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Abstract

LetG be a p-adic reductive group. We determine the extensions between admiss-
ible smooth mod p representations of G parabolically induced from supersingular
representations of Levi subgroups of G, in terms of extensions between representa-
tions of Levi subgroups of G and parabolic induction. This proves for the most part
a conjecture formulated by the author in a previous article and gives some strong
evidence for the remaining part. In order to do so, we use the derived functors
of the left and right adjoints of the parabolic induction functor, both related to
Emerton’s δ-functor of derived ordinary parts. We compute the latter on parabol-
ically induced representations of G by pushing to their limits the methods initiated
and expanded by the author in previous articles.

Contents
1 Introduction 2

2 Generalised Bruhat filtrations 9
2.1 Doubles cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Definition of filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Computation of the associated graded representations . . . . . . . . . . . 14

3 Derived ordinary parts 16
3.1 Cohomology, Hecke action and dévissage . . . . . . . . . . . . . . . . . . 16
3.2 Computations on the associated graded representations . . . . . . . . . . 22
3.3 Computations on parabolically induced representations . . . . . . . . . . 27

4 Derived Jacquet functors 33
4.1 Pro-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 A second exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Adaptation of the computations . . . . . . . . . . . . . . . . . . . . . . . 35

5 Application to extensions 40
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Extensions between parabolically induced representations . . . . . . . . . 45
5.3 Results for unitary continuous p-adic representations . . . . . . . . . . . 49
∗This research was partly supported by EPSRC grant EP/L025302/1.

1



1 Introduction
The study of representations of a p-adic reductive group G over a field of characteristic p
has a strong motivation in the search for a possible mod p Langlands correspondence forG.
Recently, Abe, Henniart, Herzig and Vignéras ([AHHV17]) gave a complete classification
of the irreducible admissible smooth representations of G over an algebraically closed field
of characteristic p in terms of supersingular representations of the Levi subgroups of G
and parabolic induction, generalising the results of Barthel and Livné for GL2 ([BL94]),
Herzig for GLn ([Her11]) and Abe for a split G ([Abe13]).

Two major difficulties come into play when trying to extend the mod p Langlands
correspondence beyond GL2(Qp). First, the supersingular representations of G remain
completely unknown, except for some reductive groups of relative semisimple rank 1
over Qp ([Abd14, Che13, Koz16]) using the classification of Breuil for GL2(Qp) ([Bre03]).
Second, it is expected that such a correspondence would involve representations of G with
many irreducible constituents (see e.g. [BH15]). This phenomenon already appears for
GL2(Qp) when the Galois representation is an extension between two characters, in which
case the associated representation of GL2(Qp) is an extension between two principal series
([Col10]). This raises the question of the extensions between representations of G.

In this article, we intend to compute the extensions between admissible smooth mod p
representations of G parabolically induced from supersingular representations of Levi
subgroups of G, in terms of extensions between representations of Levi subgroups of G
and parabolic induction.

In order to do so, we use the derived functors of the left and right adjoints of the
parabolic induction functor, namely the Jacquet functor and the ordinary parts functor
([Eme10a]), both related to Emerton’s δ-functor of derived ordinary parts ([Eme10b]).
We compute the latter on parabolically induced representations of G by pushing to their
limits the methods initiated in [Hau16a] and expanded in [Hau16b].

These computations have also been used to study the deformations of parabolically
induced admissible smooth mod p representations of G in a joint work with T. Schmidt
and C. Sorensen ([HSS16]).

Presentation of the main results
We let F/Qp and k/Fp be finite extensions. We fix a connected reductive algebraic
F -group G, a minimal parabolic subgroup B ⊆ G and a maximal split torus S ⊆ B.
We write the corresponding groups of F -points G, B, S, etc. We let ∆ denote the set
of simple roots of S in B. To each α ∈ ∆ correspond a simple reflection sα and a root
subgroup Uα ⊂ B. We put ∆1 := {α ∈ ∆ | dimF Uα = 1}.

Let P = LN be a standard parabolic subgroup. We write ∆L ⊆ ∆ for the corres-
ponding subset and we put ∆⊥L := {α ∈ ∆ | 〈α, β∨〉 = 0 ∀β ∈ ∆L} and ∆⊥,1L := ∆⊥L ∩∆1.
For α ∈ ∆⊥,1L , conjugation by (any representative of) sα stabilises L and α extends to an
algebraic character of L (see the proof of Lemma 5.1.4).

We let P− denote the opposite parabolic subgroup. Recall the parabolic induction
functor IndGP− from the category of admissible smooth representations of L over k to the
category of admissible smooth representations of G over k, which is k-linear, fully faithful
and exact ([Eme10a]). In particular, it induces a k-linear injection Ext1

L ↪→ Ext1
G.
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Let σ be an admissible smooth representation of L over k. For α ∈ ∆⊥,1L , we con-
sider the admissible smooth representation σα ⊗ (ω−1 ◦ α) of L over k where σα is the
sα-conjugate of σ and ω : F× → F×p ⊆ k× is the mod p cyclotomic character. We say that
σ is supersingular if it is absolutely irreducible and Fp⊗k σ is supersingular ([AHHV17]).

In [Hau16b], we formulated the following conjecture. In cases (iii) and (iv), ‘Otherwise’
means that the conditions of case (ii) are not all satisfied.

Conjecture 1.1 ([Hau16b, Conjecture 3.17]). Assume G split with connected centre
and simply connected derived subgroup. Let P = LN,P′ = L′N′ be standard parabolic
subgroups and σ, σ′ be supersingular representations of L,L′ respectively over k. Assume
IndGP− σ, IndGP ′− σ′ irreducible or p 6= 2.

(i) If P′ 6⊆ P and P 6⊆ P′, then Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
= 0.

(ii) If F = Qp, P′ = P and σ′ ∼= σα ⊗ (ω−1 ◦ α) 6∼= σ for some α ∈ ∆⊥L , then

dimk Ext1
G

(
IndGP− σ′, IndGP− σ

)
= 1.

(iii) Otherwise if P′ ⊆ P, then the functor IndGP− induces a k-linear isomorphism

Ext1
L

(
IndLL∩P ′− σ′, σ

) ∼−→ Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
.

(iv) Otherwise if P ⊆ P′, then the functor IndGP ′− induces a k-linear isomorphism

Ext1
L′

(
σ′, IndL′L′∩P− σ

)
∼−→ Ext1

G

(
IndGP ′− σ′, IndGP− σ

)
.

We prove cases (ii), (iii) and (iv) of this conjecture and give some strong evidence for
case (i). We actually work without any assumption on G and our results hold true for
broader classes of representations (see § 5.2 for more precise statements). We also prove
similar results for unitary continuous p-adic representations (see § 5.3).

We treat the cases F = Qp and F 6= Qp separately. They are in fact the degree 1
case of a more general (but conditional to a conjecture of Emerton) result on the k-linear
morphism ExtnL → ExtnG induced by IndGP− in all degrees n ≤ [F : Qp] (see Remark 5.2.6).

Theorem 1.2 (Theorem 5.2.2). Assume F = Qp. Let P = LN,P′ = L′N′ be standard
parabolic subgroups and σ, σ′ be supersingular representations of L,L′ respectively over k.

(i) If P′ = P and σ′ 6∼= σα⊗ (ω−1 ◦α) for all α ∈ ∆⊥,1L , then the functor IndGP− induces
a k-linear isomorphism

Ext1
L (σ′, σ) ∼−→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
.

(ii) If P′ ( P, then the functor IndGP− induces a k-linear isomorphism

Ext1
L

(
IndLL∩P ′− σ′, σ

) ∼−→ Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
.

(iii) If P ( P′, then the functor IndGP ′− induces a k-linear isomorphism

Ext1
L′

(
σ′, IndL′L′∩P− σ

)
∼−→ Ext1

G

(
IndGP ′− σ′, IndGP− σ

)
.
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If P′ = P, we do not know the exact dimension of the cokernel of the k-linear injection
Ext1

L(σ′, σ) ↪→ Ext1
G(IndGP− σ′, IndGP− σ) induced by IndGP− in general, but we prove that

it is at most card{α ∈ ∆⊥,1L | σ′ ∼= σα ⊗ (ω−1 ◦ α)} (see Remark 5.2.3 for more details).
Further, we compute it when G is split with connected centre (see Theorem 1.4 below).
Note that in cases (ii) and (iii), the source of the isomorphism can be non-zero ([Hu16]).

Theorem 1.3 (Theorem 5.2.4). Assume F 6= Qp. Let P = LN be a standard parabolic
subgroup. The functor IndGP− induces a k-linear isomorphism

Ext1
L (σ′, σ) ∼−→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
for all admissible smooth representations σ, σ′ of L over k.

In particular, Theorem 1.2 (ii) and (iii) hold true for any admissible smooth repres-
entations σ, σ′ of L,L′ respectively over k when F 6= Qp (see Corollary 5.2.5).

We complete Theorem 1.2 (i) when G is split with connected centre (see also Remark
5.2.8 for a more general, but conditional to a conjecture of Emerton, result on the k-linear
morphism Ext[F :Qp]

L → Ext[F :Qp]
G induced by IndGP−).

Theorem 1.4 (Theorem 5.2.7). Assume F = Qp and G split with connected centre. Let
P = LN be a standard parabolic subgroup and σ, σ′ be supersingular representations of L
over k.

(i) If σ′ ∼= σα ⊗ (ω−1 ◦ α) 6∼= σ for some α ∈ ∆⊥L , then Ext1
L(σ′, σ) = 0 and

dimk Ext1
G

(
IndGP− σ′, IndGP− σ

)
= 1.

(ii) If either σ′ ∼= σ and p 6= 2, or σ′ 6∼= σα⊗ (ω−1 ◦α) for any α ∈ ∆⊥L , then the functor
IndGP− induces a k-linear isomorphism

Ext1
L (σ′, σ) ∼−→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
.

(iii) If p = 2, then the functor IndGP− induces a k-linear injection

Ext1
L (σ′, σ) ↪→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
whose cokernel is of dimension card{α ∈ ∆⊥L | σ′ ∼= σα}.

Finally, we treat the case where there is no inclusion between the two parabolic
subgroups, assuming a special case of Conjecture 1.7 below (see also Remark 3.3.6).

Proposition 1.5 (Proposition 5.2.1). Let P = LN,P′ = L′N′ be standard parabolic
subgroups and σ, σ′ be supersingular representations of L,L′ respectively over k. Assume
Conjecture 1.7 is true for A = k, n = 1 and IwJ = 1. If P′ 6⊆ P and P 6⊆ P′, then

Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
= 0.

As a consequence, Conjecture 1.1 is true under the same assumption when G is split
with connected centre (without assuming the derived subgroup of G simply connected).

Corollary 1.6 (Corollary 5.2.9). Assume G split with connected centre. If Conjecture
1.7 is true for A = k, n = 1 and IwJ = 1, then Conjecture 1.1 is true.
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Strategy of proof and methods used
Let E/Qp be a finite extension with ring of integers O and residue field k. We work more
generally with smooth representations over an Artinian local O-algebra A with residue
field k.

The main tools to compute extensions between parabolically induced representations
are two exact sequences related to Emerton’s δ-functor of derived ordinary parts (see
below (1) which is due to Emerton and (2) which is a new feature of this article).

Using these, most of the previous results reduce to computing the derived ordinary
parts of parabolically induced representations. We formulate a conjecture on these com-
putations (see Conjecture 1.7 below). We prove it in low degree (see Theorem 1.8 below)
and give some strong evidence for it in general.

We proceed in two steps: first we construct filtrations of parabolically induced repres-
entations related to the Bruhat decomposition; second we partially compute the derived
ordinary parts of the associated graded representations using some dévissages.

Derived ordinary parts and extensions

Let P ⊆ G be a parabolic subgroup and L ⊆ P be a Levi factor. We let P− ⊆ G denote
the parabolic subgroup opposed to P with respect to L. Emerton ([Eme10a, Eme10b])
constructed a cohomological δ-functor H•OrdP from the category of admissible smooth
representations of G over A to the category of admissible smooth representations of L
over A, which is the right adjoint functor OrdP of IndGP− in degree 0. From this, he
derived a natural exact sequence of A-modules

0→ Ext1
L (σ,OrdP π)→ Ext1

G

(
IndGP− σ, π

)
→ HomL

(
σ,H1OrdP π

)
(1)

for all admissible smooth representations σ and π of L and G respectively over A.
In § 4.2, we construct a second exact sequence in which parabolic induction is on the

right. The construction is somewhat dual to that of (1) but not exactly (see Remark
4.2.1 (ii)). We let d denote the integer dimF N and δ denote the algebraic character of
the adjoint representation of L on detF (Lie N). The key fact is that the A-linear functors

H•(N,−) := H[F :Qp]d−•OrdP ⊗ (ω ◦ δ) .

form a homological δ-functor from the category of admissible smooth representations
of G over A to the category of admissible smooth representations of L over A, which
is isomorphic to the left adjoint functor (−)N of IndGP in degree 0 (hence the notation).
From this and using a result of Oort ([Oor64]) to compute extensions using pro-categories
(see § 4.1), we derive a natural exact sequence of A-modules

0→ Ext1
L (πN , σ)→ Ext1

G

(
π, IndGP σ

)
→ HomL (H1(N, π) , σ) (2)

for all admissible smooth representations π and σ of G and L respectively over A.

Computation of derived ordinary parts

We let W be the Weyl group of (G,S). For I ⊆ ∆, we write PI = LINI for the
corresponding standard parabolic subgroup, BI ⊆ LI for the minimal parabolic subgroup
B ∩ LI and WI ⊆ W for the subgroup generated by (sα)α∈I .
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Let I, J ⊆ ∆, σ be a locally admissible smooth representation of LI over A and n ∈ N.
We intend to compute the smooth representation of LJ over A

HnOrdPJ
(

IndG
P−I

σ
)
.

In § 2.2, we use the generalised Bruhat decomposition G =
⊔

IwJ∈IWJ P
−
I
IwJPJ where

IW J is the system of representatives of minimal length of the double cosets WI\W/WJ

(see § 2.1) to define a natural filtration Fil•PJ (IndG
P−I

σ) of IndG
P−I

σ by A[PJ ]-submodules
indexed by IW J (with the Bruhat order). We also adapt the notion of graded represent-
ation associated to such a filtration (in particular, the grading has values in IW J) and
we prove that for all IwJ ∈ IW J , there is a natural A[PJ ]-linear isomorphism

GrIwJPJ

(
IndG

P−I
σ
)
∼= c-indP

−
I
IwJPJ

P−I
σ.

We prove that Fil•PJ (IndG
P−I

σ) induces a filtration of HnOrdPJ (IndG
P−I

σ) by A[LJ ]-submod-
ules indexed by IW J (see Proposition 3.3.1).

Finally, we associate to each IwJ ∈ IW J an integer dIwJ and an algebraic character
δIwJ of LJ∩IwJ−1(I) (see Notation 2.3.3 and Remark 2.3.4), and we formulate the following
conjecture.

Conjecture 1.7 (Conjecture 3.3.4). Let σ be a locally admissible smooth representation
of LI over A, IwJ ∈ IW J and n ∈ N. There is a natural A[LJ ]-linear isomorphism

HnOrdPJ
(

c-indP
−
I
IwJPJ

P−I
σ
)

∼= IndLJ
LJ∩P−

J∩IwJ−1(I)

((
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ

⊗
(
ω−1 ◦ δIwJ

))
.

We give some strong evidence for this conjecture (see Theorem 3.3.3): we prove
that these two representations have natural filtrations by A[BJ ]-submodules indexed
by J∩IwJ−1(I)WJ (the system of representatives of minimal length of the right cosets
WJ∩IwJ−1(I)\WJ) such that the associated graded representations are naturally isomorphic
(see the subsection below).

We prove this conjecture in several cases (see Proposition 3.3.5): whenever the right-
hand side is either zero or a trivially induced representation, in which cases the afore-
mentioned filtrations of both sides are trivial; when n = 0, in which case we deduce
the result from the computation of OrdPJ (IndG

P−I
σ) in [AHV17]. This allows us to com-

pute H•OrdPJ (IndG
P−I

σ) in low degree when there is an inclusion between I and J (see
Proposition 3.3.7). In particular, we obtain the following result in the case I = J .

Theorem 1.8 (Corollary 3.3.8). Let P = LN be a standard parabolic subgroup and σ be
a locally admissible smooth representation of L over A.

(i) For all n ∈ N such that 0 < n < [F : Qp], we have HnOrdP (IndGP− σ) = 0.

(ii) If OrdL∩sαPs−1
α
σ = 0 for all α ∈ ∆1\(∆L ∪∆⊥L), then there is a natural A[L]-linear

isomorphism
H[F :Qp]OrdP

(
IndGP− σ

) ∼= ⊕
α∈∆⊥,1L

σα ⊗
(
ω−1 ◦ α

)
.
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Note that for all α ∈ ∆\∆L, L ∩ sαPs−1
α is the standard parabolic subgroup of L

corresponding to ∆L ∩ sα(∆L) and it is proper if and only if α 6∈ ∆⊥L . In particular, the
condition in (ii) is satisfied when σ is supersingular.

In § 4.3, we adapt the previous results in order to partially compute Hn(NJ , IndGPI σ).
In particular, we obtain an analogue of Theorem 1.8 (see Corollary 4.3.4).

Filtrations and dévissages

Let IwJ ∈ IW J . We explain the partial computation of the smooth representation of LJ
over A

HnOrdPJ
(

c-indP
−
I
IwJPJ

P−I
σ
)
.

In § 2.2, we use again the Bruhat decomposition to construct a natural filtration
Fil•B(c-indP

−
I
IwJPJ

P−I
σ) by A[B]-submodules indexed by J∩IwJ−1(I)WJ , and we prove that for

all wJ ∈ J∩IwJ−1(I)WJ there is a natural A[B]-linear isomorphism

GrwJB
(

c-indP
−
I
IwJPJ

P−I
σ
)
∼= c-indP

−
I
IwJwJB

P−I
σ.

We prove that Fil•B(c-indP
−
I
IwJPJ

P−I
σ) induces a filtration of HnOrdPJ (c-indP

−
I
IwJPJ

P−I
σ) by

A[BJ ]-submodules indexed by J∩IwJ−1(I)WJ (see Proposition 3.3.2). Likewise, we con-
struct a natural filtration Fil•BJ (IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃) by A[BJ ]-submodules indexed by
J∩IwJ−1(I)WJ for any smooth representation σ̃ of LJ∩IwJ−1(I) over A.

Let wJ ∈ J∩IwJ−1(I)WJ and set Iw := IwJwJ and πIw := c-indP
−
I
IwB

P−I
σ. We want to

compute the A-module Hn(NJ,0, πIw) endowed with the Hecke action of B+
J (see § 3.1),

where NJ,0 ⊆ NJ is a compact open subgroup and B+
J ⊆ BJ is the open submonoid

stabilising N0 by conjugation (we use similar notation for subgroups of NJ and BJ by
taking intersections with NJ,0 and B+

J respectively).
In § 2.3, we define closed subgroups NJ,Iw ⊆ NJ and BJ,wJ ⊆ BJ such that there

is a semidirect product BJ,wJ n NJ,Iw and we give an explicit description of the actions
of NJ,Iw and BJ,wJ on πIw for all wJ ∈ J∩IwJ−1(I)WJ . Then, we compute the A-module
Hn(NJ,Iw,0, πIw) with the Hecke action of B+

J,wJ
(see Proposition 3.2.6).

The idea is to use a semidirect product NJ,Iw = N′′J,Iw n N′J,Iw (also defined in § 2.3)
where N′J,Iw ⊆ NJ,Iw is a closed subgroup stable under conjugation by BJ,wJ such that
πIw is N ′J,Iw,0-acyclic and there is an A[B+

J,wJ
]-linear surjection with a locally nilpotent

kernel from π
N ′
J,Iw,0

Iw
onto GrwJBJ (IndLJ

LJ∩P−
J∩IwJ−1(I)

(σ|L
I∩IwJ (J)

)IwJ ). Then, taking the N ′′J,Iw,0-
cohomology changes σ|L

I∩IwJ (J)
into HnOrdLI∩PI∩IwJ (J)

σ in the target and the inflation
map is an A[B+

J,wJ
]-linear isomorphism between the source and Hn(NJ,Iw,0, πIw).

Finally, by a technical result on dévissages (see Proposition 3.1.2) and a finiteness
property of the A-modules H•(NJ,Iw,0, πIw), we can compute the A-module Hn(NJ,0, πIw)
with the Hecke action of B+

J,wJ
from Hn(NJ,Iw,0, πIw). It is this dévissage that introduces

the degree shift and the twist (i.e. dIwJ and δIwJ ) in the formulas.
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Notation and terminology
Let F/Qp be a finite extension. A linear algebraic F -group will be denoted by a boldface
letter like H and the group of its F -points H(F ) will be denoted by the correspond-
ing ordinary letter H. We will also write Hder for its derived subgroup and H◦ for its
identity component. The group of algebraic characters of H will be denoted by X∗(H),
the group of algebraic cocharacters of H will be denoted by X∗(H), and we will write
〈−,−〉 : X∗(H)× X∗(H)→ Z for the natural pairing. We now turn to reductive groups.
The main reference for these is [BT65].

Let G be a connected reductive algebraic F -group. We write Z for the centre of G.
Let S ⊆ G be a maximal split torus. We write Z (resp. N ) for the centraliser (resp.
normaliser) of S in G and W for the Weyl group N /Z = N /Z. We write Φ ⊆ X∗(S)
for the set of roots of S in G and Φ0 ⊆ Φ for the subset of reduced roots. To each α ∈ Φ
correspond a coroot α∨ ∈ X∗(S), a reflection sα ∈ W and a root subgroup Uα ⊂ G
(which is denoted by U(α) in [BT65]). For α, β ∈ Φ, we write α ⊥ β if and only if
〈α, β∨〉 = 0. For I ⊆ ∆, we put I⊥ := {α ∈ ∆ | α ⊥ β ∀β ∈ I}.

Let B ⊆ G be a minimal parabolic subgroup containing S. We write U for the
unipotent radical of B (so that B = ZU), Φ+ ⊆ Φ for the subset of roots of S in U and
∆ ⊆ Φ+ for the subset of simple roots. We set Φ+

0 := Φ0 ∩ Φ+. A simple reflection is a
reflection sα ∈ W with α ∈ ∆. A reduced decomposition of w ∈ W is any decomposition
into simple reflections w = s1 . . . sn with n ∈ N minimal, which is called the length of w
and denoted by `(w). We write w0 for the element of maximal length in W .

We say that P = LN is a standard parabolic subgroup if P ⊆ G is a parabolic
subgroup containing B with unipotent radical N and L ⊆ P is the Levi factor containing
S (we say that L is a standard Levi subgroup). In this case, we write P− for the
parabolic subgroup of G opposed to P with respect to L (i.e. P ∩P− = L) and N− for
the unipotent radical of P−. We write ZL for the centre of L, BL ⊆ L for the minimal
parabolic subgroup B∩L, UL ⊆ BL for the unipotent radical U∩L (so that BL = ZUL
and U = UL n N) and ∆L ⊆ ∆ for the subset of simple roots of S in UL.

