Parabolic induction and extensions

Julien Hauseux*

Abstract

Let G be a p-adic reductive group. We determine the extensions between admiss-
ible smooth mod p representations of G parabolically induced from supersingular
representations of Levi subgroups of G, in terms of extensions between representa-
tions of Levi subgroups of G and parabolic induction. This proves for the most part
a conjecture formulated by the author in a previous article and gives some strong
evidence for the remaining part. In order to do so, we use the derived functors
of the left and right adjoints of the parabolic induction functor, both related to
Emerton’s d-functor of derived ordinary parts. We compute the latter on parabol-
ically induced representations of G by pushing to their limits the methods initiated
and expanded by the author in previous articles.
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1 Introduction

The study of representations of a p-adic reductive group G over a field of characteristic p
has a strong motivation in the search for a possible mod p Langlands correspondence for G.
Recently, Abe, Henniart, Herzig and Vignéras ([AHHV17]) gave a complete classification
of the irreducible admissible smooth representations of GG over an algebraically closed field
of characteristic p in terms of supersingular representations of the Levi subgroups of G
and parabolic induction, generalising the results of Barthel and Livné for GL, ([BL94]),
Herzig for GL,, ([Herll]) and Abe for a split G' ([Abel3]).

Two major difficulties come into play when trying to extend the mod p Langlands
correspondence beyond GL2(Q,). First, the supersingular representations of G' remain
completely unknown, except for some reductive groups of relative semisimple rank 1
over Q, (JAbd14, [Chel3| [Koz16]) using the classification of Breuil for GLy(Q,) ([Bre03]).
Second, it is expected that such a correspondence would involve representations of G with
many irreducible constituents (see e.g. [BHI5]). This phenomenon already appears for
GL3(Q,) when the Galois representation is an extension between two characters, in which
case the associated representation of GLy(Q,) is an extension between two principal series
([Coll0]). This raises the question of the extensions between representations of G.

In this article, we intend to compute the extensions between admissible smooth mod p
representations of GG parabolically induced from supersingular representations of Levi
subgroups of GG, in terms of extensions between representations of Levi subgroups of GG
and parabolic induction.

In order to do so, we use the derived functors of the left and right adjoints of the
parabolic induction functor, namely the Jacquet functor and the ordinary parts functor
([Emel0a]), both related to Emerton’s o-functor of derived ordinary parts ([EmelOb]).
We compute the latter on parabolically induced representations of G' by pushing to their
limits the methods initiated in [Haul6a] and expanded in [HaulGbh].

These computations have also been used to study the deformations of parabolically
induced admissible smooth mod p representations of GG in a joint work with T. Schmidt
and C. Sorensen ([HSS16]).

Presentation of the main results

We let F/Q, and k/F, be finite extensions. We fix a connected reductive algebraic
F-group G, a minimal parabolic subgroup B C G and a maximal split torus S C B.
We write the corresponding groups of F-points G, B, S, etc. We let A denote the set
of simple roots of S in B. To each @ € A correspond a simple reflection s, and a root
subgroup U, C B. We put A! .= {a € A | dimp U, = 1}.

Let P = LN be a standard parabolic subgroup. We write Ay, C A for the corres-
ponding subset and we put AL == {a € A | (a,3Y) =0V3 € AL} and Ap' == AL NAL
For o € Ap', conjugation by (any representative of) s, stabilises L and a extends to an
algebraic character of L (see the proof of Lemma [5.1.4)).

We let P~ denote the opposite parabolic subgroup. Recall the parabolic induction
functor Ind$_ from the category of admissible smooth representations of L over k to the
category of admissible smooth representations of G over k, which is k-linear, fully faithful
and exact ([Emel0a)]). In particular, it induces a k-linear injection Ext} < Extg,.



Let o be an admissible smooth representation of L over k. For o € Ay, we con-
sider the admissible smooth representation o® ®@ (w™! o a) of L over k where o is the
sa-conjugate of o and w : F* — F C k™ is the mod p cyclotomic character. We say that

o is supersingular if it is absolutely irreducible and F, ®y, o is supersingular (JAHHVIT]).
In [Haul6b], we formulated the following conjecture. In cases (iii) and (iv), ‘Otherwise’
means that the conditions of case (ii) are not all satisfied.

Conjecture 1.1 (|[Haul6b, Conjecture 3.17]). Assume G split with connected centre
and simply connected derived subgroup. Let P = LN, P’ = L'N’ be standard parabolic
subgroups and o,0’ be supersingular representations of L, L’ respectively over k. Assume
Ind$- o, Ind$,_ o drreducible or p # 2.

(i) IfP'Z P and P L P, then Extg, (Indf%- o/, IndG- o) = 0.
(i) fF=Q,, PP=Pand o’ X o*® (w'oa) %o for some a € At, then

dimy Extg; (Ind@- o/, Ind§- o) = 1.

(iit) Otherwise if P’ C P, then the functor Ind$- induces a k-linear isomorphism

Ext) (Indf,p- 0',0) — Extg; (Ind%- o/, Ind%- o).
(iv) Otherwise if P C P', then the functor IndS, induces a k-linear isomorphism
Ext;, (a’, Indgmp, a> 5 Extg, (Indg,, o', Ind%_ a) .

We prove cases (ii), (iii) and (iv) of this conjecture and give some strong evidence for
case (i). We actually work without any assumption on G and our results hold true for
broader classes of representations (see § for more precise statements). We also prove
similar results for unitary continuous p-adic representations (see §

We treat the cases ' = Q, and F' # Q, separately. They are in fact the degree 1
case of a more general (but conditional to a conjecture of Emerton) result on the k-linear
morphism Ext} — Ext? induced by Ind%_ in all degrees n < [F : @,] (see Remark.

Theorem 1.2 (Theorem [5.2.2). Assume F = Q,. Let P = LN, P’ = L'N’ be standard
parabolic subgroups and o,o’ be supersingular representations of L, L' respectively over k.

(i) If P’ =P and o' £ 0°® (w o) for all a € Ay, then the functor Ind$ induces
a k-linear isomorphism

Ext} (0/,0) = Extg (Ind§- o/, Ind%- o) .

(ii) If P’ C P, then the functor IndS_ induces a k-linear isomorphism

Ext} (Indfp- o' ,0) — Extg (Ind%- o/, Ind§- o) .
(iii) If P C P’, then the functor Ind%, induces a k-linear isomorphism
Ext7, (a', Ind%, - O'> 5 Extg (IndG- o/, Ind- o) .
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If P’ = P, we do not know the exact dimension of the cokernel of the k-linear injection
Ext}(0’,0) < Ext,(Ind%- ¢/, Ind%- o) induced by Ind%- in general, but we prove that
it is at most card{a € Ap' | 0/ 2 6* ® (w ' oa)} (see Remark m for more details).
Further, we compute it when G is split with connected centre (see Theorem below).
Note that in cases (ii) and (iii), the source of the isomorphism can be non-zero ([Hul6]).

Theorem 1.3 (Theorem [5.2.4)). Assume F # Q,. Let P = LN be a standard parabolic
subgroup. The functor Indp- induces a k-linear isomorphism

Ext} (0/,0) — Extg (Ind§- o/, Ind§- o)
for all admissible smooth representations o,0’ of L over k.

In particular, Theorem (ii) and (iii) hold true for any admissible smooth repres-
entations o, 0’ of L, L' respectively over k when F' # Q, (see Corollary [5.2.5]).
We complete Theorem [1.2] (i) when G is split with connected centre (see also Remark

for a more general, but conditional to a conjecture of Emerton, result on the k-linear

morphism Ext!" % — Ext" %! induced by Ind$ ).

