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Abstract. In this paper we extend results on reconstruction of probabilistic supports of random
i.i.d variables to supports of dependent stationary random variables. All supports are assumed to be

compact of positive reach. The main results involve the study of the convergence in the Hausdorff

sense of a cloud of stationary correlated points to its support. A novel topological reconstruction result
is stated, and a number of illustrative examples are presented. The example of the Möbius Markov

chain on the circle is discussed in details with simulations.

1. Introduction

Given a sequence of stationary random variables of unknown common law and unknown compact
support IM, uncovering topological properties of IM based on the observed data can be very useful in
practice. Data analysis in high-dimensional spaces with a probabilistic point of view was initiated in [18]
where data was assumed to be drawn from sampling an i.i.d on or near a submanifold IM of Euclidean
space. Topological properties of IM (homotopy type and homology) were deduced based on the random
samples and the geometrical properties of IM. Several papers on probability and topological inference
ensued, some taking a persistence homology approach by providing a confidence set for persistence
diagrams corresponding to the Hausdorff distance of a sample from a distribution supported on IM [8].

Topology intervenes in Probability through reconstruction results (see [1, 4, 5, 19] and references
therein). This research direction is now recognized as part of “manifold learning”. Given an n point-
cloud Xn lying in a support IM, which is generally assumed to be a compact subspace of Rd for some
d > 0, and given a certain probability distribution of these n points across IM, one can formulate
practical conditions to reconstruct, up to homotopy or up to homology, this support IM. The two
notions have great overlap. Reconstruction up to homotopy means recovering the homotopy type of
IM. Reconstruction up to homology means determining, up to certain indeterminacy or up to certain
degree, the homology groups of IM. Of course knowing homotopy type allows in principle to know
the homology groups, but the converse is not in general possible. The advantage of using homology,
or persisence homology, lies in the fact that it is combinatorially computable, and so gives concrete
invariants of the support.

The goal of our work is to extend work of Nigoyi, Smale and Weinberger [18] to the case of stationary
dependent data (not just i.i.d) and for IM a compact space of “positive reach” or PR-set1 (not just a
submanifold). The interest in going beyond independence lies in the fact that many of the observations
of everyday life are dependent, and independence is not sufficient to describe these phenomena. The
study of the data support topologically and geometrically in this case can be very useful in directional
statistics for example, where the observations are often correlated. This can help get information on
animal migration paths or wind directions for instance. Modeling by a Markov chain on an unknown
compact manifold, with or without boundary, makes it possible to study such models. Other illustrative
examples can be found in more applied fields, for instance in cosmology, medicine, imaging, biology,
environmental science, etc.

1The reach of a set S in a metric space is the supremum τ such that any point within distance less than τ of S has a

unique nearest point in S
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To get information on an unknown support from stationary dependent data, we need consider, as
was done in the i.i.d case, the convergence of the Hausdorff distance dH of this cloud of data points to
its support. More precisely, we make the following definition.

Definition 1.1. We say that a point-cloud Xn of n stationary dependent Rd-valued random variables
is (ε, α)-dense in IM ⊂ Rd, if given ε > 0 and α ∈]0, 1[,

IP (dH(Xn, IM) ≤ ε) ≥ 1− α.

If X := (Xi)i∈IN∗ is a stationary sequence of IRd-valued random variables, we say that X is “asymptoti-
cally (ε, α)-dense” in IM if given ε > 0 and 0 < α < 1, there exists n0 so ∀n ≥ n0, Xn is (ε, α)-dense.

The first undertaking of the paper is to find conditions on X so that it is asymptotically (ε, α)-dense
in a compact support. In §3 and §5 we treat explicitly a number of examples and show for all of these
that the property of being asymptotically (ε, α)-dense holds by means of a key technical Proposition
2.1 which uses blocking techniques to give upper bounds for IP (dH(Xn, IM) > ε).

The next step is topological and consists in showing that when the Hausdorff distance between Xn
and the support is sufficiently small, it is possible to reconstruct the support up to homotopy. This is
addressed in §4. To use the notation from that section, we write X ≈ Y if Y ⊂ X and X deformation
retracts onto Y . Both the probabilistic and topological results can be combined into the following main
statement which summarizes the content of the paper.

Main Results:

• Let (Xi)i∈IN be a stationary sequence of IRd-valued random variables. Suppose that X1 is with
compact support IM having positive reach τ . Let 0 < δ < 2

5τ and ε ∈]0, τ2 −
δ
4 [. Let α ∈]0, 1[ be

fixed. Suppose that there exists n0 such that for any n ≥ n0, dH(Xn, IM) ≤ ε
2 with probability

at least 1− α. Then for any r such that ε+ δ ≤ r < τ
2 −

δ
4 ,

IP

( ⋃
x∈Xn

B(x, r) ≈M

)
≥ 1− α,

for each n ≥ n0 (Proposition 4.6).
• Conditions are stated to give explicit expressions of n0 for the following sequences of random

variables: (i) stationary m-dependent sequences (Proposition 3.2), (ii) stationary β-mixing se-
quences (Proposition 3.3), (iii) stationary weakly dependent sequences (Proposition 3.4), and
(iv) stationary Markov chains (Proposition 5.3 and Proposition 5.5).

Although our main results are mainly of a probabilistic and geometric nature, we can say a little word
about its statistical implications. In practice, the point-cloud data are realizations of random variables
living in an unknown support IM ⊂ Rd. We then ask to know if this support is a circle, or a sphere, or
a torus or a more complicated object. By taking sufficiently many points Xn, our results tell us that
the homology of IM is the same as the homology of the union of balls around the data

⋃
x∈Xn B(x, r),

and this can be computed in general. The uniform radius r depends on the reach of IM, which is the
only quantity we need to know a priori. Knowing the homology rules out many geometries for IM. Note
that knowledge of IM is only precise up to homotopy (or deformation). We may want to find ways to
distinguish between a support that is a circle and one that is an annulus, however conclusions of the
sort are not discussed in this paper.

We now give some more details about the content of the paper and how it is organized. In §2 we
state conditions under which dH(Xn, IM) ≤ ε with large probability and for n large enough. This is
stated in Proposition 2.1 which is the main technical tool of the paper. The strategy here is to use
blocking techniques, i.e. to group the n points into kn blocks, each block with rn points is considered
as a single point in the appropriate Euclidean space of higher dimension. The control of dH(Xn, IM) is
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then reduced to the behavior of lower bounds of the concentration function of one block

(1) ρrn(ε) := inf
x∈IMdrn

IP(‖(X1, · · · , Xrn)t − x‖ ≤ ε),

and of

(2) inf
x∈IMdrn

IP( min
1≤i≤kn

‖(X(i−1)rn+1, · · · , Xirn)t − x‖ ≤ ε),

where IMdrn the support of the block (X1, · · · , Xrn)t (vector transpose). Clearly, for independent
random variables, a lower bound for (1) is directly connected to a lower bound for (2), but this is not
the case for dependent random variables, and we need to control (1) and (2) separately. Section 3 gives
our main examples of stationary sequences of Rd-valued random variables having good convergence
properties, under the Hausdorff metric, to the support. In the case of mixing sequences, the control of
dH(Xn, IM) is based on assumptions on the behavior of some lower bounds for the concentration function
ρm(ε), for fixed m ∈ IN\{0}, in connection with the decay of the mixing dependence coefficients. These
lower bounds can be obtained by means of a condition similar to the so-called (a, b)-standard assumption
(see for instance [4]) used in the case of i.i.d. sequences (i.e. when kn = n and rn = 1). Section 4
establishes the reconstruction result we need. Here, the support IM is assumed to be compact of positive
reach (or “PR”). Our main result is Proposition 4.6 which is an extension of similar results in [18] and
[23]. The trick here is to thicken the PR set to obtain a Riemannian submanifold with boundary, and
then apply techniques of [18].

