:

This ®bration also admits a section and its brace products are identi®ed with the
so-called `secondary Eilenberg invariant' of the ®bration E (cf. [11]). These
invariants are fundamental in the study of the homotopy type of the space of
sections of E.

Brace products and Samelson products

The commutator map at the level of loop spaces (better known as the
Samelson product) is related to the Whitehead product as follows. First write S for
the commutator

S: Q�X � ^ Q�X � ÿ! Q�X �; �a; b� 7! abaÿ1bÿ1:

Then the following commutes (up to sign):

pp�QX � ´ pq�QX �ÿÿÿÿÿ!S
pp�q�QX �???yad ´ ad

???yad

pp�1�X � ´ pq�1�X �ÿÿÿÿ!
� ; �

pp�q�1�X�

�2:8�

where ad is the adjoint isomorphism. This fact (originally due to H. Samelson)
can be combined with (2.1) to show the following.

Lemma 2.9. Let F ÿ! E ÿ! B be a ®bration with section s. There is a
homotopy commutative diagram

QB ^ QFÿÿÿÿÿ!f ; g
QF???yQs ^ Q i

???yQ i

QE ^ QEÿÿÿÿÿ!S
QE

where the upper map (also denoted by f ; g) induces James' brace product at
the level of homotopy groups.

Proof. The composite

QB ^ QFÿÿÿÿÿÿÿÿÿÿÿ!S ± �Qs ^ Q i�
QE

is trivial when projected into QB (because Qp ± Q i is trivial). It then lifts to QF
as desired. This lift is unique up to homotopy since any two maps differ by a map

QB ^ QF ÿÿÿ! Q2Bÿÿÿ!¶ QF;
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and this `boundary' map ¶ is null-homotopic (it is trivial on homotopy groups
because of the presence of a section). The rest of the claim follows from (2.8). . . A

Brace products as obstructions

As pointed out in [6], brace products form an obstruction to retracting the total
space E into the ®ber F . They also represent obstructions to the triviality of certain
pull-back ®brations in the Postnikov tower for B (see [11]). In what follows we
exhibit yet another obstruction expressed in terms of these brace products.

Let Fÿ!i E ÿ! B be a ®bration of CW complexes and consider the loop ®bration

QF ÿ! QE ÿ! QB:�2:10�
Suppose that (2.10) has a section s 0 and denote by � the loop sum in QE. Then
the composite

Q i � s 0: QF ´ QBÿÿÿ!.
QE

is a weak homotopy equivalence and hence an equivalence. This trivialization
however is not necessarily an H-space map and its failure to be such is measured
by the commutator �Q i�s 0�Q i�ÿ1�s 0 �ÿ1 . We illustrate this with an example.

Example 2.11. Consider the Hopf ®bering S 1 ÿ! S 3 ÿ! S 2 which can be
looped to a ®bering

QS 3 ÿ! QS 2 ÿ! S 1:

This has an obvious section and as before S 1 ´ QS 3ÿ!. QS 2. Notice that the left-
hand side is abelian (since S 3 is a topological group) while the right-hand side

QS 2 is not. Indeed consider the map S 1 ÿ! QS 2 and take its self commutator in
QS 2. This commutator in homotopy is adjoint (by the result of Samelson (2.8)) to
the Whitehead product �i2 ; i2 � � 2h 2 p3�S 2� which is non-zero (here h is the
class of the hopf map). Hence QS 2 is not abelian and the splitting
QS 2 . S 1 ´ QS 3 is not an H-space splitting.

Lemma 2.12. Let F ÿ! E ÿ! B be a ®bration with section s. If the brace
products in this ®bration vanish identically, then

v � Qs � Q i: QB ´ QFÿÿÿ!.
QE

is an H-space splitting.

Proof. Here s 0 � Qs and Q i are naturally H-space maps and we need only
check that the following diagram homotopy commutes:

�QB ´ QF �2ÿÿÿÿÿÿÿ!1 ´ x ´ 1 �QB�2 ´ �QF �2ÿÿÿÿ!� ´ �
QB ´ QF???yv2

???yv

�QE �2ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!�
QE

where 1 ´ x ´ 1 is the shuf¯e map �x; a; b; y� 7! �x; b; a; y�. Now the images of
Qs and Q i commute in QE (this follows from Lemma 2.9 and from the fact that
the brace products vanish). The claim follows immediately. . . . . . . . . . . . . .A
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3. Whitehead's theorem and the proof of Theorem 1.1

In this section we prove Theorems 1.3 and 1.1 of the introduction. Denote by
Dn the closed unit disc in Rn and by ¶Dn � S nÿ1 its boundary. If Dn � D p ´ Dq,
we can then write S nÿ1 � ¶D n � D p ´ ¶D q È ¶D p ´ D q (where the union is over
¶D p ´ ¶D q). Let L qX � Map�S q; X � be the space of all maps from S q to X. We
have the following pivotal lemma.

Lemma 3.1 [13, Lemma 3.3]. Start with a map

f: S pÿ1 ^ S q ÿ! X

and adjoin it to get g: S pÿ1 ÿ! Qq
a X (where Qq

a X is some component of Qq X
containing a representative map a). Suppose that g extends to a map
D p ÿ!L q

a X and hence gives rise to an element b 2 pp�L q
a X; Qq

a X �> pp�X �. Then

f � �a; b� 2 pp�qÿ1�X �:

An alternative formulation of this lemma that is better suited to us is as follows.