Theorem 1.4 (Theorem [5.2.7)). Assume F = Q, and G split with connected centre. Let
P = LN be a standard parabolic subgroup and o,c’ be supersingular representations of L
over k.

(i) If o' 2 0*® (W oa) # o for some a € At, then Exty(o’,0) =0 and
dimy, Extg; (Ind%- o/, Ind%- o) = 1.
(ii) If either o’ 2 o andp # 2, or o’ #* 0®® (wloa) for any o € Ag, then the functor
Ind%_ induces a k-linear isomorphism

Ext; (0, 0) — Extg (Indg_ o', Ind$- o).

(iii) If p =2, then the functor Indg_ induces a k-linear injection
Ext} (0/,0) < Extg; (Ind%- o', Ind§- o)
whose cokernel is of dimension card{a € AL | o’ = o°}.

Finally, we treat the case where there is no inclusion between the two parabolic
subgroups, assuming a special case of Conjecture below (see also Remark [3.3.6)).

Proposition 1.5 (Proposition [5.2.1)). Let P = LN, P’ = L'N’ be standard parabolic
subgroups and o,0’ be supersingular representations of L, L’ respectively over k. Assume
Conjecture is true for A=k, n=1and w’ =1. IfP"Z P and P € P’, then

Exty; (Indf- o', Ind%- o) = 0.

As a consequence, Conjecture [1.1]is true under the same assumption when G is split
with connected centre (without assuming the derived subgroup of G simply connected).

Corollary 1.6 (Corollary [5.2.9). Assume G split with connected centre. If Conjecture
is true for A=k, n =1 and 'w’ =1, then Conjecture|1.1| is true.
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Strategy of proof and methods used

Let £/Q, be a finite extension with ring of integers O and residue field k. We work more
generally with smooth representations over an Artinian local O-algebra A with residue
field k.

The main tools to compute extensions between parabolically induced representations
are two exact sequences related to Emerton’s d-functor of derived ordinary parts (see
below which is due to Emerton and which is a new feature of this article).

Using these, most of the previous results reduce to computing the derived ordinary
parts of parabolically induced representations. We formulate a conjecture on these com-
putations (see Conjecture |1.7| below). We prove it in low degree (see Theorem [1.8 below)
and give some strong evidence for it in general.

We proceed in two steps: first we construct filtrations of parabolically induced repres-
entations related to the Bruhat decomposition; second we partially compute the derived
ordinary parts of the associated graded representations using some dévissages.

Derived ordinary parts and extensions

Let P C G be a parabolic subgroup and L C P be a Levi factor. We let P~ C G denote
the parabolic subgroup opposed to P with respect to L. Emerton ([Emel0al [EmelOb])
constructed a cohomological d-functor H*Ordp from the category of admissible smooth
representations of G over A to the category of admissible smooth representations of L
over A, which is the right adjoint functor Ordp of Indg_ in degree 0. From this, he
derived a natural exact sequence of A-modules

0 — Ext} (o,0rdp ) — Extg (Indg_ o,m) = Homy, (0, H'Ordp ) (1)

for all admissible smooth representations ¢ and 7w of L and G respectively over A.

In §[4.2] we construct a second exact sequence in which parabolic induction is on the
right. The construction is somewhat dual to that of but not exactly (see Remark
4.2.1] (ii)). We let d denote the integer dimp N and 0 denote the algebraic character of
the adjoint representation of L on detr(Lie N). The key fact is that the A-linear functors

H,(N, —) == HF®I=*Ordp ® (wo 6) .

form a homological d-functor from the category of admissible smooth representations
of G over A to the category of admissible smooth representations of L over A, which
is isomorphic to the left adjoint functor (—)y of Ind$ in degree 0 (hence the notation).
From this and using a result of Oort ([Oor64]) to compute extensions using pro-categories
(see §[4.1), we derive a natural exact sequence of A-modules

0 — Extj (mn,0) — Extg (7, Ind% o) — Homy, (H{(N,7),0) (2)

for all admissible smooth representations m and ¢ of G and L respectively over A.

Computation of derived ordinary parts

We let W be the Weyl group of (G,S). For I C A, we write P; = L;Nj for the
corresponding standard parabolic subgroup, By C L; for the minimal parabolic subgroup
BNL; and W; C W for the subgroup generated by (sq)acr-
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Let I,J C A, o be a locally admissible smooth representation of L; over A and n € N.
We intend to compute the smooth representation of L; over A

H"Ordp, (Ind§ ).

In §, we use the generalised Bruhat decomposition G = | |1, scrys P; w’ Py where
W7 is the system of representatives of minimal length of the double cosets W;\W /W
(see § to define a natural filtration Filp (Indg; o) of Indg; o by A[P;]-submodules

indexed by {W7 (with the Bruhat order). We also adapt the notion of graded represent-
ation associated to such a filtration (in particular, the grading has values in T1W7) and
we prove that for all fw”’ € TW, there is a natural A[P;]-linear isomorphism

Iy G ~ . A PrwIP,
Grp, IndPI,a _c—mdPI_

We prove that Fil}J(Indgf o) induces a filtration of H"Ordp, (Ind%- o) by A[L ]-submod-
I I
ules indexed by W (see Proposition [3.3.1]).

Finally, we associate to each ‘w”’ € W7 an integer di,s and an algebraic character
O1ys Of Lijan,s-17) (see Notation and Remark , and we formulate the following

conjecture.

Conjecture 1.7 (Conjecture |3.3.4). Let o be a locally admissible smooth representation
of L over A, 'w’ € "W’ and n € N. There is a natural A[L]-linear isomorphism

. Prlwtp
H"Ordp, (c—md e a)
PI
I’LUJ

~ Ly n—[F:Qpldr, 7
= IndLJﬂP’ - (H OrdlemewJ(J) g
JnlwJ =1(1)

® (w! oafwl)) .

We give some strong evidence for this conjecture (see Theorem |3.3.3): we prove
that these two representations have natural filtrations by A[Bj]-submodules indexed
by 70w’y (the system of representatives of minimal length of the right cosets
W jangs-1(r\Wy) such that the associated graded representations are naturally isomorphic
(see the subsection below).

We prove this conjecture in several cases (see Proposition : whenever the right-
hand side is either zero or a trivially induced representation, in which cases the afore-
mentioned filtrations of both sides are trivial; when n = 0, in which case we deduce
the result from the computation of OrdpJ(Indg; o) in [AHV17]. This allows us to com-

pute H'OrdpJ(Ind]GDI_ o) in low degree when there is an inclusion between I and J (see

Proposition [3.3.7). In particular, we obtain the following result in the case I = J.

Theorem 1.8 (Corollary [3.3.8|). Let P = LIN be a standard parabolic subgroup and o be
a locally admissible smooth representation of L over A.

(i) For allm € N such that 0 < n < [F : Q,], we have H"Ordp(Ind$%- o) = 0.

(i) If Ord ., p,-10 =0 for all o € A™\(AyL UAL), then there is a natural A[L]-linear
isomorphism
HFlOrd p (Indg_ o) = @ c*®(wloa).
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Note that for all @ € A\Ar, L N s,Ps;! is the standard parabolic subgroup of L
corresponding to Ar, N s,(Ay) and it is proper if and only if o & A{. In particular, the
condition in (ii) is satisfied when o is supersingular.

In §, we adapt the previous results in order to partially compute H, (N, Ind% o).
In particular, we obtain an analogue of Theorem (see Corollary .

