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Abstract

The origins of Lie theory are well known: Galois theory had clarified the
relationship between the solutions of polynomial equations and their sym-
metries. Lie had attended lectures by Sylow on Galois theory and came up
with the idea to develop a similar theory for differential equations and their
symmetries which he and coworkers then successfully built. At a certain
stage, they noticed that “transformations groups” with finite-dimensional
Lie algebra was a very tractable area. This resulted in a brilliant and com-
plete theory, that of Lie groups, but the connection with the origins gets
somewhat lost.
The idea of a Galois theory for differential equations prompted as well what
has come to be nowadays known as differential Galois theory. We will
present a kind of generalized gauge theory that encompasses ordinary Galois
extensions (of commutative rings), differential Galois theory, and principal
bundles (in differential geometry and algebraic geometry). The new notion
that we introduce for that purpose is that of principal comorphism of Lie-
Rinehart algebras . This approach can be seen as an attempt to go back to
the origins of Lie theory.

2



Contents

1 Lie’s dream 5

2 Goal 6

3 Galois theory of linear differential equations 7

4 Lie-Rinehart algebras 14

4.1 The definition . . . . . . . . . . . . . . . . . . . . 14

4.2 Modules . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Examples of Lie-Rinehart algebras . . . . . . . . . 15

4.4 Induced Lie-Rinehart algebra . . . . . . . . . . . . 16

5 Picard-Vessiot problem for Lie-Rinehart algebras 17

6 Galois extension 19

7 Principal comorphism 20

8 Picard-Vessiot problem revisited 22

9 Galois theory relative to pseudogroups 23

3



Upshot

In the framework of Lie-Rinehart algebras,
foliated principal bundle
Picard-Vessiot extension (in diff Galois thy)
same mathematical structure
foliated principal G-bundle:

• ξ : P →M principal G-bundle

•DM ⊆ TM integrable distribution

•DP ⊆ TP a G-equivariant integrable dis-
tribution on P transverse to P × g ⊆ TP

ξ induces iso DP −→ P ×M DM

0 −→ P ×M DM P ×M DMy y y
P × g −→ TP −→ P ×M TM∥∥∥ y y
P × g −→ QP −→ P ×M QM

QM , QP normal bundles
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1 Lie’s dream

Develop a theory of groups of transformations
of differential equations
Lie, Killing, E. Cartan noticed that such trans-
formation groups with finite-dimensional Lie
algebra are very tractable; this resulted in a
brilliant theory, nowadays known as that of
finite-dimensional Lie groups, independent of
any space on which such a group acts.
On the other hand, this is no longer true of
Lie pseudo groups, “groups” of transformations
with “infinite-dimensional” Lie algebra.
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2 Goal

Single theory which eventually comprises

1. Galois extensions of rings

2. more generally: Hopf Galois extension

3. Picard-Vessiont theory or linear differential
Galois theory

4. inseparable Galois extensions

5. (foliated) principal bundles

6. general differential Galois theory for

modules over a Lie-Rinehart algebra

7. D-modules
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3 Galois theory of linear differential equations

Picard, Vessiot, Ritt, Kolchin, Kolchin-Lang,
Kaplansky, Bia lynicki-Birula, Seidenberg, ...,
Umemura, Malgrange, ...
Differential field : Field with a derivation D
more generally, family of derivations,
Constants : Members of the kernel of D
Differential field extension : field extension
E ⊇ F , together with extension D : E → E
G(E|F ) differential Galois group, relative
autos compatible with differential structure
Fund thm of Diff Galois theory:
Given differential field extension, 1-1 cor-
resp differential subfield extensions and sub-
groups of the group of differential autos
kind of extension that fits in the corresp.,
playing the role of Galois extensions of fields:
Picard-Vessiot extension with algebraically closed
field of constants
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L diff operator over the diff field F :

L(Y ) = Y (n) +an−1Y
(n−1) + . . .+a1Y

′+a0.

given diff extension E ⊇ F , solutions in E

V = {y ∈ E;L(y) = 0}
differential field extension E ⊃ F a Picard-
Vessiot extension of F for L if:

1. The constants of E are those of F .

2. E contains a full set V of solutions of L = 0.

3. E smallest diff subfield ofE containing both
V and F - “E generated over F as a diff field
by solutions of L = 0”.

E ⊃ F is a Picard-Vessiot extension of F if
it is a Picard-Vessiot extension for some L.
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Theorem. Let E ⊇ F be a diff field ext
alg’y closed common field of consts C
Suppose there are