Each parabolic subgroup of G is conjugate to exactly one standard parabolic subgroup
and the map P = LN 7→ ∆L yields a bijection between standard parabolic subgroups of
G and subsets of ∆. For I ⊆ ∆, we write PI = LINI for the corresponding standard
parabolic subgroup (i.e. ∆LI = I), ZI , BI , UI instead of ZLI , BLI , ULI respectively,
WI ⊆ W for the subgroup generated by (sα)α∈I (so that PI = BWIB), wI,0 for the
element of maximal length in WI , ΦI ⊆ Φ for the subset of roots of S in LI and Φ+

I ⊆ Φ+

for the subset of roots of S in UI .
Let E/Qp be a finite extension with ring of integers O and residue field k. We let A

be an Artinian local O-algebra with residue field k. We write ε : F× → Z×p ⊆ O× for the
p-adic cyclotomic character (defined by ε(x) = NrmF/Qp(x)|NrmF/Qp(x)|p for all x ∈ F×)
and ω : F× → A× for its image in A×.

We use the terminology and notation of [Eme10a, § 2] for representations of a p-adic
Lie group H over A. An H-representation is a smooth representation of H over A and
a morphism between H-representations is A-linear. We write Modsm

H (A) for the category
of H-representations and H-equivariant morphisms, and Modadm

H (A) (resp. Modl.adm
H (A),

Modsm
H (A)ZH−l.fin) for the full subcategory of admissible (resp. locally admissible, locally

ZH-finite) H-representations (here ZH denotes the centre of H).
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Assume H ⊆ G is closed and π is an H-representation. For g ∈ G, we write πg for
the g−1Hg-representation with the same underlying A-module as π on which g−1hg acts
as h for all h ∈ H. If g ∈ H, then g−1Hg = H and the action of g on π induces a natural
H-equivariant isomorphism π

∼−→ πg.
Assume furthermore Z ⊆ H. For w ∈ W , we write πw for the n−1Hn-representation

πn where n ∈ N is any representative of w (neither n−1Hn nor πn depend on the choice
of n up to isomorphism). For α ∈ ∆, we simply write πα instead of πsα .

For a topological space X and an A-module V , we write Csm(X, V ) for the A-module
of locally constant functions f : X → V and Csm

c (X, V ) for the A-submodule consisting
of those functions with compact support (the support of f is the open and closed subset
supp f := f−1(V \{0}) ⊆ X).
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2 Generalised Bruhat filtrations
The aim of this section is to define filtrations of parabolically induced representations and
describe the associated graded representations. In § 2.1, we review some properties of
the representatives of minimal length of certain double cosets in W and some variants of
the Bruhat decomposition. In § 2.2, we define the notion of filtration indexed by a poset
and we construct filtrations of induced representations indexed by subsets of W with the
Bruhat order using the previous decompositions. In § 2.3, we define several subgroups of
U that we use to describe the graded representations associated to the previous filtrations
as spaces of locally constant functions with compact support.

2.1 Doubles cosets
First, we recall some facts about certain right cosets in W (cf. [BT72, Proposition 3.9]).
For any I ⊆ ∆, we define a system of representatives of the right cosets WI\W by setting

IW := {w ∈ W | w is of minimal length in WIw} .

For all w ∈ W , there exists a unique decomposition w = wI
Iw with wI ∈ WI and Iw ∈ IW .

This decomposition is characterised by the equality

Φ+
I ∩ w

(
Φ+) = Φ+

I ∩ wI
(
Φ+
I

)
.

In particular, we have Iw−1(Φ+
I ) ⊆ Φ+. Furthermore, we have `(w) = `(wI) + `(Iw).

We now recall some properties of certain double cosets inW (cf. [DM91, Lemma 5.4]).
For any I, J ⊆ ∆, we define a system of representatives of the double cosets WI\W/WJ

by setting
IW J := IW ∩

(
JW
)−1

.
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For all Iw ∈ IW , there exists a unique decomposition Iw = IwJwJ with IwJ ∈ IW J and
wJ ∈ WJ . In fact wJ ∈ J∩IwJ−1(I)WJ . This decomposition is characterised by the equality

Φ+
J ∩

Iw−1 (Φ+) = Φ+
J ∩ w

−1
J

(
Φ+
J

)
. (3)

In particular, we have IwJ(Φ+
J ) ⊆ Φ+. Furthermore, we have `(Iw) = `(IwJ) + `(wJ).

Conversely, for all IwJ ∈ IW J and wJ ∈ WJ , we have IwJwJ ∈ IW if and only if
wJ ∈ J∩IwJ−1(I)WJ . Note that the projections W � IW and IW � IW J respect the
Bruhat order1 (cf. [BB05, Proposition 2.5.1])

Lemma 2.1.1. We have the following equalities in G.

(i) LI ∩ IwJUJ
IwJ−1 = UI∩IwJ (J)

(ii) LI ∩ IwJLJ
IwJ−1 = LI∩IwJ (J)

(iii) LI ∩ IwJNJ
IwJ−1 = LI ∩NI∩IwJ (J)

(iv) LI ∩ IwJPJ
IwJ−1 = LI ∩PI∩IwJ (J)

Proof. First, we prove the following equalities in Φ:

ΦI ∩ IwJ(J) = I ∩ IwJ(J), (4)
ΦI ∩ IwJ

(
Φ+
J

)
= Φ+

I∩IwJ (J). (5)

We prove the non-trivial inclusion of (4). Assume ΦI∩IwJ(J) 6= ∅ and let α ∈ ΦI∩IwJ(J).
Since IwJ(J) ⊆ Φ+, α ∈ Φ+

I so that there exists (rβ)β∈I ∈ NI such that α =
∑

β∈I rββ.
Then IwJ−1(α) =

∑
β∈I rβ

IwJ−1(β) ∈ ∆. Since IwJ−1(β) ∈ Φ+ for all β ∈ I, rβ = 0
for all β ∈ I\{α} and rα = 1. Thus α ∈ I. We prove the non-trivial inclusion of (5).
Assume ΦI ∩ IwJ(Φ+

J ) 6= ∅ and let α ∈ ΦI ∩ IwJ(Φ+
J ). There exists (rβ)β∈J ∈ NJ such that

α =
∑

β∈J rβ
IwJ(β). Since IwJ(β) ∈ Φ+ for all β ∈ J , IwJ(β) ∈ Φ+

I so that IwJ(β) ∈ I
by (4) for all β ∈ J such that rβ > 0. Thus α ∈ Φ+

I∩IwJ (J).
Now, by considering the Lie algebras, (5) yields (i), (5) and its opposite yield (ii),

the equality ΦI ∩ IwJ(Φ+\Φ+
J ) = Φ+

I \Φ+
I∩IwJ (J) (which follows from (5) and the fact that

ΦI∩IwJ(Φ+) = Φ+
I since IwJ ∈ IW ) yields (iii), and we deduce (iv) from (ii) and (iii).

Finally, we give certain decompositions in double cosets (for the notion of ‘lower set’,
see foonote 2 p. 11).

Lemma 2.1.2. (i) We have G =
⊔

IwJ∈IWJ P
−
I
IwJPJ and for any lower set IW J

1 ⊆
IW J , the subset P−I IW J

1 PJ ⊆ G is open.

(ii) We have P−I
IwJPJ =

⊔
wJ∈J∩IwJ−1(I)WJ

P−I
IwJwJB and for any lower set W ′

J ⊆
J∩IwJ−1(I)WJ , the subset P−I IwJW ′

JB ⊆ P−I
IwJPJ is open.

(iii) We have LJ =
⊔
wJ∈J∩IwJ−1(I)WJ

LJ ∩ P−J∩IwJ−1(I)wJBJ and for any lower set W ′
J ⊆

J∩IwJ−1(I)WJ , the subset LJ ∩ P−J∩IwJ−1(I)W
′
JBJ ⊆ LJ is open.

1The Bruhat order on W is defined by w ≤ w′ if and only if there exist a reduced decomposition
w′ = s1 . . . s`(w′) and integers 1 ≤ i1 < · · · < i`(w) ≤ `(w′) such that w = si1 . . . si`(w) .
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Proof. We have G =
⊔

Iw∈IW P−I
IwB and for any Iw ∈ IW , the closure of P−I IwB in G is⊔

Iw′≥Iw P
−
I
Iw′B (this can be deduced from the Bruhat decomposition, cf. e.g. [Hau16a,

§ 2.3]). Furthermore, for any IwJ ∈ IW J we have

P−I
IwJPJ =

⋃
wJ∈WJ

P−I w0Bw0
IwJwJ,0BwJB

=
⋃

wJ∈WJ

P−I w0Bw0
IwJwJ,0wJB

=
⋃

wJ∈WJ

P−I
IwJwJB

(the first and third equalities follow from the inclusion w0Bw0 = B− ⊆ P−I and the
decomposition PJ = BWJB, and the second equality follows from [BT72, Lemme 3.4
(iv)] and [BB05, Proposition 2.5.4]). From this we deduce (ii), and also (i) using the fact
that the projection IW � IW J is order-preserving. Finally, (iii) is (i) for the double
cosets LJ ∩ P−J∩IwJ−1(I)\LJ/BJ instead of P−I \G/PJ .

Remark 2.1.3 (Case wJ = 1). Note that P−I IwJB is PJ∩IwJ−1(I)-invariant by right trans-
lation. In general, the stabiliser of P−I IwB in G for the action by right translation is
the (non-standard) parabolic subgroup BIw−1WI

IwB. Likewise, LJ ∩ P−J∩IwJ−1(I)BJ is
LJ ∩ PJ∩IwJ−1(I)-invariant by right translation.

2.2 Definition of filtrations
Filtration indexed by a poset

Let H be a p-adic Lie group, π be an H-representation and (W̃ ,≤) be a poset. A
filtration of π indexed by W̃ is a morphism of complete lattices Fil•H π from the complete
lattice of lower sets2 of W̃ to the complete lattice of H-subrepresentations of π, i.e. an
H-subrepresentation FilW̃ ′H π ⊆ π for each lower set W̃ ′ ⊆ W̃ such that for any family
(W̃i)i∈I of lower sets of W̃ , we have the following equalities in π:

Fil
⋂
i∈I W̃i

H π =
⋂
i∈I

FilW̃i
H π,

Fil
⋃
i∈I W̃i

H π =
∑
i∈I

FilW̃i
H π.

When W̃ is finite, these two equalities are equivalent (by induction) to the following
conditions: Fil•H π is inclusion-preserving with Fil∅H π = 0 and FilW̃H π = π (i.e. the empty
family case), and for any lower sets W̃1, W̃2 ⊆ W̃ the short sequence of H-representations

0→ FilW̃1∩W̃2
H π → FilW̃1

H π ⊕ FilW̃2
H π → FilW̃1∪W̃2

H π → 0,

defined by v 7→ (v,−v) and (v1, v2) 7→ v1 + v2, is exact.
2A lower set of W̃ is a subset W̃ ′ such that w̃ ≤ w̃′ ⇒ w̃ ∈ W̃ ′ for any w̃ ∈ W̃ and w̃′ ∈ W̃ ′.
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Each w̃ ∈ W̃ defines a principal lower set {w̃′ ∈ W̃ | w̃′ ≤ w̃} and we write Filw̃H π for
the corresponding H-subrepresentation of π. Note that for any lower set W̃ ′ ⊆ W̃ , we
have the following equality in π:

FilW̃ ′H π =
∑
w̃′∈W̃ ′

Filw̃′H π.

In particular, we can recover the whole filtration from the H-subrepresentations of π
corresponding to the elements of W̃ , hence the terminology. We define the graded rep-
resentation Gr•H π associated to the filtration Fil•H π by setting

Grw̃H π := Filw̃H π/
∑
w̃′<w̃

Filw̃′H π

for each w̃ ∈ W̃ .
Let ˜̀ : W̃ → Z be a monotonic map (i.e. w̃ ≤ w̃′ ⇒ ˜̀(w̃) ≤ ˜̀(w̃′) for any w̃, w̃′ ∈ W̃ ).

For each n ∈ Z, we set
Fil˜̀,n

H π :=
∑

˜̀(w̃)≤n

Filw̃H π.

We obtain a filtration of π indexed by Z (in the usual sense).

Lemma 2.2.1. Assume ˜̀ : W̃ → Z is strictly monotonic (i.e. w̃ < w̃′ ⇒ ˜̀(w̃) < ˜̀(w̃′)
for any w̃, w̃′ ∈ W̃ ). For all n ∈ Z, there is a natural H-equivariant isomorphism

Gr˜̀,n
H π ∼=

⊕
˜̀(w̃)=n

Grw̃H π.

Proof. Let n ∈ Z. By definition of Fil˜̀,n
H π and Gr˜̀,n

H π, there are natural H-equivariant
surjections ⊕

˜̀(w̃)≤n

Filw̃H π � Fil˜̀,n
H π � Gr˜̀,n

H π. (6)

The kernel of (6) contains
⊕

˜̀(w̃)≤n Filw̃H π ∩Fil˜̀,n−1
H π, and Filw̃H π ∩Fil˜̀,n−1

H π = Filw̃H π for
all w̃ ∈ W̃ such that ˜̀(w̃) < n. Now, for any w̃0 ∈ W̃ such that ˜̀(w̃0) = n, we have the
following equality in π:

Filw̃0
H π ∩

∑
˜̀(w̃)≤n
w̃ 6=w̃0

Filw̃H π =
∑
w̃<w̃0

Filw̃H π,

which results from the following equality in W̃ :{
w̃′ ∈ W̃

∣∣∣ w̃′ ≤ w̃0

}
∩
⋃

˜̀(w̃)≤n
w̃ 6=w̃0

{
w̃′ ∈ W̃

∣∣∣ w̃′ ≤ w̃
}

=
⋃
w̃<w̃0

{
w̃′ ∈ W̃

∣∣∣ w̃′ ≤ w̃
}
,

which in turn follows from the fact that w̃0 6≤ w̃ for all w̃ ∈ W̃\{w̃0} such that ˜̀(w̃) ≤ n by
strict monotonicity of ˜̀. We deduce that the kernel of (6) is

⊕
˜̀(w̃)≤n Filw̃H π ∩ Fil˜̀,n−1

H π,
and that Filw̃H π ∩ Fil˜̀,n−1

H π =
∑

w̃′<w̃ Filw̃′H π for all w̃ ∈ W̃ such that ˜̀(w̃) = n. We
conclude that (6) induces an isomorphism as in the statement.
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Filtrations of induced representations

Let I, J ⊆ ∆ and σ be an LI-representation. Recall that for any locally closed subset
X ⊆ G and for any open subset Y ⊆ X, both P−I -invariant by left translation, there is a
natural short exact sequence of A-modules

0→ c-indY
P−I

σ → c-indX
P−I

σ → c-indX\Y
P−I

σ → 0

(cf. [BZ76, Proposition 1.8], see also the proof of [Hau16a, Proposition 2.1.3]). Note that
there is a natural A-linear isomorphism c-indG

P−I
σ
∼−→ IndG

P−I
σ since P−I \G is compact.

For each lower set IW J
1 ⊆ IW J , we define a PJ -subrepresentation of IndG

P−I
σ by setting

Fil
IWJ

1
PJ

(
IndG

P−I
σ
)

:= c-indP
−
I
IWJ

1 PJ

P−I
σ.

Using Lemma 2.1.2 (i), we obtain a filtration of IndG
P−I

σ indexed by IW J such that for
all IwJ ∈ IW J , there is a natural PJ -equivariant isomorphism

GrIwJPJ

(
IndG

P−I
σ
)
∼= c-indP

−
I
IwJPJ

P−I
σ. (7)

Let IwJ ∈ IW J . For each lower set W ′
J ⊆ J∩IwJ−1(I)WJ , we define a B-subrepresenta-

tion of c-indP
−
I
IwJPJ

P−I
σ by setting

FilW
′
J

B

(
c-indP

−
I
IwJPJ

P−I
σ
)

:= c-indP
−
I
IwJW ′JB

P−I
σ.

Using Lemma 2.1.2 (ii), we obtain a filtration of c-indP
−
I
IwJPJ

P−I
σ indexed by J∩IwJ−1(I)WJ

such that for all wJ ∈ J∩IwJ−1(I)WJ , there is a natural B-equivariant isomorphism

GrwJB
(

c-indP
−
I
IwJPJ

P−I
σ
)
∼= c-indP

−
I
IwJwJB

P−I
σ. (8)

Likewise, for any LJ∩IwJ−1(I)-representation σ̃ and using Lemma 2.1.2 (iii), we define
for each lower set W ′

J ⊆ J∩IwJ−1(I)WJ a BJ -subrepresentation of IndLJ
LJ∩P−

J∩IwJ−1(I)
σ̃ by

setting
FilW

′
J

BJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃

)
:= c-ind

LJ∩P−
J∩IwJ−1(I)

W ′JBJ

LJ∩P−
J∩IwJ−1(I)

σ̃

and we obtain a filtration of IndLJ
LJ∩P−

J∩IwJ−1(I)
σ̃ indexed by J∩IwJ−1(I)WJ such that for all

wJ ∈ J∩IwJ−1(I)WJ , there is a natural BJ -equivariant isomorphism

GrwJBJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃

)
∼= c-ind

LJ∩P−
J∩IwJ−1(I)

wJBJ

LJ∩P−
J∩IwJ−1(I)

σ̃. (9)

Remark 2.2.2 (Case wJ = 1). Note that Gr1
B(c-indP

−
I
IwJPJ

P−I
σ) ∼= c-indP

−
I
IwJB

P−I
σ is a

PJ∩IwJ−1(I)-subrepresentation of c-indP
−
I
IwJPJ

P−I
σ and likewise Gr1

BJ
(IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃) ∼=

c-ind
LJ∩P−

J∩IwJ−1(I)
BJ

LJ∩P−
J∩IwJ−1(I)

σ̃ is an LJ ∩ PJ∩IwJ−1(I)-subrepresentation of IndLJ
LJ∩P−

J∩IwJ−1(I)
σ̃ (see

Remark 2.1.3).
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2.3 Computation of the associated graded representations
For each w ∈ W , we define a closed subgroup of U stable under conjugation by Z by
setting

Uw := U ∩ w−1Uw
and we let Bw ⊆ B be the closed subgroup ZUw. For any order on Φ+ ∩ w−1(Φ+

0 ), the
product induces an isomorphism of F -varieties∏

α∈Φ+∩w−1(Φ+
0 )

Uα
∼−→ Uw. (10)

Let I ⊆ ∆ and Iw ∈ IW . We define closed subgroups of UIw stable under conjugation
by Z by setting

U′Iw := U ∩ Iw−1NI
Iw

U′′Iw := U ∩ Iw−1UI
Iw

and we let B′′Iw ⊆ BIw be the closed subgroup ZU′′Iw. We have semidirect products
UIw = U′′Iw n U′Iw and BIw = B′′Iw n U′Iw.

Let σ be an LI-representation. The product induces an isomorphism of F -varieties

P−I ×
{
Iw
}
× U ′Iw

∼−→ P−I
IwB,

hence an A-linear isomorphism

c-indP
−
I
IwB

P−I
σ ∼= Csm

c

(
U ′Iw, σ

Iw
)

(11)

via which U ′Iw acts on Csm
c (U ′Iw, σ

Iw) by right translation and the action of b′′ ∈ B′′Iw on
f ∈ Csm

c (U ′Iw, σ
Iw) is given by

(b′′ · f) (u′) = b′′ · f
(
b′′−1u′b′′

)
for all u′ ∈ U ′Iw.

Let J ⊆ ∆. We write Iw = IwJwJ with IwJ ∈ IW J and wJ ∈ WJ . We define closed
subgroups of NJ and UJ stable under conjugation by Z by setting

NJ,Iw := NJ ∩UIw = NJ ∩ Iw−1UIw

UJ,wJ := UJ ∩UIw = UJ ∩ Iw−1UIw = UJ ∩ w−1
J UJwJ

the last equality resulting from (3), and we let BJ,wJ ⊆ BJ be the closed subgroup
ZUJ,wJ . We have semidirect products UIw = UJ,wJ n NJ,Iw and BIw = BJ,wJ n NJ,Iw.
We define closed subgroups of NJ,Iw and UJ,wJ stable under conjugation by Z by setting

N′J,Iw := NJ ∩U′Iw = NJ ∩ Iw−1NI
Iw

N′′J,Iw := NJ ∩U′′Iw = NJ ∩ Iw−1UI
Iw

U′J,wJ := UJ ∩U′Iw = UJ ∩ Iw−1NI
Iw

U′′J,wJ := UJ ∩U′′Iw = UJ ∩ Iw−1UI
Iw
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and we let B′′J,wJ ⊆ BJ be the closed subgroup ZU′′J,wJ . We have semidirect products
NJ,Iw = N′′J,Iw n N′J,Iw, UJ,wJ = U′′J,wJ n U′J,wJ and BJ,wJ = B′′J,wJ n U′J,wJ . Note that
U′J,wJ and U′′J,wJ actually depend on Iw (not only on wJ).

Likewise, for any LJ∩IwJ−1(I)-representation σ̃ and using Lemma 2.1.1 with I and J
swapped and IwJ inverted, the product induces an isomorphism of F -varieties

LJ ∩ P−J∩IwJ−1(I) × {wJ} × U
′
J,wJ

∼−→ LJ ∩ P−J∩IwJ−1(I)wJBJ ,

hence an A-linear isomorphism

c-ind
LJ∩P−

J∩IwJ−1(I)
wJBJ

LJ∩P−
J∩IwJ−1(I)

σ̃ ∼= Csm
c
(
U ′J,wJ , σ̃

wJ
)

(12)

via which U ′J,wJ acts on Csm
c (U ′J,wJ , σ̃

wJ ) by right translation and the action of b′′ ∈ B′′J,wJ
on f ∈ Csm

c (U ′J,wJ , σ̃
wJ ) is given by

(b′′ · f) (u′) = b′′ · f
(
b′′−1u′b′′

)
for all u′ ∈ U ′J,wJ . In particular with σ̃ = σ

IwJ , we have defined a natural smooth A-linear
action of BJ,wJ on Csm

c (U ′J,wJ , σ
Iw).

We have a semidirect product U′Iw = U′J,wJ n N′J,Iw, so that (11) composed with the
A-linear morphism defined by f 7→ (n′ 7→ (u′ 7→ f(u′n′))) is an A-linear isomorphism

c-indP
−
I
IwB

P−I
σ ∼= Csm

c

(
N ′J,Iw, C

sm
c

(
U ′J,wJ , σ

Iw
))

(13)

via which N ′J,Iw acts on Csm
c (N ′J,Iw, Csm

c (U ′J,wJ , σ
Iw)) by right translation, the action of

b ∈ BJ,wJ on f ∈ Csm
c (N ′J,Iw, Csm

c (U ′J,wJ , σ
Iw)) is given by

(b · f) (n′) = b · f
(
b−1n′b

)
for all n′ ∈ N ′J,Iw and the action of N ′′J,Iw on Csm

c (N ′J,Iw, Csm
c (U ′J,wJ , σ

Iw)) is given by the
following result.