The last sections of the paper give explicit illustrations of our main results and techniques in the case
of Markov chains §5. The Möbius Markov chain on the circle is studied in Section 5.2, and an explicit
simulation is presented in §6.

2. Hausdorff Distance and the Support

This section states and proves the main technical lemma of this paper. The main result, Proposition
2.1, is general and of independent interest. It is based on blocking techniques and a useful geometrical
result, proven in [18], relating the minimal number of a covering of a compact set by open balls to the
maximal length of chains of points whose pairwise distances are bounded below.

Let (Xi)i∈IN be a stationary sequence of IRd-valued random variables. Let P be the distribution of

X1. Suppose that P is supported on a compact set IM of IRd, i.e. IM is the smallest closed set carrying
the mass of P ;

IM =
⋂

C⊂IRd, P (C)=1

C,

where C means the closure of the set C in Euclidean space. Recall that Xn = {X1, · · · , Xn} and this

is viewed as a subset of IRd. Throughout, we will be working with the Hausdorff distance dH , which is
a distance between compact subsets, A and B, in IRd given by

(3) dH(A,B) = max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

x∈B
inf
y∈A
‖x− y‖

}
,

where ‖ · ‖ denotes the Eucliean norm. Obviously dH({x}, {y}) = ||x− y|| if x, y are points.
We wish to give upper bounds for IP (dH(Xn, IM) > ε) via a blocking technique. Let k and r be

two positive integers such that kr ≤ n. Define, for 1 ≤ i ≤ k, the random vector Yi,r of IRdr, by
Yi,r = (X(i−1)r+1, · · · , Xir)

t. Let

Yk = {Y1,r, · · · , Yk,r}.
Clearly Yk is a subset of IRdr of stationary k dependent random vectors. The support IMdr of the vector
Y1,r is included in IM× · · · × IM (r times) and since, by definition, IMdr is a closed set, it is necessarily

compact in IRdr. As we now show, it is possible to reduce the behavior of dH(Xn, IM) to that of the
sequence of vectors (Yi,r)1≤i≤k for any k and r for which kr ≤ n and under only the assumption of
stationarity of (Xi)i∈IN.
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Proposition 2.1. With ε > 0, k and r any positive integers such that kr ≤ n, it holds that

IP (dH(Xn, IM) > ε) ≤ IP (dH(Yk, IMdr) > ε) ≤
supx∈IMdr

IP (min1≤i≤k ‖Yi,r − x‖ > ε/2)

1− supx∈IMdr
IP (‖Y1,r − x‖ > ε/4)

.

Proof. Since IP (Yk ⊂ IMdr) = 1, we have almost surely (a.s)

dH(Yk, IMdr) = sup
x∈IMdr

min
1≤j≤k

‖Yj,r − x‖.(4)

Since IMdr is compact, there exists a finite set CN = {c1, · · · , cN} ⊂ IMdr ⊂ IRdr of centers of balls,
forming a minimal ε-covering set for IMdr so that, for a fixed x ∈ IMdr, there exists ci ∈ CN ⊂ IMdr such
that

‖x− ci‖ ≤ ε.
Hence,

‖Yj,r − x‖ ≤ ‖Yj,r − ci‖+ ‖ci − x‖ ≤ ‖Yj,r − ci‖+ ε.

Consequently, for any x ∈ IMdr,

min
1≤j≤k

‖Yj,r − x‖ ≤ min
1≤j≤k

‖Yj,r − ci‖+ ε ≤ max
1≤i≤N

min
1≤j≤k

‖Yj,r − ci‖+ ε

and

sup
x∈IMdr

min
1≤j≤k

‖Yj,r − x‖ ≤ max
1≤i≤N

min
1≤j≤k

‖Yj,r − ci‖+ ε.

Hence,

IP

(
sup

x∈IMdr

min
1≤j≤k

‖Yj,r − x‖ ≥ 2ε

)
≤ IP

(
max

1≤i≤N
min

1≤j≤k
‖Yj,r − ci‖ ≥ ε

)
≤ N max

1≤i≤N
IP

(
min

1≤j≤k
‖Yj,r − ci‖ ≥ ε

)
≤ N sup

x∈IMdr

IP

(
min

1≤j≤k
‖Yj,r − x‖ ≥ ε

)
.(5)

We have now to bound N . For this we use Lemma 5.2 in [18] (as was done in [8]), to get

(6) N ≤
(

inf
x∈IMrd

IP(‖Y1,r − x‖ ≤ ε/2)

)−1
=

(
1− sup

x∈IMrd

IP(‖Y1,r − x‖ > ε/2)

)−1
.

Hence, by (4) together with (5) and (6),

IP (dH(Yk, IMdr) > 2ε)(7)

≤
(

1− sup
x∈IMrd

IP(‖Y1,r − x‖ > ε/2)

)−1
sup

x∈IMrd

IP

(
min

1≤j≤k
‖Yj,r − x‖ ≥ ε

)
.

Thanks to (7), the proof of this proposition is complete if we prove that,

(8) IP (dH(Xn, IM) > ε) ≤ IP (dH(Yk, IMdr) > ε) .

Recall that IP(Xn ⊂ IM) = 1, so that dH(Xn, IM) = supx∈IM min1≤j≤n ‖Xj − x‖, and, since kr ≤ n,

dH(Xn, IM) = sup
x∈IM

min
1≤j≤n

‖Xj − x‖ ≤ sup
x∈IM

min
1≤j≤kr

‖Xj − x‖ = dH(Xkr, IM).

From this we deduce that,

(9) IP (dH(Xn, IM) > ε) ≤ IP (dH(Xkr, IM) > ε) .

Now, we have to prove that

(10) IP (dH(Xkr, IM) > ε) ≤ IP (dH(Yk, IMdr) > ε) .

For this, let Xj ∈ Xkr and x ∈ IM. Then there exist l and i such that Xj is the l-th compo-
nent of the vector Yi,r. We claim also that there exists x̃ ∈ IMdr such that x is the l-th com-
ponent of the vector x̃. In fact suppose that, for any x1, · · · , xl−1, xl+1, · · · , xr ∈ IM, the vector
x̃ = (x1, · · · , xl−1, x, xl+1, · · · , xr)t /∈ IMdr, i.e., x̃ cannot be a realisation of the vector Yi,r while x is
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a realisation of the vector Xj . Suppose without loss of generality that all the evoked random vectors
have density (we denote by fZ the density of Z), then fXj (x) > 0 and fYi,r (x̃) = 0. Now,

fXj (x) =

∫
· · ·
∫
fYi,r (x̃)dx1, · · · , dxl−1, dxl+1, · · · , dxr = 0,

which is in contradiction with the fact that x belongs to IM, the support of Xj , i.e. fXj (x) > 0.
From this, we deduce that, for any Xj ∈ Xkr and x ∈ IM, there exist 1 ≤ i ≤ k and x̃ ∈ IMdr such that,

‖Xj − x‖ ≤ ‖Yi,r − x̃‖.

Hence,

inf
Xj∈Xkr

‖Xj − x‖ ≤ inf
Yi,r∈Yk

‖Yi,r − x̃‖ ≤ dH(Yk, IMdr).

Consequently, (recall that IP(Xkr ⊂ IM) = 1),

dH(Xkr, IM) = sup
x∈IM

inf
Xj∈Xkr

‖Xj − x‖ ≤ dH(Yk, IMdr).