Filtrations and dévissages

Let “w” € TW7. We explain the partial computation of the smooth representation of L

over A L
. P; ‘w’ P
H"Ordp, (C—mdP{ ’ 0> )
I

In § 2.2 we use again the Bruhat decomposition to construct a natural filtration
— 1] . -
Filj'g(c-ind?, P o) by A[B]-submodules indexed by /""" (D}, and we prove that for
I
all wy € 7"’ (DWW, there is a natural A[B]-linear isomorphism

. JPrw’P . Prwlw;B
Gry’ (c-ind, 2 " Vo) Zcind, L T
PI PI

e/ . PrTwlPy . . . P lwp,
We prove that Filp(c-ind " o) induces a filtration of H"Ordp, (c-ind ;- o) by
I I

A[Bj]-submodules indexed by 7"’ (DWW, (see Proposition [3.3.2). Likewise, we con-

struct a natural filtration Fil;J(Indiij_ 7) by A[Bj]-submodules indexed by
Jnlwd =1(1)

I’ DY for any smooth representation & of L jrng-1(r) over A.

Let wy € J”I’”J_I(I)WJ and set ‘w = w’w; and 7, = c—indi?le o. We want to
compute the A-module H"(N, m1,) endowed with the Hecke action of B} (see § ,
where N;o C N is a compact open subgroup and B} C Bj is the open submonoid
stabilising Ny by conjugation (we use similar notation for subgroups of N; and B, by
taking intersections with N;o and BT respectively).

In §@, we define closed subgroups N;5,, € N; and B;,, € B such that there

is a semidirect product B, X Nz, and we give an explicit description of the actions
of Ny, and Bj,,, on my, for all w; € I’ DY, - Then, we compute the A-module
H"(N 10, T1,,) with the Hecke action of B}, = (see Proposition [3.2.6)).

The idea is to use a semidirect product Nz, = Nfi 1, X NTL 1, (also defined in § D
where N’,; € N1, is a closed subgroup stable under conjugation by B,,, such that

Tr, 18 N f, nop-acyclic and there is an A[BIMJ]—linear surjection with a locally nilpotent

)""). Then, taking the N

N
J,Iw,O w. LJ
kernel from 7, onto Gry’(Ind (o)L JIw.0”

LiOP, 1s-1en
1w () into H"OrdmemW(J)
map is an A[BIwJ}-linear isomorphism between the source and H" (N1, ¢, 71,).

Finally, by a technical result on dévissages (see Proposition and a finiteness
property of the A-modules H*(N 1,0, 71,), we can compute the A-module H"(N o, 71,)
with the Hecke action of BJ, from H"(Ny 1,0, 71,). It is this dévissage that introduces

the degree shift and the twist (i.e. dr,s and dr,s) in the formulas.

InfwJ (J)

cohomology changes o, o in the target and the inflation



Notation and terminology

Let F'/Q, be a finite extension. A linear algebraic F-group will be denoted by a boldface
letter like H and the group of its F-points H(F') will be denoted by the correspond-
ing ordinary letter H. We will also write H%" for its derived subgroup and H° for its
identity component. The group of algebraic characters of H will be denoted by X*(H),
the group of algebraic cocharacters of H will be denoted by X,(H), and we will write
(—,—) : X*(H) x X,(H) — Z for the natural pairing. We now turn to reductive groups.
The main reference for these is [BT65].

Let G be a connected reductive algebraic F-group. We write Z for the centre of G.
Let S C G be a maximal split torus. We write Z (resp. N) for the centraliser (resp.
normaliser) of S in G and W for the Weyl group N'/Z = N /Z. We write ® C X*(S)
for the set of roots of S in G and &y C ® for the subset of reduced roots. To each oo € ®
correspond a coroot a¥ € X, (S), a reflection s, € W and a root subgroup U, C G
(which is denoted by U,y in [BT65]). For o, € ®, we write @ L § if and only if
(a,8Y) =0. For I C A, weput It ={ae€A|a Ll pV3el}

Let B € G be a minimal parabolic subgroup containing S. We write U for the
unipotent radical of B (so that B = ZU), & C & for the subset of roots of S in U and
A C @ for the subset of simple roots. We set CIDSr = &y N d*. A simple reflection is a
reflection s, € W with a € A. A reduced decomposition of w € W is any decomposition
into simple reflections w = sy ...s, with n € N minimal, which is called the length of w
and denoted by ¢(w). We write wy for the element of maximal length in W.

We say that P = LN is a standard parabolic subgroup if P C G is a parabolic
subgroup containing B with unipotent radical N and L C P is the Levi factor containing
S (we say that L is a standard Levi subgroup). In this case, we write P~ for the
parabolic subgroup of G opposed to P with respect to L (i.e. PNP~ =1L) and N~ for
the unipotent radical of P~. We write Zy, for the centre of L, By, C L for the minimal
parabolic subgroup BNL, Uy, C By, for the unipotent radical UNL (so that By, = ZUy,
and U = Uy, x N) and A, C A for the subset of simple roots of S in Ug,.

Each parabolic subgroup of G is conjugate to exactly one standard parabolic subgroup
and the map P = LN — Ay, yields a bijection between standard parabolic subgroups of
G and subsets of A. For I C A, we write P; = L;N; for the corresponding standard
parabolic subgroup (i.e. Ap, = I), Z;, By, Uy instead of Zy,,, Br,, Uy, respectively,
W; C W for the subgroup generated by (S4)aer (so that P; = BW;B), w; for the
element of maximal length in W;, ®; C ® for the subset of roots of S in L; and @f C d*
for the subset of roots of S in Uj.

Let £/Q, be a finite extension with ring of integers O and residue field k. We let A
be an Artinian local O-algebra with residue field k. We write € : F* — Z3 C O* for the
p-adic cyclotomic character (defined by e(z) = Nrmp/q, ()| Nrmpg/q,(z)|, for all z € F)
and w : F* — A* for its image in A*.

We use the terminology and notation of [Emel0Oal § 2] for representations of a p-adic
Lie group H over A. An H-representation is a smooth representation of H over A and
a morphism between H-representations is A-linear. We write Mod3"(A) for the category
of H-representations and H-equivariant morphisms, and Mod%™(A) (resp. Mod:™(A),
Mod3 (A)Zr L) for the full subcategory of admissible (resp. locally admissible, locally
Zp-finite) H-representations (here Zy denotes the centre of H).



Assume H C G is closed and 7 is an H-representation. For g € G, we write 79 for
the g~ ! H g-representation with the same underlying A-module as 7 on which g~'hg acts
ashforallh e H. If g € H, then g~'Hg = H and the action of g on 7 induces a natural
H-equivariant isomorphism 7 — 79.

Assume furthermore Z C H. For w € W, we write 7% for the n~! Hn-representation
7™ where n € N is any representative of w (neither n='Hn nor 7" depend on the choice
of n up to isomorphism). For v € A, we simply write 7% instead of 7.

For a topological space X and an A-module V| we write C* (X, V') for the A-module
of locally constant functions f : X — V and C3™(X, V) for the A-submodule consisting
of those functions with compact support (the support of f is the open and closed subset

supp f = f~H(V\{0}) C X).
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2 Generalised Bruhat filtrations

The aim of this section is to define filtrations of parabolically induced representations and
describe the associated graded representations. In § 2.1 we review some properties of
the representatives of minimal length of certain double cosets in W and some variants of
the Bruhat decomposition. In §[2.2] we define the notion of filtration indexed by a poset
and we construct filtrations of induced representations indexed by subsets of W with the
Bruhat order using the previous decompositions. In §[2.3] we define several subgroups of
U that we use to describe the graded representations associated to the previous filtrations
as spaces of locally constant functions with compact support.

