A brief introduction to spatial point processes

Jean-François Coeurjolly
http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/

Laboratoire Jean Kuntzmann (LJK), Grenoble University

Preliminary

Files which can be downloaded
http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/documents/Lille/
or more simply on the workshop webpage, program page
http://math.univ-lille1.fr/heinrich/geostoch2014/

- Short R code used to illustrate the talks.
- The code is using the **excellent** R package spatstat which can be downloaded from the R CRAN website.
Spatial data . . .

...can be roughly and mainly classified into three categories:

- Geostatistical data.
- Lattice data.
- Spatial point pattern
Geostatistical data

- sic.100 dataset (R package geoR)
- Cumulative rainfall in Switzerland the 8th May.
- The observation consists in the discretization of a random field, $X = (X_u, u \in \mathbb{R}^2)$.

Lattice data (1)

- Eire dataset (R package spdep)
- % of people with group A in eire, observed in 26 regions.
- The data are aggregated on the region \Rightarrow random field on a network.
Lattice data (2)

- Lennon dataset (R package `fields`)
- Real-valued random field (gray scale image with values in \([0, 1]\)).
- Defined on the network \(\{1, \ldots, 256\}^2\).

![Lennon dataset image](image1.png)

Spatial point pattern (1)

- Japanesepines dataset (R package `spatstat`)
- Locations of 65 trees on a bounded domain.
- \(S = \mathbb{R}^2\) (equipped with \(|\cdot|\)).

![Japanesepines dataset image](image2.png)
Spatial point pattern (2)

- Longleaf dataset (R package spatstat)
- Locations of 584 trees observed with their diameter at breast height.
- \(S = \mathbb{R}^2 \times \mathbb{R}^+ \) (equipped with \(\max(\| \cdot \|, | \cdot |) \)).

Spatial point pattern (3)

- Ants dataset (R package spatstat)
- Locations of 97 ants categorised into two species.
- \(S = \mathbb{R}^2 \times (0, 1) \) (equipped with the metric \(\max(\| \cdot \|, d_M) \) for any distance \(d_M \) on the mark space).
Spatial point pattern (3)

- chorley dataset (R package spatstat)
- Cases of larynx and lung cancers and position of an industrial incinerator.
- \(S = \mathbb{R}^2 \times \{0, 1\} \) (equipped with the metric \(\max(||\cdot||, d_M) \) for any distance \(d_M \) on the mark space).

Spatial point pattern (4)

- Beischmedia dataset (R package spatstat)
- 3604 locations of trees observed with spatial covariates (here the elevation field).
- \(S = \mathbb{R}^2 \) (equipped with the metric \(||\cdot|| \)), \(z(\cdot) \in \mathbb{R}^2 \).
Spatial point pattern (5)

- Spatio-temporal point process on a complex space
- Daily observation of sunspots at the surface of the sun.
- can be viewed as the realization of a marked spatio-temporal point process on the sphere.
- $S = S_2 \times \mathbb{R}^+ \times \mathbb{R}^+$ (state, time, and mark)

Spatial point pattern (6)

- Towards stochastic geometry . . .
- Planar section of the pseudo-stratified epithelium of a drosophila wing marked with antibodies to highlight cell borders.
- The centers form of the tessellation form a point process.
Mathematical definition of a spatial point process?

- S : Polish state space of the point process (equipped with the σ-algebra of Borel sets \mathcal{B}).
- A configuration of points is denoted $x = \{x_1, \ldots, x_n, \ldots\}$. For $B \subseteq S : x_B = x \cap B$.
- N_{lf} : space of **locally finite configurations**, i.e.
 $$\{x, n(x_B) = |x_B| < \infty, \forall B \text{ bounded } \subseteq S\}$$
 equipped with $N_{lf} = \sigma(\{x \in N_{lf}, n(x_B) = m | B \in \mathcal{B}, B \text{ bounded}, m \geq 1\})$.

Definition

A point process X defined on S is a measurable application defined on some probability space (Ω, \mathcal{F}, P) with values on N_{lf}.

Measurability of $X \leftrightarrow N(B) = |X_B|$ is a r.v. for any bounded $B \in \mathcal{B}$.
Theoretical characterization of the distribution of X

Proposition

The distribution of a point process X

- is determined by the finite dimensional distributions of its counting function, i.e. the joint distribution of $N(B_1), \ldots, N(B_m)$ for any bounded $B_1, \ldots, B_m \in \mathcal{B}$ and any $m \geq 1$.
- is uniquely determined by its void probabilities, i.e. by

 \[
 P(N(B) = 0), \quad \text{for bounded } B \in \mathcal{B}.
 \]

- From now on, we assume that $S = \mathbb{R}^d$ (and even $d = 2$) or a bounded domain of \mathbb{R}^2.
- Everything can be extended to marked spatial point processes and/or to more complex domains.

Moment measures

- Moments play an important role in the modelling of classical inference.
- For point processes = moments of counting variables.

Definition: for $n \geq 1$ we define

- the n-th order moment measure (defined on S^n) by

 \[
 \mu^{(n)} = \mathbb{E} \sum_{u_1, \ldots, u_n} \mathbf{1}(\{u_1, \ldots, u_n\} \in D), \quad D \subseteq S^n.
 \]

- the n-th order reduced moment measure (defined on S^n) by

 \[
 \alpha^{(n)}(D) = \mathbb{E} \sum_{u_1, \ldots, u_n} \mathbf{1}(\{u_1, \ldots, u_n\} \in D), \quad D \subseteq S^n.
 \]

 where the \neq sign means that the n points are pairwise distinct.
Intensity functions

Assume $\mu^{(1)}$ and $\alpha^{(2)}$ are absolutely continuous w.r.t. Lebesgue measure, and denote by ρ and $\rho^{(2)}$ the densities.

Campbell Theorems

1. For any measurable function $h : S \rightarrow \mathbb{R}$
 $E \sum_{u \in X} h(u) = \int_S h(u)\rho(u)du.$

2. For any measurable function $h : S \times S \rightarrow \mathbb{R}$
 $E \sum_{u,v \in X} h(u,v) = \int_S \int_S h(u,v)\rho^{(2)}(u,v)dudv.$

$\rho(u)du \approx \text{Probability of the occurrence of } u \text{ in } B(u,du)$

$\rho^{(2)}(u,v) \approx \text{Probability of the occurrence of } u \text{ in } B(u,du) \text{ and } v \text{ in } B(v,dv).$

Poisson point processes

Classical definition : $X \sim \text{Poisson}(S, \rho)$

- $\forall m \geq 1$, \forall bounded and disjoint $B_1, \ldots, B_m \subset S$, the r.v. X_{B_1}, \ldots, X_{B_m} are independent.
- $N(A) \sim \text{Poi} \left(\int_A \rho(u)du \right)$ for any bounded $A \subset S$.
- $\forall B \subset S$, $\forall F \in N_f$
 $P(X_B \in F) = \sum_{n \geq 0} \frac{e^{-\int_B \rho(u)du}}{n!} \int_B \cdots \int_B 1(\{x_1, \ldots, x_n\} \in F) n! \rho(x_i)dx_i.$

- If $\rho(.) = \rho$, X is said to be homogeneous which implies
 $E N(B) = \rho |B|, \quad \text{Var} N(B) = \rho |B|.$
- and if $S = \mathbb{R}^d$, X is stationary and isotropic.
A few realizations on $S = [-1, 1]^2$

- $\rho(u) = \beta e^{-u^2 - 5u^2}$.
- $\rho = 200$.
- $\rho(u) = \beta e^{2\sin(4\pi u_1 u_2)}$.

(β is adjusted s.t. the mean number of points in S, $\int_S \rho(u) du = 200$.)