From this we get (10). Now (10) together with (9) prove (8). The proof of this proposition is then
complete. �

3. (ε, α)-dense sequences of random variables

As indicated in the introduction, our main goal is to find conditions on P , the distribution of X1,
under which a sequence X is asymptotically (ε, α)-dense. In this section, we give several examples of
dependent random variables for which this is the case. This property is established every time by means
of Proposition 2.1 applied with suitable choices of k and r, and for all these examples, it holds that for
any ε > 0,

lim
n→∞

IP (dH(Yk, IMdr) > ε) = lim
n→∞

IP (dH(Xn, IM) > ε) = 0.

All proofs of the following Propositions are relegated to §7.

3.0.1. Stationary m-dependent sequence on a compact set. Recall that (Xi)i∈IN is m-dependent for
some m ≥ 0 if for any i ≥ 1 the two σ-fields σ(X1, · · · , Xi) and σ(Xi+j , Xi+j+1, · · · ) are independent
whenever j > m.

Example 3.1. (m-dependent sequence).

Let (Ti)i∈IN be a sequence of i.i.d. random variables with values in IRd. Let h be a real-valued function

defined on IRdm. The stationary sequence (Xn)n∈IN defined by Xn = h(Tn, Tn+1, · · · , Tn+m) is a
stationary sequence of m-dependent random variables.

Define, for m ∈ IN\{0} and for ε > 0, as in the introduction, Y1,m = (X1, · · · , Xm)t, the concentration
function of the vector Y1,m,

(11) ρm(ε) = inf
x∈IMdm

IP (‖Y1,m − x‖ ≤ ε) .

The following proposition gives conditions on ρm(ε) under which (1.1) is satisfied.

Proposition 3.2. Let (Xi)i∈IN be a stationary sequence of m-dependent, IRd-valued random vectors.
Suppose that X1 is with compact support IM. Suppose that for any ε > 0, there exists a strictly positive
constant κε such that,

ρm(ε) ≥ κε,
then it holds for any ε > 0 and any n ≥ m,

IP (dH(Xn, IM) > ε) ≤
(1− κ ε

2
)[

1
2 [
n
m ]]

κ ε
4

,
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where [·] denotes the integer part.

Consequently, for any α ∈]0, 1[ and any n ≥ 2m
κ ε

2

(
log
(
1
α

)
+ log

(
1
κ ε

4

))
+ 3m, dH(Xn, IM) ≤ ε with

probability at least 1− α.

3.0.2. Stationary β-mixing sequence on a compact set. Recall that the stationary sequence (Xn)n∈IN is
β-mixing if βn tends to 0 when n tends to infinity where the coefficients βn are defined by, (see [3]),

βn = sup
l≥1

IE {sup |IP (B|σ(X1, · · · , Xl))− IP(B)| , B ∈ σ(σi, i ≥ l + n)} .

The following corollary gives conditions on the behaviors of the two sequences (ρn(ε))n and (βn)n under
which (1.1) is satisfied.

Proposition 3.3. Let (Xn)n≥0 be a stationary β-mixing sequence. Suppose that X1 is supported on a
compact set IM. Then it holds, for any ε > 0 and any sequences kn and rn such that knrn ≤ n,

IP (dH(Xn, IM) > ε) ≤
k2nβrn + kn exp

(
−[kn2 ]ρrn(ε/2)

)
knρrn(ε/4)

.

Suppose moreover that for some β > 1, and any ε > 0,

lim
m→∞

ρm(ε)
em

β

m1+β
=∞, and lim

m→∞

e2m
β

m2
βm = 0.

Then for any α ∈]0, 1[ there exists a positive integer n0 such that for any n ≥ n0, dH(Xn, IM) ≤ ε with
probability at least 1− α.

3.0.3. Stationary weakly dependent sequence on a compact set. We suppose here that (Xi)i is a station-
ary sequence such that X1 takes values in a compact support IM. We suppose also that this sequence
is weakly dependent in the sense of [6]. More precisely, we suppose that there exists a non-increasing
function Ψ such that limr→∞Ψ(r) = 0, that for any measurable functions f and g bounded by 1 and
for any 1 ≤ i1 ≤ · · · ≤ ik < ik + r ≤ ik+1 ≤ · · · ≤ in one has∣∣Cov(h(Xi1 , · · · , Xik), g(Xik+1

, · · · , Xin)
∣∣ ≤ Ψ(r).(12)

This dependence condition is weaker than the Rosenblatt strong mixing dependence as was introduced
in [21].

Proposition 3.4. Let (Xn)n≥0 be a sequence of stationary, weakly dependent in the sense of (12).
Suppose that X1 is supported on a compact set IM. Then it holds, for any ε > 0 and any sequences kn
and rn such that knrn ≤ n,

IP (dH(Xn, IM) > ε) ≤
k2nΨ(rn) + kn exp

(
−[kn2 ]ρrn(ε/2)

)
knρrn(ε/4)

.

Suppose moreover that, for some β > 1, and any ε > 0,

lim
m→∞

ρm(ε)
em

β

m1+β
=∞, and that lim

m→∞

e2m
β

m2
Ψ(m) = 0.

Then for any α ∈]0, 1[ there exists a positive integer n0 such that for any n ≥ n0, dH(Xn, IM) ≤ ε with
probability at least 1− α

Remark 3.5. The condition of Proposition 3.2 and the first conditions of Proposition 3.3 and 3.4 are
all satisfied, in particular, if infm≥1 ρm(ε) has a strictly positive lower bound.
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4. A reconstruction result

Given a point-cloud Xn on a support IM, a standard problem is to reconstruct this support from
the given distribution of points as n gets large. Various reconstruction processes in the literature are
based on the Nerve theorem. This basic but foundational result can be found in introductory books
in algebraic topology ([12], chapter 4). It is based on the existence of a good cover of X, meaning
a cover by open contractible subspaces Ui such that the intersection of any number of Ui’s is either
empty or contractible. The nerve of this cover is now the abstract simplicial complex whose n − 1
dimensional simplices correspond to any non-empty intersection of n-open sets of the cover, and the
“Nerve Theorem” states that the realization of the nerve of a good cover of a subspace M ⊂ Rd has the
same homotopy type as M . We will use the notation |S| to refer to the underlying geometric complex
which is the realization of an abstract simplicial complex S.

Starting with a point-cloud in M , the nerve complex associated to this cloud appears as either a
Vietoris complex or a Cech complex construction. These constructions are very closely related and
we refer to [1, 17] for general discussions and results. In our case, we will always consider Xn =
{x1, . . . , xn} ⊂ M with M a compact metric space. For a given r > 0, take open balls Ui = B(xi, r)
around each xi in Xn. The nerve complex associated to this collection U = {Ui} is called the Cech
complex and is written Cech(U , r) [19]. We have the homotopy equivalence

|Cech(U , r)| '
⋃
xi∈X

B(xi, r)

as a direct consequence of the Nerve theorem since the intersection of any number of balls is always a
convex set thus contractible. The reconstruction results we are interested in consists in finding suitable
r and suitable conditions on Xn so that

⋃
'M , or even better, such that |Cech(U , r)| is a deformation

retract
One of the earliest reconstruction attempts along the lines indicated above seems to be [13] which

shows essentially that reconstructions by finite sets is indeed possible. Assume M is a closed Riemannian
manifold. Then there exists ε0 > 0 such that for every 0 < r < ε0, there exists a δ > 0 such that for any
cloud of points X that has Gromov-Hausdorff distance less than δ from M , the geometric realization
|Xr| is homotopy equivalent to M . This theorem is clearly not constructive in nature.