Lemma 3.2. Let E be a space and think of QE as the ®ber of QqE ÿ!L qE.
Given a composite

f: S pÿ1ÿÿÿ!b QE ÿÿÿ! Qq
a E

then necessarily ad f � �a; ad b� 2 pp�qÿ1E.

Proof. The evaluation ®bration in (1.2) extends to the left (by looping) and we
get the ®bration QE ÿ! Qq

a E ÿ!L q
a E. The fact that the map f: S pÿ1 ÿ! Qq

a E
factors via b through the ®ber QE is the same as having an extension diagram

S pÿ1ÿÿÿ!f Qq
a E???y ???y

D p ÿÿÿ!L q
a E

such that the element of pp�L q
a E; Qq

a E�> pp�E� de®ned by this diagram is the
class of ad b. It follows from Lemma 3.1 that ad f � �a; ad b�. . . . . . . . . . . .A

Theorem 3.3 [13]. The homotopy boundary

¶: pp�X � ÿ! ppÿ1�Qn
f �X �� � pp�nÿ1�X �;

in the long exact sequence in homotopy associated to

Q
q
f �X � ÿÿÿ!L q

f �X �ÿÿÿ!
ev

X ;

is given (up to sign) by the Whitehead product as follows: let a 2 pp�X �; then
¶a � ad�a; f � 2 ppÿ1�Qq

f X �.
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Proof. A ®bration F ÿ! E ÿ! B extends to the left by QBÿ! F, and the
boundary homomorphism is given by the induced map in homotopy

pp�B� � ppÿ1�QB�ÿÿÿ!¶ ppÿ1�F �:
Representing a 2 pp�B� by the map of the same name, we see that the
following commutes:

S pÿ1 ÿÿÿ!ad�a�
QB???y� ???y

S pÿ1ÿÿÿÿ!¶a
F

Letting B � X, F � Q
q
f X and E �L q

f �X �, we deduce from Lemma 3.2 that
adÿ1�¶a� � �a; f � and the claim follows. . . . . . . . . . . . . . . . . . . . . . . . . .A

We need one more lemma before we can proceed with the proof of Theorem
1.1. Let

z : F ÿ! E ÿ! S n

be a ®bration with section s, and let m: S nÿ1 ÿ! Aut�F � be the clutching
function. Here Aut�F � consists of based homotopy equivalences and we denote by
Map��F; E � the space of based maps from F into E. There are inclusions

Aut�F �a Map��F; E �a Map�F; E�
and we assert that the following lemma holds.

Lemma 3.4. There is an extension diagram

S nÿ1ÿÿÿ!m Aut�F �a Map��F; E �???y ???y
D n ÿÿÿÿÿÿÿÿÿÿÿÿÿ!Map�F; E �

such that the element b 2 pn�Map�F; E �; Map��F; E ��> pn�E� de®ned by the
diagram corresponds to the class of s: S n ÿ! E.

Proof. We have the following sequence of ®brations:

F ÿ! E ÿ! S n ÿ! B Aut�F �
and the last map classi®es the ®bration z. By looping and letting S nÿ1 ÿ! QS n

be the adjoint to the identity map, we get the following diagram:

QE???y
S nÿ1 ÿÿÿ! QS n ÿÿÿ! Aut�F �

The lower composite, which we label v, can be identi®ed with the clutching map
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m. If one has a section Qs: QS n ÿ! QE, then v factors through QE which is the
®ber of the mapping Map��F; E � ÿ!Map�F; E�. The lemma follows. . . . . . .A

Theorem 3.5. There is a commutative diagram

pp�B� 
 pq�F �ÿÿÿÿÿ!
f ; g

pp�qÿ1�F �???yh
 h

???yh

Hp�B; Hq�F �� Hp�qÿ1�F �???y>
???y>

E 2
p; qÿÿÿÿÿÿÿÿÿÿ!d p

E 2
0; p�qÿ1

where by abuse of notation the bottom map is the long differential d p de®ned on
those spherical classes that survive to E p

p; q .

Remark 3.6. We ®rst explain why Theorem 3.5 is independent of the choice

of section. Suppose Fÿ!i E ÿ! B is as above and assume it has two distinct
sections s1 and s2 . Let a 2 pp�B� and b 2 pq�F �. The brace products associated

to s1 and s2 are given by fa; bg1 and fa; bg2 (respectively). Notice that
s1�a� ÿ s2�a� projects to zero in p��B� and hence must lift to a class aF 2 pp�F �.
The difference element fa; bg1 ÿ fa; bg2 is by de®nition the lift to p��F � of

�s1�a� ÿ s2�a�; i��b�� � �i��aF�; i��b�� � i��aF ; b� 2 p��E �:

It follows that fa; bg1 ÿ fa; bg2 � �aF ; b� 2 pp�qÿ1�F �. This Whitehead product

in F necessarily maps to zero in H��F � by the Hurewicz homomorphism and this
is enough to show that the composite h ± f ; g in the top half of the diagram in
Theorem 3.5 is independent of the choice of section as asserted.