A few properties of Poisson point processes

Proposition: if $X \sim \text{Poisson}(S, \rho)$

- Void probabilities: $\nu(B) = P(N(B) = 0) = e^{-\int_B \rho(u) du}$.
- For any $u, v \in S$, $\rho^{(2)}(u, v) = \rho(u)\rho(v)$ (also valid for $\rho^{(k)}, k \geq 1$)
- and if $|S| < \infty$, X admits a density w.r.t. $\text{Poisson}(S, 1)$ given by
 $$f(x) = e^{S} \prod_{u \in x} \rho(u).$$

- Slivnyak-Mecke Theorem: for any non-negative function $h : S \times N_f \rightarrow \mathbb{R}^+$, then
 $$E \sum_{u \in X} h(u, X \setminus u) = \int_S Eh(u, X) \rho(u) du.$$

Example: if $\rho() = \rho$, $E \sum_{u \in X \cap [0, 1]^2} 1(d(u, X \setminus u) \leq R) = \rho(1 - e^{-\pi R^2})$
Simulation

\[\rho = 20, \ R = 0.1 \]
\[\sum_{u \in x} 1(d(u, x \setminus u) \leq R) = 9 \]
\[\rho(1 - \exp(-\rho \pi R^2)) \approx 9.33 \]

\[\rho = 100, \ R = 0.05 \]
\[\sum_{u \in x} 1(d(u, x \setminus u) \leq R) = 60 \]
\[\rho(1 - \exp(-\rho \pi R^2)) \approx 54.41 \]

Statistical inference for a Poisson point process

- **Simulation:**
 - homogeneous case: very simple
 - inhomogeneous case: a **thinning** procedure can be efficiently done if \(\rho(u) \leq c \): simulate Poisson\((c, W)\) and delete a point \(u \) with prob. \(1 - \rho(u)/c \).

- **Inference:**
 - consists in estimating \(\rho, \ \rho(\cdot; \theta) \) or \(\rho(u) \) depending on the context.
 - All these estimates can be used even if the spatial point process is not Poisson (wait for a few slides)
 - Asymptotic properties very simple to derive under the Poisson assumption.

- **Goodness-of-fit tests**: tests based on quadrats counting, based on the void probability…
Homogeneous case

- We consider here the problem of estimating the parameter ρ of a homogeneous Poisson point process defined on S and observed on a window $W \subseteq S$.
- Since $N(W) \sim \mathcal{P}(\rho|W|)$, the natural estimator of ρ is
 \[\hat{\rho} = \frac{N(W)}{|W|} \]

Properties

- (i) $\hat{\rho}$ corresponds to the maximum likelihood estimate.
- (ii) $\hat{\rho}$ is unbiased.
- (iii) $\text{Var} \hat{\rho} = \frac{\rho}{|W|}$.

Proof: (i) follows from the definition of the density (ii-iii) can be checked using the Campbell formulae.

Homogeneous case (2)

Asymptotic results

- For large $N(W)$, $\hat{\rho}|W| \approx \mathcal{N}(\rho|W|, \rho|W|)$ and so
 \[|W|^{1/2}(\hat{\rho} - \rho) \approx \mathcal{N}(0, \rho). \]
 (the approximation is actually a convergence as $W \to \mathbb{R}^d$)
- Variance stabilizing transform :
 \[2|W|^{1/2}(\sqrt{\hat{\rho}} - \sqrt{\rho}) \approx \mathcal{N}(0, 1) \]
- We deduce a $1 - \alpha$ ($\alpha \in (0, 1)$) confidence interval for ρ
 \[
 \text{IC}_{1-\alpha}(\rho) = \left(\sqrt{\hat{\rho}} \pm \frac{Z_{\alpha/2}}{2|W|^{1/2}} \right)^2.
 \]
A simulation example

We generated $m = 10000$ replications of homogeneous Poisson point processes with intensity $\rho = 100$ on $[0, 1]^2$ (black plots) and on $[0, 2]^2$ (red plots).

Empirical Mean of $\hat{\rho}$
- $W = [0, 1]^2$: 100.17
- $W = [0, 2]^2$: 100.07

Empirical Variance of $\hat{\rho}$
- $W = [0, 1]^2$: 98.57
- $W = [0, 2]^2$: 25.69

Empirical Coverage Rate of 95% Confidence Intervals
- $W = [0, 1]^2$: 95.31%
- $W = [0, 2]^2$: 94.78%
Application: pines datasets

- We consider three unmarked datasets: japonesepines, swedishpines, finpines.
- Plot the data, estimate the intensity parameter.
- Construct a confidence interval for each of them. Which one is significantly more abundant?
- Judge the assumption of the Poisson model using a GoF test based on quadrats.

Inhomogeneous case: parametric estimation

- Assume that \(\rho \) is parametrized by a vector \(\theta \in \mathbb{R}^p \) (\(p \geq 1 \)). The most well-known model is the log-linear one:
 \[
 \rho(u) = \rho(u; \theta) = \exp(\theta^\top z(u))
 \]
 where \(z(u) = (z_1(u), z_2(u), \ldots, z_p(u)) \) correspond to known spatial functions or spatial covariates.
- \(\theta \) can be estimated by maximizing the log-likelihood on \(W \)
 \[
 \ell_W(X, \theta) = \sum_{u \in X_W} \log \rho(u; \theta) + \int_W (1 - \rho(u; \theta)) \, du
 = |W| + \sum_{u \in X_W} \theta^\top z(u) - \int_W \exp(\theta^\top z(u)) \, du.
 \]
 In other words
 \[
 \hat{\theta} = \text{Argmax}_\theta \ell_W(X, \theta).
 \]
Inhomogeneous case: parametric estimation (2)

- Why would \(\hat{\theta} \) be a good estimate?

 Compute the score function

 \[
 s_W(X, \theta) = \nabla \ell_W(X, \theta) = \sum_{u \in X} z(u) - \int_W z(u) \exp(\theta^T z(u)) \, du.
 \]

 The true parameter \(\theta_0 \) (i.e. \(X \sim P_{\theta_0} \)) minimizes the expectation of the score function. Indeed from Campbell formula

 \[
 E s_W(X, \theta) = \int_W z(u) (\exp(\theta_0^T z(u)) - \exp(\theta^T z(u))) \, du = 0
 \]

 when \(\theta = \theta_0 \).

- Rathbun and Cressie (1994) showed the strong consistency and the asymptotic normality of \(\hat{\theta} \) as \(W \to \mathbb{R}^d \).

Data example: dataset bei

A point pattern giving the locations of 3605 trees in a tropical rain forest. Accompanied by covariate data giving the elevation (altitude) \(z_1 \) and slope of elevation \(z_2 \) in the study region.

Assume an inhomogeneous Poisson point process (which is not true, see the next chapter) with intensity

\[
\log \rho(u) = \beta + \theta_1 z_1(u) + \theta_2 z_2(u).
\]

Question: how can we prove that each covariate has a significant influence?
Inhomogeneous case: nonparametric estimation

(Diggle 2003)

- Idea is to mimic the kernel density estimation to define a nonparametric estimator of the spatial function ρ.
- Let $k : \mathbb{R}^d \to \mathbb{R}^+$ a symmetric kernel with intensity one.
 - Examples of kernels
 - Gaussian kernel: $(2\pi)^{-d/2} \exp(-\|y\|^2/2)$.
 - Cylindric kernel: $\frac{1}{\pi} \mathbf{1}(\|y\| \leq 1)$.
 - Epanechnikov kernel: $\frac{3}{4} \mathbf{1}(\|y\| < 1)(1 - \|y\|^2)$.
- Let h be a positive real number (which will play the role of a bandwidth window), then the nonparametric estimate (with border correction) at the location v is defined as
 $$\hat{\rho}_h(v) = K_h(v)^{-1} \sum_{u \in X} \frac{1}{h^d} k\left(\frac{\|v - u\|}{h}\right)$$

Intuitively, this works . . .