Note that in the case of Riemannian manifolds M , there is an appealing method for reconstruction
using “geodesic balls”. Let ρc (or ρc(M)) be the convexity radius. Around each p ∈ M , there is a
“geodesic ball” Bg(p, ρc) which is convex, meaning that any two points in this neighborhood are joined
by a unique geodesic in that neighborhood. These geodesic balls are contractible. If X = {x1, . . . , xn}
is a pointcloud such that Uc := {Bc(xi, ρc)} is a cover of M , and since the intersection of geodesic balls
is contactible, then

|Cech(Uc, ρc)| 'M
For some submanifolds M ∈ Rd, it might happen that ρc > τ , where τ is the reach of M . This is the
case of the unit circle C for example since ρc(C) = π/2 and τ = 1.

The fist main constructive reconstruction result of use in the literature seems to be Proposition 2.1 of
[18]. As in the case of [13], one needs restrict to Riemannian manifolds. Let M be a compact Riemannian
manifold and let τ be defined as the largest number having the property that the open normal bundle
about M of radius r is embedded in Rd for every r < τ . This number is precisely the reach of M . Let
X be any finite collection of points in Rd that is r

2 dense in M , meaning any point in X is at most this

much distance from a point in M . Assume r <
√

3
5τ . Then M ⊂ |Cech(U , r)| =

⋃
x∈XB(x, r) is a

deformation retract so that M and |Cech(U , r)| have the same homotopy type. The bulk of the proof
is to construct a map |Cech(U , r)| →M which is proper with contractible fibers.

An extension of Proposition 3.1 of [18] from closed Riemannian manifolds to manifolds with boundary
is given in [23], while various other versions for general compact metric spaces are in [1, 17]. More
particularly, and in ways closer to the spirit of this paper, [19] proves a general homotopy reconstruction
result for compact sets with positive reach (or PR sets, see [7]), which is a collection of spaces that
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subsumes Riemannian manifolds. See Figure 2 for an example of such space. The statement of the
result is in terms of “subspace balls”. Take a sufficiently dense collection X in M and a radius r so that
M ⊂

⋃
iB(xi, r). Then UM = {B(xi, r) ∩M} is an open cover of M by “subspace balls”. If this cover

is good, then as we know by the nerve theorem, |UM | is of the homotopy type of M . The main result of
[19] asserts that if M is any subset of Rd of positive reach τ > 0, and U = {B(xi, r)} is a finite collection
of balls that cover M with r < τ , then UM is necessarily good and |Cech(UM , r)| ' M . The bulk of
the proof of [19] is to show that all possible non-empty intersections of subspace balls B(xi, r)∩M are
contractible.

Note that there is an inclusion of simplicial complexes Cech(UM , r) ↪→ Cech(U , r) but in general,
both spaces need not have the same homotopy type. The complex |Cech(U , r)| will be detecting the
homotopy type of the so-called offset

M⊕r := {p ∈ Rd | d(p,M) := inf
x∈M
||x− p|| ≤ r}

This is not surprising since |Cech(U , r)| ' X⊕r =
⋃
x∈XB(x, r). Many of the existing theorems in

homotopic and homological inference are about offsets. The next section explains how X⊕r can recover
the homotopy type of M for compact spaces with positive reach. Our Proposition 4.6 seems to give a
more streamlined result than what is existing in the literature.

4.1. Manifolds with boundary. A measure of distance between two closed subspaces in a metric
space is the Hausdorff distance dH (3). This is a “coarse” metric in the sense that two closed spaces
A and B can be very different topologically and yet be arbitrarily close in Hausdorff distance. In
particular, this metric is very sensitive to outliers (See [20]). If X is a point cloud inside M , then dH can
be viewed as a measure of density. Indeed in this case, we can write dH(X,M) = supy∈M infx∈X d(x, y),
where d is Euclidean distance. Saying that dH(X,M) < ε means that for all y ∈ M , infx∈X d(x, y) =
minx∈X d(x, y) < ε, and so there is a point in X within distance ε from y.

Definition 4.1. We say that a subset X is ε-dense in M if dH(X,M) ≤ ε, or alternatively if B(p, ε)∩X 6=
∅ for each p ∈M .

With this interpretation of dH , the reconstruction result of [19] alluded to earlier takes the following
useful form. First we indicate that if M is smooth submanifold in Rd, then the condition number τ of
[18] about embedding tubular neighborhoods of M coincides with the reach of M .

Proposition 4.2. ([18], Proposition 3.1) Let M be a compact Riemannian submanifold of Rd with

positive reach τ , and X ⊂M an ε
2 -dense finite subset. Then for any ε ≤ r <

√
3
5τ ,

⋃
x∈XB(x, r) 'M .

An extension of this proposition to Riemannian manifolds with boundary is given in [23]. In this
case one obtains the analogue of Proposition 4.2 where now M is a compact manifold with boundary,

and the bound
√

3
5τ is replaced by δ

2 , where δ = min(τ(M), τ(∂M)). Note that in the case of [18], the

submanifold must have codimension at least 1 since it is closed. The codimension 0 case means that
M is necessarily a (compact) manifold with boundary and this is the case we need. The reach of ∂M
(manifold boundary) and M are not comparable in general. Indeed, take M to be the closed upper
hemisphere of the unit sphere in R3. Then τ(M) < τ(∂M). Take now a closed disk M in R2. Then
τ(∂M) < τ(M) =∞. By inspecting both proofs of [18, 23], we can ignore τ(∂M) and a bound of τ/2
on r is sufficient.

Proposition 4.3. Let M be a compact Riemannian submanifold of Rd with boundary, having codi-
mension 0 and positive reach τ , and let X ⊂ M be an ε

2 -dense finite subset. Then for any r such that
ε ≤ r < τ

2 ,
⋃
x∈XB(x, r) 'M .

This Proposition is a straightforward adaptation of results in §4 of [18]. It is an improvement on
[23] since we do not need to demand that ε < 1

2 min(τ(M), τ(∂M)) which can be fairly restrictive in
applications (i.e. consider a very flat ellipse in the plane. This is convex, so ε can be chosen as large as
needed, but τ(∂M) will impose on ε to be very small).
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Proof. In codimension 0, the boundary is an oriented hypersurface, and divides Euclidean space into
two regions. Let τ+ denote the reach of ∂M in the unbounded region, and τ− its reach within the
bounded region. Then τ(M) = τ+, while evidently τ(∂M) = min{τ+, τ−}. The key point in the proof
of Proposition 3.1 of [18], asserting that

⋃
x∈X(B(x, r) ' N , for N closed submanifold in Euclidean

space, X ⊂ N , is to show that any point v ∈ Tp(N)⊥, “not far away” from p, which is in a ball B(q, ε)
with q ∈ X but q 6∈ B(p, ε), must be in another ball B(x, ε), with x ∈ B(p, ε) ∩ X. In our case, we will
apply this computation to N = ∂M . To measure this “not far away” quantity, we look at extreme cases
where q is on a tangent circle to Tp(∂M) of curvature 1

τ+ = 1
τ (the closed manifold ∂M cannot bend

further according to the relationship between curvature and reach as described in §6 of [18]). Lemma
4.1 shows that for such a configuration v, p, q to exist (i.e. |q − p| > ε, |v − p| < τ and |v − q| = ε) one

must have |v − p| < ε2

τ . This is all illustrated in our Figure 1 which is the analog of Fig.2 of [18]. So if
ε2

τ < ε
2 , that is if ε < τ

2 , then |v − p| < ε
2 , and since there is an x ∈ X that is within distance ε

2 from
p, necessarily |x − v| < ε. Remaining arguments as can be found in §4 of [18] prove the Proposition.
Note that in the case of Proposition 3.1 of [18], that x couldn’t be “anywhere” possibly around p, but
had to lie on N = ∂M , which was the Riemannian manifold under investigation, thus the authors get
a different bound on ε. �

v

p

q

x

ε

ε/2

M

Figure 1. An extreme disposition of points, x, q ∈ X and p, q ∈ ∂M . The points q, p
are on a circle tangent to Tp(M), of radius τ and center on the vertical dashed line
representing the normal direction Tp(M)⊥, while y is on a circle of radius τ− with
center on the normal.