Proof of Theorem 3.5. Let a: S p ÿ! B represent a class in pp�B�. Consider
the pullback diagram

F ÿÿÿ! F???y ???y
E 0 ÿÿÿ!E???y ???y
S pÿÿÿ!a B

By naturality of the Serre spectral sequence it suf®ces to prove the theorem for

the pull back ®bration F ÿ! E 0 ÿ! S p. In other words we must prove that the
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following diagram commutes:

pp�S p� 
 pq�F �ÿÿÿÿÿ!
f ; g

pp�qÿ1�F �???yh
 h

???yh

Hp�S p; Hq�F �� Hp�qÿ1�F �???y>
???y>

E 2
p;q E 2

0; p�qÿ1???y>
???y>

E p
p; qÿÿÿÿÿÿÿÿÿÿÿ!d p

E
p
0; p�qÿ1

Now associated to F ÿ! E 0 ÿ! S p is a Wang sequence

. . . ÿÿÿ! Hi�F � ÿÿÿ! Hi�E 0 � ÿÿÿ! Hiÿp�F �ÿÿÿ!
t�

Hiÿ1�F � ÿÿÿ! . . .

where t� is determined in terms of the clutching function of the bundle. Recall
that this clutching function is given by a map

m: S pÿ1 ´ F ÿ! F

whose homotopy class determines the bundle (up to ®ber homotopy).
Identifying Hiÿp�F � with E 2

p; iÿp and Hiÿ1�F � with E 2
0; iÿ1, it is not hard to see

that t� � d p: E 2
p; iÿp ÿ! E 2

0; iÿ1 (see [13, p. 332]).

Choose a basepoint p 2 F. Given b: S q ÿ! F representing a spherical class (of
the same name) in Hq�F �; then t� can be made explicit as follows. We ®rst have

an isomorphism Hq�F �> Hp�q�S p ^ F � and the class b is represented under this

isomorphism by a map S p ^ S q ÿ! S p ^ F. Writing

D p�q � D p ´ D q and ¶D p�q � �D p ´ ¶D q�È �¶D p ´ D q�;
we can represent b as a map of pairs

�D p�q; ¶D p�q� ÿ! �D p ´ F; D p ´ p È ¶D p ´ F �:
The map on the second component is the boundary map ¶ and it can be
prolonged into F,

t: ¶D p�qÿÿÿ!¶ D p ´ p È ¶D p ´ F ÿÿÿ! F;�3:7�
by collapsing D p ´ p to p 2 F and sending ¶D p ´ F � S pÿ1 ´ F to F via the
clutching function m. (This is possible since m�¶D p ´ p� � p 2 F.) The composite

in (3.7) is a map S p�qÿ1 ÿ! F whose Hurewicz image gives a class in
Hp�qÿ1�F �. This class is exactly t��b� � d p�b�.

Note at this point that the map t gives rise, by restriction, to a map

¶D p ´ D q???y
S pÿ1 ^ S q ÿÿÿ! S pÿ1 ^ Fÿÿÿ!m Fÿÿÿ!i E
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The horizontal composite adjoins to a map v: S pÿ1 ÿ! QqE and the component
in which it lies contains the map b: S q ÿ! F ÿ! E. By precomposing and using
Lemma 3.4, one gets the following extension diagram:

S pÿ1ÿÿÿÿÿ!Aut�F � ÿÿÿÿÿÿ! QqE???y ???y ???y
D p ÿÿÿ! Map�F; E � ÿÿÿ!L qE

The homotopy class this de®nes is given by (Lemma 3.4)

s�S p� 2 pp�E �> pp�L q
b E; Q

q
b E �:

One can now apply Lemma 3.1 directly to obtain

i ± t � �s�a�; i�b�� in pp�qÿ1�E�:

Both maps lift to F; the left-hand side lifts to t and the right-hand side lifts to
fa; bg: S p�qÿ1 ÿ! F. Notice that in homology, the Hurewicz images of i� ± t�
and �s�a�; i�b��� are zero in Hp�qÿ1�E� (in the ®rst case because of the Wang
exact sequence and in the second because of a known property of Whitehead
products). It follows by the Wang exact sequence again that the class in the image
of h ± fa; bg� in Hp�qÿ1�F � is also in the image of t� and by the arguments
above it must follow that it is exactly t��b�. The theorem follows.. . . . . . . . .A

4. Spaces of free loops

As pointed out in the introduction, the previous results apply particularly
well to (basepoint-free) mapping spaces from spheres. Consider again the
evaluation ®bration

Q k Xÿÿÿ!i L k Xÿÿÿ!ev
X:�4:1�

When the connectivity of X is at least k, (4.1) admits a section (which sends a
point in X to the constant loop at that point). Below we use the same name to
refer to a spherical class and the homotopy class it comes from. With

rk : p��X �ÿÿÿ!
adk

p�ÿ k�Q k X �ÿÿÿ!h H�ÿ k�Q k X �

as in the introduction, we prove the following.

Theorem 4.2. Let X be k-connected, and let b 2 Hj�Q k�X �� and a 2 Hp�X � be
two spherical classes. Then in the homology Serre spectral sequence for

Q k X ÿ!L k Xÿ!ev
X, the following identity holds:

d p�a
 b� � lk�rk�a�; b�:
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Proof. Suppose M is k-connected. Then the evaluation ®bration admits a
section and the following diagram commutes:

pp�M� 
 pj� k�M�ÿÿÿÿÿ!
� ; �

pp� j� kÿ1�M�???y1
 adk

???yadk

pp�M� 
 pj�QkM �ÿÿÿÿ!f ; g
pp� jÿ1�Q kM�???yh
 h

???yh

Hp�M� 
 Hj�Q kM �ÿÿÿÿ!d p

Hp� jÿ1�Q kM�
where d p is again as described in Theorem 3.5. The bottom half commutes
because of Theorem 3.5, while the top half commutes as a result of a theorem of
Hansen [5]. Notice that the right vertical composite is just rk .