Lemma 2.3.1. Let f ∈ Csm
c (N ′J,Iw, Csm

c (U ′J,wJ , σ
Iw)) and n′′ ∈ N ′′J,Iw. Via (13), the action

of n′′ on f is given by

(n′′ · f) (n′) (u′) = n′′ · f
(
u′−1n′′−1u′n′n′′

)
(u′)

for all n′ ∈ N ′J,Iw and u′ ∈ U ′J,wJ .

Proof. Let n′ ∈ N ′J,Iw and u′ ∈ U ′J,wJ . We have

Iwu′n′n′′ = (Iwn′′Iw−1)Iwu′(u′−1n′′−1u′n′n′′).

Thus, it is enough to check that u′−1n′′−1u′n′n′′ ∈ N ′J,Iw. Since u′ ∈ UJ and n′, n′′ ∈ NJ ,
we have (u′−1n′′−1u′)n′n′′ ∈ NJ . Since n′′ ∈ Iw−1UI

Iw and n′, u′ ∈ Iw−1NI
Iw, we have

u′−1(n′′−1(u′n′)n′′) ∈ Iw−1NI
Iw. Hence the result.
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Remark 2.3.2 (Case wJ = 1). We can also give the action of LJ∩IwJ−1(I) (which normalises

U ′J,1, N ′J,IwJ , N ′′J,IwJ , and thus U ′IwJ , NJ,IwJ ) on c-indP
−
I
IwJB

P−I
σ and c-ind

LJ∩P−
J∩IwJ−1(I)

BJ

LJ∩P−
J∩IwJ−1(I)

σ̃

(see Remark 2.2.2) via (13) and (12) respectively, by replacing BJ,wJ = B′′J,wJ n U ′J,wJ by
LJ ∩ PJ∩IwJ−1(I) = LJ∩IwJ−1(I) n U ′J,1.

We end this subsection with some more notation.

Notation 2.3.3. For each w ∈ W , we let dw be the integer dimF (U/Uw) and δw ∈ X∗(S)
be the algebraic character of the adjoint representation of S on detF ((Lie U)/(Lie Uw)).
Note that dw ≥ `(w) and δw extends to an algebraic character of Z. For α ∈ ∆, we have
dsα = dα := dimF Uα and δsα = αdα . Note that dα = 1 if and only if α extends to an
algebraic character of Z. We define a subset of ∆ by setting

∆1 := {α ∈ ∆ | dα = 1} .

For I ⊆ ∆, we put I1 := I ∩∆1.

Remark 2.3.4. For IwJ ∈ IW J , we have UJ ⊆ UIwJ and LJ∩IwJ−1(I) normalises NJ,IwJ .
Thus, the inclusion NJ ↪→ U induces an isomorphism of F -varieties

NJ/NJ,IwJ
∼−→ U/UIwJ

and there is an adjoint action of LJ∩IwJ−1(I) on (Lie NJ)/(Lie NJ,IwJ ). Therefore, we have
dIwJ = dimF (NJ/NJ,IwJ ) and δIwJ extends to an algebraic character of LJ∩IwJ−1(I).

3 Derived ordinary parts
The aim of this section is to compute the derived ordinary parts of a parabolically induced
representation. In § 3.1, we show how to compute the cohomology of certain groups with
a Hecke action from the cohomology of certain subgroups with the induced Hecke action,
provided the latter satisfy some finiteness condition. In § 3.2, we make a computation
of cohomology and Hecke action on a compactly induced representation. In § 3.3, we
use the previous results to partially compute the derived ordinary parts of the graded
representations associated to the Bruhat filtrations, we formulate a conjecture on the
complete result and we prove it in many cases in low degree.

3.1 Cohomology, Hecke action and dévissage
Let L̃/F be an algebraic group and Ñ/F be a unipotent algebraic group endowed with
an action of L̃ that we identify with the conjugation in L̃nÑ. We let d̃ denote the integer
dimF Ñ and δ̃ ∈ X∗(L̃) denote the algebraic character of the adjoint representation of L̃
on detF (Lie Ñ).

Let L̃+ ⊆ L̃ be an open submonoid and Ñ0 ⊆ Ñ be a standard3 compact open
3The exponential map exp : Lie Ñ→ Ñ is an isomorphism of F -varieties (cf. [DG70, Chapitre IV, § 2,

Proposition 4.1]) and we say that Ñ0 is standard if Lie Ñ0 := exp−1(Ñ0) ⊆ Lie Ñ is a Zp-Lie subalgebra.
The identity of Ñ admits a basis of neighbourhoods consisting of standard compact open subgroups (cf.
[Eme10b, Lemma 3.5.2]).
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subgroup stable under conjugation by L̃+. If π is an L̃+ n Ñ0-representation4, then
the A-modules of Ñ0-cohomology H•(Ñ0, π) computed using locally constant cochains
(or equivalently an N0-injective resolution of π, cf. [Eme10b, Proposition 2.2.6]) are
naturally endowed with the Hecke action of L̃+ (denoted H· ), defined for every l̃ ∈ L̃+ as
the composite

H•
(
Ñ0, π

)
→ H•

(
l̃Ñ0l̃

−1, π
)
→ H•

(
Ñ0, π

)
where the first morphism is induced by the action of l̃ on π and the second morphism
is the corestriction from l̃Ñ0l̃

−1 to Ñ0 (this defines a natural smooth A-linear action of
L̃+ in degree 0 by [Eme10a, Lemma 3.1.4], that extends in higher degrees by universality
of H•(Ñ0,−)). We obtain a universal δ-functor H•(Ñ0,−) : Modsm

L̃+nÑ0
(A) → Modsm

L̃+(A)
(since an injective L̃+ n Ñ0-representation is Ñ0-acyclic, cf. [Eme10b, Proposition 2.1.11]
and [Hau16a, Lemme 3.1.1]).

Let Z̃ ⊆ L̃ be a central split torus and Z̃+ ⊆ Z̃ be the open submonoid Z̃ ∩ L̃+.
Since Z̃ is split, its adjoint representation on Lie Ñ is a direct sum of weights. We assume
that there exists λ̃ ∈ X∗(Z̃) such that 〈µ̃, λ̃〉 > 0 for any weight µ̃ of Z̃ in Lie Ñ. We
fix an element z̃ := λ̃(pj) ∈ Z̃ with j ∈ N large enough so that z̃ is strictly contracting
Ñ0, i.e. (z̃iÑ0z̃

−i)i∈N is a basis of neighbourhoods of the identity in Ñ0 (cf. [Eme10b,
Lemma 3.1.3] using the fact that ordp(µ̃(z̃)) = 〈µ̃, λ̃〉j for any weight µ̃ of Z̃ in Lie Ñ).
In particular z̃ ∈ Z̃+.

If π is a Z̃+-representation, we say that π is locally z̃-finite if for every v ∈ π, the
A-submodule A[z̃] · v is of finite type, and we say that the action of z̃ on π is locally
nilpotent if for every v ∈ π, there exists i ∈ N such that z̃i · v = 0.

Lemma 3.1.1. Let π be a locally z̃-finite L̃+ n Ñ0-representation and n ∈ N.

(i) If n = [F : Qp]d̃, then the action of z̃ on the kernel of the natural L̃+-equivariant
surjection π ⊗ (ω−1 ◦ δ̃)� Hn(Ñ0, π) is locally nilpotent.

(ii) If n < [F : Qp]d̃, then the Hecke action of z̃ on Hn(Ñ0, π) is locally nilpotent.

Proof. We prove (i). The natural L̃+-equivariant surjection in the statement is the com-
posite

π ⊗
(
ω−1 ◦ δ̃

)
� πÑ0

⊗
(
ω−1 ◦ δ̃

) ∼= H[F :Qp]d̃
(
Ñ0, π

)
where the first morphism is the natural projection onto the Ñ0-coinvariants of π and the
second morphism is the natural isomorphism [Hau16b, (2.2)] which is due to Emerton
(in loc. cit. α̃ ∈ X∗(ResF/Qp L̃) is the algebraic character of the adjoint representation
of ResF/Qp L̃ on detQp(Lie(ResF/Qp Ñ)) so that α̃ = NrmF/Qp ◦δ̃ as Q×p -valued characters
of L̃, hence α̃−1|α̃|−1

p = ω−1 ◦ δ̃ as Q×p -valued characters of L̃). For every v ∈ π, there
exists i ∈ N such that z̃iÑ0z̃

−i fixes A[z̃] · v (since π is locally z̃-finite and z̃ is strictly
contracting Ñ0), so that for all ñ ∈ Ñ0 we have

z̃i · (ñ · v − v) =
(
z̃iñz̃−i

)
·
(
z̃i · v

)
−
(
z̃i · v

)
= 0.

4Given a p-adic Lie group H and an open submonoid H+ ⊆ H, a representation of H+ over A is
smooth if its restriction to an open subgroup of H contained in H+ is smooth.
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Thus the action of z̃ on the kernel of the above surjection is locally nilpotent.
We prove (ii). Let (µ̃r)r∈[[0,m−1]] be an enumeration of the weights of Z̃ in Lie Ñ such

that the sequence (〈µ̃r, λ̃〉)r∈[[0,m−1]] is increasing. If µ̃i + µ̃j = µ̃r with i, j, r ∈ [[0,m− 1]],
then r > max{i, j} (since 〈µ̃r, λ̃〉 > max{〈µ̃i, λ̃〉, 〈µ̃j, λ̃〉}). Thus for all r ∈ [[0,m]], the
direct sum of the weight spaces corresponding to µ̃r, . . . , µ̃m−1 is an ideal of Lie Ñ stable
under the adjoint action of Z̃ and we let Ñ(r) ⊆ Ñ be the corresponding closed normal
subgroup stable under conjugation by Z̃, d̃r denote the integer dimF Ñ(r), δ̃r ∈ X∗(L̃)
denote the algebraic character of the adjoint representation of L̃ on detF (Lie Ñ(r)) and
Ñ

(r)
0 ⊆ Ñ (r) be the standard compact open subgroup Ñ (r) ∩ Ñ0 stable under conjugation

by Z̃+.
Let r ∈ [[0,m]]. We assume that n < [F : Qp]d̃r and we prove that the Hecke action

of z̃ on Hn(Ñ (r)
0 , π) is locally nilpotent by induction on r. The result is trivial for r = m.

We assume r < m and the result true for r + 1. We have a short exact sequence of
topological groups

1→ Ñ
(r+1)
0 → Ñ

(r)
0 → Ñ

(r)
0 /Ñ

(r+1)
0 → 1.

The Lyndon–Hochschild–Serre spectral sequence associated to this dévissage is naturally
a spectral sequence of L̃+-representations (cf. [Hau16b, (2.3)])

Hi
(
Ñ

(r)
0 /Ñ

(r+1)
0 ,Hj

(
Ñ

(r+1)
0 , π

))
⇒ Hi+j

(
Ñ

(r)
0 , π

)
. (14)

Let i, j ∈ N such that i + j = n. If j < [F : Qp]d̃r+1, then the Hecke action of
z̃ on Hj(Ñ (r+1)

0 , π) is locally nilpotent by the induction hypothesis, thus the Hecke
action of z̃ on Hi(Ñ (r)

0 /Ñ
(r+1)
0 ,Hj(Ñ (r+1)

0 , π)) is also locally nilpotent (since the im-
age of a locally constant cochain is finite by compactness). If j = [F : Qp]d̃r+1,
then i < [F : Qp](d̃r − d̃r+1) and we deduce from (i) with Ñ(r+1) and j instead of Ñ
and n respectively that Hj(Ñ (r+1)

0 , π) is locally z̃-finite, thus the Hecke action of z̃ on
Hi(Ñ (r)

0 /Ñ
(r+1)
0 ,Hj(Ñ (r+1)

0 , π)) is locally nilpotent by the sublemma below with µ̃ = µ̃r
and Ñ(r)/Ñ(r+1), Hj(Ñ (r+1)

0 , π), i instead of Ñ, π, n respectively. If j > [F : Qp]d̃r+1, then
Hj(Ñ (r+1)

0 , π) = 0 by [Eme10b, Lemma 3.5.4], thus Hi(Ñ (r)
0 /Ñ

(r+1)
0 ,Hj(Ñ (r+1)

0 , π)) = 0.
Using (14), we conclude that the action of z̃ on Hn(Ñ (r)

0 , π) is locally nilpotent.

Sublemma. Let π be a locally z̃-finite Z̃+ n Ñ0-representation, µ̃ ∈ X∗(Z̃) and n ∈ N.
Assume that the adjoint action of Z̃ on Lie Ñ factors through µ̃. If n < [F : Qp]d̃, then
the Hecke action of z̃ on Hn(Ñ0, π) is locally nilpotent.

Proof. Let S̃ ⊆ ResF/Qp Z̃ be the maximal split subtorus, S̃ ⊆ Z̃ be the closed subgroup
S̃(Qp) and S̃+ ⊆ S̃ be the open submonoid S̃ ∩ Z̃+. Every algebraic (co)character of
Z̃ induces by restriction of scalars a (co)character of S̃ (since the image of a split torus
by a morphism of algebraic groups is a split torus, cf. [BT65, § 1.4]). In particular, the
restriction of λ̃ : F× → Z̃ to Q×p takes values in S̃ and the restriction of µ̃ : Z̃ → F× to
S̃ takes values in Q×p .

We deduce on the one hand that z̃ ∈ S̃+, and on the other hand that the adjoint
action of S̃ on Lie(ResF/Qp Ñ) factors through an algebraic character so that any closed
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subgroup of ResF/Qp Ñ is stable under conjugation by S̃. Since ResF/Qp Ñ is unipotent,
there exists a composition series

ResF/Qp Ñ = Ñ(0) B Ñ(1) B · · · B Ñ([F :Qp]d̃) = 1

whose successive quotients are isomorphic to the additive group over Qp and for all
r ∈ [[0, [F : Qp]d̃]], we let Ñ (r) ⊆ Ñ be the closed subgroup Ñ(r)(Qp) and Ñ (r)

0 ⊆ Ñ (r) be
the standard compact open subgroup Ñ (r) ∩ Ñ0 stable under conjugation by S̃+.

Let r ∈ [[0, [F : Qp]d̃]]. We assume that n < [F : Qp]d̃ − r and we prove by in-
duction on r that the Hecke action of z̃ on Hn(Ñ (r)

0 , π) is locally nilpotent. The result
is trivial for r = [F : Qp]d̃. We assume r < [F : Qp]d̃ and the result true for r + 1.
Since dimQp(Ñ(r)/Ñ(r+1)) = 1, we have a short exact sequence of S̃+-representations (cf.
[Hau16b, (2.4)])

0→ H1
(
Ñ

(r)
0 /Ñ

(r+1)
0 ,Hn−1

(
Ñ

(r+1)
0 , π

))
→ Hn

(
Ñ

(r)
0 , π

)
→ Hn

(
Ñ

(r+1)
0 , π

)Ñ(r)
0 /Ñ

(r+1)
0
→ 0. (15)

The Hecke action of z̃ on Hn−1(Ñ (r+1)
0 , π) is locally nilpotent by the induction hypothesis,

thus the Hecke action of z̃ on H1(Ñ (r)
0 /Ñ

(r+1)
0 ,Hn−1(Ñ (r+1)

0 , π)) is also locally nilpotent.
If n < [F : Qp]d̃ − (r + 1), then the Hecke action of z̃ on Hn(Ñ (r+1)

0 , π) is locally nilpo-
tent by induction, thus the Hecke action of z̃ on Hn(Ñ (r+1)

0 , π)Ñ
(r)
0 /Ñ

(r+1)
0 is also locally

nilpotent. If n = [F : Qp]d̃ − (r + 1), then we have a natural S̃+-equivariant surjection
π ⊗ µ̃−n|µ̃|−np � Hn(Ñ (r+1)

0 , π) (cf. [Hau16b, (2.2)]) and we deduce that Hn(Ñ (r+1)
0 , π)

is locally z̃-finite. In this case, we put Ñ ′′0 := Ñ
(r)
0 /Ñ

(r+1)
0 . For every v ∈ Hn(Ñ (r+1)

0 , π),
there exists i ∈ N such that z̃iÑ ′′0 z̃−i fixes A[z̃] · v, so that for all j ∈ N we have

z̃i+j
H· v =

∑
ñ′′∈Ñ ′′0 /z̃i+jÑ ′′0 z̃−(i+j)

ñ′′ ·
(
z̃i+j · v

)
=
(
z̃iÑ ′′0 z̃

−i : z̃i+jÑ ′′0 z̃−(i+j)
) ∑
ñ′′∈Ñ ′′0 /z̃iÑ ′′0 z̃−i

ñ′′ ·
(
z̃i+j · v

)
=
(
Ñ ′′0 : z̃jÑ ′′0 z̃−j

) ∑
ñ′′∈Ñ ′′0 /z̃iÑ ′′0 z̃−i

ñ′′ ·
(
z̃i+j · v

)
.

Now Ñ ′′0 is an infinite pro-p group, z̃ is strictly contracting Ñ ′′0 and A is Artinian. Thus
(Ñ ′′0 : z̃jÑ ′′0 z̃−j) is zero in A for j ∈ N large enough. Therefore, the Hecke action of z̃
on Hn(Ñ (r+1)

0 , π)Ñ
(r)
0 /Ñ

(r+1)
0 is locally nilpotent. Using (15), we conclude that the Hecke

action of z̃ on Hn(Ñ (r)
0 , π) is locally nilpotent.

Let Ñ′ ⊆ Ñ be a closed subgroup such that Lie Ñ′ ⊆ Lie Ñ is a direct sum of weight
spaces of Z̃. We stress that Ñ′ need not be normal. Since Z̃ is central in L̃, Lie Ñ′ is
stable under the adjoint action of L̃, thus Ñ′ is stable under conjugation by L̃. We let d̃′
denote the integer dimF Ñ′ and δ̃′ ∈ X∗(L̃) denote the algebraic character of the adjoint
representation of L̃ on detF (Lie Ñ′). We let Ñ ′0 ⊆ Ñ ′ be the standard compact open
subgroup Ñ ′ ∩ Ñ0 stable under conjugation by L̃+.
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Proposition 3.1.2. Let π be an L̃+nÑ0-representation. For all n ∈ N, there is a natural
L̃+-equivariant morphism

Hn−[F :Qp](d̃−d̃′)
(
Ñ ′0, π

)
⊗
(
ω−1 ◦

(
δ̃ − δ̃′

))
→ Hn

(
Ñ0, π

)
.

Furthermore, the Hecke action of z̃ on its kernel and cokernel is locally nilpotent if the
L̃+-representations H•(Ñ ′0, π) are locally z̃-finite.

Proof. Let (µ̃r)r∈[[0,m−m′−1]] be an enumeration of the weights of Z̃ in (Lie Ñ)/(Lie Ñ′)
such that the sequence (〈µ̃r, λ̃〉)r∈[[0,m−m′−1]] is increasing and (µ̃r)r∈[[m−m′,m−1]] be an
enumeration of the weights of Z̃ in Lie Ñ′ such that the sequence (〈µ̃r, λ̃〉)r∈[[m−m′,m−1]]
is increasing. If µ̃i + µ̃j = µ̃r with i, j, r ∈ [[0,m − 1]], then r > min{i, j} (since
〈µ̃r, λ̃〉 > max{〈µ̃i, λ̃〉, 〈µ̃j, λ̃〉}). Thus for all r ∈ [[0,m − m′]], the direct sum of the
weight spaces corresponding to µ̃r, . . . , µ̃m−1 is a Lie subalgebra of Lie Ñ stable under
the adjoint action of Z̃ and we use the notations Ñ(r), d̃r, δ̃r and Ñ (r)

0 as in the proof of
Lemma 3.1.1 (ii). Moreover for all r ∈ [[0,m−m′ − 1]], Lie Ñ(r+1) is an ideal of Lie Ñ(r)

so that Ñ(r+1) is a normal subgroup of Ñ(r).
Let r ∈ [[0,m−m′]]. We prove by induction on r that for all n ∈ N, there is a natural

L̃+-equivariant morphism

Hn−[F :Qp](d̃r−d̃′)
(
Ñ ′0, π

)
⊗
(
ω−1 ◦

(
δ̃r − δ̃′

))
→ Hn

(
Ñ

(r)
0 , π

)
. (16)

The result is trivial for r = m−m′. We assume r < m−m′ and the result true for r+ 1.
Let n ∈ N. Since dimF (Ñ (r)/Ñ (r+1)) = d̃r− d̃r+1, we deduce from [Eme10b, Lemma 3.5.4]
that (14) yields a natural L̃+-equivariant morphism

H[F :Qp](d̃r−d̃r+1)
(
Ñ

(r)
0 /Ñ

(r+1)
0 ,Hn−[F :Qp](d̃r−d̃r+1)

(
Ñ

(r+1)
0 , π

))
→ Hn

(
Ñ

(r)
0 , π

)
(17)

whose kernel and cokernel are built out of subquotients of Hi(Ñ (r)
0 /Ñ

(r+1)
0 ,Hj(Ñ (r+1)

0 , π))
with i, j ∈ N such that i < [F : Qp](d̃r − d̃r+1). Furthermore, Lemma 3.1.1 (i) with
Ñ(r)/Ñ(r+1), Hn−[F :Qp](d̃r−d̃r+1)(Ñ (r+1)

0 , π), [F : Qp](d̃r − d̃r+1) and δ̃r − δ̃r+1 instead of Ñ,
π, n and δ̃ respectively yields a natural L̃+-equivariant surjection

Hn−[F :Qp](d̃r−d̃r+1)
(
Ñ

(r+1)
0 , π

)
⊗
(
ω−1 ◦

(
δ̃r − δ̃r+1

))
� H[F :Qp](d̃r−d̃r+1)

(
Ñ

(r)
0 /Ñ

(r+1)
0 ,Hn−[F :Qp](d̃r−d̃r+1)

(
Ñ

(r+1)
0 , π

))
. (18)

Finally by the induction hypothesis with n− [F : Qp](d̃r − d̃r+1) instead of n, there is a
natural L̃+-equivariant morphism

Hn−[F :Qp](d̃r−d̃′)
(
Ñ ′0, π

)
⊗
(
ω−1 ◦

(
δ̃r − δ̃′

))
→ Hn−[F :Qp](d̃r−d̃r+1)

(
Ñ

(r+1)
0 , π

)
⊗
(
ω−1 ◦

(
δ̃r − δ̃r+1

))
. (19)

The composition of (17), (18) and (19) yields the natural L̃+-equivariant morphism (16).
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Now, we assume that the L̃+-representations H•(Ñ ′0, π) are locally z̃-finite and we
prove by induction on r that for all n ∈ N, the Hecke action of z̃ on the kernel and
cokernel of (16) is locally nilpotent, or equivalently that the localisation of (16) with
respect to z̃N is an isomorphism. The result is trivial for r = m − m′. We assume
r < m −m′ and the result true for r + 1. Let n ∈ N. By composition, it is enough to
prove that the Hecke action of z̃ on the kernels and cokernels of (17), (18) and (19) is
locally nilpotent. By the induction hypothesis with j instead of n, the Hecke action of z̃
on the kernel and cokernel of the natural L̃+-equivariant morphism

Hj−[F :Qp](d̃r+1−d̃′)
(
Ñ ′0, π

)
⊗
(
ω−1 ◦

(
δ̃r+1 − δ̃′

))
→ Hj

(
Ñ

(r+1)
0 , π

)
is locally nilpotent for all j ∈ N. With j = n − [F : Qp](d̃r − d̃r+1), we deduce that the
Hecke action of z̃ on the kernel and cokernel of (19) is locally nilpotent. Furthermore, we
deduce that Hj(Ñ (r+1)

0 , π) is locally z̃-finite for all j ∈ N and we use Lemma 3.1.1 with
Ñ(r)/Ñ(r+1), Hj(Ñ (r+1)

0 , π) and i instead of Ñ, π and n respectively: we deduce from (i)
with i = [F : Qp](d̃r − d̃r+1) that the Hecke action of z̃ on the kernel of (18) is locally
nilpotent, and we deduce from (ii) that the Hecke action of z̃ on the kernel and cokernel
of (17) is locally nilpotent (since the Hecke action of z̃ on Hi(Ñ (r)

0 /Ñ
(r+1)
0 ,Hj(Ñ (r+1)

0 , π))
is locally nilpotent for all i, j ∈ N such that i < [F : Qp](d̃r − d̃r+1)).