2.1 Doubles cosets

First, we recall some facts about certain right cosets in W (cf. [BT72, Proposition 3.9]).
For any I C A, we define a system of representatives of the right cosets W;\W by setting

"W = {w € W | w is of minimal length in W;w} .

For all w € W, there exists a unique decomposition w = w;w with w; € Wy and fw € 1W.
This decomposition is characterised by the equality

o Nw (@+) =& Nuw; (CID}L)

In particular, we have ‘w=!(®}) C ®T. Furthermore, we have {(w) = {(w;) + (('w).

We now recall some properties of certain double cosets in W (cf. [DM91, Lemma 5.4]).
For any I,J C A, we define a system of representatives of the double cosets W;\W /W
by setting X

w="wn(’w)

9



For all w € W, there exists a unique decomposition ‘w = w’w; with w’ € TW” and
wy € Wy. In fact wy € 77"’ "W, This decomposition is characterised by the equality

TN (0F) = oF nw; (9F). (3)

In particular, we have w”/(®F) C ®*. Furthermore, we have (('w) = (('w”) + ((wy).
Conversely, for all ‘w’ € ‘WY and w; € Wy, we have w/w; € W if and only if
wy; € MW, Note that the projections W — ‘W and ‘W — W respect the
Bruhat ordell] (cf. [BBO05, Proposition 2.5.1])

Lemma 2.1.1. We have the following equalities in G.
(i) Ly nfw’Uw’ =t = Ujnnr g
(i) Ly N w/Lyw’=" = Ly
(iii) Ly N w/Nyw’ =t = Ly N Ny,
(iv) Ly N w/Pw’~t = Ly NP o)

Proof. First, we prove the following equalities in ®:

&N’ (J) =10’ (J), (4)
®r N’ (0F) = (I);rﬂwa(J)‘ (5)

We prove the non-trivial inclusion of (). Assume ®;Nw”’(J) # 0 and let o« € @, N’ (J).
Since w’(J) C ®F, o € ®7 so that there exists (r5)ser € N’ such that a = 3, 756
Then "w’~Ha) = 3 4¢, 75w’ (8) € A. Since w’~'(B) € &* for all § € I, 75 =0
for all B € I\{a} and r, = 1. Thus o € I. We prove the non-trivial inclusion of (f]).
Assume ;N w’ (0F) # ) and let a € &;Nw’(®F). There exists (rg)ses € N/ such that
a =34, rgw’(B). Since w’(B) € ®F for all € J, w’(8) € ®F so that w’(8) € I
by () for all 8 € J such that r5 > 0. Thus a € &

Inhw’ (J)*

Now, by considering the Lie algebras, (5)) yields (i), and its opposite yield (ii),
the equality ©; N w’(®*\®7) = ®7\®}, ;) (which follows from (5) and the fact that

QN (®1) = &7 since 'w’ € TW) yields (iii), and we deduce (iv) from (ii) and (iii). O

Finally, we give certain decompositions in double cosets (for the notion of ‘lower set’,

see foonote 2| p. .

Lemma 2.1.2. (i) We have G = | |1 scryys Py 'w’ Py and for any lower set "W C
"W the subset Py TW{ Py C G is open.

(i) We have P;w’P; = L, contwr—1nw, Prw’w;B and for any lower set W/ C
IV DYWL the subset Py wW'h B C Prhw? Py is open.

(iii) We have L; = UwJeszwJ—l(z)WJ L;N PJ_mwa—l(I)wJBJ and for any lower set W &
I DY, the subset Ly N P

JNhwd -1

(I)W}BJ C Ly is open.

!The Bruhat order on W is defined by w < w’ if and only if there exist a reduced decomposition
w' = 51... 80y and integers 1 < iy < -+ <iig) < €(w’) such that w = s;, ... 84,
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Proof. We have G = Urnperw Pr hwB and for any w € TW, the closure of P; 'wB in G is
|lryysn, Pr'w'B (this can be deduced from the Bruhat decomposition, cf. e.g. [Haul6a
§ 2.3]). Furthermore, for any w”’ € ‘W7 we have

PI_IUJJPJ = U PI_wOBwOIwambJB
wyeW;
= U PI_woBU)OIwaJ’OUJJB
wyeW;
= U Prw’w; B

wyeW;

(the first and third equalities follow from the inclusion woyBwy = B~ C P; and the
decomposition P; = BW;B, and the second equality follows from [BT72, Lemme 3.4
(iv)] and [BB05), Proposition 2.5.4]). From this we deduce (ii), and also (i) using the fact
that the projection W — TW is order-preserving. Finally, (iii) is (i) for the double
cosets Ly N P, \LJ/BJ instead of P, \G/P;. O

JnTwT —1(I

Remark 2.1.3 (Case w; = 1). Note that P;w’B is Pjqr,s-1(p-invariant by right trans-
lation. In general, the stabiliser of P;7wB in G for the action by right translation is
the (non-standard) parabolic subgroup Bhw 'W;wB. Likewise, L; N P - " )B 7 is
L ;N Pranys-1(p-invariant by right translation.

2.2 Definition of filtrations
Filtration indexed by a poset

Let H be a p-adic Lie group, m be an H-representation and (W, <) be a poset. A
filtration of 7 indexed by Wis a morphism of complete lattices Fil}; = from the complete
lattice of lower set‘ of W to the complete lattice of H —subrepresentations of 7, i.e. an
H- subrepresentatlon FllH m C m for each lower set (i C W such that for any family
(Wz)zg of lower sets of W, we have the following equalities in 7:

Filler " = (Filly =
ieT
Fily <" r = Y Filly r
i€T
When W is finite, these two equalities are equivalent (by induction) to the following
conditions: Fil%, 7 is inclusion-preserving with Fil%, 7 = 0 and Filly 7 = 7 (i.e. the empty
family case), and for any lower sets Wi, Wy C W the short sequence of H-representations

0 — Fill W2 7 5 FilV 7 @ Fil2 1 — FillO72 1 0,

defined by v +— (v, —v) and (vq,v2) — v; + vg, is exact.

2A lower set of W is a subset W' such that =o€ W for any w € W and @' € W'.



Each @ € W defines a principal lower set {@' € W | @' < @} and we write Fil% 7 for
the corresponding H-subrepresentation of w. Note that for any lower set W/ C W, we
have the following equality in 7:

Fily == > Filjjr
@' eW!
In particular, we can recover the whole filtration from the H-subrepresentations of 7

corresponding to the elements of W, hence the terminology. We define the graded rep-
resentation Gry; m associated to the filtration Fil}; m by setting

Grly == Filf 7t/ Z Fil%

W' <W

for each w € w. . . .
Let ¢ : W — Z be a monotonic map (i.e. 0w < @' = {(w) < {(0') for any w,w" € W).
For each n € Z, we set i
Fil’' 7 = Z Fily, 7.
{(w)<n

We obtain a filtration of 7 indexed by Z (in the usual sense).

Lemma 2.2.1. Assume { : W — Z is strictly monotonic (i.e. & < @' = () < (w")
for any w,w" € W ). For all n € Z, there is a natural H-equivariant isomorphism

E,TL ~J w0
Gr, m= @ Gry .