Next we look at the following diagram of Fred Cohen [3, p. 215]:

pp�M� 
 pj� k�M�ÿÿÿÿÿÿÿ!
� ; �

pp� j� kÿ1�M�???yadk 
 adk

???yadk

ppÿ k�Q kM� 
 pj�QkM� pp� jÿ1�Q kM�???yh
 h

???yh

Hpÿ k�Q kM� 
 Hj�Q kM�ÿÿÿ!lk
Hp� jÿ1�Q kM�

This diagram de®nes the Browder operations for spherical classes and the proof
follows by direct comparison of the above two diagrams.. . . . . . . . . . . . . . .A

Remark 4.3. When k � 1 and X is a suspension, the Browder operation can
be described in terms of commutators and of the Samelson map

r: p��X �ÿÿÿ!ad
p�ÿ1�QX �ÿÿÿ!h H�ÿ1�QX �:

Let X � S n (or any suspension will do); then according to [12] the image of a
Whitehead product under r is a commutator in H��QS n� � H��QSS nÿ1� � T �e�,
where T �e� is a polynomial algebra on one generator e of dimension nÿ 1; that is,

r��x; y�� � rx � ryÿ �ÿ1� p ´ qrx � ry :� �rx; ry�:
It then follows from Theorem 4.2 that

d�i
 y� � �r�i�; y�; where r�i� 2 Hnÿ1�QS n�; y 2 Hj�QS n�
(here y is spherical of course). We see, for instance, that d�i
 r�i�� � �r�i�; r�i�� � 0
if n is odd, and d�i
 r�i�� � 2 if n is even. This last fact generalizes to higher
free loop spaces.

4.1. Free loop spaces of spheres L kS n for 1 < k < n

When n � 1; 3 or 7, L kS n is an H-space (since S n is) and so the existence of a
section yields a space level splitting for these values of n. Generally and for n
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odd, the localised sphere S n
� p� at an odd prime becomes an H-space and hence so

is L kS n
� p�. We therefore have a space level splitting for odd n and, after inverting,

for n � 2. The Serre spectral sequence for (4.1) collapses for odd spheres with Zp

coef®cients ( p odd). The case that will occupy us most in this section is that
when n is even.

Lemma 4.4. Assume 1 < k < n. Then under the composite

r: p2 nÿ1 S nÿÿÿ!ad
p2 nÿ kÿ1�Q kS n�ÿÿÿ!h H2 nÿ kÿ1�QkS n�;

the Whitehead square maps as follows:

r��in ; in�� �
0 if n is odd;

2x if n is even

�
(here x is the in®nite cyclic element in H2 nÿ kÿ1�Q kS n; A� with n even).

Proof (sketch for n � 2q). Write bn � �in ; in� and let x be the generator of
Hnÿ k�Q kS n�. Then r�bn� � lk�x; x� according to Theorem 4.2. When n � 2q,
b2 q generates an in®nite cyclic group in p4 qÿ1�S 2 q�> Z� torsion. It is well
known (Serre) that loops on an even sphere split after localizing at any odd prime p,

Q kS 2 q .� p� Q
kÿ1S 2 qÿ1 ´ QkS 4 qÿ1:

Under this correspondence, it turns out that b2 q maps under r to the generator in

H4 qÿ kÿ1�QkS 4 qÿ1� (mod p). Moreover it is known that lk�x; x� � 0 (mod 2)
(cf. [3]). Putting these together yields the result. . . . . . . . . . . . . . . . . . . . .A

The following is Corollary 1.6 of the introduction.

Corollary 4.5. Assume that 1 < k < n and n is even. Then in the Serre
spectral sequence for the ®bration

Q kS nÿÿÿ!i L kS nÿÿÿ!ev
S n;

the differential d n
n; nÿ k is given by multiplication by 2 on the torsion-free

generator of H2 nÿ kÿ1�Q kS n�. In particular, d n
n; nÿ k is an isomorphism with

rational coef®cients.

Proof. The differential d n
n; nÿ k is determined according to the ®rst diagram in

the proof of Theorem 4.2 by the image of the Whitehead square under the map r
described in Lemma 4.4. The claim now follows from Lemma 4.4. . . . . . . . .A

4.2. Rational and mod-2 calculations

The mod-2 cohomology of L kS n, with k < n, is completely determined
according to the following lemma.

Lemma 4.6. The Serre spectral sequence for Q kS n ÿ!L kS n ÿ! S n collapses
with mod-2 coef®cients whenever k < n.
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Proof (Fred Cohen). Consider the suspension

QnE: QnS n�q ÿ! Qn�1S n�q�1

and the following induced map of ®brations:

QnS n�qÿÿÿÿÿ!QnE
Qn�1S n�q�1???y ???y

L nS n�qÿÿÿÿ!L nE
L nQS n�q�1???y ???y

S n�qÿÿÿÿÿÿÿÿ!E
QS n�q�1

Since QS n�q�1 is an H-space, then so is L nQS n�q�1 and consequently we have
a splitting

L nQS n�q�1 . QS n�q�1 ´ Qn�1S n�q�1:

It is known (cf. [3, pp. 228±231]) that the map Q iE is injective in mod-2
homology (for all i) and hence in the diagram above both ®ber and base inject in
Z2-homology. The lemma follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Remark. In Proposition 5.3 below, we give an alternative derivation of this
fact in the case k � 1.