We end this subsection by reviewing and generalising the construction of Emerton’s
δ-functor of derived ordinary parts (cf. [Eme10b, § 3.3]). Let Z̃L̃ denote the centre of L̃.
Assume that Z̃L̃ is generated by Z̃+

L̃
:= Z̃L̃∩L̃+ as a group, and that L̃ is generated by L̃+

and Z̃L̃ as a monoid. Then, the product induces a group isomorphism L̃+ ×Z̃+
L̃

Z̃L̃
∼−→ L̃

(cf. [Eme06, Proposition 3.3.6]). Thus, for any L̃+-representation π, the A-module
HomA[Z̃+

L̃
](A[Z̃L̃], π)Z̃L̃−l.fin is naturally an L̃-representation (cf. [Eme10a, Lemma 3.1.7]).

Therefore, we obtain an A-linear left-exact functor Modsm
L̃+(A)→ Modsm

L̃
(A)Z̃L̃−l.fin which

commutes with inductive limits (cf. [Eme10a, Lemma 3.2.2]).
Remark 3.1.3. Let z̃ ∈ Z̃+

L̃
. Assume that Z̃L̃ is generated by Z̃+

L̃
and z̃−1 as a monoid.

Then, for any locally finite Z̃+
L̃
-representation π, there is a natural Z̃L̃-equivariant iso-

morphism HomA[Z̃+
L̃

](A[Z̃L̃], π)Z̃L̃−l.fin ∼−→ A[z̃±1] ⊗A[z̃] π (cf. [Eme10b, Lemma 3.2.1]).

Thus, the functor HomA[Z̃+
L̃

](A[Z̃L̃],−)Z̃L̃−l.fin restricted to the category Modsm
L̃+(A)Z̃

+
L̃
−l.fin

is isomorphic to the localisation with respect to z̃N. In particular, it is exact.

Definition 3.1.4. For a connected algebraic group P̃/F with unipotent radical Ñ such
that P̃ ∼= L̃ n Ñ, we define A-linear functors Modsm

P̃
(A) → Modsm

L̃
(A)Z̃L̃−l.fin which

commute with inductive limits by setting

H•OrdP̃ := HomA[Z̃+
L̃

]

(
A[Z̃L̃],H•

(
Ñ0,−

))Z̃
L̃
−l.fin

.

If B̃ ⊆ P̃ is a connected closed subgroup containing Ñ and Z̃L̃, then B̃L̃
:= B̃ ∩ L̃ is

generated by B̃+
L̃

:= B̃L̃ ∩ L̃+ and Z̃L̃ as a monoid, so that H•OrdP̃ naturally extend to
A-linear functors Modsm

B̃
(A)→ Modsm

B̃
L̃

(A)Z̃L̃−l.fin which commute with inductive limits.
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3.2 Computations on the associated graded representations
Let J ⊆ ∆. We fix a totally decomposed5 standard compact open subgroup NJ,0 ⊆ NJ

and we define an open submonoid of LJ by setting

L+
J :=

{
l ∈ LJ

∣∣ lNJ,0l
−1 ⊆ NJ,0

}
.

We let Z+
J ⊆ ZJ be the open submonoid ZJ ∩L+

J . Note that ZJ is generated by Z+
J as a

group and LJ is generated by L+
J and ZJ as a monoid (cf. [Eme06, Proposition 3.3.2]).

Moreover, any λ ∈ X∗(S) associated to PJ has its image contained in the maximal split
subtorus SJ of Z◦J and satisfies 〈α, λ〉 > 0 for all α ∈ Φ+\Φ+

J , thus the assumption of
§ 3.1 with Ñ = NJ and Z̃ = SJ is satisfied. We fix z ∈ Z+

J strictly contracting NJ,0
(equivalently ZJ is generated by Z+

J and z−1 as a monoid).
Let I ⊆ ∆ and Iw ∈ IW . We write Iw = IwJwJ with IwJ ∈ IW J and wJ ∈ WJ . Let σ

be an LI-representation. We set6

πIw := c-indP
−
I
IwB

P−I
σ.

We use the notation of § 2.3. The subgroup NJ,Iw ⊆ NJ is stable under conjugation
by BJ,wJ , and we have a semidirect product NJ,Iw = N′′J,Iw n N′J,Iw. The subgroup
N′J,Iw is stable under conjugation by BJ,wJ , and we endow N′′J,Iw (which may not be
stable under conjugation by BJ,wJ ) with the quotient action of BJ,wJ via the isomorphism
N′′J,Iw ∼= NJ,Iw/N′J,Iw. We let NJ,Iw,0 ⊆ NJ,Iw (resp. N ′J,Iw,0 ⊆ N ′J,Iw, N ′′J,Iw,0 ⊆ N ′′J,Iw) be
the totally decomposed standard compact open subgroup NJ,Iw ∩NJ,0 (resp. N ′J,Iw ∩NJ,0,
N ′′J,Iw∩NJ,0) and B+

J,wJ
⊆ BJ,wJ be the open submonoid BJ,wJ ∩L+

J . Since NJ,Iw,0 is totally
decomposed, we have a short exact sequence of topological groups

1→ N ′J,Iw,0 → NJ,Iw,0 → N ′′J,Iw,0 → 1. (20)

In particular, N ′′J,Iw,0 is stable under the quotient action of B+
J,wJ

on N ′′J,Iw.

Lemma 3.2.1. For all n ∈ N, the inflation map is a natural B+
J,wJ

-equivariant isomorph-
ism

Hn

(
N ′′J,Iw,0, π

N ′
J,Iw,0

Iw

)
∼−→ Hn

(
NJ,Iw,0, πIw

)
.

Proof. The Lyndon–Hochschild–Serre spectral sequence associated to (20) is naturally a
spectral sequence of B+

J,wJ
-representations (cf. [Hau16b, (2.3)])

Hi
(
N ′′J,Iw,0,Hj

(
N ′J,Iw,0, πIw

))
⇒ Hi+j(NJ,Iw,0, πIw

)
. (21)

The inflation maps are the edge maps of (21) for j = 0, thus they are B+
J,wJ

-equivariant
and in order to prove that they are bijective, it is enough to show that (21) degenerates,
i.e. that Hj(N ′J,Iw,0, πIw) = 0 for all integers j > 0.

5Given a closed subgroup Ũ ⊆ U stable under conjugation by S, we say that a compact open subgroup
Ũ0 ⊆ Ũ is totally decomposed if the product induces a homeomorphism

∏
α∈Φ+

0
(Uα ∩ Ũ0) ∼−→ Ũ0 for any

order on Φ+
0 (e.g. Ũ0 = Ũ ∩ K where K ⊆ G is a maximal compact subgroup which is special with

respect to Z, cf. [HV15, § 6.6, Remark 2]).
6The naturality of a morphism involving πIw will mean its functoriality with respect to σ.
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Since the left cosets N ′J,Iw/N ′J,Iw,0 form an open partition of N ′J,Iw, we deduce from
(13) a natural N ′J,Iw,0-equivariant isomorphism

πIw ∼=
⊕

n′∈N ′
J,Iw

/N ′
J,Iw,0

Csm
(
n′N ′J,Iw,0, C

sm
c

(
U ′J,wJ , σ

Iw
))

where N ′J,Iw,0 acts by right translation on the terms of the direct sum. The latter are
N ′J,Iw,0-acyclic by Shapiro’s lemma (since they are induced discrete A[N ′J,Iw,0]-modules)
and the N ′J,Iw,0-cohomology commutes with direct sums (since the image of a locally
constant cochain is finite by compactness), thus πIw is N ′J,Iw,0-acyclic.

There is a natural smooth A-linear action of B′′J,wJn(U ′J,wJ×N
′′
J,Iw) on Csm

c (U ′J,wJ , σ
Iw):

we already defined the action of BJ,wJ = B′′J,wJ n U ′J,wJ in § 2.3 and we define the action
of n′′ ∈ N ′′J,Iw on f ∈ Csm

c (U ′J,wJ , σ
Iw) by setting

(n′′ · f) (u′) := n′′ · f (u′)

for all u′ ∈ U ′J,wJ .

Lemma 3.2.2. For all n ∈ N, there is a natural B+
J,wJ

-equivariant morphism

Hn

(
N ′′J,Iw,0, π

N ′
J,Iw,0

Iw

)
→ Hn

(
N ′′J,Iw,0, C

sm
c

(
U ′J,wJ , σ

Iw
))

such that the Hecke action of z on its kernel and cokernel is locally nilpotent.

Proof. We will implicitly make use of the isomorphism (13). For each n′ ∈ N ′J,Iw/N ′J,Iw,0,
evaluation at n′ induces a natural A-linear surjection

evn′ : π
N ′
J,Iw,0

Iw
� Csm

c

(
U ′J,wJ , σ

Iw
)
.

We define a natural A-linear surjection

Ev :=
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

evn′ : π
N ′
J,Iw,0

Iw
� Csm

c

(
U ′J,wJ , σ

Iw
)
.

We prove that Ev is B+
J,wJ

-equivariant: for any f ∈ π
N ′
J,Iw,0

Iw
and b ∈ B+

J,wJ
, we have

Ev
(
b

H· f
)

=
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

∑
n′0∈N ′J,Iw,0/bN

′
J,Iw,0

b−1

(n′0b · f) (n′)

=
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

∑
n′0∈N ′J,Iw,0/bN

′
J,Iw,0

b−1

b · f
(
b−1n′n′0b

)
=

∑
n′∈N ′

J,Iw
/bN ′

J,Iw,0
b−1

b · f
(
b−1n′b

)
= b · Ev (f)
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where the last equality results from the change of variable n′ 7→ bn′b−1. We prove that
Ev is also N ′′J,Iw,0-equivariant: for any f ∈ π

N ′
J,Iw,0

Iw
, n′′ ∈ N ′′J,Iw,0 and u′ ∈ U ′J,wJ , we have

Ev (n′′ · f) (u′) =
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

(n′′ · f) (n′) (u′)

=
∑

n′∈N ′
J,Iw

/N ′
J,Iw,0

n′′ · f
(
u′−1n′′−1u′n′n′′

)
(u′)

= n′′ · Ev (f) (u′) ,

where the last equality results from the fact that when n′ runs among N ′J,Iw/N ′J,Iw,0 we
have u′−1n′′−1u′n′n′′ = (u′−1n′′−1u′n′′)(n′′−1n′n′′) with on the one hand n′′−1n′n′′ running
among N ′J,Iw/N ′J,Iw,0 and on the other hand u′−1n′′−1u′n′′ ∈ N ′J,Iw being constant. We
deduce that Ev induces natural B+

J,wJ
-equivariant morphisms in N ′′J,Iw,0-cohomology.

We prove that the Hecke action of z on the kernel of Ev is locally nilpotent: for
any f ∈ π

N ′
J,Iw,0

Iw
there exists i ∈ N such that supp(f) ⊆ z−iN ′J,Iw,0z

i (since z is strictly
contracting N ′J,Iw,0 which is open in N ′J,Iw), thus for any n′ ∈ N ′J,Iw/N ′J,Iw,0, we have(

zi
H· f
)

(n′) =
∑

n′0∈N ′J,Iw,0/z
iN ′

J,Iw,0
z−i

(
n′0z

i · f
)

(n′)

=
∑

n′0∈N ′J,Iw,0/z
iN ′

J,Iw,0
z−i

zi · f
((
z−in′zi

) (
z−in′0z

i
))

=
{
zi · Ev (f) if n′ ∈ N ′J,Iw,0,
0 if n′ 6∈ N ′J,Iw,0.

Using the long exact sequence of N ′′J,Iw,0-cohomology, we deduce that the Hecke action of
z on the kernels and cokernels of the morphisms induced by Ev in N ′′J,Iw,0-cohomology is
locally nilpotent.

The subgroup B′′J,wJ ⊆ BJ,wJ normalises N′′J,Iw and the conjugation action coincides
with the action induced by the quotient action of BJ,wJ on N′′J,Iw. We define an open
submonoid B′′+J,wJ ⊆ B′′J,wJ by setting

B′′+J,wJ :=
{
b′′ ∈ B′′J,wJ

∣∣ b′′N ′′J,Iw,0b′′−1 ⊆ N ′′J,Iw,0
}
.

Lemma 3.2.3. We have B+
J,wJ
⊆ B′′+J,wJ n U ′J,wJ .

Proof. We have a semidirect product BJ,wJ = B′′J,wJ n U′J,wJ . Let b ∈ B+
J,wJ

. We write
b = b′′u′ with b′′ ∈ B′′J,wJ and u′ ∈ U ′J,wJ . We prove that b′′ ∈ B′′+J,wJ . Let n′′ ∈ N ′′J,Iw,0.
Proceeding as in the proof of Lemma 2.3.1, we see that u′n′′u′−1n′′−1 ∈ N ′J,Iw so that
u′n′′u′−1 = n′n′′ with n′ ∈ N ′J,Iw. Thus bn′′b−1 = (b′′n′b′′−1)(b′′n′′b′′−1) ∈ NJ,Iw,0, and since
NJ,Iw,0 is totally decomposed, we deduce that b′′n′′b′′−1 ∈ N ′′J,Iw,0.

Lemma 3.2.4. For all n ∈ N, there is a natural B′′+J,wJ n U ′J,wJ -equivariant isomorphism

Hn
(
N ′′J,Iw,0, C

sm
c

(
U ′J,wJ , σ

Iw
))
∼= Csm

c

(
U ′J,wJ ,H

n
(
N ′′J,Iw,0, σ

Iw
))

.
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Proof. Let σ̃ be a B′′+J,wJnN
′′
J,Iw,0-representation. The A-modules H•(N ′′J,Iw,0, Csm

c (U ′J,wJ , σ̃))
and Csm

c (U ′J,wJ ,H
•(N ′′J,Iw,0, σ̃)) are naturally B′′+J,wJ n U ′J,wJ -representations. The identity

of Csm
c (U ′J,wJ , σ̃) induces a natural U ′J,wJ -equivariant isomorphism

ι : Csm
c
(
U ′J,wJ , σ̃

)N ′′
J,Iw,0 ∼−→ Csm

c

(
U ′J,wJ , σ̃

N ′′
J,Iw,0

)
.

We prove that ι is also B′′+J,wJ -equivariant: for any f ∈ C
sm
c (U ′J,wJ , σ̃)N

′′
J,Iw,0 , b′′ ∈ B′′+J,wJ and

u′ ∈ U ′J,wJ , we have

ι
(
b′′

H· f
)

(u′) =
∑

n′′∈N ′′
J,Iw,0

/b′′N ′′
J,Iw,0

b′′−1

ι (n′′b′′ · f) (u′)

=
∑

n′′∈N ′′
J,Iw,0

/b′′N ′′
J,Iw,0

b′′−1

n′′b′′ · ι (f)
(
b′′−1u′b′′

)
= b′′

H· ι (f)
(
b′′−1u′b′′

)
= (b′′ · ι (f)) (u′) .

We will prove that deriving ι yields the desired isomorphisms with σ̃ = σ
Iw.

The functor Csm
c (U ′J,wJ ,−) is A-linear and exact and the δ-functor H•(N ′′J,Iw,0,−) is uni-

versal, thus denoting by R• the right derived functors on the category Modsm
B′′+J,wJ

nN ′′
J,Iw,0

(A),
we have morphisms of functors

R•
(
Csm

c

(
U ′J,wJ , (−)N

′′
J,Iw,0

))
∼= Csm

c
(
U ′J,wJ ,H

•(N ′′J,Iw,0,−)) ,
R•
(
Csm

c
(
U ′J,wJ ,−

)N ′′
J,Iw,0

)
→ H•

(
N ′′J,Iw,0, C

sm
c
(
U ′J,wJ ,−

))
.

In order to show that the second one is also an isomorphism, it is enough to prove that
Csm

c (U ′J,wJ ,−) takes injective objects of Modsm
B′′+J,wJ

nN ′′
J,Iw,0

(A) to N ′′J,Iw,0-acyclic objects. If
σ̃ is an A-module, then we have a natural N ′′J,Iw,0-equivariant isomorphism

Csm
c
(
U ′J,wJ , C

sm(N ′′J,Iw,0, σ̃)) ∼= Csm(N ′′J,Iw,0, Csm
c
(
U ′J,wJ , σ̃

))
,

so that Csm
c (U ′J,wJ , C

sm(N ′′J,Iw,0, σ̃)) is N ′′J,Iw,0-acyclic. Now if σ̃ is an injective object of
Modsm

B′′+J,wJ
nN ′′

J,Iw,0
(A), then it is also an injective object of Modsm

N ′′
J,Iw,0

(A) (cf. [Eme10b, Pro-
position 2.1.11] and [Hau16a, Lemme 3.1.1]), thus the natural N ′′J,Iw,0-equivariant injection
σ̃ ↪→ Csm(N ′′J,Iw,0, σ̃) defined by v 7→ (n′′ 7→ n′′ ·v) admits an N ′′J,Iw,0-equivariant retraction,
so that σ̃ is a direct factor of Csm(N ′′J,Iw,0, σ̃), and therefore σ̃ is N ′′J,Iw,0-acyclic.

We now assume that σ is locally admissible.

Lemma 3.2.5. For all n ∈ N, there is a natural B′′+J,wJ n U ′J,wJ -equivariant morphism

Csm
c

(
U ′J,wJ ,H

n
(
N ′′J,Iw,0, σ

Iw
))
→ c-ind

LJ∩P−
J∩IwJ−1(I)

wJBJ

LJ∩P−
J∩IwJ−1(I)

(
HnOrdLI∩PI∩IwJ (J)

σ
)IwJ

such that the action of z on its kernel and cokernel is locally nilpotent.
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Proof. We have natural B′′+J,wJ -equivariant isomorphisms

H•
(
N ′′J,Iw,0, σ

Iw
)
∼= H•

(
IwN ′′J,Iw,0

Iw−1, σ
)Iw

. (22)

Since IwN′′J,Iw
Iw−1 = UI ∩ IwJNJ

IwJ−1 is the unipotent radical of LI ∩ PI∩IwJ (J) (see
Lemma 2.1.1 (iii)), we define an open submonoid of LI∩IwJ (J) by setting

L+
I∩IwJ (J) :=

{
l ∈ LI∩IwJ (J)

∣∣ lIwN ′′J,Iw,0Iw−1l−1 ⊆ IwN ′′J,Iw,0
Iw−1} .

We have IwB′′+J,wJ
Iw−1 = IwB′′J,wJ

Iw−1 ∩ L+
I∩IwJ (J). We let Z+

I∩IwJ (J) ⊆ ZI∩IwJ (J) be the
open submonoid ZI∩IwJ (J) ∩ L+

I∩IwJ (J). Since σ is locally admissible, H•(IwN ′′J,Iw,0Iw−1, σ)
is locally Z+

I∩IwJ (J)-finite by [Eme10b, Theorem 3.4.7 (1)], and thus locally IwzIw−1-finite.
Note that IwzIw−1 ∈ Z+

I∩IwJ (J) is strictly contracting IwN ′′J,Iw,0
Iw−1. Therefore, localising

with respect to (IwzIw−1)N gives rise to L+
I∩IwJ (J)-equivariant morphisms

H•
(
IwN ′′J,Iw,0

Iw−1, σ
)
→ H•OrdLI∩PI∩IwJ (J)

σ

such that the action of IwzIw−1 on their kernels and cokernel is locally nilpotent (see
Remark 3.1.3). Using (22), we deduce B′′+J,wJ -equivariant morphisms

H•
(
N ′′J,Iw,0, σ

Iw
)
→
(

H•OrdLI∩PI∩IwJ (J)
σ
)Iw

such that the action of z on their kernels and cokernels is locally nilpotent. Applying the
functor Csm

c (U ′J,wJ ,−), we obtain B′′+J,wJ n U ′J,wJ -equivariant morphisms

Csm
c

(
U ′J,wJ ,H

•
(
N ′′J,Iw,0, σ

Iw
))
→ Csm

c

(
U ′J,wJ ,

(
H•OrdLI∩PI∩IwJ (J)

σ
)Iw)

such that the action of z on their kernel and cokernel is still locally nilpotent (because the
functions in their sources and targets have finite images). We conclude using the inverse
of the BJ,wJ -equivariant isomorphism (12) with σ̃ = (H•OrdLI∩PI∩IwJ (J)

σ)IwJ .

We combine the previous results into the following one.

Proposition 3.2.6. Let σ be a locally admissible LI-representation and Iw ∈ IW . We
write Iw = IwJwJ with IwJ ∈ IW J and wJ ∈ WJ . For all n ∈ N, there is a natural
B+
J,wJ

-equivariant morphism

Hn
(
NJ,Iw,0, c-indP

−
I
IwB

P−I
σ
)
→ c-ind

LJ∩P−
J∩IwJ−1(I)

wJBJ

LJ∩P−
J∩IwJ−1(I)

(
HnOrdLI∩PI∩IwJ (J)

σ
)IwJ

such that the action of z on its kernel and cokernel is locally nilpotent. Furthermore, this
morphism is even L+

J ∩ PJ∩IwJ−1(I)-equivariant when wJ = 1 (see Remark 2.2.2).

Proof. Combining Lemmas 3.2.1, 3.2.2, 3.2.4, 3.2.5 and using Lemma 3.2.3, we obtain
the desired morphism. If wJ = 1, then the previous lemmas and their proofs are true
verbatim with LJ ∩ PJ∩IwJ−1(I) and LJ∩IwJ−1(I) instead of BJ,wJ and B′′J,wJ respectively
(see Remark 2.3.2), thus the morphism is L+

J ∩ PJ∩IwJ−1(I)-equivariant.
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3.3 Computations on parabolically induced representations
Let I, J ⊆ ∆, σ be a locally admissible LI-representation and n ∈ N. For any lower set
IW J

1 ⊆ IW J , the natural PJ -equivariant injection Fil
IWJ

1
PJ

(IndG
P−I

σ) ↪→ IndG
P−I

σ induces
an LJ -equivariant morphism

HnOrdPJ
(

Fil
IWJ

1
PJ

(
IndG

P−I
σ
))
→ HnOrdPJ

(
IndG

P−I
σ
)
, (23)

and by taking its image we define an LJ -subrepresentation

Fil
IWJ

1
PJ

(
HnOrdPJ

(
IndG

P−I
σ
))
⊆ HnOrdPJ

(
IndG

P−I
σ
)
.