Indeed, using the Campbell formula and a change of variables we can obtain

$$E \hat{\rho}_h(v) = K_h(v)^{-1} E \sum_{u \in X} \frac{1}{h^d} k\left(\frac{\|v - u\|}{h}\right)\rho(u)du$$

$$= K_h(v)^{-1} \int_{\mathbb{R}^d} \frac{1}{h^d} k\left(\frac{\|v - u\|}{h}\right)\rho(u)du$$

$$= K_h(v)^{-1} \int_{\mathbb{R}^d} k(\|\omega\|)\rho(\omega h + v)d\omega$$

h small $\Rightarrow K_h(v)^{-1} \int_{\mathbb{R}^d} k(\|\omega\|)\rho(v)d\omega$

$$\approx \rho(v).$$

More theoretical justifications and properties and a discussion on the bandwidth parameter and edge corrections can be found in Diggle (2003).
Objective and classification

Objective:
- Define some descriptive statistics for s.p.p. (independently on any model so).
- Measure the abundance of points, the clustering or the repulsiveness of a spatial point pattern w.r.t. the Poisson point process.

Classification:
- First-order type based on the intensity function.
- Second-order type statistics: pair correlation function, Ripley’s K function.

(We assume that ρ and $\rho^{(2)}$ exist in the rest of the talk)

Summary statistics based on the intensity function

Thanks to **Campbell formulae**, the estimates of the intensity for a Poisson point process can be used to estimate the intensity of a general spatial point process X. In particular

1. if X is stationary $\hat{\rho} = N(W)/|W|$ is an estimate of ρ.
2. Non-stationary, parametric estimation of the intensity: if $\rho(u) = \rho(u; \theta)$ can be used using the “Poisson likelihood”, i.e.

$$l_W(X, \theta) = \sum_{u \in X_W} \log \rho(u; \theta) - \int_W \rho(u; \theta) du.$$

3. Non stationary, non-parametric estimation of the intensity (see previous chapter for notation):

$$\hat{\rho}_h(u) = K_h(u)^{-1} \sum_{v \in X_W} \frac{1}{|h|} k\left(\frac{||v - u||}{h}\right).$$
A simulation example in the stationary case

We generated \(m = 10000 \) replications of a stationary log-Gaussian Cox processes (Thomas process, \(\kappa = 50, \sigma = .005 \)) with intensity \(\rho = 400 \).

\[
\begin{array}{c|cc}
W & [0, 1]^2 & [0, 2]^2 \\
\hline
\text{Emp. Mean of } \hat{\rho} & 400.4 & 399.5 \\
\text{Emp. Var. of } \hat{\rho} & 1741.4 & 507.4 \\
\end{array}
\]

- A survey of the estimation of the asymptotic variance of \(\hat{\rho} \) can be found in Prokesova and Heinrich (2010) and references therein.

Parametric intensity estimation for non Poisson models

We generated \(B = 1000 \) replications of Thomas process with parameters \(\kappa = 50, \sigma = .005 \) and with intensity function

\[
\rho(u) = \exp(\beta - \theta u_1^2 u_2^2)
\]

with \(\theta = -2 \) and \(\beta \) adjusted s.t. \(\mathbb{E}[N(W)] = 200 \) for \(W = [0, 1]^2 \) and 800 for \(W = [0, 2]^2 \).

Then for each replication, \(\theta \) is estimated using the “Poisson likelihood”

\[
\begin{array}{c|cc}
W & [0, 1]^2 & [0, 2]^2 \\
\hline
\text{Emp. Mean of } \hat{\theta} & -2.03 & -2.01 \\
\text{Emp. Var. of } \hat{\theta} & 0.13 & 0.03 \\
\end{array}
\]

- Asymptotic results are more awkward to derive and depend on mixing coefficients of the spatial point process \(X \).
Ripley’s K function

We assume (for simplicity) the stationarity and isotropy of X.

Definition

The Ripley’s K function is literally defined for $r \geq 0$ by

$$K(r) = \frac{1}{\rho} \mathbb{E}\left(\text{number of extra events within distance } r \text{ of a randomly chosen event}\right)$$

$$= \frac{1}{\rho} \mathbb{E}\left(\mathcal{N}(B(0, r) \setminus 0) \mid 0 \in X\right)$$

We define the L function as $L(r) = (K(r)/\pi)^{1/2}$.

Properties:

- Under the Poisson case, $K(r) = \pi r^2$; $L(r) = r$.
- If $K(r) > \pi r^2$ or $L(r) > r$ (resp. $K(r) < \pi r^2$ or $L(r) < r$) we suspect clustering (regularity) at distances lower than r.

Pair correlation function

If ρ and $\rho^{(2)}$ exist, then the pair correlation function is defined by

$$g(u, v) = \frac{\rho^{(2)}(u, v)}{\rho(u)\rho(v)}$$

where we set for convention $a/0 = 0$ for $a \geq 0$.

$$g(u, v) \begin{cases} = 1 & \text{if } X \sim \text{Poisson}(S, \rho). \\ > 1 & \text{for attractive point pattern.} \\ < 1 & \text{for repulsive point pattern.} \end{cases}$$

If $S = \mathbb{R}^d$ and X is stationary and isotropic, then

$$g(u, v) = \frac{\rho^{(2)}(||v - u||)}{\rho^2} = \bar{g}(||v - u||).$$
Particular case for stationary and isotropic processes

Theorem

For stationary and isotropic processes in $S = \mathbb{R}^d$

$$g(r) = \frac{K'(r)}{\sigma_d r^{d-1}}$$

where $\sigma_d = d\omega_d$ is the surface area of unit sphere S^{d-1} in \mathbb{R}^d.

Proof: Using polar decomposition we obtain

$$K(r) = \int_{B(0,r)} g(||u||)du = \int_0^r \int_{S^{d-1}} t^{d-1} g(t)dt = \sigma_d \int_0^r t^{d-1} g(t)dt.$$

Edge corrected estimation of the K function

Definition

We define

- the border-corrected estimate as

$$\hat{K}_{BC}(r) = \frac{1}{p} \sum_{u \in X_{u0}, v \in X_v} \frac{1(v \in B(u, R))}{N(W_{0r})}$$

where $W_{0r} = \{u \in W : B(u, r) \subseteq W\}$ is the erosion of W by r.

- the translation-corrected estimate as

$$\hat{K}_{TC}(r) = \frac{1}{p^2} \sum_{u, v \in X_v} \frac{1(v - u \in B(0, r))}{|W \cap W_{v-u}|}$$

where $W_u = W + u = \{u + v : v \in W\}$.

Remark: everything extends to 2nd-order reweighted stationary point processes; asymptotic properties depend on mixing conditions, . . .
Estimation of the pair correlation function

For convenience, we consider only stationary and isotropic point processes.

- Then, the pair correlation function \(g(u, v) = g(\|u - v\|) \) can be estimated using the following edge corrected kernel estimate

\[
\hat{g}(r) = \frac{1}{\rho^2} \sum_{u,v \in X} k_h(\|v - u\| - r) \frac{\sigma_d \tilde{r}^{d-1}}{|W \cap W_{v-u}|}
\]

where \(k_h(t) = h^{-d} k(t/h) \).

- Alternatively, we can estimate the derivative of the \(K \) function (after smoothing using e.g. spline techniques) and define

\[
\hat{g}(r) = \frac{\hat{K}'(r)}{\sigma_d \tilde{r}^{d-1}}.
\]

Example of \(L \) function for a Poisson point pattern

- The envelopes are constructed using a Monte-Carlo approach under the Poisson assumption.
- \(\Rightarrow \) we don’t reject the Poisson assumption.
Example of L function for a repulsive point pattern

- $L_{inhom}(r)$
- $L_{inhom obs}(r)$
- $L_{inhom}(r)$
- $L_{inhom hi}(r)$
- $L_{inhom lo}(r)$

\Rightarrow the point pattern does not come from the realization of a homogeneous Poisson point process.