We now use Corollary 4.5 to calculate H ��L kS n� with rational coef®cients. We
also give a complete answer mod-p ( p odd) for the case of a two-fold loop space.
We make use throughout of the following standard fact. Consider the path-loop
®bration Q kS n ÿ! Pÿ! Q kÿ1S n for k < n . Then

H ��Q kS n� � TorH ��Q kÿ 1S n ��F; F�:�4:7�
This follows because the Eilenberg±Moore spectral sequence collapses at the E 2

term (cf. [2]).

Proposition 4.8. Let 1 < k < n and suppose n is even. Then the PoincareÂ
series for H ��L kS n; Q� is given as follows:

1� �xn � xnÿ k�=�1ÿ x2 nÿ kÿ1� if k is odd,

�1� x3 nÿ kÿ1�=�1ÿ xnÿ k� if k is even.

(

Proof. When n is even, one has H ��QS n� � E�enÿ1� 
Q�a2 nÿ2�, where
E�enÿ1� is an exterior algebra on an �nÿ 1�-dimensional generator. It then
follows that

TorE�enÿ 1��Q; Q� � Q�enÿ2� and TorQ�a 2 nÿ 2��Q; Q� � E�a2 nÿ3�:
Iterating these constructions and using (4.7) yields

H ��QkS n; Q� � Q�e� 
 E�a� for k even,

E�e� 
Q�a� for k odd,

�
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where deg�e� � nÿ k and deg�a� � 2nÿ k ÿ 1. Let i 2 Hn�S n� be the generator.
Then in the Serre spectral sequence for (4.1) with Q coef®cients, the class a hits
ei and this differential generates all other differentials. When k is odd, one has
(up to a unit)

d�ak� � eiakÿ1; d�eak� � e2iakÿ1 � 0:

The classes that survive are 1, eak and tak for k > 0. This establishes the
®rst claim. When k is even, H ��L kS n; Q�> Q�e��1; ai� and this leads to the
second assertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Remark. The PoincareÂ series for LS n , with n even,

�1� xn � xnÿ1 ÿ x2 nÿ2�=�1ÿ x2 nÿ2�;
is well known and is given, for instance, in [10].

4.3. Second fold ( free) loop spaces

We now determine H��L2S 2 q�2; Fp� with p odd (the case p � 2 having been

settled in Lemma 4.6). So recall the description of Q2S 2 q�2 over the mod-p
Steenrod algebra (see [3] or [9] for a general discussion). We have

Q2S 2 q�2 .p QS 2 q�1 ´ Q2S 4 q�3

(see the proof of Lemma 4.4), and H ��Q2S 4 q�3� is given by

H ��Q2S 4 q�3� � E�x0 ; x1; . . .� 
 G� y1; y2 ; . . .�
where jxij � 2�2q� 1�pi ÿ 1 and j yi j � 2�2q� 1�pi ÿ 2. The action of the
Steenrod algebra is given by

b� yi� � xi and P 1� y p
i � � yi�1:

Proposition 4.9. In the mod-p cohomology Serre spectral sequence for

Q2S 2q�2 ÿ!L 2S 2q�2 ÿ! S 2q�2

we have

d4 q�1 x0 � e ´ i;

where e is the generator of H 2q�Q2 S 2q�2� in the ®ber and i is the generator of

H 2 q�2�S 2 q�2� in the base.

Proof. The differential d4 q�1 is described by Corollary 4.5 and is non-
trivial. It can be shown that this is in fact the only non-trivial differential in the
spectral sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

5. The free loop space of a bouquet of spheres

In this section we illustrate our techniques by calculating the homology (with
®eld coef®cients) of L�Wi S ni�1� of a ®nite bouquet of spheres, with ni > 0.

Write W � W k
i S ni�1 and consider the free loop ®bration

QW ÿ!LW ÿ!W :�5:1�
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The image of the orientation class �S ni�1� in Hni�1�W � will be denoted by ai and the
inclusion S ni�1 a W by ii . To the ai correspond by adjointness the ei 2 Hni

�QW �.
Observe that W � S�W k

i S ni � and so, as is well known (Bott±Samelson),

H��W � � T�e1; . . . ; ek�;
where T�e1; . . . ; ek� is the tensor algebra on the generators ei . An element
x 2 T�e1; . . . ; ek� is a sum of basic monomials ei1


 ei 2

 . . .
 ei r

. Note that x is
not spherical in general; however iterated commutators in the ei are.

Lemma 5.2 (Samelson). Under the Samelson map

r: p��W �ÿÿÿ!ad
p�ÿ1�QW �ÿÿÿ!h H�ÿ1�QW �

(see Remark 4.3), the iterated commutator �ei1
; �ei 2

; � . . . �ei rÿ 1
; ei r
� . . . � � � is in the

image of the iterated Whitehead product �ii 1
; �ii 2

; � . . . �ii rÿ 1
; ii r
� . . . � � �.

This result is also quoted in Remark 4.3. We are now in a position to make
explicit the structure of the differentials in the Serre spectral sequence for (5.1).

Proposition 5.3. In the Serre spectral sequence for (5.1), the differentials are
given by

dni�1�ai 
 x� � �ei ; x� � ei 
 xÿ �ÿ1��ni �j x jx
 ei

where again ei � r�ai� in Hni
�QW � and x 2 H��QW �.