Proposition 3.3.1. The LJ-subrepresentations Fil•PJ (HnOrdPJ (IndG
P−I

σ)) form a natural
filtration of HnOrdPJ (IndG

P−I
σ) indexed by IW J . Furthermore, for all IwJ ∈ IW J there is

a natural LJ-equivariant isomorphism

GrIwJPJ

(
HnOrdPJ

(
IndG

P−I
σ
))
∼= HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
.

Proof. First, we prove for any lower sets IW J
2 ⊆ IW J

1 ⊆ IW J , the short exact sequence
of PJ -representations

0→ Fil
IWJ

2
PJ

(
IndG

P−I
σ
)
→ Fil

IWJ
1

PJ

(
IndG

P−I
σ
)

→ Fil
IWJ

1
PJ

(
IndG

P−I
σ
)
/Fil

IWJ
2

PJ

(
IndG

P−I
σ
)
→ 0 (24)

induces a short exact sequence of LJ -representations

0→ HnOrdPJ
(

Fil
IWJ

2
PJ

(
IndG

P−I
σ
))
→ HnOrdPJ

(
Fil

IWJ
1

PJ

(
IndG

P−I
σ
))

→ HnOrdPJ
(

Fil
IWJ

1
PJ

(
IndG

P−I
σ
)
/Fil

IWJ
2

PJ

(
IndG

P−I
σ
))
→ 0. (25)

In particular, (23) is injective and (7) induces the isomorphism in the statement.
Let NJ,0 ⊆ NJ , L+

J ⊆ LJ , Z+
J ⊆ ZJ and z ∈ Z+

J be as in § 3.2. Proceeding as in
the proof of [Hau16a, Proposition 2.2.3], we see that the first non-trivial morphism of
(24) induces an injection in NJ,0-cohomology. Using the long exact sequence of NJ,0-
cohomology, we deduce that (24) induces a short exact sequence of L+

J -representations

0→ Hn
(
NJ,0,Fil

IWJ
2

PJ

(
IndG

P−I
σ
))
→ Hn

(
NJ,0,Fil

IWJ
1

PJ

(
IndG

P−I
σ
))

→ Hn
(
NJ,0,Fil

IWJ
1

PJ

(
IndG

P−I
σ
)
/Fil

IWJ
2

PJ

(
IndG

P−I
σ
))
→ 0. (26)

Since σ is locally admissible, IndG
P−I

σ is locally admissible (cf. [Eme10a, Proposition
4.1.7]), thus H•(NJ,0, IndG

P−I
σ) is locally Z+

J -finite by [Eme10b, Theorem 3.4.7 (1)]. We
deduce that each term of (26) is locally Z+

J -finite (as a subquotient). We conclude that
localising (26) with respect to zN yields (25) (see Remark 3.1.3).
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We now prove that Fil•PJ (HnOrdPJ (IndG
P−I

σ)) is a filtration of HnOrdPJ (IndG
P−I

σ) in-
dexed by IW J . Since IW J is finite and Fil•PJ (HnOrdPJ (IndG

P−I
σ)) is inclusion-preserving

with Fil∅PJ (HnOrdPJ (IndG
P−I

σ)) = 0 and FilIWJ

PJ
(HnOrdPJ (IndG

P−I
σ)) = HnOrdPJ (IndG

P−I
σ)

by construction, it remains to prove that for any lower sets IW J
1 ,

IW J
2 ⊆ IW J , the natural

short exact sequence of PJ -representations

0→ Fil
IWJ

1 ∩IWJ
2

PJ

(
IndG

P−I
σ
)
→ Fil

IWJ
1

PJ

(
IndG

P−I
σ
)
⊕ Fil

IWJ
2

PJ

(
IndG

P−I
σ
)

→ Fil
IWJ

1 ∪IWJ
2

PJ

(
IndG

P−I
σ
)
→ 0

induces a short exact sequence of LJ -representations

0→ Fil
IWJ

1 ∩IWJ
2

PJ

(
HnOrdPJ

(
IndG

P−I
σ
))

→ Fil
IWJ

1
PJ

(
HnOrdPJ

(
IndG

P−I
σ
))
⊕ Fil

IWJ
2

PJ

(
HnOrdPJ

(
IndG

P−I
σ
))

→ Fil
IWJ

1 ∪IWJ
2

PJ

(
HnOrdPJ

(
IndG

P−I
σ
))
→ 0.

This follows from the same arguments as above.

Let IwJ ∈ IW J . For any lower setW ′
J ⊆ J∩IwJ−1(I)WJ , the natural B-equivariant (resp.

PJ∩IwJ−1(I)-equivariant whenW ′
J = {1}, see Remark 2.2.2) injection FilW

′
J

B (c-indP
−
I
IwJPJ

P−I
σ)

↪→ c-indP
−
I
IwJPJ

P−I
σ induces a BJ -equivariant (resp. LJ ∩ PJ∩IwJ−1(I)-equivariant when

W ′
J = {1}) morphism

HnOrdPJ
(

FilW
′
J

B

(
c-indP

−
I
IwJPJ

P−I
σ
))
→ HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
, (27)

and by taking its image we define a BJ -subrepresentation (resp. LJ ∩PJ∩IwJ−1(I)-subrep-
resentation when W ′

J = {1})

FilW
′
J

B

(
HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
))
⊆ HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
.

Proceeding as in the proof of Proposition 3.3.1 and using (8), we prove that (27) is
injective and the following result.

Proposition 3.3.2. The BJ-subrepresentations Fil•B(HnOrdPJ (c-indP
−
I
IwJPJ

P−I
σ)) form a

natural filtration of HnOrdPJ (c-indP
−
I
IwJPJ

P−I
σ) indexed by J∩IwJ−1(I)WJ . Furthermore, for

all wJ ∈ J∩IwJ−1(I)WJ there is a natural BJ-equivariant isomorphism

GrwJB
(

HnOrdPJ
(

c-indP
−
I
IwJPJ

P−I
σ
))
∼= HnOrdPJ

(
c-indP

−
I
IwJwJB

P−I
σ
)

which is even LJ ∩ PJ∩IwJ−1(I)-equivariant when wJ = 1 (see Remark 2.2.2).

We now state the main result of this section using Notation 2.3.3 and Remark 2.3.4.
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Theorem 3.3.3. Let σ be a locally admissible LI-representation, IwJ ∈ IW J and n ∈ N.
For all wJ ∈ J∩IwJ−1(I)WJ , there is a natural BJ,wJ -equivariant isomorphism

GrwJB
(

HnOrdPJ
(

c-indP
−
I
IwJPJ

P−I
σ
))

∼= GrwJBJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I)

((
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ

⊗
(
ω−1 ◦ δIwJ

)))
which is even LJ ∩ PJ∩IwJ−1(I)-equivariant when wJ = 1 (see Remark 2.2.2).

Proof. We use the notation of § 2.3. We let wJ ∈ J∩IwJ−1(I)WJ and we put Iw := IwJwJ .
We let NJ,0 ⊆ NJ , L+

J ⊆ LJ , Z+
J ⊆ ZJ , z ∈ Z+

J and πIw be as in § 3.2. In the course of
the proof of Proposition 3.3.2, we see that Hn(NJ,0, πIw) is locally Z+

J -finite (as we saw it
for Hn(NJ,0, c-indP

−
I
IwJPJ

P−I
σ) in the course of the proof of Proposition 3.3.1).

Since σ is locally admissible, the LI∩IwJ (J)-representations H•OrdLI∩PI∩IwJ (J)
σ are loc-

ally admissible by [Eme10b, Theorem 3.4.7 (2)], thus locally ZI∩IwJ (J)-finite by [Eme10a,
Lemma 2.3.4]. Therefore, the BJ -representations

c-ind
LJ∩P−

J∩IwJ−1(I)
wJBJ

LJ∩P−
J∩IwJ−1(I)

(H•OrdLI∩PI∩IwJ (J)
σ)IwJ

are locally ZJ -finite, thus locally z-finite. We deduce from Proposition 3.2.6 that the
B+
J,wJ

-representations H•(NJ,Iw,0, πIw) are locally z-finite and that there is a natural B+
J,wJ

-
equivariant (resp. L+

J ∩ PJ∩IwJ−1(I)-equivariant when wJ = 1) morphism

Hn−[F :Qp]dIwJ
(
NJ,Iw,0, πIw

)
⊗
(
ω−1 ◦ δIwJ

)wJ
→
(

c-ind
LJ∩P−

J∩IwJ−1(I)
wJBJ

LJ∩P−
J∩IwJ−1(I)

(
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ)

⊗
(
ω−1 ◦ δIwJ

)wJ (28)

such that the action of z on its kernel and cokernel is locally nilpotent.
Using Proposition 3.1.2 with L̃ = BJ,wJ (resp. L̃ = LJ ∩ PJ∩IwJ−1(I) when wJ = 1),

Ñ = NJ , Ñ′ = NJ,Iw (so that d̃− d̃′ = dIwJ and δ̃ − δ̃′ = w−1
J (δIwJ ) since conjugation by

wJ induces an isomorphism of F -varieties NJ/NJ,Iw
∼−→ NJ/NJ,IwJ ), z̃ = z and π = πIw,

we deduce a natural B+
J,wJ

-equivariant (resp. L+
J ∩ PJ∩IwJ−1(I)-equivariant when wJ = 1)

morphism
Hn−[F :Qp]dIwJ

(
NJ,Iw,0, πIw

)
⊗
(
ω−1 ◦ δIwJ

)wJ → Hn(NJ,0, πIw) (29)
and the Hecke action of z on its kernel and cokernel is locally nilpotent.

Using Proposition 3.3.2, (9) with σ̃ = (Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)
σ)IwJ ⊗ (ω−1 ◦δIwJ )

and the natural BJ -equivariant (resp. LJ ∩ PJ∩IwJ−1(I)-equivariant when wJ = 1) iso-
morphism(

c-ind
LJ∩P−

J∩IwJ−1(I)
wJBJ

LJ∩P−
J∩IwJ−1(I)

(
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ)

⊗
(
ω−1 ◦ δIwJ

)wJ
∼−→ c-ind

LJ∩P−
J∩IwJ−1(I)

wJBJ

LJ∩P−
J∩IwJ−1(I)

((
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ

⊗
(
ω−1 ◦ δIwJ

))
,

the localisation of (28) with respect to zN and the inverse of the localisation of (29) with
respect to zN yield the desired isomorphism (see Remark 3.1.3).
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In particular with wJ = 1 and σ̃ := (Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)
σ)IwJ ⊗ (ω−1 ◦ δIwJ ),

there is a natural LJ ∩ PJ∩IwJ−1(I)-equivariant injection

Gr1
BJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃

)
↪→ HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
,

hence a natural LJ -equivariant morphism

A[LJ ]⊗A[LJ∩PJ∩IwJ−1(I)] Gr1
BJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃

)
→ HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
.

In the proof of [Eme10a, Theorem 4.4.6], it is shown that such a morphism factors
uniquely through the natural LJ -equivariant surjection

A[LJ ]⊗A[LJ∩PJ∩IwJ−1(I)] Gr1
BJ

(
IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃

)
� IndLJ

LJ∩P−
J∩IwJ−1(I)

σ̃.

Thus, the previous injection naturally extends to an LJ -equivariant morphism

IndLJ
LJ∩P−

J∩IwJ−1(I)

((
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ

⊗
(
ω−1 ◦ δIwJ

))
→ HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
. (30)

Conjecture 3.3.4. The natural morphism (30) is an isomorphism.

We prove Conjecture 3.3.4 in some special cases.

Proposition 3.3.5. (i) If Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)
σ = 0, then

HnOrdPJ
(

c-indP
−
I
IwJPJ

P−I
σ
)

= 0.

(ii) If IwJ(J) ⊆ I, then (30) is a natural LJ-equivariant isomorphism

(
Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)

σ
)IwJ

⊗
(
ω−1 ◦ δIwJ

)
∼−→ HnOrdPJ

(
c-indP

−
I
IwJPJ

P−I
σ
)
.

(iii) If n = 0 and IwJ = 1, then (30) is a natural LJ-equivariant isomorphism

IndLJ
LJ∩P−I

(OrdLI∩PJ σ) ∼−→ OrdPJ
(

c-indP
−
I PJ

P−I
σ
)
.

Proof. We use Theorem 3.3.3: if Hn−[F :Qp]dIwJ OrdLI∩PI∩IwJ (J)
σ = 0, then we deduce that

Gr•B(HnOrdPJ (c-indP
−
I
IwJPJ

P−I
σ)) = 0, hence (i); if IwJ(J) ⊆ I, then we deduce from

[Eme10b, Proposition 3.6.1] that Gr•B(HnOrdPJ (c-indP
−
I
IwJPJ

P−I
σ)) is concentrated in de-

gree 1, thus (30) is an isomorphism, hence (ii).
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We now prove (iii). Since all the functors involved commute with inductive limits, we
reduce to the case where σ is admissible. By [AHV17, Corollaries 4.13 and 5.9], there is
a natural LJ -equivariant isomorphism

IndLJ
LJ∩P−I

(OrdLI∩PJ σ) ∼−→ OrdPJ
(

IndG
P−I

σ
)
. (31)

Using (i), we deduce from Proposition 3.3.1 with n = 0 that Gr•PJ (OrdPJ (IndG
P−I

σ)) is
concentrated in degree 1, hence a natural LJ -equivariant isomorphism

OrdPJ
(

c-indP
−
I PJ

P−I
σ
)
∼−→ OrdPJ

(
IndG

P−I
σ
)
. (32)

The composition of (30) with n = 0 and IwJ = 1, (32) and the inverse of (31) yields an
LJ -equivariant endomorphism ϕ of IndLJ

LJ∩P−I
(OrdLI∩PJ σ) which is injective in restriction

to Fil1BJ (IndLJ
LJ∩P−I

(OrdLI∩PJ σ)). From [Eme10a, Lemma 4.3.1 and Proposition 4.3.4] and
the left-exactness of OrdLI∩PJ , we deduce that OrdLJ∩PI ϕ is an injective LI∩J -equivariant
endomorphism of OrdLI∩PJ σ. Since the latter is admissible by [Eme10a, Theorem 3.3.3],
it is Artinian (see § 4.1 below), and thus co-Hopfian so that OrdLI∩PJ ϕ is an isomorphism.
We deduce that ϕ is an isomorphism using [Eme10a, Proposition 4.3.4 and Theorem 4.4.6].
We conclude that (30) with n = 0 and IwJ = 1 is an isomorphism as in the statement.

Remark 3.3.6. Let R•OrdLI∩PJ denote the derived functors of OrdLI∩PJ on Modl.adm
LI

(A).
By universality of derived functors, the isomorphism in (iii) extends uniquely to a morph-
ism of δ-functors

IndLJ
LJ∩P−I

◦R•OrdLI∩PJ → H•OrdPJ ◦ c-indP
−
I PJ

P−I
(33)

(the left-hand side is the derived functor of IndLJ
LJ∩P−I

◦OrdLI∩PJ by exactness of IndLJ
LJ∩P−I

,
and the right-hand side is a δ-functor by the same arguments as in the proof of Pro-
position 3.3.1). Now, assume that [Eme10b, Conjecture 3.7.2] is true for LI ∩ PJ , i.e.
R•OrdLI∩PJ

∼−→ H•OrdLI∩PJ . Then Conjecture 3.3.4 for IwJ = 1 is equivalent to (33)
being an isomorphism. We could prove this if we knew that the isomorphism of Theorem
3.3.3 with IwJ = 1 were BJ -equivariant for all wJ ∈ J∩IWJ .

Finally, we compute the derived ordinary parts of a parabolically induced represent-
ation in low degree when there is an inclusion between I and J .

Proposition 3.3.7. (i) If I ⊆ J and 0 < n < [F : Qp], then HnOrdPJ (IndG
P−I

σ) = 0.

(ii) If J ⊆ I and n < [F : Qp], then there is a natural LJ-equivariant isomorphism

HnOrdLI∩PJ σ
∼−→ HnOrdPJ

(
IndG

P−I
σ
)
.

(iii) If J ⊆ I and OrdLI∩PI∩sα(J) σ = 0 for all α ∈ ∆1\(I ∪ J⊥), then there is a natural
short exact sequence of LJ-representations

0→ H[F :Qp]OrdLI∩PJ σ → H[F :Qp]OrdPJ
(

IndG
P−I

σ
)

→
⊕

α∈J⊥,1\I

(OrdLI∩PJ σ)α ⊗
(
ω−1 ◦ α

)
→ 0.
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Proof. We use Proposition 3.3.1 and Lemma 2.2.1 with ` : IW J → N to obtain a filtration
Fil`,•PJ (HnOrdPJ (IndG

P−I
σ)) indexed by N such that for all i ∈ N, there is a natural LJ -

equivariant isomorphism

Gr`,iPJ
(

HnOrdPJ
(

IndG
P−I

σ
))
∼=

⊕
`(IwJ )=i

HnOrdPJ
(

c-indP
−
I
IwJPJ

P−I
σ
)
. (34)

Assume n < [F : Qp]. If IwJ 6= 1 (i.e. dIwJ > 0), then HnOrdPJ (c-indP
−
I
IwJPJ

P−I
σ) = 0

by Proposition 3.3.5 (i) since n − [F : Qp]dIwJ < 0, thus we deduce from (34) that
Gr`,•PJ (HnOrdPJ (IndG

P−I
σ)) is concentrated in degree 0, so that assuming Conjecture 3.3.4

for IwJ = 1, we obtain a natural LJ -equivariant isomorphism

IndLJ
LJ∩P−I

(HnOrdLI∩PJ σ) ∼−→ HnOrdPJ
(

IndG
P−I

σ
)
. (35)

Now, Conjecture 3.3.4 is true for IwJ = 1 in the following cases: n > 0 and I ⊆ J by
Proposition 3.3.5 (i) since HnOrdLI∩PJ = HnOrdLI = 0 (cf. [Eme10b, Proposition 3.6.1]),
in which case the source of (35) is zero, hence (i); J ⊆ I by Proposition 3.3.5 (ii), in
which case the source of (35) is HnOrdLI∩PJ σ, hence (ii).

Likewise, if IwJ 6= 1 and IwJ 6= sα for all α ∈ ∆1\(I ∪ J) (i.e. dIwJ > 1), then
H[F :Qp]OrdPJ (c-indP

−
I
IwJPJ

P−I
σ) = 0 by Proposition 3.3.5 (i) since [F : Qp]−[F : Qp]dIwJ < 0,

thus we deduce from (34) that Gr`,•PJ (H[F :Qp]OrdPJ (IndG
P−I

σ)) is concentrated in degrees 0
and 1, so that assuming Conjecture 3.3.4 for n = [F : Qp] and IwJ = 1 or IwJ = sα for
all α ∈ ∆1\(I ∪ J), we obtain a short exact sequence of LJ -representations

0→ IndLJ
LJ∩P−I

(
H[F :Qp]OrdLI∩PJ σ

)
→ H[F :Qp]OrdPJ

(
IndG

P−I
σ
)

→
⊕

α∈∆1\(I∪J)

IndLJ
LJ∩P−J∩sα(I)

((
OrdLI∩PI∩sα(J) σ

)α
⊗
(
ω−1 ◦ α

))
→ 0. (36)

Assume J ⊆ I and OrdLI∩PI∩sα(J) σ = 0 for all α ∈ ∆1\(I ∪J⊥). Then Conjecture 3.3.4 is
indeed true for n = [F : Qp] in the following cases: IwJ = 1 by Proposition 3.3.5 (ii), and
the first non-trivial term of (36) is H[F :Qp]OrdLI∩PJ σ; IwJ = sα with α ∈ ∆1\(I ∪ J⊥)
by Proposition 3.3.5 (i) and the hypothesis on σ, and the corresponding summand of the
last non-trivial term of (36) is zero; IwJ = sα with α ∈ J⊥,1\I by Proposition 3.3.5 (ii)
since sα(J) = J ⊆ I, and the corresponding summand of the last non-trivial term of (36)
is (OrdLI∩PJ σ)α ⊗ (ω−1 ◦ α). Hence (iii).

We reformulate Proposition 3.3.7 in the case I = J , using the fact that in this case
HnOrdLI∩PJ = 0 if n > 0 (cf. [Eme10b, Proposition 3.6.1]). Note that if P = LN is a
standard parabolic subgroup, then for all α ∈ ∆\∆L the standard parabolic subgroup of
L corresponding to ∆L ∩ sα(∆L) is L ∩ sαPs−1

α and it is proper if and only if α 6∈ ∆⊥L .

Corollary 3.3.8. Let P = LN be a standard parabolic subgroup and σ be a locally
admissible L-representation.

(i) For all n ∈ N such that 0 < n < [F : Qp], we have HnOrdP (IndGP− σ) = 0.
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(ii) If OrdL∩sαPs−1
α
σ = 0 for all α ∈ ∆1\(∆L∪∆⊥L), then there is a natural L-equivariant

isomorphism
H[F :Qp]OrdP

(
IndGP− σ

) ∼= ⊕
α∈∆⊥,1L

σα ⊗
(
ω−1 ◦ α

)
.

4 Derived Jacquet functors
The aim of this section is to study the derived functors of the Jacquet functor. In § 4.1,
we review some results on pro-categories. In § 4.2, we relate the left derived functors
of the Jacquet functor in a pro-category with the derived ordinary parts functors and
we construct a new exact sequence to compute extensions by a parabolically induced
representation. In § 4.3, we adapt the results of § 3.3 in order to partially compute the
derived Jacquet functors on a parabolically induced representation.

4.1 Pro-categories
Let H be a p-adic Lie group. Let C be the category whose objects are the A[H]-modules
such that for some (equivalently any) compact open subgroup H0 ⊆ H, the A[H0]-
action extends to a structure of A[[H0]]-module of finite type, and whose morphisms are
the A[H]-linear maps. Since the completed group rings are Noetherian (cf. [Eme10a,
Theorem 2.1.2]), the category C is A-abelian and Noetherian, i.e. it is essentially small7
and its objects are Noetherian. Let C∧ be the category of contravariant functors C→ Set
and Ind-C be the full subcategory of C∧ whose objects are the functors isomorphic to
a small inductive limit in C∧ of objects of C (using the Yoneda embedding C → C∧).
By [KS06, Theorem 8.6.5], the category Ind-C is a Grothendieck category8 (in particular
it has enough injectives, cf. [KS06, Theorem 9.6.2]) and the natural A-linear functor
C→ Ind-C is fully faithful and exact.

Now, Pontryagin duality induces an equivalence of categories (cf. [Eme10a, (2.2.12)])

Modadm
H (A) ∼= Cop.