• finite-dimensional C-subspace V of E

generating E over F differentially

• a group G of diff autos of E over F such
that G(V ) ⊆ V and EG = F

Then

• E ⊇ F Picard-Vessiot extension

• G = G(E
∣∣F ) algebraic grp in GLC(V ),

• E field of fractions of coordinate ring over
F of an affine variety T

• Lie algebra of G coincides with the Lie
subalgebra of Der(E

∣∣F ) which consists of
the derivations of E over F that commute
with the differentiation.

coordinate of affine variety T in theorem:
Picard-Vessiot ring
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standard trick carries lin diff eq L(Y ) = 0 to
matrix diff eq Y ′ = AY .
Picard-Vessiot theory for matrix diff eq’s
Given diff ext E ⊇ F , solutions in En

V = {y ∈ En; y′ = Ay}
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Guiding question, or Ariadne’s thread today:
Interpretation of the above in geometry?

• ring of f’s on total space P of pr’l bundle
ξ : P →M subst’d for Picard-Vessiot ring

• structure gp substituted for diff Galois gp

• foliation substituted for diff structure

• functions on base M subst’d for field F

• functions constant on the leaves substituted
for field of constants
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Examples of diff Galois

1. F = C(t), Y ′ = 1
t , E = F (f ), f (t) = log(t)

Diff Galois gp copy of C, action f 7−→ f+c

E = C(t)(f ) many subfields but no inter-
mediate differential subfields

2. E = F (u1, u2, u3),

u′1 = 1
t , u

′
2 = 1

t+1, u
′
3 = 1

tu2

diff Galois integral Heisenberg group.

3. k = C(x), x′ = 1, α ∈ C,
Y ′ = α

xY, S = k[Y, 1
Y ]

• α = n
m, (n,m) = 1: G ∼= Z/m

Pic.-Vess. rgR = S/(Y m−xn) = k(x
m
n )

• α 6∈ Q: R = S, G ∼= GL(1,C)

4. k = C(x), x′ = 1, Y ′ = Y, G ∼= GL(1,C)

S = k[Y, 1
Y ] : R = S Picard-Vessiot ring
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Liouville field extension of diff field K
diff field ext L ⊇ K together with

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

each fieldKj+1 either algebraic overKj or gen-
erated by an indefinite integral or the exponen-
tial of an indefinite integral of a member of Kj
normal series of Galois groups

{1} = Gn ⊆ Gn−1 ⊆ . . . ⊆ G1 ⊆ G0 ⊆ G−1

each Gj
/
Gj+1 iso to C, or C∗, or finite

One can then prove that, e.g.,

u′ = t− u2

has no solution which belongs to a Liouville
extension of C(t). This means that this dif-
ferential equation has no solution which can
be written in terms of elementary functions,
indefinite integrals of elementary functions, or
exponentials of indefinite integrals of elemen-
tary functions, or indefinite integrals of those
functions, etc.
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4 Lie-Rinehart algebras

4.1 The definition

R commutative ring with 1
A commutative R-algebra
(R,A)-Lie algebra [Rinehart]
Lie algebra L over R
L⊗ A→ A left action by derivations
A⊗ L→ L left A-module structure
compatibility conditions
generalize Lie algebra vector fields on manifold
as a module over its ring of functions

[α, aβ] = α(a)β + a[α, β]

(aα)(b) = a(α(b))

for a, b ∈ A and α, β ∈ L
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4.2 Modules

A-module M and left L-module structure

L⊗RM →M, (α, x) 7→ α(x)

(A,L)-module:

α(ax) = α(a)x + aα(x)

(aα)(x) = a(α(x))

for a ∈ A, x ∈M, α ∈ L
a flat (A,L)-connection

4.3 Examples of Lie-Rinehart algebras

(i) M manifold, (A,L) = (C∞(M),Vect(M))
(ii) A algebra, (A,L) = (A,Der(A))
(iii) ϑ : E → B Lie algebroid: (A,L) = (C∞(B),Γ(ϑ))
special case: foliation
(iv) K a field, together with a family ∆ of (not
necessarily commuting) differential operators
C the field of constants
L ⊆ Der(K|C) Lie algebra generated by ∆
(K,L) Lie-Rinehart algebra
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4.4 Induced Lie-Rinehart algebra

(A,LA) Lie-Rinehart algebra, B ⊇ A an ex-
tension of algebras
suppose the LA-action on A extends to an ac-
tion