Proof. The result is true for x spherical according to Remark 4.3. Suppose
now that x � ei 1


 ei 2

 . . .
 ei r

and consider the iterated commutator
�ei 1

; �ei 2
; � . . . �ei rÿ 1

; eir
� . . . � � �. This being spherical, we get

d�a
 �ei 1
; �ei 2

; � . . . �ei rÿ 1
; eir
� . . . � � �� � �e; �ei 1

; �ei 2
; � . . . �ei rÿ 1

; eir
� . . . � � �

where e � r�a�. Writing

�ei 1
; �ei 2

; � . . . �ei rÿ 1
; eir
� . . . � � � �

X
t

6eit�1�ei t�2� . . . eit�r�

where t ranges over the appropriate permutations of f1; . . . ; rg, we can rewrite
this expression asX

t

d�a
 eit�1�ei t�2� . . . ei t�r� � �
X

t

�e; ei t�1�ei t�2� . . . ei t�r� �:

Of course we want to show that the above summands correspond. This is
essentially forced on us by the symmetry of the situation. We give the detailed
argument for the case r � 2 (the general case being the same but with more
complicated notation). So when r � 2,

d�a; �e1; e2�� � �e; e1e2 ÿ e2e1� � ee1e2 ÿ ee2 e1 ÿ e1e2 e� e2 e1 e

where, to ease notation, we choose je1e2j to be even and ja j to be odd to
get the appropriate signs. We stipulate ei 6� ej for i 6� j. We know that
d�a; �e1; e2�� � d�a; e1e2� ÿ d�a; e2 e1�, and hence one of six things must happen:

(i) d�a; e1e2� � ee1e2 ÿ ee1e2 and d�a; e2e1� � e1e2 eÿ e2 e1e;
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(ii) d�a; e1e2� � ee1e2 � e2e1e and d�a; e2 e1� � ee2 e1 � e1e2 e;

(iii) d�a; e1e2� � ee1e2 ÿ e1e2 e � �e; e1e2� and d�a; e2 e1� � ee2 e1 ÿ e2 e1e �
�e; e2 e1�.

The other three choices are either redundant or easily ruled out. Of course we
need to rule out (i) and (ii) to obtain (iii) for the answer.

To do this we notice generally that if t is a permutation on k letters, we can

consider the bouquet W 0 � W k S n t �i ��1 and the (obvious) `permutation' map
W ÿ!W 0. We get an induced loop map QW ÿ! QW 0 and in turn a homology
map (which we also denote by t)

t: T�e1; . . . ; ek� 7! T�e 01; . . . ; e 0k� � T�et�1�; . . . ; et�k��;
here we have written et�i � for e 0i � t�ei�. This map is multiplicative and induces a
map of spectral sequences (also written t). From this we deduce that

d�a t�i �; et �1� et �2� . . . et �r�� � t�d�ai ; e1 e2 . . . er���5:4�
where by de®nition t�e1 . . . er� � et�1� et �2� . . . et �r�. Suppose we are in case (i) and let
t be the transposition permuting 1 and 2 (and leaving other indexes ®xed). We then
see that td�a; e1e2� � t�ee1e2 ÿ ee1 e2� � e 0e2 e1 ÿ e 0e2 e1. However d�a; e2 e1� �
d�a; e t�1�t �2�� � e1e2 e 0 ÿ e2 e1e 0 6� td�a; e1e2�. Case (i) cannot happen.

Similarly for case (ii) the same argument as above with e � e1 yields
td�a1; e1e2� � t�e1e1e2 � e2 e1e1� � e2 e2 e1 � e1e2 e2 6� d�e2 ; e1e2�, implying that
(ii) cannot happen either. Case (iii) is the only case that satis®es (5.4), as is
easily checked, and the proposition follows for r � 2. The general case r > 2 is
totally analogous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

With this description available to us, we can proceed with the calculation of
H��LW �. The following discussion is valid with any ®eld coef®cients F. Write
W � SX and let V � eH��X; F�. The tensor algebra on V corresponds to
T�V � � T�e1; . . . ; ek�. Consider the operator

tm : V 
m ÿ! V 
m;

ei 1

 ei 2


 . . .
 ei m
7! �ÿ1�ni 1

�ni 2
� ...�ni m

�ei 2

 . . .
 ei m


 ei 1
:

The operator tm gives an action of the cyclic group Zm on V 
m and we denote

by V �tm� the subspace invariant under this action. Proposition 5.3 then shows that

H��LW; F�>
M
n > 0

V 
n= Im�1ÿtn� �
M
n > 1

S�V �tn���5:5�

where the last term is the suspension of V �tn� with degree 1 (compare [4]). Clearly
Coker�1ÿ tm� Ì H��LW � and the kernel of 1ÿ tm is a copy of ker�1ÿ tm�
suspended one dimension higher. Since dim Coker�1ÿ tm� � dim�ker�1ÿ tm��, it
follows that

P�H��LX �� � 1� �1� z�P
�M

m > 1

ker�1ÿ tm�
�
;�5:6�

where P is the mod-F PoincareÂ series. In what follows we determine
P�Lm > 1 Ker�1ÿ tm�� for F � Q and Z2 .

437the topology of ®brations with section



De®nitions and notation. (i) We denote by t the cyclic operator

t�ei 1

 ei 2


 . . .
 . . . ei m
� � ei 2


 . . .
 ei m

 ei 1

;

and by td its iterate d times. It is extended to operate additively on all of V 
m.
Note that

tm �
t if ni 1

or ni 2
� . . .� ni m

is even,

ÿt if ni 1
and ni 2

� . . .� ni m
is odd.