We next extend Proposition 4.3 to M compact in Rd whose reach is strictly positive. Figure 2
gives an example of such a space. We will always denote by τ(M), or just τ , the reach of M . The
quintessential property of PR-sets (i.e. positive reach sets) is the existence, for r < τ , of the “unique
closest point” projection

(13) πM : M⊕r −→M , ||y − πM (y)|| = dH(y,M)

sending y to its nearest unique point x ∈M .

A

B

*

*

Figure 2. This space has positive reach τ in R2 but is not a submanifold.
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PR-sets are necessarily closed, thus compact if bounded. If M is a compact PR-set, then so is M⊕r,
for r < τ , where τ is the reach of M . We write B(x, r) the open ball around x of radius r, and B(x, r)
its closure. The following observation is a consequence of work of Federer [10].

Proposition 4.4. Let M ⊂ Rd be connected and compact of positive reach. For 0 < r < τ , M⊕r is a
compact manifold with boundary, of dimension n, homotopy equivalent to X.

Proof. Let dM be the distance function to M . Elementary pointset topology shows that the interior of
the r-offset of M is int(M⊕r) =

⋃
x∈M B(x, r) = d−1M [0, r), M⊕r =

⋃
x∈M B(x, r) (this is a consequence

of compactness of M) and the topological boundary is d−1M (r) (this is a consequence of the continuity
of the Hausdorff metric).

The interior of M⊕r is open in Rd so is necessarily a smooth submanifold of codimension 0. It
is bounded with non-trivial topological boundary ∂M⊕r. By work of Federer (see [7], Lemma 1.10),
∂M⊕r is a C1,1-hypersurface in Rd, in particular it is C1, oriented. To deduce from this that M⊕r

is a submanifold with boundary, we need verify that there exist open Euclidean neighborhoods U of
y ∈ ∂M⊕r, and V and a diffeomorphism g : U → V such that g(U ∩ ∂M⊕r) ∼= V ∩Hn, where Hn is
half-space. Since the boundary is a manifold of codimension 1, we know there are such U and V , and a
g so that g(U ∩M⊕r) ∼= V ∩(Rn−1×0). If suffices now to see if a point in the interior part int(M⊕r)∩U
goes to V ∩Hn, then all points in that interior part must map to V ∩Hn. Suppose this is not the case
and two points p, q in int(M⊕r) ∩ U map under g to two different hemispheres V ∩Hn

+ and V ∩Hn
−,

then every path linking p and q must cross the boundary, since its image by a diffeomorphism g must
cross Rn−1 × {0} and this cannot be true in general.

Finally, we show that M⊕r ' M . To this end, we use the map (13) and claim that it is continuous
and proper (this is clear) and that it has contractible preimages. This would imply that both spaces
are homotopy equivalent. So for every fixed x ∈M , we must show that π−1(x) ⊂M⊕r is contractible.
Pick y in this preimage. We claim that the interval [x, y] in Rd is entirely in π−1M (x). Let z ∈ [x, y] and
suppose there is x′ 6= x, x′ ∈M , so that πM (z) = x′, that is ||z − x′|| < ||z − x||. Then

||y − x′|| ≤ ||y − z||+ ||z − x′|| < ||y − z||+ ||z − x|| = ||y − x||

which contradicts the fact that x = πM (y). So π(z) = x for all z ∈ [x, y] and [x, y] ⊂ π−1M (x). The
preimage is starshaped so must be contractible (by the contraction that collapses line segments to x).
The proof is complete. �

We next need to compare the reach of M to that of M⊕r, r <reach(M) = τ . Note that the reach is
not always well-behaved for nested compact sets. By this we mean that if (K2,K1) is a pair of nested
compact sets in Rd, K1 ⊂ K2, then both cases τ1 < τ2 or τ2 < τ1 can occur, where τi is the reach of Ki.
For example and in the former case, take K1 to be the circle and K2 to be the closed disk, while for the
latter case, take K1 to be a point in a finite reach K2. The case of (K2,K1) = (M⊕r,M) is special.

Lemma 4.5. Let τr be the reach of M⊕r, r < τ . Then (M⊕r)
⊕τr = M⊕τ . In particular, if M is

convex, then so is M⊕r, and if τ is finite, τr = τ − r.

Proof. Pick y not in M⊕r, and let x be one of its closest point in M . We claim that yr := [y, x]∩∂M⊕r =
πM⊕r (y) is one of the closest points to y in the offset M⊕r. This is clear because if say there is z in the
boundary that is closest to y, and w = πM (z), then

d(y, w) ≤ d(y, z) + d(z, w) = d(y, z) + r < d(y, yr) + d(yr,M) = d(y, x)

and this is a contradiction. The last equality follows from the fact already shown in the proof of
Proposition 4.4 which is that if y ∈M⊕r, then πM (z) = πM (y) for all z ∈ [y, πM (y)].

Start now with y having two distinct projections x1, x2 onto M (i.e. y 6∈ M⊕τ ). Then [y, x1] and
[y, x2] intersect ∂M⊕r at z1, z2 with d(z1, x) = d(z2, x) = r. Moreover these are closest to y in M⊕r by

the preceding paragraph. Since z1 6= z2, then y 6∈ (M⊕r)
⊕τr . This shows that (M⊕r)

⊕τr ⊂ M⊕τ . A

slight rephrase to this same argument shows that M⊕τ ⊂ (M⊕r)
⊕τr , and so both subspaces are equal.
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To summarize, if y ∈M⊕τ \M⊕r and yr = [y, πM (y)] ∩ ∂M⊕r, then yr = πM⊕r (y) and

d(y,M) = d(y,M⊕r) + r

Since y ∈ (M⊕r)
⊕τr , then d(y,M) ≤ τr +r. Since this is true for any y ∈M⊕τ , so τ ≤ τr +r. A similar

argument gives that τr + r ≤ τ , so here too equality holds. �

We are now ready to prove the main result of this section.

Proposition 4.6. Let M be a compact space in Rd with positive reach τ and let 0 < δ <
2

5
τ . Let ε be

such that 0 < ε <
τ

2
− 5δ

4
. Assume that X is

ε

2
dense in M . Then for any r such that ε+δ ≤ r < τ

2
− δ

4
,⋃

x∈X
B(x, r) 'M .

Proof. If X is an ε′−δ
2 -dense sample in M , X ⊂ M , then it is an ε′

2 -dense sample in M⊕δ/2. This

offset is a codimension 0 manifold with boundary containing M and reach τ ′ = τ − δ
2 . Proposition 4.3

implies then that for all ε′ ≤ r < τ−δ/2
2 ,

⋃
x∈XB(x, r) ' M⊕δ/2. By setting ε = ε′ − δ, we get the

hypotheses of the Theorem. But δ
2 < τ , and so according to Proposition 4.4, M⊕δ/2 'M and the proof

is complete. �

5. Application to stationary Markov chains on a compact state space

This section gives conditions on stationary Markov chains on a compact state space so that they are
asymptotically (ε, α)-dense. Those conditions can be checked by studying the β-mixing properties of
these Markov chains and by applying Proposition 3.3. We choose however in this section to be even
more precise by adopting specific models and carrying out explicit calculations.