(w)=n

Proof. Let n € Z. By definition of Fﬂ“ﬁ and Gr 7, there are natural H-equivariant
surjections

€D Filf, 7 — Filiy" 7 — Griy' . (6)

{(w)<n
The kernel of () contains @z, Filg 7N Fill" ! 7 and Fil% 7 \Fil5" ' 7 = Fil%, 7 for
all ® € W such that {() < n. Now, for any 0, € W such that (1) = n, we have the

following equality in 7:
Filjemrn Y Filjr =) Filj

{(w)<n w<wo
WHAW(

which results from the following equality in W:
{oeW|a<apn J {weW|a<a}=J {oew

U@)<n <o
WHAD(

which in turn follows from the fact that wy £ @ for all w € W\{ﬁ)g} such that (@) < n by
strict monotonicity of /. We deduce that the kernel of ©) is Dy i@)<n Fil§, N Flle s

and that Fil}; 7 N Fllen e =S, __Fil% « for all @ € W such that () = n. We

w <’LU
conclude that @ mduces an isomorphism as in the statement. O
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Filtrations of induced representations

Let I,J C A and o be an L;-representation. Recall that for any locally closed subset
X C G and for any open subset Y C X, both P, -invariant by left translation, there is a
natural short exact sequence of A-modules

} : . X\Y
0— c—md;_ o — c—mdg_ o — c-indX o 50
T T P;

(cf. [BZT6, Proposition 1.8], see also the proof of [Haul6al Proposition 2.1.3]). Note that
there is a natural A-linear isomorphism c—indg; o— Indgf o since P, \G is compact.

For each lower set {W C /W7 we define a Pj-subrepresentation of IndGI_ o by setting

PrIw{ Py

Fil;‘j/i] <IndIGDF O’) = c—indP,
I

Using Lemma [2.1.2] (i), we obtain a filtration of Ind§- o indexed by ‘W such that for
I

all 'w’ € TW, there is a natural Pj-equivariant isomorphism

Gr}”;’f <IndIGDI, O') = c—indi?IwJP‘] o. (7)

Let fw’ € TW. For each lower set W’ C TNt (T )WJ, we define a B-subrepresenta-

. . PrwIp .
tion of c-ind " " o by setting
I
P w’ Py
Py

W) . . P wIWiB
Filg’ (C—lnd a> = c-ind L ’
I

Using Lemma [2.1.2 (i), we obtain a filtration of c—ind?:wp‘] o indexed by /"’ O,
I

such that for all w; € 77" (W, there is a natural B-equivariant isomorphism

. PrTw’P . P Tww;B
Gry’ (C—lndpﬂ ! O'> = c-ind,L " o (8)
I I

Likewise, for any L jnn,s-1(p)-representation ¢ and using Lemma (iii), we define

I,J—1 . ~
for each lower set W/ C /" "(DW; a Bj-subrepresentation of Indi" - o by
S gALwd —1(1)
setting
L;NP> W)B
Filgg Ind% &) =cind ~ om0
7 LJmPJmwafl(I) LJQPJmwafl(I)
. . ~ . I,J—1
and we obtain a filtration of IndﬁJ AP & indexed by /" (D1} such that for all
J IpJ—1
JNtw (I)
I,J—1 . . . . .
wy € 77T (DWW, there is a natural Bj-equivariant isomorphism
L,NP> B
Gy (Ind G %c—indLJg st (9)
J Jnlwd =1(1) J JnlwJ =1(1)
1 . Priwlpy ~ . Pyw/B .
Remark 2.2.2 (Case w; = 1). Note that Grpg(c-ind, o) = cindl o is a
I I
. . Prlwlp . . “\ o
Pjanys-1(p)-subrepresentation of c-ind " o and likewise Gry ; (Ind? P g) =
1 T nlwd =1(1)
. JLunP sy Br o, ; 5
c-ind o 7" G is an Ly N Pjnn,s-1(p-subrepresentation of Ind%’ 7 (see
L;NP JNfw () LNP
S Al =11 S galwd =1 (1)
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2.3 Computation of the associated graded representations

For each w € W, we define a closed subgroup of U stable under conjugation by Z by
setting
U, =Unw 'Uw

and we let B,, C B be the closed subgroup ZU,,. For any order on ®* Nw=(®;), the
product induces an isomorphism of F-varieties

I v.>Uu. (10)

a€d+nuw=1(dF)

Let I C A and fw € 1W. We define closed subgroups of Uy, stable under conjugation
by Z by setting
T = UNw!'N/w
1o=UnWw U/ w
and we let Bf C By, be the closed subgroup ZU7 . We have semidirect products
Uy, = U7 x U} and By, = B] x U .
Let o be an L;-representation. The product induces an isomorphism of F-varieties

Py x {'w} x U, = P;'wB,
hence an A-linear isomorphism

c-ind P o = e (U}w, 01w> (11)

I

via which Uj acts on C™(U;,, o) by right translation and the action of b € B on
fec (Ui, o) is given by
(b// . f) (U/) — b// . f (b//—lulb//)
for all ' € Uy, .
Let J C A. We write 'w = w/w; with w’ € "W and w; € W;. We define closed
subgroups of N ; and U stable under conjugation by Z by setting
N, =N;NUg = N;Nw U
Uj,, =U;NU, =U;Nnw 'Uw=U,Nnw,;'Uuw,
the last equality resulting from , and we let B, € B be the closed subgroup
ZU,,,,. We have semidirect products Uz, = Uy,,, X N5, and By, = B, X Njz,.
We define closed subgroups of N, and Uy, stable under conjugation by Z by setting
N’ 5, =N, NU, = N;Nw 'Nfw
/},Iu} = NJ N UIIIw = NJ N Iw_lUIIw
! = UJmUIIw:UJﬂIw_lN[Iw

Jyow gy

" = UJ N lj/w = UJ N Iw_lUIIw

Jw
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and we let B, C By be the closed subgroup ZU%, . We have semidirect products
Ny =N, x Ny U, = UJwJ x U, and BJMJ = Bj,, x Uj,,. Note that
U, and U’ —actually depend on ‘w (not only on wy).
Likewise, for any L jnr,s-1(p)-representation ¢ and using Lemma with [ and J
swapped and “w” inverted, the product induces an isomorphism of F-varieties
L;NP,

Jnlw? -1(1) X {ws} x U}, — LiN P,

JNhw? =1(1 )wJBJ7
hence an A-linear isomorphism

. LJﬂP IyJ—1 wyBy B _
c-ind, = @ g =C™(U,,,0") (12)

L;NP Ikt —1(1)

via which U}, ~acts on C3™(U},, ,, ") by right translation and the action of b € B
on f € Csm(UJMJ, a"7) is given by

(bl/ X f) (Ul) — b// . f (b//—lulb//)

Jwy

for all ' € U7, . In particular with & = o™’ we have defined a natural smooth A-linear

action of By, on C*(U},, ., 0 )

We have a semidirect product U, =U), X N , so that composed with the
A-linear morphism defined by f — (n — (u o f (u ))) is an A-linear isomorphism

cmdP’_Iw NC8m< 71w Ce (UJwJ; )) (13)

via which N}, acts on Csm( 0 C (Ul 0 o)) by right translation, the action of

be By, on f € C™(N’ (Ujw,s O o)) is given by

Jw> C
(b-f) () =b-f(b~'n'D)

for all n' € N7, and the action of N7, on CZ™(N]

G C (Ul 0 o)) is given by the
following result.

Lemma 2.3.1. Let f € C:™(N’
of n” on f is given by
(n// . f) (nl) (u/) — TL” X f (u/ ln// lu/n/n//) (u/>

for alln' € N}7,w and v € U"Lw‘].