�
�5:7�

(ii) A word x � ei 1

 ei 2


 . . .
 ei m
2 V 
m has period d if td�x� � x and

t i�x� 6� x for i < d . Such a word must be presented in the form of blocks each of
length d and hence necessarily d j m. For example, e1e2 e3 e1e2 e3 for ei 6� ej has
period d � 3 (and m � 6 in this case).

The `trick' of Roos. Given a word x of period d, consider the element

x � x� tx� t2x� . . .� tdÿ1x:�5:8�
Then �1ÿ t�x � xÿ tdx � 0. Similarly, consider the sum

x � xÿ tx� t2xÿ . . . �ÿ1�dÿ1tdÿ1x:

In this case we have

�1� t�x � 0 if d is even,

2x if d is odd.

�
�5:9�

Vice versa, it turns out that any element in ker�1ÿ t� is of the form x for some x,

and any element in ker�1� t� is of the form x; that is, the following holds.

Lemma 5.10. Let y �Pn en�1� 
 . . .
 en�m� 2 V 
m Ì V (the sum over some

®nite number of permutations n of f1; . . . ;mg). Then t�y� � y if and only if y is a

sum of elements of the form x � x� tx� t2 x� . . .� tdÿ1x for x 2 V 
m and d > 1.

Proof. We think of t as both an operator and a full cyclic permutation.
Clearly since t�x� � x, then for any n ®guring in the expression of x, there is
also a n 0 � t ± n in that expression. Since the sum is ®nite, there is (a smallest)
dn > 1 such that n � tdn ± n. The element x � en�1� 
 . . . en�m� has order dn and
x � x� tx� t2 x� . . .� tdnÿ1x is in the expression for y. We can then look at
yÿ x and proceed inductively.

Similarly if t� y� � ÿy, then it can be checked that y is a sum of elements of
the form x � xÿ tx� t2x . . .ÿ tdÿ1x (here d is necessarily even). (To see this
one can as a ®rst step reduce mod-2 and then apply the previous lemma.). . . .A

Most of our forthcoming calculations are based on (5.8), (5.9) and Lemma 5.10.
In fact, let x 2 V 
m be of the form ei 1


 ei 2

 . . .
 ei m

(recall that jei j � ni).
There are two cases:

(i) the ni are even (that is, the spheres are odd-dimensional) in which case
tm�x� � t�x� and by (5.8), x gives rise to an element x in the kernel of
1ÿ tm (any x 2 T�e1; . . . ; ek� is necessarily periodic);

(ii) the ni are not all even, in which case tm�x� � 6t�x� and x gives rise to an
element in ker�1ÿ tm� depending on the parity of d and ni .
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This last situation does not occur with mod-2 coef®cients which makes the
calculations easier.

Mod-2 calculations

When F � Z2 the situation simpli®es because then t � tm in all cases (see
(5.7)) and hence by (5.8) any x � ei 1


 . . .
 ei m
2 V 
m corresponds to an

element in the kernel of 1ÿ tm (namely x). (The same is true when F � Q and
all spheres are odd.) Since x � tx, ker�1ÿ tm� is in one-to-one correspondence
with orbits of t acting on V 
m.

Terminology. The operator t acts on T�e1; . . . ; ek� �
L

m > 1 V 
m by acting
on each V 
m by cyclic permutation. An orbit consists then of a monomial
ei 1

 ei 2


 . . .
 ei m
(for some m > 1) together with all of its cyclic permutations

under t. The period of the orbit is the period of any one of its elements and the
dimension of the orbit is the homological dimension of any one of its elements.

Let f �N � be the number of orbits of dimension N of t acting on T�e1; . . . ; ek�,
and let W � Wk S ni�1 as above. Then according to (5.6) we have the following.

Theorem 5.11. P�H��LW; Z2�� � 1� �1� z�PN > 1 f �N �z N .

Starting with k homology classes e1; . . . ; ek , of respective dimensions n1; . . . ; nk ,
and ®xing an integer N > 1, we can calculate f �N � as follows. Consider all
possible partitions P�N � of N by elements of �n1; . . . ; nk�. We write any such

partition in the form �ni 1
; . . . ; ni d

� with ni 1
� . . .� ni d

� N. To each partition

P � �ni 1
; . . . ; ni d

�, we can let g�P� be the number of orbits made out of elements
in the corresponding tuple �ei 1

; . . . ; ei d
�. Then

f �N � �
X

P2P�N �
g�P�:

Example. Suppose W � S 2 _ S 2 _ S 4 _ S 5 and let us compute the dimension
b4 of H4�LW ; Z2�. Here N � 4, n1 � 1, n2 � 1, n3 � 3 and n4 � 4. We can
check that we have eight different partitions of 4 by integers taken from
fn1; n2 ; n3 ; n4g; that is,

�n1; n1; n1; n1�; �n2 ; n2 ; n2 ; n2 �; �n1; n1; n1; n2 �; �n1; n1; n2 ; n2 �
�n1; n2 ; n2 ; n2 �; �n1; n3�; �n2 ; n3�; �n4�:

To the partition �n1; n1; n1; n1� there corresponds the orbit of e1 
 e1 
 e1 
 e1

(of period 1).

Similarly to �n2 ; n2 ; n2 ; n2 � there corresponds e2 
 e2 
 e2 
 e2 .

To �n1; n2 ; n2 ; n2 � there corresponds only one orbit represented by
e1 
 e2 
 e2 
 e2. The period here is also 4.