Let (Xn)n≥0 be an homogeneous Markov chain satisfying the following two assumptions.

(A1) This Markov chain has an invariant measure µ with compact support IM (and then the chain
is stationary).

(A2) The transition probability kernel K, defined for x ∈ IM, by

K(x, ·) = IP(X1 ∈ ·|X0 = x)

is absolutely continuous with respect to some measure ν on IM, i.e. there exists a positive
measure ν and a positive function k such that for any x ∈ IM, K(x, ν(dy)) = k(x, y)ν(dy).
Suppose that, for some b > 0 and ε0 > 0,

Vd := inf
x∈IM

inf
0<ε<ε0

(
1

εb

∫
B(x,ε)∩IM

ν(dx1)

)
> 0

and that there exists a positive constant κ such that inf
x∈IM, y∈IM

k(x, y) ≥ κ > 0..

Recall that IPx (resp. IPµ) denotes the probability when the initial condition X0 = x (resp. X0

is distributed as the stationary measure µ). We need the following two lemmas in order to check the
conditions of Proposition 2.1 (with rn = 1).

Lemma 5.1. Let (Xn)n≥0 be a Markov chain satisfying Assumptions (A1) and (A2). Then, it holds,
for any 0 < ε < ε0 and any x0 ∈ IM,

inf
x∈IM

IPx0
(‖X1 − x‖ ≤ ε) ≥ κεbVd, inf

x∈IM
IPµ (‖X1 − x‖ ≤ ε) ≥ κεbVd.
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Proof. We have, using Assumption (A2),

IPx0
(‖X1 − x‖ ≤ ε) = IPx0

(X1 ∈ B(x, ε) ∩ IM) =

∫
B(x,ε)∩IM

K(x0, ν(dx1))

=

∫
B(x,ε)∩IM

k(x0, x1)ν(dx1)

≥ κ
∫
B(x,ε)∩IM

ν(dx1) ≥ κεb inf
0<ε<ε0

(
1

εb

∫
B(x,ε)∩IM

ν(dx1)

)
≥ κεbVd.

The proof of Lemma 5.1 is complete since IPµ (‖X1 − x‖ ≤ ε) =
∫

IPx0
(‖X1 − x‖ ≤ ε) dµ(x0). �

Lemma 5.2. Let (Xn)n≥0 be a Markov chain satisfying Assumptions (A1) and (A2). Then, it holds,
for any 0 < ε < ε0 and k ∈ IN \ {0},

sup
x∈IM

IPµ

(
min

1≤i≤k
‖Xi − x‖ > ε

)
≤
(
1− κεbVd

)k
.

Proof. 2 Set Fn = σ(X0, . . . , Xn). By Markov property and Lemma 5.1

IPµ

(
min

1≤i≤k
‖Xi − x‖ > ε

)
= IPµ(∀ 1 ≤ i ≤ k, Xi 6∈ B(x, ε))

= IEµ

(
k−1∏
i=1

1{Xi 6∈B(x,ε)}IE(1I{Xk 6∈B(x,ε)}|Fk−1)

)

= IEµ

(
k−1∏
i=1

1I{Xi 6∈B(x,ε)}IEXk−1
(1I{Xk 6∈B(x,ε)})

)

≤ (1− κεbVd)IEµ

(
k−1∏
i=1

1I{Xi 6∈B(x,ε)}

)
≤ (1− κεbVd)IPµ(∀ 1 ≤ i ≤ k − 1, Xi 6∈ B(x, ε)).

Lemma 5.2 is proved using the last bound together with an induction reasoning on k. �

Proposition 5.3. Suppose that Assumptions (A1) and (A2) are satisfied for some Markov chain
(Xn)n≥1. Then the bounds of Proposition 2.1 are satisfied for rn = r = 1, kn = n and

IP (dH(Xn, IM) > ε) ≤ 4b(1− κεbVd/2b)n

κεbVd
.

Consequently, for any α ∈]0, 1[ and any n ≥ 2b

κεbVd

(
ln
(

4b

κεbVd

)
+ ln

(
1
α

))
,

dH(Xn, IM) ≤ ε,
with probability at least 1− α.

Proof. We have using Lemmas 5.1 and 5.2,

sup
x∈IM

IPµ

(
min

1≤i≤n
‖Xi − x‖ > ε

)
≤ (1− κεbVd)n ≤ exp(−nκεbVd),

1− sup
x∈IM

IP (‖X1 − x‖ > ε) ≥ κεbVd > 0.

Consequently the conclusion of Proposition 2.1 is satisfied with rn = 1, kn = n. More precisely, it holds

IP (dH(Xn, IM) > ε) ≤ 4b exp(−nκεbVd/2b)
κεbVd

2We are grateful to Sophie Lemaire for the present form of the proof of Lemma 5.2.



TOPOLOGICAL INFERENCE FOR DEPENDENT STATIONARY RANDOM VARIABLES 13

The proof of this proposition is complete since α ≥ 4b exp(−nκεbVd/2b)
κεbVd

is equivalent to

n ≥ 2b

κεbVd
ln

(
4b

ακεbVd

)
.

�

We next give examples of Markov chains satisfying the requirements of Proposition 5.3. Those
examples concern stationary Markov chains on the balls and stationary Markov chains on the circles.

5.1. Stationary Markov chains on a ball of IRd.

5.1.1. Random difference equations. Let (Xn)n≥0 be defined by,

(14) Xn+1 = An+1Xn +Bn+1, n ≥ 0

where An+1 is a (d× d)-matrix, Xn ∈ IRd, Bn ∈ IRd, (An, Bn)n≥0 is an i.i.d. sequence independent of
X0. Recall that for a matrix M , ‖M‖ is the operator norm defined by ‖M‖ = supx∈IRd, ‖x‖=1 ‖Mx‖.
It is well known see for instance [16] that, for any n ≥ 1, Xn is distributed as

∑n
k=1A1 · · ·Ak−1Bk +

A1 · · ·AnX0, that the following conditions (see [15], or [11])

(15) IE(ln+ ‖A1‖) <∞, IE(ln+ ‖B1‖) <∞, lim
n→∞

1

n
ln ‖A1 · · ·An‖ < 0,

ensure the existence of a stationary solution to (14) and that ‖A1 · · ·An‖ tends to 0 exponentially
fast. If IE‖B1‖β < ∞ for some β > 0 then the series R :=

∑∞
i=1A1 · · ·Ai−1Bi converges a.s. and the

distribution of Xn converges to that of R, independently of X0. The distribution of R is then that of
the stationary measure of the chain.

Compact state space. If ‖B1‖ ≤ c < ∞ for some fixed c, then this stationary Markov chain is IM-
compactly supported. In particular if ‖A1‖ ≤ ρ < 1 for some fixed ρ, then IM is included in the ball

Bd(0,
c

1−ρ ) of IRd.

Transition kernel. Suppose that, for any x ∈ IM, the random vector A1x+B1 has a density fA1x+B1 with
respect to the Lebesgue measure (here ν is the Lebesgue measure) satisfying infx, y∈IM fA1x+B1(y) ≥ κ,
then k(x, y) = fA1x+B1

(y) ≥ κ > 0.

We collect all the above results in the following corollary.

Corollary 5.4. Suppose that in the model (14), Conditions (15) are satisfied with moreover ‖B1‖ ≤
c < ∞. If fA1x+B1

, the density of A1x + B1, satisfies infx, y∈IM fA1x+B1
(y) ≥ κ > 0 for some positive

κ, then Assumptions (A1) and (A2) are satisfied with b = d and ν is the Lebesgue measure on IRd.