Thus, the category Modadm
H (A) is Artinian, the pro-category

Pro-Modadm
H (A) := (Ind-C)op

has enough projectives, and the natural A-linear functor

Modadm
H (A)→ Pro-Modadm

H (A) (37)

is fully faithful and exact. We let Ext•H and Ext•Pro-H denote the bifunctors of Yoneda
extensions in the categories Modadm

H (A) and Pro-Modadm
H (A) respectively. By [Oor64,

Theorem 3.5], (37) induces A-linear isomorphisms

Ext•H (π′, π) ∼−→ Ext•Pro-H (π′, π) (38)

for all objects π, π′ of Modadm
H (A).

7A category is essentially small if it is equivalent to a small category, i.e. if the isomorphism classes
of its objects form a set.

8A Grothendieck category is an abelian category that admits a generator and small direct sums, and
in which inductive limits are exact.
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4.2 A second exact sequence
Let P ⊆ G be a parabolic subgroup and L ⊆ P be a Levi factor. We let P− ⊆ G
denote the parabolic subgroup opposed to P with respect to L. There is a natural exact
sequence of A-modules (cf. [Eme10b, (3.7.6)])

0→ Ext1
L (σ,OrdP π)→ Ext1

G

(
IndGP− σ, π

)
→ HomL

(
σ,H1OrdP π

)
(39)

for all objects σ and π of Modadm
L (A) and Modadm

G (A) respectively. We construct a second
exact sequence, in which parabolic induction is on the right.

By [Eme10a, Proposition 4.1.5 and Proposition 4.1.7], parabolic induction induces an
A-linear exact functor

IndGP : Modadm
L (A)→ Modadm

G (A).

By [Eme10b, Corollary 3.6.7], taking N -coinvariants induces an A-linear right-exact func-
tor (the so-called Jacquet functor)

(−)N : Modadm
G (A)→ Modadm

L (A).

By Frobenius reciprocity and the universal property of coinvariants, there is a natural
A-linear isomorphism

HomG

(
π, IndGP σ

) ∼= HomL (πN , σ) . (40)

for all objects π and σ of Modadm
G (A) and Modadm

L (A) respectively.
We deduce from [KS06, Proposition 6.1.9] that these functors and the adjunction

relation extend to the corresponding pro-categories. By [KS06, Corollary 8.6.8], IndGP is
still exact so that (−)N still preserves projectives. Thus, denoting by L•(N,−) the left
derived functors of (−)N in Pro-Modadm

G (A), there is a Grothendieck spectral sequence of
A-modules

ExtiPro-L (Lj(N, π) , σ)⇒ Exti+jPro-G
(
π, IndGP σ

)
whose low degree terms form a natural exact sequence of A-modules

0→ Ext1
Pro-L (πN , σ)→ Ext1

Pro-G
(
π, IndGP σ

)
→ HomPro-L (L1(N, π) , σ)

→ Ext2
Pro-L (πN , σ)→ Ext2

Pro-G
(
π, IndGP σ

)
(41)

for all objects π and σ of Pro-Modadm
G (A) and Pro-Modadm

L (A) respectively.
We let d denote the integer dimF N and δ ∈ X∗(L) denote the algebraic character of

the adjoint representation of L on detF (Lie N). We define A-linear functors by setting

H•(N,−) := H[F :Qp]d−•OrdP ⊗ (ω ◦ δ) .

We deduce from [Eme10b, Corollary 3.4.8 and Proposition 3.6.1] that we obtain a homo-
logical δ-functor

H•(N,−) : Modadm
G (A)→ Modadm

L (A)

and proceeding as in the proof of [KS06, Corollary 8.6.8], we see that it extends to a
homological δ-functor between the corresponding pro-categories.
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By [Eme10b, Proposition 3.6.2], there is an isomorphism of functors (hence the nota-
tion)

H0(N,−) ∼= (−)N
which, by universality of derived functors, extends uniquely to a morphism of δ-functors

H•(N,−)→ L•(N,−) (42)

which is bijective in degree 0, and thus surjective in degree 1 (by a dimension-shifting
argument). Using (38), we deduce from (41) a natural exact sequence of A-modules

0→ Ext1
L (πN , σ)→ Ext1

G

(
π, IndGP σ

)
→ HomL (H1(N, π) , σ) (43)

for all objects π and σ of Modadm
G (A) and Modadm

L (A) respectively.
Remark 4.2.1. (i) Nothing is known (to the author at least) regarding the nature of

the morphism (42) in degree greater than 1.

(ii) Let H be a p-adic Lie group. Taking inductive limits induces an A-linear exact
functor

lim−→ : Ind-Modadm
H (A)→ Modl.adm

H (A)
which is essentially surjective, but not faithful nor full in general. Thus the situation
here (i.e. deriving in Pro-Modadm

H (A)) is not exactly dual to that of [Eme10b, § 3.7]
(i.e. deriving in Modl.adm

H (A)).

4.3 Adaptation of the computations
Let I, J ⊆ ∆, σ be an LI-representation and n ∈ N. We let Iw0 = wI,0w0 (resp.
J∩IwJ−1(I)wJ,0 = wJ∩IwJ−1(I),0wJ,0) denote the image of w0 (resp. wJ,0) in IW (resp.
J∩IwJ−1(I)WJ) and we define an auxiliary subset of ∆ by setting I ′ := Iw−1

0 (I). We have
LI = Iw0LI′

Iw−1
0 and PI = Iw0P−I′Iw

−1
0 , hence a natural G-equivariant isomorphism

IndGPI σ ∼= IndG
P−
I′
σ
Iw0 (44)

defined by f 7→ (g 7→ f(Iw0g)).

Lemma 4.3.1. The map IW J → I′W J defined by IwJ 7→ Iw−1
0

IwJJ∩
IwJ−1(I)wJ,0 is an

order-reversing bijection.

Proof. First, note that WI = w0WI′w0, so that left translation by w0 induces a bijection

WI\W/WJ
∼−→ WI′\W/WJ .

In particular, card IW J = card I′W J . Thus, it is enough to prove that the order-reversing
composite

IW J ↪→ W
∼−→ W

where the first arrow is defined by IwJ 7→ wI,0
IwJJ∩

IwJ−1(I)wJ,0 (it is injective since IW J is
a system of representatives of the double cosetsWI\W/WJ , and order-preserving since the
projection W � IW J is order-preserving) and the second arrow is the left multiplication
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by w0 (it is an order-reversing bijection, cf. [BB05, Proposition 2.3.4 (i)]), takes values
in I′W J .

Now, let IwJ ∈ IW J . For all Iw ∈ IW and wI′ ∈ WI′ , we have (using [BB05,
Proposition 2.3.2 (ii)])

`
(
wI′

Iw−1
0

Iw
)

= `
(
w0 (w0wI′w0)wI,0Iw

)
= ` (w0)−

(
(` (wI,0)− ` (w0wI′w0)) + `

(
Iw
))

= ` (wI′) + `
(
w0wI,0

Iw
)
.

Since IwJJ∩
IwJ−1(I)wJ,0 ∈ IW , we deduce that Iw−1

0
IwJJ∩

IwJ−1(I)wJ,0 ∈ I′W . Likewise, for
all wJ ∈ W J , we have w0w

JwJ,0 ∈ W J . Since

Iw−1
0

IwJJ∩
IwJ−1(I)wJ,0 = w0wI,0

IwJwJ∩IwJ−1(I),0wJ,0

= w0wI,0wI∩IwJ (J),0
IwJwJ,0

= w0w
I∩IwJ (J)
I,0

IwJwJ,0

and wI∩
IwJ (J)

I,0
IwJ ∈ W J , we deduce that Iw−1

0
IwJJ∩

IwJ−1(I)wJ,0 ∈ W J . We conclude that
Iw−1

0
IwJJ∩

IwJ−1(I)wJ,0 ∈ I′W J .

We deduce from Lemma 4.3.1 that the left translate by Iw0 of the decomposition
G =

⊔
I′wJ∈I′WJ P

−
I′
I′wJPJ is the decomposition G =

⊔
IwJ∈IWJ PI

IwJPJ with the op-
posite closure relations. Proceeding as in § 2.2, we can construct a natural filtration
Fil•PJ (IndGPI σ) by PJ -subrepresentations indexed by IW J with the opposite Bruhat order,
and there is a natural PJ -equivariant isomorphism

GrIwJPJ

(
IndGPI σ

) ∼= c-indPIIwJPJPI
σ

for all IwJ ∈ IW J . Furthermore, (44) identifies this filtration with Fil•PJ (IndG
P−
I′
σ
Iw0),

using Lemma 4.3.1 to identifiy the indexing posets, and induces a natural PJ -equivariant
isomorphism

c-indPIIwJPJPI
σ ∼= c-indP

−
I′
I′wJPJ

P−
I′

σ
Iw0 (45)

for all IwJ ∈ IW J with I′wJ = Iw−1
0

IwJJ∩
IwJ−1(I)wJ,0. We deduce from Proposition 3.3.1

that Fil•PJ (IndGPI σ) induces a filtration Fil•PJ (Hn(NJ , IndGPI σ)) by LJ -subrepresentations
indexed by IW J with the opposite Bruhat order and that there is a natural LJ -equivariant
isomorphism

GrIwJPJ

(
Hn

(
NJ , IndGPI σ

)) ∼= Hn

(
NJ , c-indPIIwJPJPI

σ
)

for all IwJ ∈ IW J .
Let IwJ ∈ IW J and set I′wJ := Iw−1

0
IwJJ∩

IwJ−1(I)wJ,0. We let σ̃ be an LJ∩IwJ−1(I)-
representation. Note that J ∩ IwJ−1(I) = J∩IwJ−1(I)wJ,0(J ∩ I′wJ−1(I ′)). We have

LJ∩IwJ−1(I) = J∩IwJ−1(I)wJ,0LJ∩I′wJ−1(I′)
J∩IwJ−1(I)w−1

J,0

and LJ ∩PJ∩IwJ−1(I) = J∩IwJ−1(I)wJ,0LJ ∩P−
J∩I′wJ−1(I′)

J∩IwJ−1(I)w−1
J,0,
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hence a natural LJ -equivariant isomorphism

IndLJLJ∩PJ∩IwJ−1(I)
σ̃ ∼= IndLJ

LJ∩P−
J∩I′wJ−1(I′)

σ̃
J∩IwJ−1(I)wJ,0 (46)

defined by f 7→ (l 7→ f(J∩IwJ−1(I)wJ,0l)). Proceeding as in the proof of Lemma 4.3.1, we
obtain the following result.

Lemma 4.3.2. The map J∩IwJ−1(I)WJ → J∩I′wJ−1(I′)WJ defined by wJ 7→ J∩IwJ−1(I)w−1
J,0wJ

is an order-reversing bijection.

We deduce from Lemma 4.3.2 that the left translate by Iw0 (resp. J∩IwJ−1(I)wJ,0) of
the decomposition P−I′ I

′
wJPJ =

⊔
w′J∈J∩

I′wJ−1(I′)WJ
P−I′

I′wJw′JB

(resp. LJ =
⊔

w′J∈J∩
I′wJ−1(I′)WJ

LJ ∩ P−J∩I′wJ−1(I′)w
′
JBJ)

is the decomposition PI IwJPJ =
⊔
wJ∈J∩IwJ−1(I)WJ

PI
IwJwJB

(resp. LJ =
⊔

wJ∈J∩IwJ−1(I)WJ

LJ ∩ PJ∩IwJ−1(I)wJBJ)

with the opposite closure relations. Proceeding as in § 2.2, we can construct a natural
filtration Fil•B(c-indPIIwJPJPI

σ) (resp. Fil•BJ (IndLJLJ∩PJ∩IwJ−1(I)
σ̃)) by B-subrepresentations

(resp. BJ -subrepresentations) indexed by J∩IwJ−1(I)WJ with the opposite Bruhat order,
and there is a natural B-equivariant (resp. BJ -equivariant) isomorphism

GrwJB
(

c-indPIIwJPJPI
σ
)
∼= c-indPIIwJwJBPI

σ

(resp. GrwJBJ
(

IndLJLJ∩PJ∩IwJ−1(I)
σ̃
)
∼= c-ind

LJ∩PJ∩IwJ−1(I)wJBJ

LJ∩PJ∩IwJ−1(I)
σ̃)

for all wJ ∈ J∩IwJ−1(I)WJ . Furthermore, (45) (resp. (46)) identifies this filtration
with Fil•B(c-indP

−
I′
I′wJPJ

P−
I′

σ
Iw0) (resp. Fil•BJ (IndLJ

LJ∩P−
J∩I′wJ−1(I′)

σ̃
J∩IwJ−1(I)wJ,0)), using Lemma

4.3.2 to identifiy the indexing posets, and induces a natural B-equivariant (resp. BJ -
equivariant) isomorphism

c-indPIIwJwJBPI
σ ∼= c-indP

−
I′
I′wJw′JB

P−
I′

σ
Iw0

(resp. c-ind
LJ∩PJ∩IwJ−1(I)wJBJ

LJ∩PJ∩IwJ−1(I)
σ̃ ∼= c-ind

LJ∩P−
J∩I′wJ−1(I′)

w′JBJ

LJ∩P−
J∩I′wJ−1(I′)

σ̃
J∩IwJ−1(I)wJ,0)

for all wJ ∈ J∩IwJ−1(I)WJ with w′J = J∩IwJ−1(I)w−1
J,0wJ . We deduce from Proposition

3.3.2 that Fil•B(c-indPIIwJPJPI
σ) induces a filtration Fil•B(Hn(NJ , c-indPIIwJPJPI

σ)) by BJ -
subrepresentations indexed by J∩IwJ−1(I)WJ with the opposite Bruhat order and that
there is a natural BJ -equivariant isomorphism

GrwJB
(

Hn

(
NJ , c-indPIIwJPJPI

σ
))
∼= Hn

(
NJ , c-indPIIwJwJBPI

σ
)

for all wJ ∈ J∩IwJ−1(I)WJ .
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Theorem 4.3.3. Let σ be a locally admissible LI-representation, IwJ ∈ IW J and n ∈ N.
For all wJ ∈ J∩IwJ−1(I)WJ , there is a natural B

J,J∩IwJ−1(I)w−1
J,0wJ

-equivariant isomorphism

GrwJB
(

Hn

(
NJ , c-indPIIwJPJPI

σ
))

∼= GrwJBJ
(

IndLJLJ∩PJ∩IwJ−1(I)

(
Hn−[F :Qp]dIwJ

(
LI ∩NI∩IwJ (J), σ

)IwJ ⊗ (ω ◦ δIwJ )
))

which is even LJ ∩ PJ∩J∩IwJ−1(I)w−1
J,0

IwJ−1(I)-equivariant when wJ = J∩IwJ−1(I)wJ,0.

Proof. We set I′wJ := Iw−1
0

IwJJ∩
IwJ−1(I)wJ,0 and we define an LJ∩IwJ−1(I)-representation

by setting

σ̃ :=
((

H[F :Qp](dJ−dI′wJ )−nOrdLI′∩PI′∩I′wJ (J)
σ
Iw0
)I′wJ

⊗ (ω ◦ (δJ − δI′wJ ))
)J∩IwJ−1(I)w−1

J,0

where dJ denote the integer dimF NJ and δJ ∈ X∗(LJ) denote the algebraic character
of the adjoint representation of LJ on detF (Lie NJ). We prove that there is a natural
LJ∩IwJ−1(I)-equivariant isomorphism

σ̃ ∼= Hn−[F :Qp]dIwJ
(
LI ∩NI∩IwJ (J), σ

)IwJ ⊗ (ω ◦ δIwJ ) . (47)

We have LI∩IwJ (J) = Iw0LI′∩I′wJ (J)
Iw−1

0 and LI∩PI∩IwJ (J) = Iw0LI′∩PI′∩I′wJ (J)
Iw−1

0 , hence
natural LI′∩I′wJ (J)-equivariant isomorphisms

H•OrdLI′∩PI′∩I′wJ (J)
σ
Iw0 ∼=

(
H•OrdLI∩PI∩IwJ (J)

σ
)Iw0

.

Using Lemma 2.1.1 (iii), we have (with notations analogous to dJ and δJ)

H•OrdLI∩PI∩IwJ (J)
= H[F :Qp](d

I∩IwJ (J)−dI)−•
(
LI ∩NI∩IwJ (J),−

)
⊗
(
ω−1 ◦

(
δI∩IwJ (J) − δI

))
.

Thus in order to prove (47), it remains to check that

dJ =
(
dI∩IwJ (J) − dI

)
+ dIwJ + dI′wJ ,

δJ = IwJ−1 (δI∩IwJ (J) − δI
)

+ δIwJ + J∩IwJ−1(I)wJ,0 (δI′wJ ) .

We do these computations on the corresponding Lie algebras: dJ and δJ correspond to
Φ+\Φ+

J , (dI∩IwJ (J) − dI) and IwJ−1(δI∩IwJ (J) − δI) correspond to (Φ+\Φ+
J ) ∩ IwJ−1(Φ+

I ),
dIwJ and δIwJ correspond to (Φ+\Φ+

J ) ∩ IwJ−1(−Φ+), and dI′wJ and J∩IwJ−1(I)wJ,0(δI′wJ )
correspond to (Φ+\Φ+

J )∩ IwJ−1(Φ+\Φ+
I ) (noting that Iw0(−Φ+) = (−Φ+

I )t (Φ+\Φ+
I ) and

(Φ+\Φ+
J ) ∩ IwJ−1(−Φ+

I ) = ∅). Thus, the two equalities above follow from the partition

Φ+\Φ+
J =

((
Φ+\Φ+

J

)
∩ IwJ−1 (Φ+

I

))
t
((

Φ+\Φ+
J

)
∩ IwJ−1 (−Φ+))
t
((

Φ+\Φ+
J

)
∩ IwJ−1 (Φ+\Φ+

I

))
,

which is obtained from the partition Φ = Φ+
I t (−Φ+)t (Φ+\Φ+

I ) by applying IwJ−1 and
taking the intersection with Φ+\Φ+

J .
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Let wJ ∈ J∩IwJ−1(I)WJ and set w′J := J∩IwJ−1(I)w−1
J,0wJ . By construction, (45) induces

a natural BJ -equivariant isomorphism

GrwJB
(

Hn

(
NJ , c-indPIIwJPJPI

σ
))

∼= Grw
′
J

B

(
H[F :Qp]dJ−nOrdPJ

(
c-indP

−
I′
I′wJPJ

P−
I′

σ
Iw0

)
⊗ (ω ◦ δJ)

)
.

By Theorem 3.3.3, there is a natural BJ,w′J
-equivariant isomorphism

Grw
′
J

B

(
H[F :Qp]dJ−nOrdPJ

(
c-indP

−
I′
I′wJPJ

P−
I′

σ
Iw0

)
⊗ (ω ◦ δJ)

)
∼= Grw

′
J

BJ

(
IndLJ

LJ∩P−
J∩I′wJ−1(I′)

σ̃
J∩IwJ−1(I)wJ,0

)
which is even LJ ∩ PJ∩I′wJ−1(I′)-equivariant when w′J = 1. By construction, (46) and (47)
induce a natural BJ -equivariant isomorphism

Grw
′
J

BJ

(
IndLJ

LJ∩P−
J∩I′wJ−1(I′)

σ̃
J∩IwJ−1(I)wJ,0

)
∼= GrwJBJ

(
IndLJLJ∩PJ∩IwJ−1(I)

(
Hn−[F :Qp]dIwJ

(
LI ∩NI∩IwJ (J), σ

)IwJ ⊗ (ω ◦ δIwJ )
))

.

Composing these three isomorphisms yields the result.

We deduce from Theorem 4.3.3 with wJ = J∩IwJ−1(I)wJ,0 a natural LJ -equivariant
morphism analogous to (30)

IndLJLJ∩PJ∩IwJ−1(I)

(
Hn−[F :Qp]dIwJ

(
LI ∩NI∩IwJ (J), σ

)IwJ ⊗ (ω ◦ δIwJ )
)

→ Hn

(
NJ , c-indPIIwJPJPI

σ
)

(48)

and Conjecture 3.3.4 is equivalent to (48) being an isomorphism. We also have analogues
of Propositions 3.3.5 and 3.3.7. In the case I = J , we obtain the following analogue of
Corollary 3.3.8.

Corollary 4.3.4. Let P = LN be a standard parabolic subgroup and σ be a locally
admissible L-representation.

(i) For all n ∈ N such that 0 < n < [F : Qp], we have Hn(N, IndGP π) = 0.

(ii) If σL∩sαNs−1
α

= 0 for all α ∈ ∆1\(∆1
L ∪∆⊥,1L ), then there is a natural L-equivariant

isomorphism
H[F :Qp]

(
N, IndGP σ

) ∼= ⊕
α∈∆⊥,1L

σα ⊗ (ω ◦ α) .

Remark 4.3.5. The results hold true with P−, N− and ω−1 instead of P , N and ω
respectively.
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5 Application to extensions
The aim of this section is to compute the extensions between parabolically induced rep-
resentations of G. In § 5.1, we review some cuspidality and genericity properties and we
prove some preliminary results on extensions which will be used in the case where G is
split and Z is connected. Then, the main results are proved in § 5.2. Finally, some of
these results are lifted to characteristic 0 in § 5.3.

5.1 Preliminaries
We fix a standard parabolic subgroup P = LN.

Cuspidality and genericity properties

We define some cuspidality properties and discuss the relations between them.

Definition 5.1.1. We say that an admissible smooth representation σ of L over k is:

• supersingular if Fp ⊗k σ is supersingular (in the sense of [AHHV17]),

• supercuspidal if it is irreducible and not a subquotient of IndLQ τ for any proper
parabolic subgroup Q ⊂ L with Levi quotient LQ and any irreducible admissible
smooth representation τ of LQ over k,

• right (resp. left) cuspidal if OrdQ σ = 0 (resp. σNQ = 0) for any proper parabolic
subgroup Q ⊂ L with unipotent radical NQ.

Remark 5.1.2. In [AHV17, Definition 6.3], left and right cuspidality are defined for smooth
representations using the left and right adjoint functors of IndGQ, namely LLQ and RL

Q.
Since LLQ = (−)NQ and the restriction of RL

Q to admissible representations is OrdQ− (cf.
[AHV17, Corollary 4.13]), these definitions coincide for admissible representations.

Lemma 5.1.3. Let σ be an irreducible admissible smooth representation of L over k.
The following are equivalent.

(i) σ is supercuspidal.

(ii) σ is left and right cuspidal.

(iii) Fp ⊗k σ is a (finite) direct sum of supersingular representations.

In particular, σ is supersingular if and only if it is absolutely irreducible and supercuspidal.

Proof. Over Fp, the equivalence between (i) and (ii) is [AHV17, Corollary 6.9], and the
equivalence between ‘supercuspidal’ and ‘supersingular’ is [AHHV17, Theorem 5]. By
[Eme10b, Lemma 4.1.2], Fp ⊗k σ is a finite direct sum of irreducible admissible smooth
representations of L over Fp. Since IndLQ, (−)NQ and OrdQ commute with Fp ⊗k −, we
deduce the equivalences over k.