To �n1; n1; n1 ; n2 � there corresponds e2 
 e1 
 e1 
 e1.

To �n1; n1; n2 ; n2� there correspond two orbits: e1 
 e1 
 e2 
 e2 and
e1 
 e2 
 e1 
 e2 . The ®rst has period 4 while the second has period 2.
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To �n1; n3 � there corresponds e1 
 e3 (period 2).

To �n2 ; n3� there corresponds e2 
 e3 (period 2).

To �n4� there corresponds e4 (period 1).

For N � 4, there are then in total nine orbits and hence nine homology classes
(of degree 4). We also need to do the same calculation for N � 3 and there we
®nd ®ve classes; so in total

H4�LW; Z2� � �Z2�14:

Theorem 5.11 can be made totally explicit in the case when the spheres are all
of the same dimension. The calculations there take the following form.

Proposition 5.12. For W � Wk S n, write

P�LW ; Z2� � 1� �1� z�
�X

m > 1

am z m�nÿ1�
�
:

Then

am �
X
e j m

1

m
f

�
m

e

�
k e;

where f is the Euler f-function.

Proof. Every element in V 
m is of degree N � m�nÿ 1�. Let am; d be the
number of orbits in V 
m of period d. Then am �

L
d j m am; d . Let f �d � be the

number of monomials of period d. Since all monomials in V 
m are periodic,

we have
P

d j m f �d � � k m, and hence by the MoÈbius inversion formula (see

the appendix),

f �d � �
X
e j d

m

�
d

e

�
k e

where m is the MoÈbius function. It follows that

ad ;m �
f �d �

d
� 1

d

X
e j d

m

�
d

e

�
k e:

Finally, we can express am slightly differently by using some known identities:

am �
X
d j m

1

d

X
e j d

m

�
d

e

�
k e

�
X
e j m

k e
X

h j �m= e�

1

eh
m�h� (where h � d=e)

�
X
e j m

k e 1

m

� X
h j �m= e�

m

eh
m�h�

�
:

The quantity in parenthesis corresponds to f�m=e� according to (A.2) below, and
the proposition follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A
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Remark 5.13. When k � 1, it is well known that
P

e j m
1
m

f
ÿ

m
e

� � 1 and hence
in that case am � 1 for all m. With Z2 coef®cients, we then have

P�H��LS n; Z2�� � 1� �1� z�
�X

m > 1

zm�nÿ1�
�

� 1� �1� z�
�

1

1ÿ znÿ1
ÿ 1

�
� 1� zn

1ÿ znÿ1
:

But P�H��S n; Z2�� � 1� zn and P�H��QS n�� � �1ÿ znÿ1�ÿ1 and so we see that

H��LS n; Z2�> H��S n; Z2� 
 H��QS n�;
asserting that the spectral sequence in (5.1) collapses with mod-2 coef®cients
when W � S n (as asserted in Lemma 4.6).

Mod-Q calculations

Consider W � Wk S n and suppose n is odd. According to (5.7), actions of both
tm and t on V 
m coincide (for all m) and the same argument as above shows that
P�LW ; Q� � P�LW ; Z2�.

We are then left with the case when W is the wedge of k even-dimensional
spheres. Again we need to determine the rank of ker�1ÿ tm�. Since in this case
�nÿ 1� is odd (corresponding to ni 1

in (5.7)), it follows that tm � t when �mÿ 1�
is even, and tm � ÿt when �mÿ 1� is odd (again by (5.7)). When �mÿ 1� is
even, an orbit (of any period d ) gives rise to an element in the kernel (cf. (5.8)),
and when �mÿ 1� is odd, we get a kernel element only if d is even (cf. (5.8)).
This is we have the following.

Proposition 5.14. As before assume that W � Wk S n and n is even. Then

P�LW ; Q� � 1� �1� z�
�X

m > 1

am zm�nÿ1�
�

where

am �

X
d j m

1

d

X
e j d

m

�
d

e

�
k e if m is odd;

X
d j m

d even

1

d

X
e j d

m

�
d

e

�
k e if m is even:

8>>>>><>>>>>:
Remark 5.15. When k � 1, am � 1 for m odd and am � 0 for m even

(according to (A.1)). In this case one regains the calculation in Proposition 4.8:

P�H��LS n; Q�� � 1� �1� z��znÿ1 � z3�nÿ1� � . . . �

� 1� znÿ1 � zn ÿ z2�nÿ1�

1ÿ z2�nÿ1� :

Appendix (MoÈbius Inversion)

An arithmetic function f : Nÿ! C is said to be multiplicative if
f �n ´ m� � f �n� f �m� for all n; m 2N. It turns out that if f is multiplicative then
the function g de®ned by g�d � �P e j d f �d � is also multiplicative. It is possible to
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recover f �d � from knowledge of g according to the following inversion formula:

g�d � �
X
e j d

f �e� () f �d � �
X
e j d

m

�
d

e

�
g�e�:

Here m�1� � 1, m�n� � 0 if n has a square prime factor, and m�n� � �ÿ1�r if
n � p1 . . . pr , with pi 6� pj . A nice discussion of all of this can be found in [7]. We
simply record the following easily established properties of the MoÈbius function m:

1

d

X
e j d

m

�
d

e

�
� 1 if d � 1;

0 otherwise,

�
�A:1�

and if f�d � denotes the Euler f-function, then
P

e j d f�e� � d and hence by
MoÈbius inversion

f�d � �
X
e j d

d

e
m�e�:�A:2�
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