Example: The AR(1) process. We consider a particular case of the Markov chain as defined in (14)
where, for each n, An = ρ with |ρ| < 1. We obtain the standard first order linear Auto-Regressive
process, that is

Xn+1 = ρXn +Bn+1,

we suppose that

• B1 has a density function fB supported on [−c, c] for some c > 0 with κ := infx∈[−c,c] fB(x) > 0

• X0 ∈ [ −c1−|ρ| ,
c

1−|ρ| ]

This Markov chain evolves in a compact state which is a subset of [ −c1−|ρ| ,
c

1−|ρ| ]. Thanks to Corollary

5.4, (Xn)n admits a stationary measure µ. We have, moreover,

k(x, y) = fB1
(y − ρx) ≥ κ, ∀ x ∈ IM, ∀ y ∈ IM.

Assumptions (A1) and (A2) are then satisfied with b = 1 and ν is the Lebesgue measure on IR.



14 SADOK KALLEL AND SANA LOUHICHI

Example: The AR(k) process. The AR(k) is defined by,

Yn = α1Yn−1 + α2Yn−2 + · · ·+ αkYn−k + εn,

where α1, · · · , αk ∈ IR. Since this model can be written in the form of (14) with,

Xn = (Yn, Yn−1, · · · , Yn−k+1)t, Bn = (εn, 0, · · · , 0)t, An =

(
α1 · · · αk
Ik−1 0

)
all the above results, for random difference equations, apply under the corresponding assumptions. In
particular the process AR(2) is stationary as soon as |α2| < 1 and α2 + |α1| < 1.

5.2. The Möbius Markov chain on the circle. Our purpose is to give an example of Markov chain
on the unit circle, known as Möbius Markov chain, satisfying the requirements of Proposition 5.3. This
Markov chain (Xn)n∈IN is introduced in [14] and is defined as follows.

• X0 is a random variable which takes values on the unit circle.
• For n ≥ 1,

Xn =
Xn−1 + β

βXn−1 + 1
εn,

where β ∈] − 1, 1[ and (εn)n≥1 is a sequence of i.i.d. random variables which are independent
of X0 and distributed as the wrapped Cauchy distribution with a common density with respect
to the arc length measure ν on the unit circle ∂B(0, 1),

fϕ(z) =
1

2π

1− ϕ2

|z − ϕ|2
, ϕ ∈ [0, 1[, z ∈ ∂B(0, 1).

The following proposition holds.

Proposition 5.5. Let (Xn)n≥0 be the Möbius Markov chain on the unit circle as defined above. Then
this Markov chain admits a unique invariant distribution, denoted by µ. If X0 is distributed as µ then
the set Xn = {X1, · · · , Xn} converges in probability, as n tends to infinity, in the Hausdorff distance to
the unit circle ∂B(0, 1), more precisely, for any α ∈]0, 1[ and any n ≥ 2

κvε

(
ln( 1

α ) + ln( 4
εκv )

)
dH(Xn, ∂B(0, 1)) ≤ ε,

with probability at least 1− α. Here v is a finite positive constant and κ = 1
2π

1−ϕ
1+ϕ .

Proof. We have to prove that all the requirements of Proposition 5.3 are satisfied. Our main reference
for this proof is [14]. It is proved there that this Markov chain has a unique invariant measure µ on the
unit circle. Assumption (A1) is then satisfied with IM = ∂B(0, 1). The task now is to check Assumption
(A2). We have also, for x ∈ ∂B(0, 1),

K(x, ν(dz)) = IP(X1 ∈ ν(dz)|X0 = x) = k(x, z)ν(dz),(16)

where ν is the arc length measure on the unit circle and for x, z ∈ ∂B(0, 1),

k(x, z) =
1

2π

1− |φ1(x)|2

|z − φ1(x)|2
,

with

φ1(x) =
ϕx+ βϕ

βx+ 1
.

We obtain, since x+β
βx+1 ∈ ∂B(0, 1) whenever x ∈ ∂B(0, 1),

|φ1(x)|2 = ϕ2.

Now, for x, z ∈ ∂B(0, 1),
|z − φ1(x)| ≤ |z|+ |φ1(x)| ≤ 1 + ϕ.

Hence,

(17) k(x, z) ≥ 1

2π

1− ϕ2

(1 + ϕ)2
=

1

2π

1− ϕ
1 + ϕ

> 0.
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We have now, to check that, for some ε0 > 0

(18) v := inf
u∈∂B(0,1)

inf
0<ε<ε0

(
ε−1

∫
∂B(0,1)∩B(u,ε)

ν(dx1)

)
> 0.

For this let u ∈ ∂B(0, 1), define
_

AB =

∫
∂B(0,1)∩B(u,ε)

ν(dx1).

Ο

A

Bu
ε

1

α

We have |uA| = |uB| = ε. Let α = ÂOB, then on the one hand
_

AB = α. On the other hand, since
the triangle OAu is isosceles, with an angle of α/2 in O, then ε = 2 sin(α/4). We thus obtain,

lim
ε→0

1

ε

_

AB = lim
ε→0

α

ε
= lim
α→0

α

2 sin(α/4)
= 2,

from this (18) is satisfied.
Assumption (A2) is satisfied thanks to (16), (17) and (18). The proof of Proposition 5.5 is complete by
using Proposition 5.3. �

6. Simulations

The purpose of this section is to simulate a Möbius Markov process on the unit circle (as defined in
Subsection 5.2) and to illustrate the results of Proposition 5.5 and of Theorem ??. More precisely, we
simulate

• X0 is a random variable with the uniform law on the unit circle ∂B(0, 1), that is X0 has the
density,

f(z) =
1

2π
∀ z ∈ ∂B(0, 1)

• For n ≥ 1,

Xn = Xn−1εn,

where (εn)n≥1 is a sequence of i.i.d. random variables which are independent of X0 and dis-
tributed as the wrapped Cauchy distribution with a common density with respect to the arc
length measure ν on the unit circle ∂B(0, 1),

fϕ(z) =
1

2π

1− ϕ2

|z − ϕ|2
, ϕ ∈ [0, 1[, z ∈ ∂B(0, 1).

It is proved in [14] in this case, that this Markov chain is stationary with stationary measure the uniform
law on the unit circle.
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Figure 3. Illustrations of the set {x1, · · · , xn} which is a realisation of the stationary
points Xn for different values of n with ϕ = 0.

7. Proofs for the examples

7.1. Proof of Proposition 3.2. Recall that, for any 1 ≤ i ≤ kn = [n/m], the vectors

Yi,m = (X(i−1)m+1, · · · , Xim)t

are dependent but, thanks to the m-dependence property, the two families {Y1,m, Y3,m, Y5,m, · · · } and
{Y2,m, Y4,m, Y6,m, · · · } are each of i.i.d. random vectors. Hence, for any ε > 0, (recall that ρm(ε) ≥ κε)

sup
x∈IMdm

IP

(
min

1≤i≤kn
‖Yi,m − x‖ >

ε

2

)
≤ sup
x∈IMdm

IP

(
min

1≤2i≤kn
‖Y2i,m − x‖ >

ε

2

)
≤ sup
x∈IMdm

IP[kn/2]
(
‖Y1,m − x‖ >

ε

2

)
≤
(

1− ρm(
ε

2
)
)[kn/2]

≤
(
1− κ ε

2

)[kn/2]
,

and

1− sup
x∈IMdr

IP
(
‖Y1,m − x‖ >

ε

4

)
≥ κ ε

4
.