- exhibits repulsion at short distances ($r \leq .05$)

Example of L function for a clustered point pattern

- $L_{inhom}(r)$
- $L_{inhom obs}(r)$
- $L_{inhom}(r)$
- $L_{inhom hi}(r)$
- $L_{inhom lo}(r)$

\Rightarrow the point pattern does not come from the realization of a homogeneous Poisson point process.

- exhibits attraction at short distances ($r \leq .08$).
Statistics based on distances: F, G, and J functions

Assume X is stationary (definitions can be extended in the general case)

Definition

- The empty space function is defined by

 \[F(r) = P(d(0, X) \leq r) = P(N(B(0, r)) > 0), \quad r > 0. \]

- The nearest-neighbour distribution function is

 \[G(r) = P(d(0, X \setminus 0) \leq r | 0 \in X) \]

- J-function: \(J(r) = \frac{1 - G(r)}{1 - F(r)}, \quad r > 0 \).

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Poisson case: $\forall r > 0$, $F(r) = G(r) = 1 - e^{-\pi r^2}$, $J(r) = 1$.

- $F(r) < F_{\text{pois}}(r)$, $G(r) > G_{\text{pois}}(r)$, $J(r) < 1$: attraction at dist. $< r$.
- $F(r) > F_{\text{pois}}(r)$, $G(r) < G_{\text{pois}}(r)$, $J(r) > 1$: repulsion at dist. $< r$.

Non-parametric estimation of F, G and J

As for the K and L functions, several edge corrections exist. We focus here only on the border correction. We assume that X is observed on a bounded window W with positive volume.

Definition

- Let $I \subseteq W$ be a finite regular grid of points and $n(I)$ its cardinality.

 Then, the (border corrected) estimator of F is

 \[\hat{F}(r) = \frac{1}{n(I)} \sum_{u \in I} 1(d(u, X) \leq r) \]

 where $I_r = I \cap W_{\text{gr}}$.

- The (border corrected) estimator of G is

 \[\hat{G}(r) = \frac{1}{N(W_{\text{gr}})} \sum_{u \in X \cap W_{\text{gr}}} 1(d(u, X \setminus u) \leq r) \]

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Objective

The main objectives of this section are

- to present more realistic models than the too simple Poisson point process to take into account the spatial dependence between points.
- to present statistical methodologies to infer these models.

We can distinguish several classes of models for spatial point processes

- point processes based on the thinning of a Poisson point processes, on the superimposition of Poisson point processes. [sometimes hard to relate the stochastic process producing the realization and the physical phenomenon producing the data]
- Cox point processes (which include Cluster point processes, ...).
- Gibbs point processes.
- Determinental point processes.
An attempt to classify these models . . .

<table>
<thead>
<tr>
<th>Model</th>
<th>Allows to model</th>
<th>Are moments expressible in a closed form?</th>
<th>Density w.r.t. Poisson?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox</td>
<td>attraction</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Gibbs</td>
<td>repulsion</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>but also attraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determinental</td>
<td>repulsion</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

This course only focuses on the two first classes of point processes, i.e. on Cox and Gibbs point processes.

Definition

We let $S \subseteq \mathbb{R}^d$ throughout this section. B denotes any bounded domain $\subseteq S$.

Definition

Suppose that $Z = \{Z(u) : u \in S\}$ is a nonnegative random field so that with probability one, $u \rightarrow Z(u)$ is a locally integrable function. If the conditional distribution of X given Z is a Poisson process on S with intensity function Z, then X is said to be a Cox process driven by Z.

Remarks:

- Z is a random field means that $Z(u)$ is a random variable $\forall u \in S$.
- If $E[Z(u)]$ exists and is locally integrable then w.p. 1, $Z(u)$ is a locally integrable function.
Basic properties

Proposition

1. Provided $Z(u)$ has finite expectation and variance for any $u \in S$
 $$\rho(u) = E[Z(u)], \quad \rho^2(u, v) = E[Z(u)Z(v)], \quad g(u, v) = \frac{E[Z(u)Z(v)]}{\rho(u)\rho(v)}.$$

2. The void probabilities are given by
 $$\nu(B) = E\exp\left(-\int_B Z(u)du\right)$$ for bounded $B \subseteq S$.

Proof: direct consequence of the fact that $X|Z$ is a Poisson point process with intensity function Z.

Over-dispersion of Cox processes

Proposition

Let A, B bounded sets of S, then

$$\text{Cov}(N(A), N(B)) = \int_A \int_B \text{Cov}(Z(u), Z(v))du dv + \int_{A \cap B} E[Z(u)]du$$

Consequence:

- In particular, $\text{Var}(N(A)) \geq E[N(A)]$ with equality only when X is a Poisson process.
- \Rightarrow over-dispersion of the counting variables.

Other remarks:

- Most of models have pcf such that $g \geq 1$ (but a few exceptions \exists).
- If $S = \mathbb{R}^d$ and X is stationary and/or isotropic then X is stationary and/or isotropic.
- Explicit expressions of the F, G and J functions in the stationary case are in general difficult to derive.
A first example

Definition

A *mixed Poisson process* is a Cox process where $Z(u) = Z_0$ is given by a positive random variable for any $u \in S$, i.e. $X|Z_0$ follows a homogeneous Poisson process with intensity Z_0.

- Limited interest . . .
- X is stationary and (provided Z_0 has first two moments)

 $\rho = E Z_0$ and $g(u, v) = \frac{E[Z_0^2]}{E[Z_0]} \geq 1$.

- The K and L functions are given by

 $K(r) = \beta \omega_d r^d$ and $L(r) = \beta^{1/d} r \geq r$

 where $\omega_d = |B(0,1)|$ and $\beta = \frac{E[Z_0^2]}{E[Z_0]}$.

 (recall that $K'(r) = d \omega_d g(r) r^{d-1}$).

Neymann-Scott processes

Definition

Let C be a stationary Poisson process on \mathbb{R}^d with intensity $\kappa > 0$. Conditional on C, let $X_c, c \in C$ be independent Poisson processes on \mathbb{R}^d where X_c has intensity function

$\rho_c(u) = \alpha k(u - c)$

where $\alpha > 0$ is a parameter and k is a kernel (i.e. for all $c \in \mathbb{R}^d$, $u \rightarrow k(u - c)$ is a density function). Then $X = \bigcup_{c \in C} X_c$ is a Neymann-Scott process with cluster centres C and clusters $X_c, c \in C$.

- X is also a Cox process on \mathbb{R}^d driven by $Z(u) = \sum_{c \in C} \alpha k(u - c)$.
- Simulating a Neymann-Scott process (on W) is very simple (if k has compact support $T < \infty$)
 1. Generate $C \sim \text{Poisson}(W \oplus T, \kappa)$.
 2. For each $c \in C$, generate $X_c \sim \text{Poisson}(W, \rho_c)$.
 3. Concatenate all the X_c’s.
- If k has unbounded support, an exact simulation is still possible.
Two classical NS pp

We obtain specific models by choosing specific kernel densities.

1. the Matérn cluster process where
 \[k(u) = \mathbf{1}(\|u\| \leq R) \frac{1}{\omega_d R^d} \]
 is the uniform density on the \(B(0, R) \).

2. the Thomas process where
 \[k(u) = \left(\frac{1}{2\pi \sigma^2} \right)^{d/2} \exp \left(-\frac{\|u\|^2}{2\sigma^2} \right) \]
 is the density of \(N(0, \sigma^2 I_d) \).