(Ul 0 o)) and n" € N7,.. Via ([13), the action

Jw? C

Proof. Let n' € N, and v’ € U}, . We have

wu'n’n" _ (wn//Iw—l)Iwu/(u/ 1n// 1u/n/n//)

Thus, it is enough to check that ' ~'n"~tu'n'n" € N’ ., Since v’ € Uy and n',n" € Ny,

we have (u’*ln”*lu’) 'n” € Nj. Since n” € w 1U1w and n/, v’ € 'w™' Niw, we have

w7 ("~ (u/n")n") € w=t N;lw. Hence the result. O
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Remark 2.3.2 (Case w; = 1). We can also give the action of L jnr,s-1¢;y (which normalises

. plwB . Lok iy B
u,,, N’ N, and thus Uj ;, N;r,s) on c—mdPﬂ o and c—mdL mP,m” SR
) T J

Jwl o 2T

’ ’ JnlwJ =1(1)
(see Remark [2.2.2)) via (13) and ([12)) respectively, by replacing B.,, = B}, x U}, by
LJ ﬂ PJQIwJ—l(I) - LJQI’LUJ_I(I) X U!Ll.

We end this subsection with some more notation.

Notation 2.3.3. For each w € W, we let d,, be the integer dimpr(U/U,,) and d,, € X*(S)
be the algebraic character of the adjoint representation of S on detr((Lie U)/(Lie Uy)).
Note that d,, > ¢(w) and J,, extends to an algebraic character of Z. For a € A, we have
d,, = d, = dimp U, and §,, = a’. Note that d, = 1 if and only if o extends to an
algebraic character of Z. We define a subset of A by setting

Al ={acA|d,=1}.
For I C A, we put I' .= I nNAL

Remark 2.3.4. For 'w’ € "W, we have U; C Uy,s and L jnn,s-1(7) normalises N z,.
Thus, the inclusion N ; — U induces an isomorphism of F-varieties

N, /N1 — U/Us,s

and there is an adjoint action of L jnn,s-1(yy on (Lie N;)/(Lie N 1,s). Therefore, we have
dr,s = dimp(N;/N1,s) and dr,s extends to an algebraic character of L jqn,s-1(p).

3 Derived ordinary parts

The aim of this section is to compute the derived ordinary parts of a parabolically induced
representation. In §[3.1 we show how to compute the cohomology of certain groups with
a Hecke action from the cohomology of certain subgroups with the induced Hecke action,
provided the latter satisfy some finiteness condition. In § [3.2] we make a computation
of cohomology and Hecke action on a compactly induced representation. In § 3.3 we
use the previous results to partially compute the derived ordinary parts of the graded
representations associated to the Bruhat filtrations, we formulate a conjecture on the
complete result and we prove it in many cases in low degree.

3.1 Cohomology, Hecke action and dévissage

Let L /F be an algebraic group and N /F be a unipotent algebraic group endowed with
an action of L that we identify with the conjugation in L x N. We let d denote the integer
dimp N and § € X* (i) denote the algebraic character of the adjoint representation of L
on dety(Lie N).

Let Lt C L be an open submonoid and No C N be a standar compact open

3The exponential map exp : Lie N — Nisan isomorphism of F-varieties (cf. [DG70, Chapitre IV, § 2,
Proposition 4.1]) and we say that Ny is standard if Lie Ny := exp~!(Ng) C Lie N is a Z,-Lie subalgebra.

The identity of N admits a basis of neighbourhoods consisting of standard compact open subgroups (cf.
[EmelOb, Lemma 3.5.2]).
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subgroup stable under conjugation by~z+. If 7 is an LT No—representatio, then
the A-modules of Ny-cohomology H®(Ny, 7) computed using locally constant cochains
(or equivalently an Ny-injective resolution of 7, cf. [EmelOb, Proposition 2.2.6]) are
naturally endowed with the Hecke action of LT (denoted H), defined for every [ € LT as
the composite

H* <j\70, 7T> — H* (Zﬁoi_l, 7T> — H* <j\70, 7T>
where the first morphism is induced by the action of [ on 7 and the second morphism
is the corestriction from lNol 1 to NO (this defines a natural smooth A-linear action of

L" in degree 0 by [Emel0a, Lemma 3.1.4], that extends in higher degrees by universality

of H*(Np, —)). We obtain a universal d-functor H*(Ny, —) : Mod7Y, 5, (A) — ModZ} (A4)

(since an injective Lt x No representation is No—acychc, cf. [EmelOb, Proposition 2.1.11]
and [HaulGal Lemme 3.1.1]).

Let. Z C L be a central split torus and Z+ C Z be the open submonoid Z N L+.
Since Z is split, its adjoint representation on Lie N is a direct sum of weights. We assume
that there exists A € X,(Z) such that (i, A) > 0 for any weight i of Z in LieN. We
fix an element z = /\(p7) € Z with J € N large enough so that 2 is stmctly contracting
NO, ie. (2 ZNoz “Yien is a basis of neighbourhoods of the identity in NO (cf [Emel()b
Lemma 3.1.3] using the fact that ord,(fi(2)) = (fi, A)j for any weight fi of Z in Lie N).
In particular Z € zZ+.

If 7 is a ZT-representation, we say that m is locally Z-finite if for every v € w, the
A-submodule A[Z] - v is of finite type, and we say that the action of Z on 7 is locally
nilpotent if for every v € 7, there exists 4 € N such that z*-v = 0.

Lemma 3.1.1. Let 7 be a locally Z-finite Lt x Ng—representation and n € N.

(i) If n = [F : Q,]d, then the action of Z on the kernel of the natural Lt -equivariant
surjection T @ (w™' 0 §) — H*(Ny, ) is locally nilpotent.

(i) If n < [F : Q,]d, then the Hecke action of Z on H"(Ny, 71) is locally nilpotent.

Proof. We prove (i). The natural L*-equivariant surjection in the statement is the com-
posite

W@(w_log)—»ﬂ]%@(w_log) HFQpld (N 7r>

where the first morphism is the natural projection onto the Ng—coinvariants of m and the
second morphism is the natural isomorphism [Haul6bl (2.2)] which is due to Emerton
(in loc. cit. & € X*(Resp/q, L) is the algebraic character of the adjoint representation
of Resp/q, L on detq, (Lle(ResF/@ N)) so that @ = Nrm /g, 00 as Q) -valued characters
of L, hence & Halt =w o 0 as Q) -valued characters of L). For every v € , there
exists i € N such that 7 Noz~* fixes A[Z] - v (since 7 is locally Z-finite and 7 is strictly
contracting Ng), so that for all n € Ng we have

(2

2 (iv—v)=(Fnz") - (2 v) = (2 -v) =0.

4Given a p-adic Lie group H and an open submonoid Ht C H, a representation of Ht over A is
smooth if its restriction to an open subgroup of H contained in H* is smooth.
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Thus the action of Z on the kernel of the above surjection is locally nilpotent.

We prove (ii). Let (,ur),,e[[o m—1] be an enumeration of the weights of Z in LieN such
that the sequence ({fi, )‘>)T€[[O,m 1] is increasing. If fi; + fi; = fi, with ¢, j,7 € [0,m — 1],
then 7 > max{i,j} (since {fi,, \) > max{(fi;, \), (ji;, \)}). Thus for all » € [0,m], the
direct sum of the weight spaces corresponding to fi,, ..., fl,,—1 is an ideal of Lie N stable
under the adjoint action of Z and we let N C N be the correspondlng closed normal
subgroup stable under conjugation by Z. d, denote the integer . dimzN®, §,. € X*(L)
denote the algebram character of the adjoint representation of L on det F(LleN (")) and
Ny V) C N be the standard compact open subgroup N V™) NO stable under conjugation
by Z*+.