The bounds of Proposition 2.1 are then satisfied with r = m. This gives that, for any ε > 0,

IP (dH(Xn, IM) > ε) ≤ IP (dH({Y1,m, · · · , Ykn,m}, IMdm) > ε) ≤
(
1− κ ε

2

)[kn/2]
κ ε

4

≤
exp

(
−κ ε

2
[kn/2]

)
κ ε

4

.
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Figure 4. In the above graphics, the points of Xn are in red. Each of these points is
the center of the circle with radius r = 0.1. This is an illustration of the reconstruction
result,

⋃
x∈Xn

B(x, r) 'M , with different values of n and with r = 0.1.

Let α ∈]0, 1[ be such that

exp
(
−κ ε

2
[kn/2]

)
κ ε

4

≤ α,

which is equivalent to,

[kn/2] ≥ 1

κ ε
2

log

(
1

ακ ε
4

)
.

Consequently, for any n ≥ 2m
κ ε

2

log

(
1

ακ ε
4

)
+ 3m,

[kn/2] ≥ kn/2− 1 ≥ n

2m
− 3/2 ≥ 1

κ ε
2

log

(
1

ακ ε
4

)
.

and then,

IP (dH(Xn, IM) > ε) ≤ α.
The proof of Proposition 3.2 is complete. �

7.2. Proof of Proposition 3.3. We use the blocking method of [24] to transform the dependent
β-mixing sequence (Xn)n∈IN into a sequence of nearly independent blocks. Let Z2i,rn = (ξj , j ∈
{(2i − 1)rn + 1, · · · , 2irn})t be a sequence of i.i.d. random vectors independent of the sequence (Xi)i
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such that, for any i, Z2i,rn is distributed as Y2i,rn (which is distributed as Y1,rn). Lemma 4.1 of [24]
proves that the two vectors (Z2i,rn)i and (Y2i,rn)i are related thanks to the following relation,

|IE(h(Z2i,rn , 1 ≤ 2i ≤ kn))− IE(h(Y2i,rn , 1 ≤ 2i ≤ kn))| ≤ knβrn ,

which is true for any measurable function bounded by 1. We then have, using the last bound,

kn sup
x∈IMdrn

IP

(
min

1≤i≤kn
‖Yi,rn − x‖ > ε

)
≤ kn sup

x∈IMdrn

IP

(
min

1≤2i≤kn
‖Y2i,rn − x‖ > ε

)
≤ kn sup

x∈IMdrn

∣∣∣∣IP( min
1≤2i≤kn

‖Y2i,rn − x‖ > ε

)
− IP

(
min

1≤2i≤kn
‖Z2i,rn − x‖ > ε

)∣∣∣∣
+kn sup

x∈IMdrn

IP

(
min

1≤2i≤kn
‖Z2i,rn − x‖ > ε

)
≤ k2nβrn + kn sup

x∈IMdrn

IP

(
min

1≤2i≤kn
‖Z2i,rn − x‖ > ε

)
≤ k2nβrn + kn sup

x∈IMdrn

IP[kn/2] (‖Y1,rn − x‖ > ε)

≤ k2nβrn + kn(1− ρrn(ε))[kn/2]

≤ k2nβrn + kn exp

(
−[
kn
2

]ρrn(ε)

)
.

Consequently,

(19) IP (dH(Xn, IM) > ε) ≤
k2nβrn + kn exp

(
−[kn2 ]ρrn(ε/2)

)
knρrn(ε/4)

.

We have now to construct two sequences kn and rn such that knrn ≤ n and that

lim
n→∞

k2nβrn = 0, lim
n→∞

knρrn(ε) =∞, lim
n→∞

kn exp

(
−kn

2
ρrn(ε)

)
= 0.(20)

We have supposed that limm→∞ ρm(ε) em
β

m1+β =∞ for some β > 1. Define α = 1/β ∈]0, 1[ and

kn = [
n

(lnn)α
], rn = [(lnn)α].

We have then, (letting m = rn = [(lnn)α]), limn→∞ kn
ρrn (ε)
lnn =∞ and then (since kn ≤ n),

lim
n→∞

kn
ρrn(ε)

ln(kn)
=∞.

The last limit gives that limn→∞ knρrn(ε) =∞ and for n large enough and for some C > 2, kn
ρrn (ε/2)
ln(kn)

≥
C, so that,

kn exp

(
−kn

2
ρrn(ε)

)
≤ k1−C/2n .

Consequently, limn→∞ kn exp
(
−kn2 ρrn(ε)

)
= 0. Now, we deduce from limm→∞

e2m
β

m2 βm = 0 that (let-
ting m = rn = [(lnn)α])

lim
n→∞

k2nβrn = 0.

The two sequences kn and rn, so constructed, satisfy (20) and then it holds for those sequences

lim
n→∞

k2nβrn + kn exp
(
−kn2 ρrn(ε/2)

)
knρrn(ε/4)

= 0,
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hence for any α ∈]0, 1[, there exists an integer n0 such that for any n ≥ n0,

k2nβrn + kn exp
(
−kn2 ρrn(ε/2)

)
knρrn(ε/4)

≤ α.

The proof of Proposition 3.3 is complete, combining the last bound together with (19). �

7.3. Proof of Proposition 3.4. We have,

knIP

(
min

1≤i≤kn
‖Yi,rn − x‖ > ε

)
≤ knIP

(
min

1≤2i≤kn
‖Y2i,rn − x‖ > ε

)

≤ kn

∣∣∣∣∣∣IP
(

min
1≤2i≤kn

‖Y2i,rn − x‖ > ε

)
−

∏
i: 1≤2i≤kn

IP (‖Y2i,rn − x‖ > ε)

∣∣∣∣∣∣
+kn

∏
i: 1≤2i≤kn

IP (‖Y2i,rn − x‖ > ε) .(21)

We have, for s events A1, · · · , As, (with the convention that,
∏0
j=1 IP(Aj) = 1)

IP(A1 ∩ · · · ∩As)−
s∏
i=1

IP(Ai) =

s−1∑
i=1

IP(A1) · · · IP(Ai−1)Cov(1IAi , 1IAi+1∩···∩As).

Hence, ∣∣∣∣∣IP(A1 ∩ · · · ∩As)−
s∏
i=1

IP(Ai)

∣∣∣∣∣ ≤
s−1∑
i=1

∣∣Cov(1IAi , 1IAi+1∩···∩As)
∣∣ .

We apply the last bound with Ai = (‖Y2i,rn − x‖ > ε) and we use (12), we get∣∣Cov(1IAi , 1IAi+1∩···∩As)
∣∣ ≤ Ψ(rn),

and ∣∣∣∣∣∣IP
(

min
1≤2i≤kn

‖Y2i,rn − x‖ > ε

)
−

∏
i: 1≤2i≤kn

IP (‖Y2i,rn − x‖ > ε)

∣∣∣∣∣∣ ≤ knΨ(rn).(22)

We deduce, combining (21) and (22),

knIP

(
min

1≤i≤kn
‖Yi,rn − x‖ > ε

)
≤ k2nΨ(rn) + kn(1− ρrn(ε))[kn/2]

≤ k2nΨ(rn) + kn exp(−[kn/2]ρrn(ε)).

Consequently,

IP (dH(Xn, IM) > ε) ≤
k2nΨ(rn) + kn exp

(
−[kn2 ]ρrn(ε/2)

)
knρrn(ε/4)

.

We have now to construct two sequences rn and kn such that

lim
n→∞

kn exp(−knρrn(ε)/2) = 0, lim
n→∞

k2nΨ(rn) = 0, lim
n→∞

knρrn(ε) =∞.

The last construction is possible (we argue as the end of the proof of Proposition 3.3). �
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