When \(R \) is small or when \(\sigma \) is small, then point pattern exhibit strong attraction.

Basic properties of NS pp

- \(\kappa \) is the mean number of cluster centres per unit square, \(\alpha \) is the mean number of daughters points per cluster.
- \(X \) is stationary (since \(Z \) is stationary) and is isotropic if \(k(u) = k(\|u\|) \).
- Intensity of \(X : \rho(u) = \alpha \kappa \).
- The (stationary) pair correlation function is given by
 \[g(u, v) = 1 + \frac{k \ast k(v-u)}{\kappa} \geq 1 \] where \(k \ast k(u) = \int k(c)k(v-u+c)dc \).
- The \(F, G \) and \(J \) functions are also expressible in terms of \(k \). In particular
 \[J(r) = \int k(u) \exp \left(-\alpha \int_{\|v\| \leq r} k(u+v)dv \right) du \]
 whereby we deduce that \(\exp(-\alpha) \leq J(r) \leq 1 \).
Back to the Thomas process

Recall that \(k \) is the density of a \(\mathcal{N}(0, \sigma^2 l_d) \). Applying the previous results, we get (for the pcf)

\[
g(r) = 1 + \frac{1}{(4\pi\sigma^2)^{d/2}} \exp\left(-r^2/(4\sigma^2)\right)/\kappa
\]

(\(\kappa = 50 \))

(\(\sigma = 0.1 \))

(similar developments can be done for the \(K, L, J \) functions and with more work for the Matern process).

Four realizations of Thomas point processes

\(\kappa = 50, \sigma = 0.03, \alpha = 5 \)

\(\kappa = 100, \sigma = 0.03, \alpha = 5 \)

\(\kappa = 50, \sigma = 0.01, \alpha = 5 \)

\(\kappa = 100, \sigma = 0.01, \alpha = 5 \)
Complements

- Inhomogeneous Neymann-Scott processes can be obtained by replacing the intensity parameter κ by a spatial function $\kappa(u)$.
- The natural extension of NS processes is given by shot-noise Cox processes which is a Cox process driven by

$$Z(u) = \sum_{(c, \gamma) \in \Phi} \gamma k(c, u)$$

where $k(\cdot, \cdot)$ is a kernel and Φ is a Poisson point process on $\mathbb{R}^d \times (0, \infty)$ with a locally integrable intensity function ζ. (see e.g. Møller and Waagepetersen 2004 for complements).

Log-Gaussian Cox processes

Definition

Let X be a Cox process on \mathbb{R}^d driven by $Z = \exp Y$ where Y is a Gaussian random field. Then, X is said to be a log Gaussian Cox process (LGCP).

Remarks:

- we could consider $Z = h(Y)$ for some non-negative function h, but the exp leads to tractable calculations.
- another possibility : using a χ^2 field, i.e. $Z(u) = Y_1(u)^2 + \ldots + Y_m(u)^2$ are the Y_i's are independent Gaussian fields with zero mean.
- LGCP are easy to simulate since the problem is transfered to generate a Gaussian field (which can be handled by several methods).
- The mean and covariance function of Y determine the distribution of X.
Particular cases

- In the following we let
 \[m(u) = \mathbb{E}(Y(u)) \quad \text{and} \quad c(u, v) = \text{Cov}(Y(u), Y(v)) \]
 and we focus on the case where \(c(u, v) \) depends only on \(\|v - u\| \)
 (covariance function invariant by translation and by rotation).

- Conditions on \(c \) are needed to get a covariance function. Among
 functions satisfying these properties we find:
 - the power exponential family satisfies these conditions
 \[c(u, v) = \sigma^2 r(\|v - u\|/\alpha) \quad \text{with} \quad r(t) = \exp(-t^\delta) \quad \text{for} \quad t \geq 0 \]
 with \(\alpha, \sigma > 0 \). \(\delta = 1 \) is the exponential correlation function;
 \(\delta = 1/2 \) is the stable correlation function; \(\delta = 2 \) is the
 Gaussian correlation function.
 - the cardinal sine correlation:
 \[c(u, v) = \rho^2 r(\|v - u\|/\alpha) \quad \text{with} \quad r(t) = \frac{\sin(t)}{t} \quad \text{for} \quad t \geq 0 \]

Summary statistics for the LGCP

Proposition
Let \(X \) be a LGCP then under the previous notation
- the intensity function of \(X \) is
 \[\rho(u) = \exp(m(u) + c(u, u)/2) \]
- The pair correlation function \(g \) of \(X \) is
 \[g(u, v) = \exp(c(u, v)) \]

Proof: based on the fact that for \(U \sim \mathcal{N}(\zeta, \sigma^2) \), the Laplace transform of
\(U \) is \(\mathbb{E}(\exp(tU)) = \exp(\zeta + \sigma^2 t/2) \).

- one to one correspondence between \((m, c) \) and \((\rho, g) \).
- If \(c \) is translation invariant then \(X \) is second order reweighted
 stationary (stationary if \(m \) is constant, and isotropic if in addition
 \(c(u, v) \) depends only on \(\|v - u\| \)).
A few plots of pair correlation function

- pcf for the power exponential family: \(\log g(r) = \sigma^2 \exp \left(-\frac{r^\delta}{\alpha} \right) \), \(\alpha, \sigma, \delta > 0 \)
- pcf for the cardinal sine correlation: \(\log g(r) = \sigma^2 \frac{\sin(r/\alpha)}{r/\alpha} \), \(\alpha, \sigma > 0 \)

![Pair Correlation Function Plots](image)

Four realizations of (stationary) LGCP point processes

- with exponential correlation function (\(\delta = 1 \)).
- The mean \(m \) of the Gaussian process is such that \(\rho = \exp(m + \sigma^2/2) \).

![LGCP Point Processes](image)
Corresponding L estimates

- \(\sigma = 2.5, \alpha = 0.01, \rho = 100 \)
- \(\sigma = 2.5, \alpha = 0.01, \rho = 200 \)
- \(\sigma = 2.5, \alpha = 0.005, \rho = 100 \)
- \(\sigma = 2.5, \alpha = 0.005, \rho = 200 \)

Corresponding J estimates

- \(\sigma = 2.5, \alpha = 0.01, \rho = 100 \)
- \(\sigma = 2.5, \alpha = 0.005, \rho = 100 \)
- \(\sigma = 2.5, \alpha = 0.01, \rho = 200 \)
- \(\sigma = 2.5, \alpha = 0.005, \rho = 200 \)
Is likelihood available?

- Assume (only here) that S is a bounded domain, then the density of X_S w.r.t a Poisson processes with unit rate is given by

$$f(x) = E \left[\exp \left(|S| - \int_S Z(u) du \right) \prod_{u \in x} Z(u) \right]$$

for finite point configurations $x \subset S$. Explicit expression of the expectation is usually unknown and the integral may be difficult to calculate.

⇒ MLE is usually impossible to calculate (approximations or Bayesian should be used)

- In most of applications, we only observe the realization of X.

⇒ Z should be considered as a latent process generating the point process, which is not observed.

General method based on minimum contrast estimation

- Assume we observe the realization of a stationary Cox point process which belongs to a parametric family with parameter θ (ex : $\theta = (\alpha, \kappa, \sigma^2)$ for the Thomas process, $\theta = (\mu, \alpha, \sigma^2)$ for a LGCP with exponential correlation function).