We now study some genericity property for smooth representations of L over k with
central character. We assume that ∆⊥,1L 6= ∅.
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Lemma 5.1.4. Let σ be a smooth representation of L over k with central character
ζ : ZL → k× and α ∈ ∆⊥,1L . If ζ ◦ α∨ = ω−1, then σα ⊗ (ω−1 ◦ α) ∼= σ.

Proof. For convenience, we recall the construction of the representation σα ⊗ (ω−1 ◦ α).
Let Gα ⊆ G be the standard Levi subgroup corresponding to α. We fix a representative
nα ∈ N of sα. For every β ∈ ∆L and for all integers i, j > 0, iα + jβ 6∈ Φ (since α ⊥ β),
thus Uα and Uβ commute for every β ∈ ∆L by [BT65, Proposition 2.5], or more directly
using the Baker–Campbell–Hausdorff formula. We deduce that Gα and L normalise each
other (since Gα and L are generated by Z and respectively U±α and (Uβ)β∈±∆L). In
particular, nα normalises L (since nα ∈ Gα) and the nα-conjugate σα does not depend
on the choice of nα in nαZ up to isomorphism (since Z ⊆ L). Furthermore, L normalises
Uα and α extends (uniquely) to an algebraic character of L (since α ∈ ∆1).

We let Iα ⊆ L be the kernel of α : L → F×. Note that L = SIα. We may and will
assume that nα lies in the subgroup of Gα generated by U±α (cf. [AHHV17, § II.4]) so
that nα commutes with Iα. Thus, the action of Iα on σα ⊗ (ω−1 ◦ α) and σ is the same.

Now, assume ζ ◦ α∨ = ω−1. For any λ ∈ X∗(S), λ − sα(λ) = 〈α, λ〉α∨ so that
λ− sα(λ) ∈ X∗(S ∩ ZL) and

ζ ◦ (λ− sα(λ)) = (ζ ◦ α∨)〈α,λ〉 = ω−〈α,λ〉 =
(
ω−1 ◦ α

)
◦ λ.

We deduce that for any s ∈ S, s(nαsn−1
α )−1 ∈ S ∩ZL and ζ(s(nαsn−1

α )−1) = (ω−1 ◦α)(s).
Thus, the action of S on σα ⊗ (ω−1 ◦ α) and σ is the same.

The following result yields a converse to Lemma 5.1.4 when G is split and Z is
connected (cf. [BH15, Proposition 2.1.1]).

Lemma 5.1.5. Let σ be a smooth representation of L over k with central character
ζ : ZL → k× and α ∈ ∆⊥,1L . Assume that there exists λ ∈ X∗(ZL) such that 〈α, λ〉 = 1
and 〈β, λ〉 = 0 for all β ∈ ∆⊥,1L \{α}. If ζ ◦ α∨ 6= ω−1, then sα(ζ)(ω−1 ◦ α) 6= ζ and
sα(ζ)(ω−1 ◦ α) 6= sβ(ζ)(ω−1 ◦ β) for all β ∈ ∆⊥,1L \{α}.

Proof. We have (sα(ζ)(ω−1◦α))◦λ = (ζ ◦λ)((ζ ◦α∨)ω)−1 and (sβ(ζ)(ω−1◦β))◦λ = (ζ ◦λ)
for all β ∈ ∆⊥,1L \{α}. Thus, if sα(ζ)(ω−1 ◦ α) = ζ or sα(ζ)(ω−1 ◦ α) = sβ(ζ)(ω−1 ◦ β)
for some β ∈ ∆⊥,1L \{α}, then precomposing each side of the equality with λ yields the
equality (ζ ◦ α∨)ω = 1.

Preliminary results on extensions

Let H be a p-adic Lie group. For locally admissible smooth representations π, π′ of L
over A, we let Ext•H(π′, π) denote the A-modules of extensions computed in Modl.adm

H (A)
à la Yoneda or using an injective resolution of π. If π, π′ are admissible, then in degree 1
it is equivalent to compute Ext•H(π′, π) in Modadm

H (A) à la Yoneda, but this is not known
in higher degree (cf. [Eme10b, Remark 3.7.8]), except when H = GL2(Qp) (cf. [Paš13,
Corollary 5.17]). Let Z̃ ⊆ H be a central closed subgroup and ζ : Z̃ → A× be a smooth
character. We write Modl.adm

H,ζ (A) for the full subcategory of Modl.adm
H (A) whose objects

are the representations on which Z̃ acts via ζ. If Z̃ acts on π, π′ via ζ, then we let
Ext•H,ζ(π′, π) denote the A-modules of extensions computed in Modl.adm

H,ζ (A) à la Yoneda,
or equivalently using an injective resolution of π.
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We now assume that G is split and we write T for the maximal split torus S = Z.
Using Notation 2.3.3, we have dw = `(w) for all w ∈ W , so that in particular ∆1 = ∆.
Let L′ ⊆ G be a standard Levi subgroup such that ∆L ⊥ ∆L′ . Note that LL′ is the
standard Levi subgroup corresponding to ∆Lt∆L′ . Let σ be a locally admissible smooth
representation of L over k with central character ζ : ZL → k×. The following construction
was communicated to me by N. Abe.

First, we assume that Gder is simply connected and we let Z̃ ⊆ Z be a closed subgroup.
Recall that this is equivalent to the existence of fundamental weights (µα)α∈∆ (cf. [BH15,
Proposition 2.1.1]). We set χ := ζ ◦

∑
α∈∆L′

(α∨ ◦ µα). Thus χ ◦ α∨ = 1 for all α ∈ ∆L

and χ ◦ α∨ = ζ ◦ α∨ for all α ∈ ∆L′ , so that χ extends uniquely to L and σ0 := σ ⊗ χ−1

extends uniquely to a locally admissible smooth representation of LL′ over k by [Abe13,
Lemma 3.2]. We let χ′ : T → k× be a smooth character such that χ′|ZL′ = χ|ZL′ , so that
χ′ extends uniquely to L, and we set σ′ := σ0 ⊗ χ′. There is a commutative diagram of
k-vector spaces

Ext•T,χ|ZL′ (χ′, χ) Ext•L′,χ|ZL′
(

IndL′
B−
L′
χ′, IndL′

B−
L′
χ
)

Ext•L,χ|Z̃ (χ′, χ) Ext•LL′,χ|Z̃
(

IndLL′
LB−

L′
χ′, IndLL′

LB−
L′
χ
)

Ext•L,ζ|Z̃ (σ′, σ) Ext•LL′,ζ|Z̃
(

IndLL′
LB−

L′
σ′, IndLL′

LB−
L′
σ
)

(49)

where the horizontal arrows are induced by the functors IndL′
B−
L′

and IndLL′
LB−

L′
, the upper

vertical arrows are induced by extending representations to L and LL′, and the lower
vertical arrows are induced by tensoring representations with σ0. Furthermore, the lower
horizontal arrow of (49) composed with the k-linear morphism induced by the functor
IndGP−L′ :

Ext•LL′,ζ|Z̃
(

IndLL′
LB−

L′
σ′, IndLL′

LB−
L′
σ
)
→ Ext•G,ζ|Z̃

(
IndGP− σ′, IndGP− σ

)
, (50)

is the k-linear morphism induced by the functor IndGP− :

Ext•L,ζ|Z̃ (σ′, σ)→ Ext•G,ζ|Z̃
(
IndGP− σ′, IndGP− σ

)
. (51)

Lemma 5.1.6. (i) In degree 1, there is a k-linear injection from the cokernel of the
upper horizontal arrow of (49) into the cokernel of (51).

(ii) Assume Z connected. In all degrees, there is a k-linear injection from the kernel of
the upper horizontal arrow of (49) into the kernel of (51).

Proof. We prove (i). The map in question is induced by the composite right-hand side
vertical arrow of (49) composed with (50). Let E be an extension of IndL′

B−
L′
χ′ by IndL′

B−
L′
χ

with central character χ|ZL′ (so that E extends to LL′). Then IndGP−L′(σ0⊗E) is an exten-
sion of IndGP− σ′ by IndGP− σ on which Z̃ acts via ζ. There are L-equivariant isomorphisms

OrdP
(
IndGP−L′ (σ0 ⊗ E)

) ∼= OrdLBL′ (σ0 ⊗ E) ∼= σ0 ⊗OrdBL′ E .
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The first one results from [Eme10a, Proposition 4.3.4] and the second one from the fact
that UL′ acts trivially on σ0 (note that OrdBL′ E extends to L). If the class of E is not in
the image of the upper horizontal arrow of (49), then there is a T -equivariant isomorphism
OrdBL′ E ∼= χ, hence an L-equivariant isomorphism OrdP (IndGP−L′(σ0⊗E)) ∼= σ, thus the
class of IndGP−L′(σ0 ⊗ E) is not in the image of (51).

We prove (ii). The map in question is induced by the left-hand side composite vertical
arrow of (49). Thus, it is enough to prove that the latter is injective. We assume
Z connected. Recall that this is equivalent to the existence of fundamental coweights
(λα)α∈∆ (cf. [BH15, Proposition 2.1.1]). We let T′ ⊆ T be the closed subgroup generated
by the images of (λα)α∈∆L′

, so that T′ ⊆ ZL and the product induces an isomorphism
T′ × ZL′

∼−→ T. There is a commutative diagram of k-vector spaces

Ext•T,χ|ZL′ (χ′, χ) Ext•T ′
(
χ′|T ′ , χ|T ′

)

Ext•L,χ|Z̃ (χ′, χ) Ext•T ′
(
χ′|T ′ , χ|T ′

)

Ext•L,ζ|Z̃ (σ′, σ) Ext•T ′
(
σ′|T ′ , σ|T ′

)

∼

where the horizontal arrows are induced by restricting representations to T ′ (the upper
one is bijective with inverse induced by tensoring representations with χ|ZL′ , and the
middle and lower ones are well-defined since a locally admissible smooth representation
of L over k is locally ZL-finite, cf. [Eme10a, Lemma 2.3.4]), the left-hand side vertical
arrows are the same as in (49) and the lower right-hand side vertical arrow is induced by
tensoring representations with σ0|T ′ (it is injective since T ′ acts on σ0 via ζχ−1).

Now, we do not assume Gder simply connected. Instead we take a z-extension of G,
i.e. an exact sequence of affine algebraic F -groups

1→ Z̃→ G̃→ G→ 1

such that G̃ is reductive with simply connected derived subgroup and Z̃ is a central torus
(cf. [CT08, § 3.1]). The projection G̃ � G identifies the corresponding root systems.
We let P̃ ⊆ G̃ be the standard parabolic subgroups corresponding to P and L̃ ⊆ P̃ be
the standard Levi subgroup corresponding to L. Note that L̃ is a z-extensions of L. We
let σ′ be a locally admissible smooth representation of L over k with central character ζ.
By inflation, we obtain locally admissible smooth representations σ̃ and σ̃′ of L̃ over k.
There is a commutative diagram of k-vector spaces

Ext•L (σ′, σ) Ext•G
(
IndGP− σ′, IndGP− σ

)

Ext•
L̃,ζ|Z̃

(σ̃′, σ̃) Ext•
G̃,ζ|Z̃

(
IndG̃

P̃−
σ̃′, IndG̃

P̃−
σ̃
)∼ ∼ (52)
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where the horizontal arrows are induced by the functors IndGP− and IndG̃
P̃−

and the vertical
arrows are induced by inflating representations to L̃ and G̃ (they are well defined and
bijective since ζ|Z̃ is trivial).
Proposition 5.1.7. Assume F = Qp and G split. Let σ be a locally admissible smooth
representation of L over k with central character ζ : ZL → k×.
(i) Assume ∆⊥L 6= ∅ and let α ∈ ∆⊥L . If ζ ◦ α∨ 6= ω−1, then the k-linear injection

Ext1
L

(
σα ⊗

(
ω−1 ◦ α

)
, σ
)
↪→ Ext1

G

(
IndGP− σα ⊗

(
ω−1 ◦ α

)
, IndGP− σ

)
induced by the functor IndGP− is not surjective.

(ii) If p = 2, then the functor IndGP− induces a k-linear injection

Ext1
L (σ, σ) ↪→ Ext1

G

(
IndGP− σ, IndGP− σ

)
whose cokernel is of dimension at least card{α ∈ ∆⊥L | ζ ◦ α∨ = 1}.

Remark 5.1.8. We expect the results to hold true for a non-split reductive group with
∆⊥,1L instead of ∆⊥L .

Proof. By taking a z-extension of G and using (52), we can and do assume that Gder is
simply connected and prove analogous results for the morphism (51).

Assume ∆⊥L 6= ∅ and let α ∈ ∆⊥L . We use Lemma 5.1.6 (i) with L′ defined by
∆L′ = {α}, χ = ζ ◦ α∨ ◦ µα, and χ′ = sα(χ)(ω−1 ◦ α), so that σ′ = σα ⊗ (ω−1 ◦ α) (since
σα0 = σ0 by Lemma 5.1.4 with 1 instead of ω). If ζ ◦α∨ 6= ω−1, then the upper horizontal
arrow of (49) in degree 1 is not surjective by the mod p analogue of [Hau17, Lemme 3.1.4]
(since χ ◦ α∨ = ζ ◦ α∨ = 1), thus (51) in degree 1 is not surjective, hence (i).

We use Lemma 5.1.6 (i) with L′ defined by ∆L′ = {α ∈ ∆⊥L | ζ ◦ α∨ = 1},
χ = ζ ◦

∑
α∈∆L′

(α∨ ◦ µα), and χ′ = χ, so that σ′ = σ. If p = 2, then the cokernel
of the upper horizontal arrow of (49) in degree 1 is of dimension at least card ∆L′ by
[Hau17, Théorème 3.2.4 (ii) and Remarque 3.2.5 (ii)] (since χ ◦ α∨ = ζ ◦ α∨ = 1 so that
sα(χ) = χ by Lemma 5.1.4 for all α ∈ ∆L′), noting that all the extensions constructed in
loc. cit. have a central character (cf. [Hau17, Lemme 3.1.5]), thus the cokernel of (51)
in degree 1 is of dimension at least card ∆L′ , hence (ii).
Proposition 5.1.9. Assume F = Qp, G split and Z connected. Let σ be a locally
admissible smooth representation of L over k with central character ζ : ZL → k×. If
p 6= 2, then the functor IndGP− induces a k-linear morphism

Ext2
L (σ, σ)→ Ext2

G

(
IndGP− σ, IndGP− σ

)
whose kernel is of dimension at least card{α ∈ ∆⊥L | ζ ◦ α∨ = ω−1}.

Proof. By taking a z-extension of G (noting that the centre of G̃ is also connected because
Z̃ is connected) and using (52), we can and do assume that Gder is simply connected and
prove an analogous result for the morphism (51).

We use Lemma 5.1.6 (ii) with L′ defined by ∆L′ = {α ∈ ∆⊥L | ζ ◦ α∨ = ω−1} and
χ′ = χ, so that σ′ = σ. If p 6= 2, then we see in the proof of [Hau17, Théorème 3.2.4 (i)]
that the kernel of the upper horizontal arrow of (49) in degree 2 is of dimension at least
card ∆L′ (since χ ◦ α∨ = ζ ◦ α∨ = ω−1 for all α ∈ ∆L′), thus the kernel of (49) in degree
2 is also of dimension at least card ∆L′ , hence the result.
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5.2 Extensions between parabolically induced representations
We begin with a result when there is no inclusion between the two parabolic subgroups,
assuming a special case of Conjecture 3.3.4 (see also Remark 3.3.6).

Proposition 5.2.1. Let P = LN,P′ = L′N′ be standard parabolic subgroups and σ, σ′ be
admissible smooth representations of L,L′ respectively over k. Assume Conjecture 3.3.4
is true for A = k, n = 1 and IwJ = 1. If P′ 6⊆ P, P 6⊆ P′, and σ, σ′ are right,left cuspidal
respectively, then

Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
= 0.

Proof. We put I := ∆L and J := ∆L′ . Using (31), (39) with π = IndG
P−I

σ and PJ , LJ , σ′
instead of P, L, σ respectively yields an exact sequence of k-vector spaces

0→ Ext1
LJ

(
σ′, IndLJ

LJ∩P−I
(OrdLI∩PJ σ)

)
→ Ext1

G

(
IndG

P−J
σ′, IndG

P−I
σ
)

→ HomLJ

(
σ′,H1OrdPJ

(
IndG

P−I
σ
))

. (53)

Assume I 6⊆ J and σ right cuspidal. Then OrdLI∩PJ σ = 0 (since LI ∩PJ is a proper
parabolic subgroup of LI) and there is a natural LJ -equivariant isomorphism

IndLJ
LJ∩P−I

(
H1OrdLI∩PJ σ

) ∼−→ H1OrdPJ
(

IndG
P−I

σ
)
. (54)

Indeed, by assumption (30) is a natural LJ -equivariant isomorphism

IndLJ
LJ∩P−I

(
H1OrdLI∩PJ σ

) ∼−→ H1OrdPJ
(

c-indP
−
I PJ
PI− σ

)
and by Proposition 3.3.5 (i) with n = 1, we have H1OrdPJ (c-indP

−
I
IwJPJ

PI− σ) = 0 for all
IwJ ∈ IW J such that IwJ 6= 1 (since either dIwJ = 1 and OrdLI∩PI∩IwJ (J)

σ = 0, or dIwJ > 1
and 1− [F : Qp]dIwJ < 0). Thus, we deduce (54) from Proposition 3.3.1.

Assume J 6⊆ I and σ′ left cuspidal. Then σ′
LJ∩N−I

= 0 (since LJ ∩ P−I is a proper
parabolic subgroup of LJ) and using (40) with π = σ′ and LJ , LJ ∩P−I , LJ∩I , LJ ∩N−I ,
H1OrdLI∩PJ σ instead of G, P, L, N, σ respectively, we obtain

HomLJ

(
σ′, IndLJ

LJ∩P−I

(
H1OrdLI∩PJ σ

))
= 0.

We conclude using (53).

Now, we prove unconditional results whenever there is an inclusion between the two
parabolic subgroups. We treat the cases F = Qp and F 6= Qp separately.

Theorem 5.2.2. Assume F = Qp. Let P = LN,P′ = L′N′ be standard parabolic
subgroups and σ, σ′ be admissible smooth representations of L,L′ respectively over k.

(i) If P′ = P, σ, σ′ are supercuspidal and σ′ 6∼= σα ⊗ (ω−1 ◦ α) for all α ∈ ∆⊥,1L , then
the functor IndGP− induces a k-linear isomorphism

Ext1
L (σ′, σ) ∼−→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
.
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(ii) If P′ ( P and σ is right cuspidal, then the functor IndGP− induces a k-linear iso-
morphism

Ext1
L

(
IndLL∩P ′− σ′, σ

) ∼−→ Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
.

(iii) If P ( P′ and σ′ is left cuspidal, then the functor IndGP ′− induces a k-linear iso-
morphism

Ext1
L′

(
σ′, IndL′L′∩P− σ

)
∼−→ Ext1

G

(
IndGP ′− σ′, IndGP− σ

)
.

Remark 5.2.3. Assume P′ = P and σ, σ′ irreducible. In general, we do not know the
dimension of the cokernel of the k-linear injection Ext1

L(σ′, σ) ↪→ Ext1
G(IndGP− σ′, IndGP− σ)

induced by IndGP− , but we prove that it is at most card{α ∈ ∆⊥,1L | σ′ ∼= σα ⊗ (ω−1 ◦ α)}
whenever σ is right cuspidal or σ′ is left cuspidal (see the proof). If σ, σ′ are supersingular,
then letting ζ : ZL → k× denote the central character of σ (cf. [Eme10b, Lemma 4.1.7]),
we expect this dimension to be equal to

card
{
α ∈ ∆⊥,1L

∣∣∣ σ′ ∼= σα ⊗
(
ω−1 ◦ α

)
and ζ ◦ α∨ 6= ω−1

}
except when p = 2 and in some exceptional cases (cf. [Hau17, Remarque 3.2.5] when G
is split and P = B). We prove this when G is split and Z is connected (see Theorem
5.2.7 below), in which case the cardinal above is equal to 1 if σ′ ∼= σα⊗ (ω−1 ◦α) 6∼= σ for
some α ∈ ∆⊥,1L and 0 otherwise by Lemma 5.1.5. When G is split but Z is not connected,
one could prove that the cardinal above is a lower bound using Proposition 5.1.7 (i) and
some generalisation of [Hau17, § 2.2] for P 6= B.

Proof. We prove slightly more general results.
Assume P′ ⊆ P and σ satisfies the condition in Corollary 3.3.8 (ii), e.g. σ is

right cuspidal. Using [Eme10a, Proposition 4.3.4] and Corollary 3.3.8 (ii), (39) with
π = IndGP− σ and IndLL∩P ′− σ′ instead of σ yields an exact sequence of k-vector spaces

0→ Ext1
L

(
IndLL∩P ′− σ′, σ

)
→ Ext1

G

(
IndGP ′− σ′, IndGP− σ

)
→

⊕
α∈∆⊥,1L

HomL

(
IndLL∩P ′− σ′, σα ⊗

(
ω−1 ◦ α

))
. (55)

If P′ = P and σ, σ′ are irreducible, then σα⊗ (ω−1 ◦α) is also irreducible for all α ∈ ∆⊥,1L ,
and thus the last term of (55) has dimension equal to card{α ∈ ∆⊥,1L | σ′ ∼= σα⊗(ω−1◦α)},
hence (i). If P′ ( P and σ is right cuspidal, then L ∩P′ is a proper parabolic subgroup
of L and

OrdL∩P ′
(
σα ⊗

(
ω−1 ◦ α

)) ∼= (OrdL∩P ′ σ)α ⊗
(
ω−1 ◦ α

)
= 0

for all α ∈ ∆⊥,1L , thus the last term of (55) is zero by [Eme10a, Theorem 4.4.6], hence
(ii).

Assume P ⊆ P′ and σ′ satisfies the condition in Corollary 4.3.4 (ii) for P′− = L′N′−,
e.g. σ′ is left cuspidal. Using [Vig16, Theorem 5.3, 3] and Corollary 4.3.4 (ii) for
P′− = L′N′− (see Remark 4.3.5), (43) with π = IndGP ′− σ′ and P′−, L′, N′−, IndL′L′∩P− σ
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instead of P, L, N, σ respectively yields an exact sequence of k-vector spaces

0→ Ext1
L′

(
σ′, IndL′L′∩P− σ

)
→ Ext1

G

(
IndGP ′− σ′, IndGP− σ

)
→

⊕
α∈∆⊥,1L′

HomL′

(
σ′α ⊗

(
ω−1 ◦ α

)
, IndL′L′∩P− σ

)
. (56)

If P′ = P and σ, σ′ are irreducible, then σ′α⊗(ω−1 ◦α) is also irreducible for all α ∈ ∆⊥,1L ,
and thus the last term of (56) has dimension equal to card{α ∈ ∆⊥,1L′ | σ′ ∼= σα⊗(ω−1◦α)},
hence (i). If P ( P′ and σ′ is left cuspidal, then L′ ∩P− is a proper parabolic subgroup
of L′ and (

σ′α ⊗
(
ω−1 ◦ α

))
L′∩N−

∼= (σ′L′∩N−)α ⊗
(
ω−1 ◦ α

)
= 0

for all α ∈ ∆⊥,1L , thus the last term of (56) is zero using (40) with π = σ′α ⊗ (ω−1 ◦ α)
and L′, L′ ∩P−, L′ ∩ L, L′ ∩N− instead of G, P, L, N respectively, hence (iii).