Let r € [0,m]. We assume that n < [F : Q,]d, and we prove that the Hecke action
of Z on H“(]VO(T), ) is locally nilpotent by induction on r. The result is trivial for r = m.
We assume r < m and the result true for » + 1. We have a short exact sequence of
topological groups

1— N 5 N = NN S

The Lyndon-Hochschild—Serre spectral sequence associated to this dévissage is naturally
a spectral sequence of LT-representations (cf. [Haul6h, (2.3)])

H( " /N HJ(N(T“), )) ;»HW‘(N(S’")J). (14)

Let i,j € N such that i +j = n. If j < [F : Q,)d,;1, then the Hecke action of
Z on HY(N, (TH),W) is locally nilpotent by the induction hypothesis, thus the Hecke
action of # on H/(N /N HI(NI™, 7)) is also locally nilpotent (since the im-
age of a locally constant cochaln is finite by compactness) If j = [F : Qpldi1,
then i < [F : Q,)(d, — dr+1) and we deduce from (i) with N+ and j instead of N
and n respectively that H (N, (T+1),7r) is locally Z-finite, thus the Hecke action of Z on
HZ(]\fér)/]\férJrl ,HJ(N(ETH), 7)) is locally nilpotent by the sublemma below with g = fi,
and N(T)/N(’”H), Hj(j\vfér“), ), i instead of N, ™, n respectively Ifj>[F:Q) dy41, then
H/(Ng™ 7) = 0 by [Emel0D, Lemma 3.5.4], thus H/(N§” /N{™" HJ(N(T“) 7)) = 0.
Using ., we conclude that the action of Z on H" (N, V(T ), ) is locally nilpotent. O

Sublemma. Let m be a locally Z-finite 7+ x No-repfr’esentation, TS X*(Z) and n € N.
Assume that the adjoint action of Z on LieN factors through ji. If n < [F': Q,]d, then
the Hecke action of Z on H"(Ny, ) is locally nilpotent.

Proof Let S C ResF/Q Z be the maximal spht subtorus, S C Z be the closed subgroup

(@p) and ST C S be the open submonoid S N Z+. Every algebraic (co)character of
Z induces by restriction of scalars a (co)character of S (since the image of a split torus
by a rnorphlsrn of algebralc groups is a split torus, cf. [BT6H, § 1.4]). In partlcular the
restriction of A : F* — Z to Q, takes values in S and the restriction of i Z — F* to
S takes values in Q).

We deduce on the one hand that z € §+, and on the other hand that the adjoint
action of S on Lie(Resp/g, N) factors through an algebraic character so that any closed
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subgroup of Resp/q, N is stable under conjugation by S. Since Resr/q, N is unipotent,
there exists a composition series

Resp/@, N = N(O) > N’(l) > .- > N’([F:QP]J) -1

whose successive quotients are isomorphic to the additive group over Q, and for all
r e [0,[F : Qp)d], we let N C N be the closed subgroup N™(Q,) and Nér) C N™ be
the standard compact open subgroup NN Ng stable under conjugation by ST

Let r € [0,[F : Q,)d]. We assume that n < [F : Q,)d — r and we prove by in-
duction on r that the Hecke action of Z on H"(N, VT ),7r) is locally nilpotent. The result
is trivial for "= = [F: Qp]d We assume r < [F : Qp]d and the result true for r + 1.

Since dlme( "/ N(T“)) — 1, we have a short exact sequence of S*-representations (cf.
[Haul6b, (2.4)])

0 - B (R /R, 1= (B ) ) e (90, m)

o

~H (N“"*”, n 0. (15)

The Hecke action of Z on H”_l(ﬁérﬂ) ) is locally nilpotent by the induction hypothesis,
thus the Hecke action of Z on HY(N NS Hr=1 (NI 7)) s also locally nilpotent.
Ifn < [F:Q)d— (r+1), then the Hecke action of Z on H”(N(TH),W) is locally nilpo-

( Nér—l—l)) )N(”/NSM) is also locally

tent by induction, thus the Hecke action of Z on H"”
nilpotent. If n = [F: Q,)d {— (r 4 1), then we have a natural S*-equivariant surjection
T @ p A" - H”(N(Wrl ) (cf. [Haul6h, (2.2)]) and we deduce that H*(N™, 7)
is locally Z-finite. In this case, we put N/ = N(ST)/N(Y“). For every v € H"(NSTH), ),

there exists i € N such that 2 NJ/Z~ fixes A[Z] - v, so that for all j € N we have

.. H ~ i
PNy = E - (z”” 'U)
7/ €NY /ZH Ny 2= (+9)
= <21N(l]/271 . §1+JN(/)/§*(Z+J)> E ' ﬁ”~ (ngrj 'U)
A'eNY JZINY

_ (N(/J/ : 2]']’\7(/)/273') Z . (2i+j . ’U) '

a"eN( [Z N z—0

Now N'g is an infinite pro-p group, Z is strictly contracting N(’)’ and A is Artinian. Thus
(Nl : ZN}'z7) is zero in A for j € N large enough. Therefore, the Hecke action of 3
on H"(N, (TH) )Nér)/ N g locally nilpotent. Using , we conclude that the Hecke
action of Z on H"(Nér), ) is locally nilpotent. O

Let N’ C N be a closed subgroup such that Lie N’ C LleN is a direct sum of weight
spaces of Z. We stress that N/ need not be normal. Since Z is central in L Lie N’ is
stable under the adjoint action of L thus N is stable under conjugation by L. We let d'
denote the integer dimp N’ and §' € X*(L) denote the > algebraic character of the adjoint
representation of L on detp(Lie N/ ). We let N ! C N’ be the standard compact open
subgroup N’ N N stable under conjugation by L.
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Proposition 3.1.2. Let w be an Lt x No—representation. For alln € N, there is a natural
LT -equivariant morphism

Hr 1 Ql(d-d) (Né,ﬁ) ® (w o (5 - 5')) — H" (No,w> .

Furthermore, the Hecke action of Z on its kernel and cokernel is locally nilpotent if the
Lt -representations H*(N{, m) are locally Z-finite.

Proof. Let (fi,)refom—m/—1] be an enumeration of the weights of Z in (Lie N)/(Lie N’)
such that the sequence ((ﬂra:\>)r6[[0,mfm’flﬂ is increasing and (fir)refm—m/m-1] be an
enumeration of the weights of Z in Lie N’ such that the sequence ((fi,, X))re[m,m:,m,lﬂ
is increasing. If ji; + fi; = fi, with i,5,7 € [0,m — 1], then r > min{4,j} (since
(fir, A) > max{(fi;, \), (fi;,A\)}). Thus for all = € [0,m — m’], the direct sum of the
weight spaces corresponding tO flyy ..oy flm_1 1S & Lie subalgebra of Lieﬁ stable under
the adjoint action of Z and we use the notations N() . d,, b, and N as in the proof of
Lemma [3.1.1] (ii). Moreover for all r € [0,m —m/ — 1]], Lie N+D s an ideal of Lie N)
so that N+ is a normal subgroup of N(.