- For most of Cox point processes, $\rho = \rho_\theta$, $K = K_\theta$ or $g = g_\theta$

 functions are expressible in a closed form, for instance :

 - for a planar ($d = 2$) **Thomas process** (NS process with Gaussian kernel) : $\rho = \alpha x$ and

 $$g_\theta(r) = 1 + \frac{1}{\sqrt{4\pi \sigma^2}} \exp \left(-r^2/(4\sigma^2) \right)/\kappa \text{ and } K_\theta(r) = \pi r^2 + \left(1 - \exp \left(-r^2/(4\sigma^2) \right) \right)/\kappa$$

 - for a **LGCP with exponential correlation function**

 $$\rho = \exp(m + \sigma^2/2) \text{ and } \log g_\theta(r) = \sigma^2 \exp(-r/\alpha).$$
Then the idea is then to estimate θ using a **minimum contrast approach** : i.e. define $\hat{\theta}$ as the minimizer of

$$
\int_{r_1}^{r_2} \left| \hat{R}(r)^q - K_0(r)^q \right|^2 \, dr \quad \text{or} \quad \int_{r_1}^{r_2} \left| \hat{g}(r)^q - g_0(r)^q \right|^2 \, dr
$$

where

- $\hat{R}(r)$ and $\hat{g}(r)$ are the nonparametric estimates of $K(r)$ and $g(r)$.
- $[r_1, r_2]$ is a set of r fixed values.
- q is a power parameter (advised in the literature to be set to $q = 1/4$ or $1/2$).

A short simulation

- we generated 200 replications of a Thomas process with parameters $\kappa = 100$, $\sigma^2 = 10^{-4}$ and $\alpha = 5$
- we estimated the parameters σ^2 and κ using the minimimum contrast estimat based on the K function.
- Then α is estimated using $\hat{\alpha} = \hat{\rho}/\hat{\kappa}$

<table>
<thead>
<tr>
<th>Parameter κ</th>
<th>Parameter α</th>
<th>Parameter σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = [0, 1]^2$</td>
<td>$W = [0, 1]^2$</td>
<td>$W = [0, 1]^2$</td>
</tr>
<tr>
<td>Emp. mean</td>
<td>98.9</td>
<td>4.9</td>
</tr>
<tr>
<td>Emp. var.</td>
<td>251.9</td>
<td>40.1</td>
</tr>
<tr>
<td>$W = [0, 2]^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emp. mean</td>
<td>102.4</td>
<td>4.9</td>
</tr>
<tr>
<td>Emp. var.</td>
<td>78.1</td>
<td>6.1</td>
</tr>
</tbody>
</table>

$W = [0, 1]^2$	$W = [0, 2]^2$	
Emp. mean	1.01×10^{-5}	9.7×10^{-6}
Emp. var.	1.5×10^{-5}	8.2×10^{-6}
Introduction

- The objective of this section is to introduce a new class of point processes: the class of Gibbs point processes.

- **Gibbs point process:**
 - Are mainly used to model repulsion between points (but a few models allow also to produce aggregated models). That's why this kind of models are widely used in statistical physics to model particles systems.
 - Are defined (in a bounded domain) by a density w.r.t. a Poisson point process ⇒ very easy to interpret the model and the parameters.
 - Their main drawback: moments are not expressible in a closed form and density known up to a scalar ⇒ specific inference methods are required.

Important restriction of this section

- Throughout this chapter, we assume that the point process X is defined in a bounded domain $S \subset \mathbb{R}^d (|S| < \infty)$.

- Gibbs point processes defined on \mathbb{R}^d are of particular interest:
 - In statistical physics because they can model phase transition.
 - In asymptotic statistics: if for instance we want to prove the convergence of an estimator as the window expands to \mathbb{R}^d.

 However, the formalism is more complicated and technical and this is not considered here.

 ⇒ from now, X is a finite point process in S (bounded) taking values in N_f (space of finite configurations of points)

 $N_f = \{ x \subset S : n(x) < \infty \}$.

 Most of the results presented here have an extension to $S = \mathbb{R}^d$.
Definition of Gibbs point processes

Definition

A finite point process X on a bounded domain S $(0 < |S| < \infty)$ is said to be a Gibbs point process if it admits a density f w.r.t. a Poisson point process with unit rate, i.e. for any $F \subseteq N_f$

$$P(X \in F) = \sum_{n \geq 0} \frac{\exp(-|S|)}{n!} \times \int_S \cdots \int_S \mathbf{1}(|x_1, \ldots, x_n| \in F) f(|x_1, \ldots, x_n|) dx_1 \cdots dx_n$$

where the term $n = 0$ is read as $\exp(-|S|) \mathbf{1}(\emptyset \in F) f(\emptyset)$.

- Gpp can be viewed as a perturbation of a Poisson point process.
- f is easily interpretable since it is in some sense a weight w.r.t. a Poisson process.

The simplest example ...

is the inhomogeneous Poisson point process. Indeed for $X \sim \text{Poisson}(S, \rho)$ (such that $\mu(S) < \infty$), we recall that X admits a density w.r.t. to a Poisson point process with unit rate given for any $x \in N_f$ by

$$f(x) = \exp(|S| - \mu(S)) \prod_{u \in S} \rho(u).$$

In most of cases, f is specified up to a proportionality $f = c^{-1} h$ where $h : N_f \rightarrow \mathbb{R}^+$ is a known function.

\Rightarrow c is given by

$$c = \sum_{n \geq 0} \frac{\exp(-|S|)}{n!} \int_S \cdots \int_S h(|x_1, \ldots, x_n|) dx_1 \cdots dx_n = \mathbb{E}[h(Y)]$$

where $Y \sim \text{Poisson}(S, 1)$.

Notes
Papangelou conditional intensity

Definition
The Papangelou conditional intensity for a point process X with density f is defined by

$$\lambda(u, x) = \frac{f(x \cup u)}{f(x)}$$

for any $x \in N$ and $u \in S (u \not\in x)$, taking $a/0 = 0$ for $a \geq 0$.

- λ does not depend on c.
- For Poisson(S, ρ), $\lambda(u, x) = \rho(u)$ does not depend on x!
- $\lambda(u, x) du$ can be interpreted as the conditional probability of observing a point in an infinitesimal region containing u of size du given the rest of X is x.

Attraction, repulsion, heredity

Definition
We often say that X (or f) is

- **attractive** if $\lambda(u, x) \leq \lambda(u, y)$ whenever $x \subset y$.
- **repulsive** if $\lambda(u, x) \geq \lambda(u, y)$ whenever $x \subset y$.
- **hereditary** if $f(x) > 0 \Rightarrow f(y) > 0$ for any $y \subset x$.

- If f is hereditary, then $f \leftrightarrow \lambda$ (one-to-one correspondence).
Existence of a Gpp in $S (|S| < \infty)$

Proposition

Let $\phi^* : S \to \mathbb{R}^+$ be a function so that $c^* = \int_S \phi^*(u)du < \infty$. Let $h = cf$, we say that X (or f) satisfies the

- local stability property if for any $x \in N_f$, $u \in S$

 $$h(x \cup u) \leq \phi^*(u)h(x) \Rightarrow \lambda(u, x) \leq \phi^*(u).$$

- the Ruelle stability property if for any $x \in N_f$ and for $\alpha > 0$

 $$h(x) \leq \alpha \prod_{u \in x} \phi^*(u).$$

local stability condition \Rightarrow Ruelle stability condition (and that f is hereditary) \Rightarrow existence of point process in S.

Proof: the first implication is obvious; for the last one it consists in checking that $c < \infty$.

Pairwise interaction point processes

For simplicity, we focus on the isotropic case.

Definition

An isotropic pairwise interaction point process (PIPP) has a density of the form (for any $x \in N_f$)

$$f(x) \propto \prod_{u \in x} \phi(u) \prod_{u,v \subseteq x} \phi_2(||v - u||)$$

where $\phi : S \to \mathbb{R}^+$ and $\phi_2 : \mathbb{R}^+ \to \mathbb{R}^+$.