LA ⊗B −→ B

by derivations; then
(B,B⊗ALA) acquires Lie-Rinehart structure
induced Lie-Rinehart algebra (B,B �A LA)
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5 Picard-Vessiot problem for Lie-Rinehart algebras

(A,LA) Lie-Rinehart algebra,N0 anR-module;
split (A,LA)-module: iso to A⊗N0
provisionally:
Picard-Vessiot problem for (A,L)-module N
“generalized differential system”
construct induced Lie-Rinehart algebra
(B,LB) = (B,B �A LA) such that

1. obvious map ALA → BLB isomorphism

2. induced (B,LB)-moduleB⊗AN is (B,LB)-
split: can morphism of (B,LB)-modules

B ⊗
BLB

(B ⊗A N)LB −→ B ⊗A N
isomorphism of (B,LB)-modules;

3. relative to 1. and 2., (B,B�ALA) minimal

notation −LA LA-invariants
(B ⊗A N)LB “space of solutions”
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Define an induced Lie-Rinehart algebra
(B,B �A LA) to be a weak Picard-Vessiot
Lie-Rinehart algebra when

1. the induced map ALA → BLA is an iso

2. the canonical map

B ⊗
BLA

(B ⊗A B)LA −→ B ⊗A B
an isomorphism of (B,B �A LA)-modules.

(B,B �A LA) Picard-Vessiot L-R algebra:
given a non-zero (B,B �A LA)-ideal J of B,
the (A,LA)-ideal J ∩ A of A is non-trivial.
extends Picard-Vessiot ring for fields
does not naively apply to principal bundles
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6 Galois extension

G group, h (R,G)-Lie algebra, R-algebra B
B a (G, h)-algebra
category of (B,G, h)-modules N
submoduleNG,h = (Nh)G of (G, h)-invariants
we say that a (B,G, h)-module N is (B,G, h)-
induced when

φN : B ⊗BG,h N
G,h −→ N

isomorphism of (B,G, h)-modules
letM be a class of (B,G, h)-modules
define (A = Bh)G ⊆ B,G, h) to be a
Galois extension with respect toM, with
Galois group G and Galois Lie algebra h:
any member ofM (B,G, h)-induced

• Galois extension of rings, in particular fields
[HKR]

• principal G-bundle ξ : P →M

M: finitely gen G-vector bundles on P
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7 Principal comorphism

(B,LB) and (A,LA) Lie-Rinehart algebras
comorphism

(ϕ,Φ): (B,LB) −→ (A,LA)

of Lie-Rinehart algebras consists of
— morphism ϕ : A→ B of algebras
— morphism Φ: LB → B ⊗A LA of B-mod

LB
Φ−→ B ⊗A LAy y

Der(B)
ϕ∗−−→ Der(A,B)

commutative
guiding example: smooth map f : M1→M2

(C∞(M2),Vect(M2)) −→ (C∞(M1),Vect(M1))
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comorphism (j,Φ) principal relative to M,
with structure group G and structure Lie al-
gebra h
— j Galois extension with Galois group G and
Galois Lie algebra h, with respect toM
— Φ: LB → B ⊗A LA compatible:
exact sequence

0 −→ B � h
ι−→ LB

Φ−→ B ⊗A LA −→ 0

of (B,G, h)-modules inM
special case: principal bundle ξ : P →M

0 −→ P × g −→ TP −→ P ×M TM −→ 0
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8 Picard-Vessiot problem revisited

Atiyah sequence

0 −→ (B � h)G,h
ι−→ L

G,h
B

ΦG,h−−−→ LA −→ 0

write L = L
G,h
B

(A,L) a Lie-Rinehart algebra
(B,B �A L) ∼= (B,LB) induced
principal bundle case:
L “G-invariant vector fields on the total space”
we say a principal comorphism (j,Φ) is a
Picard-Vessiot comorphism:
(B,B �A L) Picard-Vessiot Lie-Rinehart
algebra in the sense defined earlier
given (A,LA)-module N , Picard-Vessiot prob-
lem that of finding Picard-Vessiot comorphism

(j,Φ): (A,LA) −→ (B,LB)

that splits N
in this language, a foliated principal bundle and
a Picard-Vessiot extension the same
mathematical structure
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9 Galois theory relative to pseudogroups

if we can ever push through the above with
pseudogroups rather than groups, this will
presumably settle Lie’s dream
E. Cartan, Singer-Sternberg, Guillemin-Sternberg,
Malgrange, Olver, ...
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