Theorem 5.2.4. Assume F 6= Qp. Let P = LN be a standard parabolic subgroup. The
functor IndGP− induces an A-linear isomorphism

Ext1
L (σ′, σ) ∼−→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
for all locally admissible smooth representations σ, σ′ of L over A.

Proof. Let σ, σ′ be locally admissible smooth representations of L over A. Using [Eme10a,
Proposition 4.3.4] and Corollary 3.3.8 (i), (39) with π = IndGP− σ and σ′ instead of σ yields
the isomorphism in the statement.

Corollary 5.2.5. Assume F 6= Qp. Let P = LN,P′ = L′N′ be standard parabolic
subgroups and σ, σ′ be admissible smooth representations of L,L′ respectively over k.

(i) If P′ ⊆ P, then the functor IndGP− induces a k-linear isomorphism

Ext1
L

(
IndLL∩P ′− σ′, σ

) ∼−→ Ext1
G

(
IndGP ′− σ′, IndGP− σ

)
.

(ii) If P ⊆ P′, then the functor IndGP ′− induces a k-linear isomorphism

Ext1
L′

(
σ′, IndL′L′∩P− σ

)
∼−→ Ext1

G

(
IndGP ′− σ′, IndGP− σ

)
.

Remark 5.2.6. Theorem 5.2.2 (i) and Theorem 5.2.4 are encompassed in a more general
(but conditional to a conjecture of Emerton) result. Let P = LN be a standard parabolic
subgroup, σ, σ′ be locally admissible smooth representations of L over A and n ∈ N. The
functor IndGP− induces an A-linear morphism

ExtnL (σ′, σ)→ ExtnG
(
IndGP− σ′, IndGP− σ

)
(57)

and there is a spectral sequence of A-modules (cf. [Eme10b, (3.7.4)])

ExtiL
(
σ′,RjOrdP

(
IndGP− σ

))
⇒ Exti+jG

(
IndGP− σ′, IndGP− σ

)
(58)

where R•OrdP denotes the right derived functors of OrdP : Modl.adm
G (A)→ Modl.adm

L (A).
Now assume that [Eme10b, Conjecture 3.7.2] is true, i.e. R•OrdP

∼−→ H•OrdP . Using
Corollary 3.3.8, one can deduce from (58) that:
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• if n < [F : Qp], then (57) is an isomorphism;

• if n = [F : Qp], then (57) is injective and if furthermore σ, σ′ are supercuspidal,
then the dimension of its cokernel is at most card{α ∈ ∆⊥,1L | σ′ ∼= σα⊗ (ω−1 ◦ α)}.

One can also generalise Proposition 5.2.1 and Theorem 5.2.2 (ii) and (iii) in all degrees
n ≤ [F : Qp].

Finally, we complete Theorem 5.2.2 (i) when G is split and Z is connected.

Theorem 5.2.7. Assume F = Qp, G split and Z connected. Let P = LN be a standard
parabolic subgroup and σ, σ′ be supersingular representations of L over k.

(i) If σ′ ∼= σα ⊗ (ω−1 ◦ α) 6∼= σ for some α ∈ ∆⊥L , then Ext1
L(σ′, σ) = 0 and

dimk Ext1
G

(
IndGP− σ′, IndGP− σ

)
= 1.

(ii) If either σ′ ∼= σ and p 6= 2, or σ′ 6∼= σα⊗ (ω−1 ◦α) for any α ∈ ∆⊥L , then the functor
IndGP− induces a k-linear isomorphism

Ext1
L (σ′, σ) ∼−→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
.

(iii) If p = 2, then the functor IndGP− induces a k-linear injection

Ext1
L (σ′, σ) ↪→ Ext1

G

(
IndGP− σ′, IndGP− σ

)
whose cokernel is of dimension card{α ∈ ∆⊥L | σ′ ∼= σα}.

Proof. Since σ is absolutely irreducible, it has a central character ζ : ZL → k× (cf.
[Eme10b, Lemma 4.1.7]).

We first assume that σ′ ∼= σα⊗ (ω−1 ◦α) 6∼= σ for some α ∈ ∆⊥L . We have ζ ◦α∨ 6= ω−1

by Lemma 5.1.4, so that σ and σ′ have distinct central characters by Lemma 5.1.5, thus
Ext1

L(σ′, σ) = 0 (cf. [Paš10, Proposition 8.1]). Furthermore, σ′ 6∼= σβ ⊗ (ω−1 ◦ β) for any
β ∈ ∆⊥L\{α} (since the central characters are distinct by Lemma 5.1.5). Using (55) with
P′ = P and L′ = L, we deduce that

dimk Ext1
G

(
IndGP− σ′, IndGP− σ

)
≤ 1.

Since the left-hand side is non-zero by Proposition 5.1.7 (i), this proves (i).
We now prove (ii). If σ′ 6∼= σα ⊗ (ω−1 ◦ α) for any α ∈ ∆⊥L , then the result follows

from Theorem 5.2.2 (i). Assume that σ′ ∼= σ and p 6= 2. The terms of low degree of (58)
form an exact sequence of k-vector spaces

0→ Ext1
L (σ, σ)→ Ext1

G

(
IndGP− σ, IndGP− σ

)
→ HomL

(
σ,R1OrdP

(
IndGP− σ

))
→ Ext2

L (σ, σ)→ Ext2
G

(
IndGP− σ, IndGP− σ

)
. (59)

Since there is an injection of functors R1OrdP ↪→ H1OrdP (cf. [Eme10b, Remark 3.7.3]),
we deduce from Corollary 3.3.8 (ii) and Lemma 5.1.5 that

dimk HomL

(
σ,R1OrdP

(
IndGP− σ

))
≤ card

{
α ∈ ∆⊥L

∣∣ ζ ◦ α∨ = ω−1} .
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Thus, we deduce from Proposition 5.1.9 that the third arrow of (59) is zero, hence the
result.

Finally, we assume p = 2 and we prove (iii). By Proposition 5.1.7 (ii) we have a
lower bound and using (55) with P′ = P and L′ = L we obtain an upper bound. Using
Lemmas 5.1.4 and 5.1.5 together with the fact that ω = 1, we see that both are equal to
card{α ∈ ∆⊥L | σ′ ∼= σα}.

Remark 5.2.8. Theorem 5.2.7 (i) can also be generalised in the context of Remark 5.2.6.
Let P = LN be a standard parabolic subgroup and σ, σ′ be supersingular representations
of L over k such that σ′ ∼= σα ⊗ (ω−1 ◦ α) 6∼= σ for some α ∈ ∆⊥L . Assume G split,
Z connected and [Eme10b, Conjecture 3.7.2] is true. Using Corollary 3.3.8 and Lemma
5.1.5, one can deduce from (58) that Ext[F :Qp]

L (σ′, σ) = 0 and

dimk Ext[F :Qp]
G

(
IndGP− σ′, IndGP− σ

)
= 1.

Corollary 5.2.9. Assume G split and Z connected. If Conjecture 3.3.4 is true for A = k,
n = 1 and IwJ = 1, then [Hau16b, Conjecture 3.17] is true.

Proof. Even though [Hau16b, Conjecture 3.17] is formulated under the hypotheses G
split, Z connected and Gder simply connected, we do not need the last one to prove it:
(i) is Proposition 5.2.1, which is conditional to Conjecture 3.3.4 for A = k, n = 1 and
IwJ = 1; (ii) is Theorem 5.2.7 (i); (iii) and (iv) are Corollary 5.2.5 (i) and (ii) respectively
when F 6= Qp, Theorem 5.2.2 (ii) and (iii) respectively when F = Qp and P′ 6= P,
Theorem 5.2.7 (ii) when F = Qp, P′ = P and p 6= 2, and Theorem 5.2.7 (iii) when
F = Qp, P′ = P and p = 2 (noting that if p = 2, then ω = 1 and IndGP− σ is irreducible
if and only if σα 6∼= σ for all α ∈ ∆⊥L , cf. [Abe13, Lemma 5.8] and Lemma 5.1.5).

5.3 Results for unitary continuous p-adic representations
Let H be a p-adic Lie group. A continuous representation of H over E is an E-Banach
space Π endowed with an E-linear action ofH such that the mapH×Π→ Π is continuous.
It is admissible if the continuous dual Π∗ := Homcont

H (Π, E) is of finite type over the
Iwasawa algebra E⊗OO[[H0]] for some (equivalently any) compact open subgroupH0 ⊆ H
(cf. [ST02]). It is unitary if there exists an H-stable bounded open O-lattice Π0 ⊆ Π. We
write Banadm,u

H (E) for the category of admissible unitary continuous representations of H
over E and H-equivariant E-linear continuous morphisms. It is an E-abelian category.

We fix a uniformiser $ of O. Following [Eme10a, § 2.4], we let Mod$−adm
H (O)fl be the

category of $-torsion-free $-adically complete and separated O-modules Π0 such that
Π0/$Π0 is admissible as a smooth representation of H over k and H-equivariant O-linear
morphisms. It is an O-abelian category and the localised category E ⊗O Mod$−adm

H (O)fl

is equivalent to Banadm,u
H (E).

The E-vector spaces Ext1
H(Π′,Π) of Yoneda extensions between admissible unitary

continuous representations Π,Π′ of H over E are computed in Banadm,u
H (E). For all

n ≥ 1, the O/$nO-modules Ext1
H(π′, π) of Yoneda extensions between admissible smooth

representations π, π′ of H over O/$nO are computed in Modadm
H (O/$nO). The following

result is a slight generalisation of [Hau16a, Proposition B.2].
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Proposition 5.3.1. Let H be a p-adic Lie group, Π,Π′ be admissible unitary continuous
representations of H and π, π′ be the reductions mod $ of H-stable bounded open O-
lattices Π0,Π′0 of Π,Π′ respectively. Assume that dimk HomH(π′, π) < ∞. There is an
E-linear isomorphism

Ext1
H (Π′,Π) ∼= E ⊗O lim←−

n≥1

(
Ext1

H

(
Π′0/$nΠ′0,Π0/$nΠ0)) .

Furthermore, dimE Ext1
H(Π′,Π) ≤ dimk Ext1

H(π′, π).

Proof. In the proof of [Hau16a, Proposition B.2], the hypothesis that π′ is of finite length
is only used to prove that HomH(Π′0/$nΠ′0,Π0/$nΠ0) is of finite type over O/$nO for
all n ≥ 1. But this can be proved by induction using that dimk HomH(π′, π) <∞.

Let P = LN be a parabolic subgroup. We recall that the continuous parabolic
induction functor is defined for any continuous representation Σ of L over E by

IndGP− Σ :=
{
f : G→ Σ continuous

∣∣ f(pg) = p · f(g) ∀p ∈ P−,∀g ∈ G
}
.

We obtain an E-linear exact functor IndGP− : Banadm,u
L (E) → Banadm,u

G (E) (cf. [Eme10a,
§ 4.1]). Furthermore, there is a natural G-equivariant E-linear continuous isomorphism
(cf. [Eme10a, Lemma 4.1.3])

IndGP− Σ ∼= E ⊗O lim←−
n≥1

(
IndGP−

(
Σ0/$nΣ0)) .

We extend the definition of the ordinary parts functor to any admissible unitary continu-
ous representation Π of G over E by setting

OrdP Π := E ⊗O lim←−
n≥1

(
OrdP

(
Π0/$nΠ0))

for some (equivalently any) G-stable bounded open O-lattice Π0 ⊆ Π. We obtain an E-
linear left-exact functor OrdP : Banadm,u

G (E)→ Banadm,u
L (E) which is a left quasi-inverse

and the right adjoint of IndGP− (cf. [Eme10a, Theorem 3.4.8, Corollary 4.3.5 and Theorem
4.4.6]).

Definition 5.3.2. We say that an admissible unitary continuous representation Σ of L
over E is right cuspidal if OrdQ Σ = 0 for any proper parabolic subgroup Q ⊂ L.

Remark 5.3.3. We also extend the Jacquet functor to continuous representations of G over
E by taking the Hausdorff completion of the N -coinvariants. We obtain the left adjoint
of IndGP by Frobenius reciprocity and the universal property of coinvariants. However,
we do not know whether it preserves admissibility. For unitary representations, it does
not behave well with respect to reduction mod $n (n ≥ 1). Nevertheless, we say that an
admissible unitary continuous representation Σ of L over E is left cuspidal if ΣNQ = 0
for any proper parabolic subgroup Q ⊂ L with unipotent radical NQ.

We now turn to extensions computations. Our main tool is the following result, which
gives a weak p-adic analogue of the exact sequence (39).
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Proposition 5.3.4. Let P = LN be a standard parabolic subgroup, Σ,Σ′ be admissible
unitary continuous representations of L respectively over E and σ, σ′ be the reductions
mod $ of L-stable bounded open O-lattices Σ0,Σ′0 of Σ,Σ′ respectively. Assume that
dimk HomL(σ′, σ) <∞. There is a natural exact sequence of E-vector spaces

0→ Ext1
L (Σ′,Σ)→ Ext1

G

(
IndGP− Σ′, IndGP− Σ

)
→ HomL

(
Σ′, E ⊗O lim←−

n≥1

(
H1OrdP

(
IndGP−

(
Σ0/$nΣ0)))) .

Proof. For all n ≥ 1, (39) with A = O/$nO, π = IndGP−(Σ0/$nΣ0) and σ = Σ′0/$nΣ′0
yields, using [Eme10a, Proposition 4.3.4], an exact sequence of O/$nO-modules

0→ Ext1
L

(
Σ′0/$nΣ′0,Σ0/$nΣ0)→ Ext1

G

(
IndGP−

(
Σ′0/$nΣ′0

)
, IndGP−

(
Σ0/$nΣ0))

→ HomL

(
Σ′0/$nΣ′0,H1OrdP

(
IndGP−

(
Σ0/$nΣ0))) . (60)

Note that the composite H1OrdP ◦ IndGP− : Modadm
L (O/$nO)→ Modadm

L (O/$nO) is left-
exact for all n ≥ 1 by [Eme10a, Proposition 4.3.4] and [Eme10b, Corollary 3.4.8]. Thus
lim←−n≥1(H1OrdP (IndGP−(Σ0/$nΣ0))) is a $-adically admissible representation of L over O
by [Eme10a, Corollary 3.4.5]. Furthermore, it is $-torsion-free and the projective limit
topology coincide with the $-adic topology (cf. [Eme10a, Proposition 3.4.3 (1) and (3)]).
Thus

E ⊗O lim←−
n≥1

(
H1OrdP

(
IndGP−

(
Σ0/$nΣ0)))

is an admissible unitary continuous representation of L over E. Taking the projective
limit over n ≥ 1 of (60) and inverting $ and using Proposition 5.3.1 yields the desired
exact sequence.

Remark 5.3.5. In order to obtain an analogue of (39) for any admissible unitary continu-
ous representations Σ,Π of L,G respectively over E, one has to prove that the $-torsion
of lim←−n≥1(H1OrdP (Π0/$nΠ0)) is of bounded exponent (i.e. annihilated by a power of $)
for some (equivalently any) G-stable bounded open O-lattice Π0 ⊆ Π.

We now use Proposition 5.3.4 to compute extensions between parabolically induced
representations.

Theorem 5.3.6. Assume F = Qp. Let P = LN,P′ = L′N′ be standard parabolic
subgroups, Σ,Σ′ be admissible unitary continuous representations of L,L′ respectively
over E and σ, σ′ be the reductions mod $ of L,L′-stable bounded open O-lattices of Σ,Σ′
respectively. Assume that dimk HomG(IndGP ′− σ′, IndGP− σ) <∞ and Σ is right cuspidal.

(i) If P′ = P, Σ,Σ′ are topologically irreducible and Σ′ 6∼= Σα⊗(ε−1◦α) for all α ∈ ∆⊥,1L ,
then the functor IndGP− induces an E-linear isomorphism

Ext1
L (Σ′,Σ) ∼−→ Ext1

G

(
IndGP− Σ′, IndGP− Σ

)
.

(ii) If P′ ( P, then the functor IndGP− induces an E-linear isomorphism

Ext1
L

(
IndLL∩P ′− Σ′,Σ

) ∼−→ Ext1
G

(
IndGP ′− Σ′, IndGP− Σ

)
.
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Remark 5.3.7. Assume P′ = P and Σ,Σ′ topologically irreducible. We do not know the di-
mension of the cokernel of the E-linear injection Ext1

L(Σ′,Σ) ↪→ Ext1
G(IndGP− Σ′, IndGP− Σ)

induced by IndGP− , but we prove that it is at most card{α ∈ ∆⊥,1L | Σ′ ∼= Σα ⊗ (ε−1 ◦ α)}
(see the proof). If Σ,Σ′ are absolutely topologically irreducible and supercuspidal, then
letting ζ : ZL → O× ⊂ E× be the central character of Σ (cf. [DS13, Theorem 1.1, 2)]),
we expect this dimension to be equal to

card
{
α ∈ ∆⊥,1L

∣∣∣ Σ′ ∼= Σα ⊗
(
ε−1 ◦ α

)
and ζ ◦ α∨ 6= ε−1

}
.

Proof. Let Σ0 ⊆ Σ be an L-stable bounded open O-lattice. For all n ≥ 1, we deduce
from Propositions 3.3.1 and 3.3.5 (i) that there is a natural L-equivariant O/$nO-linear
isomorphism

H1OrdP
(
IndGP−

(
Σ0/$nΣ0)) ∼= ⊕

α∈∆1\∆L

H1OrdP
(

c-indP−sαPP−

(
Σ0/$nΣ0)) . (61)

Furthermore, if α ∈ ∆⊥,1L , then there is a natural L-equivariant O/$nO-linear isomorph-
ism

H1OrdP
(

c-indP−sαPP−

(
Σ0/$nΣ0)) ∼= (Σ0/$nΣ0)α ⊗ (ω−1 ◦ α

)
hence a natural L-equivariant E-linear continuous isomorphism

E ⊗O lim←−
n≥1

(
H1OrdP

(
c-indP−sαPP−

(
Σ0/$nΣ0))) ∼= Σα ⊗

(
ε−1 ◦ α

)
,

whereas if α 6∈ ∆⊥L , then there is natural filtration of H1OrdP (c-indP−sαPP− (Σ0/$nΣ0))
by BL-subrepresentations such that each term of the associated graded representation is
isomorphic as an O/$nO-modules to

Csm
c
(
U ′L,OrdL∩sαPs−1

α

(
Σ0/$nΣ0))

for some closed subgroup U′L ⊆ UL, and since OrdL∩sαPs−1
α

Σ = 0 we deduce that

E ⊗O lim←−
n≥1

(
H1OrdP

(
c-indP−sαPP−

(
Σ0/$nΣ0))) = 0.

Thus, taking the projective limit of (61) over n ≥ 1 and inverting $ yields a natural
L-equivariant E-linear continuous isomorphism

E ⊗O lim←−
n≥1

(
H1OrdP

(
IndGP−

(
Σ0/$nΣ0))) ∼= ⊕

α∈∆⊥,1L

Σα ⊗
(
ε−1 ◦ α

)
. (62)

Now Proposition 5.3.4 with IndLL∩P ′− Σ′ instead of Σ′ yields, using (62), an exact
sequence of E-vector spaces

0→ Ext1
L

(
IndLL∩P ′− Σ′,Σ

)
→ Ext1

G

(
IndGP ′− Σ′, IndGP− Σ

)
→

⊕
α∈∆⊥,1L

HomL

(
IndLL∩P ′− Σ′,Σα ⊗

(
ε−1 ◦ α

))
. (63)
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If P′ = P and Σ,Σ′ are topologically irreducible, then Σα⊗ (ε−1 ◦α) is also topologically
irreducible for all α ∈ ∆⊥,1L , and thus the last term of (63) has dimension equal to
card{α ∈ ∆⊥,1L | Σ′ ∼= Σα ⊗ (ε−1 ◦ α)}, hence (i). If P′ ( P, then L ∩ P′ is a proper
parabolic subgroup of L so that

OrdL∩P ′
(
Σα ⊗

(
ε−1 ◦ α

))
= (OrdL∩P ′ Σ)α ⊗

(
ε−1 ◦ α

)
= 0

for all α ∈ ∆⊥,1L , thus the last term of (63) is zero, hence (ii).

Remark 5.3.8. Theorem 5.2.2 (iii) cannot be directly lifted to characteristic 0 because we
do not have a weak p-adic analogue of the exact sequence (43) (since it uses the Jacquet
functor, see Remark 5.3.3). However, assuming Conjecture 3.3.4 true for A = O/$rO
(r ≥ 1), n = 1, I ( J and IwJ = sα (α ∈ ∆1\J), one can recover this case: with notation
and assumptions as in Theorem 5.3.6, if P ( P′ and Σ′ is left cuspidal, then the functor
IndGP ′− induces an E-linear isomorphism

Ext1
L′

(
Σ′, IndLL′∩P− Σ

) ∼−→ Ext1
G

(
IndGP ′− Σ′, IndGP− Σ

)
.

Theorem 5.3.9. Assume F 6= Qp. Let P = LN be a standard parabolic subgroup,
Σ,Σ′ be admissible unitary continuous representations of L over E and σ, σ′ be the re-
ductions mod $ of L-stable bounded open O-lattices of Σ,Σ′ respectively. Assume that
dimk HomL(σ′, σ) <∞. Then, the functor IndGP− induces an E-linear isomorphism

Ext1
L (Σ′,Σ) ∼−→ Ext1

G

(
IndGP− Σ′, IndGP− Σ

)
.

Proof. Let Σ0 ⊆ Σ be an L-stable bounded openO-lattice. By Corollary 3.3.8 (i), we have
H1OrdP (IndGP−(Σ0/$nΣ0)) = 0 for all n ≥ 1. Thus, the result follows from Proposition
5.3.4.

We end with a remark on the case where there is no inclusion between the two para-
bolic subgroups.
Remark 5.3.10. Let P = LN,P′ = L′N′ be standard parabolic subgroups, Σ,Σ′ be
admissible unitary continuous representations of L,L′ respectively over E and σ, σ′ be the
reductions mod $ of L,L′-stable bounded open O-lattices of Σ,Σ′ respectively. Assume
Conjecture 3.3.4 is true for A = O/$rO (r ≥ 1), n = 1 and IwJ = 1. Assume further
dimk HomG(IndGP ′− σ′, IndGP− σ) < ∞ and the $-torsion of lim←−n≥1(H1OrdL∩P (Σ0/$nΣ0))
is of bounded exponent (see Remark 5.3.5). Then, one can prove the following p-adic
analogue of Proposition 5.2.1: if P′ 6⊆ P, P 6⊆ P′, and Σ,Σ′ are right,left cuspidal
respectively, then

Ext1
G

(
IndGP ′− Σ′, IndGP− Σ

)
= 0.
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