- If ϕ is constant (equal to β) then the Gpp is said to be homogeneous (note that $\prod_{u \in x} \phi(u) = \beta^0(x)$).
- ϕ_2 is called the interaction function.
- this class of models is hereditary
- f is repulsive if $\phi_2 \leq 1$, in which case the process is locally stable if $\int_S \phi(u)du$.

Notes
Realizations of Strauss point processes

Among the class of PIPP, the main example is the Strauss point process defined by

\[f(x) \propto \beta^n(x) e^{R(x)} \quad \Lambda(u, x) = \beta^t(\Lambda, x) \]

where \(\beta > 0, R < \infty \), where \(s_R(x) \) is the number of \(R \)-close pairs of points in \(x \) and \(t_R(u, x) = s_R(x \cup u) - s_R(x) \) is the number of \(R \)-close neighbours of \(u \) in \(x \).

\[s_R(x) = \sum_{\|v-u\| \leq R} 1, \quad t_R(u, x) = \sum_{v \in x} 1 \|v - u\| \leq R \]

The parameter \(\gamma \) is called the interaction parameter:

- \(\gamma = 1 \): homogeneous Poisson point process with intensity \(\beta \).
- \(0 < \gamma < 1 \): repulsive point process.
- \(\gamma = 0 \): hard-core process with hard-core \(R \); the points are prohibited from being closer than \(R \).
- \(\gamma > 1 \): the model is not well-defined (if there exists a set \(A \subset S \) with \(|A| > 0 \) and \(\text{diam}(A) \leq R \), then \(c > \sum_{n=0}^{\infty} (\beta R^n) e^{n^2/2} = \infty \)).

Notes

(simulation of spatial Gibbs point processes can be done using spatial birth-and-death process or using MCMC with reversible jumps, see Møller and Waagepetersen for details)
Corresponding L estimates

$\beta = 100, \gamma = 0, R = 0.075$

$\beta = 100, \gamma = 0.3, R = 0.075$

$\beta = 100, \gamma = 0.6, R = 0.075$

$\beta = 100, \gamma = 1, R = 0.075$

Corresponding J estimates

$\beta = 100, \gamma = 0, R = 0.075$

$\beta = 100, \gamma = 0.3, R = 0.075$

$\beta = 100, \gamma = 0.6, R = 0.075$

$\beta = 100, \gamma = 1, R = 0.075$
Finite range property (spatial Markov property)

Definition
A Gibbs point process \(X \) has a finite range \(R \) if the Papangelou conditional intensity satisfies

\[
\lambda(u, x) = \lambda(u, x \cap B(u, R)).
\]

- the probability to insert a point \(u \) into \(x \) depends only on some neighborhood of \(u \).
- this definition is actually more general and leads to the definition of Markov point process (omitted here to save time).
- interesting property when we want to deal with edge effects.
- Finite range of the Strauss point process = \(R \).

Other pairwise interaction point processes

- **Strauss** point process: \(\phi_2(r) = \gamma 1(r < R) \).
- **Piecewise Strauss** point process:
 \[
 \phi_2(r) = \gamma_1 1(r < R_1) \gamma_2 1(R_1 < r < R_2) \ldots \gamma_p 1(R_{p-1} < r < R),
 \]
 with \(\gamma_j \in [0, 1] \) and \(0 < R_1 < \ldots < R_p = R < \infty \) (finite range \(R \)).
- **Overlap area** process:
 \[
 \phi_2(r) = \gamma |B(u, R/2) \cap B(v, R/2)|,
 \]
 with \(r = \|v - u\| \) with \(\gamma \in [0, 1] \) (finite range \(R \)).
- **Lennard-Jones** process:
 \[
 \phi_2(r) = \exp(\alpha_1(\sigma/r)^6 - \alpha_2(\sigma/r)^{12}),
 \]
 with \(\alpha \geq 0, \alpha_2 > 0, \sigma > 0 \) (well-known example used in statistical physics, not locally stable but Ruelle stable) (infinite range).
Non pairwise interaction point processes

- **Geyer’s triplet** point process:
 \[f(x) \propto \beta^n(x) \gamma^s_R(x) \delta^u_R(x) \]

 \[\beta > 0, \ s_R(x) \text{ is defined as in the Strauss case and} \]
 \[u_R(x) = \sum_{\{u,v,w\}} 1(||v-u|| \leq R, ||w-v|| \leq R, ||w-u|| \leq R) \]

 - (i) \(\gamma \in [0, 1] \) and \(\delta \in [0, 1] \) : locally stable, repulsive, finite range \(R \).
 - (ii) \(\gamma > 1 \) and \(\delta \in (0, 1) \) : locally stable, neither attractive nor repulsive, finite range \(R \).

Non pairwise interaction point processes (2)

- **Area-interaction** point process:
 \[f(x) \propto \beta^n(x) \gamma^{-|U_{x,R}|} \]

 where \(U_{x,R} = \bigcup_{u \in x} B(u, R), \beta > 0 \) and \(\gamma > 0 \). It is attractive for \(\gamma \geq 1 \) and repulsive for \(0 < \gamma \leq 1 \). In both cases, it is locally stable since
 \[\lambda(u, x) = \beta \gamma^{-|B(u, R) \cup_{v \in x} |v-u|| \leq 2R B(v, R)|} \]

 satisfies \(\lambda(u, x) \leq \beta \) when \(\gamma \geq 1 \) and \(\lambda(u, x) \leq \beta \gamma^{-\omega_d R^d} \) in the other case. (finite range \(2R \))
GNZ formula

The following result is also a characterization of a Gibbs point process.

Georgii-Nguyen-Zeissin Formula

Let X be a finite and hereditary Gibbs point process defined on S. Then, for any function $h : S \times N \rightarrow \mathbb{R}^+$, we have

$$E\left[\sum_{u \in X} h(u, X \setminus u) \right] = \int_S E[h(u, X) \lambda(u, X)] du.$$

Proof: we know that $E[g(X)] = E[g(Y)f(Y)]$ where f is the density of a Poisson point process with unit rate Y. Apply this to the function $g(X) = \sum_{u \in X} h(u, X \setminus u)$

$$E[g(X)] = E\left[\sum_{u \in Y} h(u, Y \setminus u)f(Y) \right]$$

$$= \int_S E[h(u, Y \setminus u)f(Y)] du \quad \text{from the Slivnyak-Mecke Theorem}$$

$$= \int_S E[h(u, Y)f(Y)\lambda(u, Y)] du \quad \text{since X is hereditary}$$

$$= \int_S E[h(u, X)\lambda(u, X)] du.$$

First and second order intensities

Proposition

1. The intensity function is given by
 $$\rho(u) = E[\lambda(u, X)].$$

2. The second order intensity function is given by
 $$\rho^{(2)}(u, v) = E[\lambda(u, X)\lambda(v, X)].$$

- can be deduced from the GNZ formula.
- Except for the Poissonian case, moments are not expressible in a closed form, e.g.
 $$\rho(u) = \frac{1}{2} \sum_{n \geq 0} \frac{\exp(-|S|)}{n!} \int_S \cdots \int_S \lambda(u, x_1, \ldots, x_n) h(x_1, \ldots, x_n) dx_1 \cdots dx_n.$$
- Approximations can be obtained using a Monte-Carlo approach or using a saddle-point approximation (very recent).
Position of the problem

- we observe a realization of X on $W = S$ ($|S| < \infty$; edge effects occur when $W \subset S$) of a parametric Gibbs point process with density which belongs to a parametric family of densities $(f_\theta = h_\theta/c_\theta)_{\theta \in \Theta}$ for $\Theta \subset \mathbb{R}^p$.

Problem: estimate the parameter θ based on a single realization.

- **MLE approach**: the log-likelihood is $\ell_W(x; \theta) = \log h_\theta - \log c_\theta$.
 - **Pbm**: Given a model h_θ can be computed but c_θ cannot be evaluated even for a single value of θ; asymptotic properties are only partial.
 - \Rightarrow several solutions exist
 - Approximate c_θ using a Monte-Carlo approach.
 - Bayesian approach, importance sampling method (to estimate a ratio of normalizing constants).
 - Combine the MLE with the Ogata-Tanemura approximation.
 - Find another method which does not involve c_θ.

Pseudo-likelihood

- To avoid the computation of the normalizing constant, the idea is to compute a likelihood based on conditional densities

$$PL_W(x; \theta) = \exp(-|W|) \lim_{i \to \infty} m \prod_{j=1}^{m} f(x_{A_{ij}}|W \setminus A_{ij}; \theta)$$

where $\{A_{ij} : j = 1, \ldots, m\}$ $i = 1, 2, \ldots$ are nested subdivisions of W.

- By letting $m_i \to \infty$ and $m_i \max |A_{ij}|^2 \to 0$ as $i \to \infty$ and taking the log, Jensen and Møller (91) obtained

$$LPL_W(x; \theta) = \sum_{u \in x \setminus x_W} \lambda(u, x \setminus u; \theta) - \int_W \lambda(u, x; \theta) du$$
Comments on the Pseudo-likelihood

The MPLE is the estimate \(\hat{\theta} \) maximizing

\[
LPL_W(x; \theta) = \sum_{u \in x} \log \lambda(u, x \setminus u; \theta) - \int_W \lambda(u, x; \theta) du
\]

1. Independent on \(\omega \), so the LPL is up to an integral discretization and up to edge effects very to compute.

2. If \(X \) has a finite range \(R \), then since \(x \) is observed in \(W \), we can replace \(W \) by \(W_{\partial R} \) so that for instance \(\lambda(u, x; \theta) \) can always be computed for any \(u \in W_{\partial R} \) (border correction).

3. If \(\log \lambda(u, x; \theta) = \theta^\top v(u, x) \) (exponential family - class of all examples presented before), then LPL is a concave function of \(\theta \).

4. under suitable conditions \(\hat{\theta} \) is a consistent estimate and satisfies a CLT (and a fast covariance estimate is available) as the window \(W \) expands to \(\mathbb{R}^d \). [Jensen and Künsch'94, Billiot Coeurjolly and Drouilhet'08-'10, Coeurjolly and Rubak'12].

Simulation example

We generated 100 replications of Strauss point processes (a border correction was applied):

- mod1 \(: \beta = 100, \gamma = 0.2, R = .05 \)
- mod2 \(: \beta = 100, \gamma = 0.5, R = .05 \)

<table>
<thead>
<tr>
<th>Estimates of (\beta)</th>
<th>Estimates of (\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W = [0.1]^2)</td>
<td>(W = [0.1]^2)</td>
</tr>
<tr>
<td>(W = [0.2]^2)</td>
<td>(W = [0.2]^2)</td>
</tr>
<tr>
<td>mod1 99.52 (17.84)</td>
<td>mod1 0.20 (0.09)</td>
</tr>
<tr>
<td>97.98 (9.24)</td>
<td>0.21 (0.06)</td>
</tr>
<tr>
<td>99.28 (20.48)</td>
<td>0.52 (0.19)</td>
</tr>
<tr>
<td>98.21 (8.53)</td>
<td>0.51 (0.09)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histograms of (\gamma = 0.2)</th>
<th>Histograms of (\gamma = 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W=[0.1]^2)</td>
<td>(W=[0.1]^2)</td>
</tr>
<tr>
<td>(W=[0.2]^2)</td>
<td>(W=[0.2]^2)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Takacs-Fiksel method

- Denote for any function h (eventually depending on θ)

$$L_W(X, h; \theta) = \sum_{u \in X_w} h(u, X \setminus u; \theta) \quad \text{and} \quad R_W(X, h; \theta) = \int_W h(u, X; \theta)\lambda(u, X; \theta)du$$

- The GNZ formula states: $E[L_W(X, h; \theta)] = E[R_W(X, h; \theta)]$.

- **Idea**: if θ is a p-dimensional vector,
 - choose p test function h_i and define the contrast

$$U_W(X, \theta) = \sum_{i=1}^p (L_W(X, h_i; \theta) - R_W(X, h_i; \theta))^2.$$

- Define $\hat{\theta}^{TF} = \arg\min_{\theta} U_W(X, \theta)$.

Takacs-Fiksel (2)

General comments:

- **like the MPLE**: independent of c_θ, border correction possible in case of X has a finite range.
 - consistent and asymptotically Gaussian estimate (Coeurjolly et al.’12).

- **Another advantage**: interesting choices of test functions cal least to a decreasing of computation time.

Ex: $h_i(u, X) = n(B(u, r))A^{-1}(u, X; \theta)$ \Rightarrow R_W independent of θ.

- Actually: **MPLE = TFE** with $h = (h_1, \ldots, h_p)^\top = A^{(1)}(\cdot; \theta)$.

 Indeed (assume log $\lambda(u, X; \theta) = \theta^\top v(u, X)$) (for simplicity)

$$\nabla LPL_W(X; \theta) = \sum_{u \in X_w} v(u, X \setminus u) - \int_W v(u, X)\lambda(u, X; \theta)du.$$
A funny example for the Strauss point process

Recall that the Papangelou conditional intensity of a Strauss point process is

\[\lambda(u, X) = \beta \gamma t_R(u, X) \]

with

\[t_R(u, X) = \sum_{v \in X} 1(\|v - u\| \leq R). \]

Choose \(h_1(u, X) = 1(n(B(u, R) = 0)) \) and \(h_2(u, X) = 1(n(B(u, R) = 1)) \), then

- \(L_W(X, h_1) = L_1 \) and \(R_W(X, h_1) = \beta I_W 1(n(B(u, R) = 0)) = \beta h_1 \).
- \(L_W(X, h_2) = L_2 \) and \(R_W(X, h_2) = \beta \gamma I_W 1(n(B(u, R) = 1)) = \beta h_2 \).

Then, the contrast function rewrites

\[U_W(X) = (L_1 - \beta h_1)^2 + (L_2 - \beta \gamma h_2)^2 \]

which leads to the explicit solution

\[\hat{\beta} = \frac{L_1}{h_1} \quad \text{and} \quad \hat{\gamma} = \frac{L_2}{h_2} \times \frac{h_1}{L_1}. \]

Complements

Other parametric approaches:

- Variational approach: (Baddeley and Dereudre'12).
- Method based on a logistic regression likelihood (Baddeley, Coeurjolly, Rubak, Waagepetersen'13).

Model fitting:

- Monte-Carlo approach: we can compare a summary statistic e.g. \(L \) with \(L_{\hat{\theta}} \).
 - Pbm: \(L_0 \) not expressible in a closed form and must be approximated.
 - We can still use the GNZ formula: given a test function \(h \), we can construct
 \[L_W(X, h; \hat{\theta}) - R_W(X, h; \hat{\theta}) =: \text{Residuals}(X, h). \]

If the model is correct, then Residuals(X, h) should be close to zero. (Baddeley et al.'05,08', Coeurjolly and Lavancier'12).
The analysis of **spatial point pattern**
- very large domain of research including probability, mathematical statistics, applied statistics
- own specific models, methodologies and software(s) to deal with.
- is involved in more and more applied fields: economy, biology, physics, hydrology, environmetrics, . . .

Still a lot of **challenges**
- Modelling: the "true model", problems of existence, phase transition.
- Many classical statistical methodologies need to be adapted (and proved) to s.p.p.: robust methods, resampling techniques, multiple hypothesis testing.
- High-dimensional problems: $S = \mathbb{R}^d$ with d large, selection of variables, regularization methods, . . .
- Space-time point processes.