Let r € [0, m —m']. We prove by induction on r that for all n € N, there is a natural
L*-equivariant morphism

Pl (N ) @ (o (5, - 3)) - 1 (N, 7)) (16)

The result is trivial for r = m —m'. We assume r < m —m’ and the result true for r + 1.
Let n € N. Since dimg(N™ /NC+Y) = d, —d,,,, we deduce from [Emel0b, Lemma 3.5.4]
that yields a natural Lt-equivariant morphism

HIFQl(d—dri1) ( N/ ), H F Q) (dr—dry1) ( Nér—i—l)? W) ) — H" < Néﬂ, W) (17)

whose kernel and cokernel are built out of subquotients of H*(Ng N NG B (N )
Wlth i,j € N such that i < [F : Q](d, — dp41). Furthermore, Lemma 3.1.1| (i) with

(r) /N(r+1) | = [F:Qpl(dr— d’"“)(NéTH) ™), [F: Q))(d, — dyy1) andg — 6,41 instead of N,
7, n and 0 respectlvely yields a natural L+ -equivariant surjection

- 1F:Ql (dr—dri1) (NSTH),W) ® (w'o (& — 5r+1))

s H[F:Qp](d}_d‘r%»l) (Nér)/]vo(r“rl)’ Hn_[FZQP](Jr—JT+1> <N(§T’+1)’ 7T>> . (18)

Finally by the induction hypothesis with n — [F' : Q,](d, — d,41) instead of n, there is a
natural LT-equivariant morphism

eI C ><N5, ) ® (W o (6= 7))
_y g [FQpl (dr—dria) <Nér+1)7 7T> ® (ofl o (Sr _ 5~r+1)) . (19)
The composition of (17)), and yields the natural L*-equivariant morphism (16).
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Now, we assume that the Z*—representations H'(Né,ﬂ') are locally z-finite and we
prove by induction on r that for all n € N, the Hecke action of Z on the kernel and
cokernel of is locally nilpotent, or equivalently that the localisation of with
respect to Y is an isomorphism. The result is trivial for » = m — m/. We assume
r < m —m’ and the result true for » + 1. Let n € N. By composition, it is enough to
prove that the Hecke action of Z on the kernels and cokernels of , and is
locally nilpotent. By the induction hypothesis with j instead of n, the Hecke action of 2
on the kernel and cokernel of the natural LT-equivariant morphism

Hj—[F:Qp](cirH—J’) (N(/)’ 7T> ® (w—l o (5r+1 _ 5/)) NRE ¥ (N r—i—l)7 7T)

is locally nilpotent for all j € N. With j = n — [F : Q,](d, — d.41), we deduce that the
Hecke action of Z on the kernel and cokernel of is locally nilpotent. Furthermore, we

deduce that H’ (Kférﬂ), 7) is locally Z-finite for all j € N and we use Lemma with
N@ /Nr+D, HJ(ZV(TH), 7) and i instead of N, 7 and n respectively: we deduce from (i)
with i = [F : Qp)(d, — d,41) that the Hecke action of Z on the kernel of (I8) is locally
nilpotent and we deduce from (ii) that the Hecke action of Z on the kernel and cokernel

of (I7) is locally nilpotent (since the Hecke action of Z on H'(Ng N N B (N )
is locally nilpotent for all 4, j € N such that i < [F : Q,)(d, — d41)). O

We end this subsection by reviewing and generalising the construction of Emerton’s
d-functor of derived ordinary parts (cf. [EmelObl § 3.3]). Let Z denote the centre of L.

Assume that Z~ is generated by Zir = Z NL* as a group, and that Lis generated by Lt
and Z~ as a monoid. Then, the product induces a group isomorphism Lt x z Z~ =L

(cf.  [Eme06], Proposition 3.3.6]). Thus, for any L+—representat10n 7, the A-module
Hom 7+ (A[Zz], m)%27"™ is naturally an L-representation (cf. [Emel0a, Lemma 3.1.7]).
L

Therefore, we obtain an A-linear left-exact functor Mod%% (A) — Mod?"(A)”*z Zg=1fin \which
commutes with inductive limits (cf. [Emel0al Lemma 3.2.2]).

Remark 3.1.3. Let z € 2% Assume that Z; is generated by Eg and Z~! as a monoid.
Then, for any locally finite Zg -representation m, there is a natural Zi—equivariant iso-
morphism Hom 7+, (A[ZE],W)ZE_MH — A[Z*] @4z 7 (cf. [EmelODb, Lemma 3.2.1]).
L ~
Thus, the functor HomA[Zg](A[ZZ], —)Ze~Min pegtricted to the category Modsfﬁ(A)Zg_l‘ﬁ“
is isomorphic to the localisation with respect to zY. In particular, it is exact.
Definition 3.1.4. For a connected algebraic group P /F with unipotent radical N such

that P = L x N, we define A-linear functors Mod3*(A) — Mod¥*(A)”z~+ which
commute with inductive limits by setting
Z;—1fin

HEOrdjs = Hom,y 7+, (A1Z], H* (Mo, - ) )

If B C P is a connected closed subgroup containing N and ZL, then B~ = BNLis
generated by B = B NL* and ZN as a monoid, so that H*Ordp naturally extend to

A-linear functors Modsgm(A) — ModF' (A)ZN_l fin which commute with inductive limits.
L
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3.2 Computations on the associated graded representations

Let J C A. We fix a totally decomposedﬂ standard compact open subgroup N, C Ny
and we define an open submonoid of L; by setting

L}_ = {l S LJ ‘ lNJpl_l g NJ,O} .

We let ZF C Z; be the open submonoid Z; N L. Note that Z; is generated by Z7 as a
group and L is generated by LY and Z; as a monoid (cf. [Eme06, Proposition 3.3.2]).
Moreover, any A € X,(S) associated to P; has its image contained in the maximal split
subtorus S; of Z9 and satisfies (a, A\) > 0 for all @ € ®T\®F, thus the assumption of
§ with N = N, and 7 = S is satisfied. We fix z € Zj strictly contracting N
(equivalently Z; is generated by Z and 27! as a monoid).

Let I C A and ‘w € 'TW. We write ‘w = w’w; with 'w’ € TW7 and w; € W;. Let o
be an L;-representation. We setf]

T, = C- 1ndP whb
I
We use the notation of § The subgroup N1, € Ny is stable under conjugation
by Bjw,, and we have a semidirect product N, = N’ x N, . The subgroup
N’,;, is stable under conjugation by B, and we endow N” (whlch may not be
stable under conjugation by B ,,,) with the quotient action of B ]w , via the 1sornorphlsm
N, = Ny, /NG, Welet Ny, o € Ny, (resp. N"II 0 S N"II , N}’, 0 S Nzw) be
the totally decomposed standard compact open subgroup N g 0 N J.0 (resp N } 1, VN0,
J,wﬂNJO) and BJw C By, be the open submonoid Bj,,, ﬂL Since N1, is totally
deoomposed we have a short exact sequence of topological groups
1= Njno = Nynwo = N, — 1. (20)

In particular, N’/

T 10,0 is stable under the quotient action of B}“’wJ on N 3’ I

Lemma 3.2.1. For alln € N, the inflation map is a natural BIwJ-equz’variant isomorph-
sm
n N J,Iw,0 ~ n
H < o0 Tr ) 5 H™ (N 105 Ty ) -

Proof. The Lyndon-Hochschild—Serre spectral sequence associated to is naturally a
spectral sequence of B}, -representations (cf. [Haul6hl (2.3)])

H' (N 1 00 B (N 1y 05 71) ) = HF (N0, 1) - (21)

The inflation maps are the edge maps of for j = 0, thus they are ijj—equivariant
and in order to prove that they are bijective, it is enough to show that degenerates,
i.e. that H’ (NJ, O,mw) = 0 for all integers j > 0.

5Grlven a closed subgroup U C U stable under conjugation by S, we say that a compact open | subgroup
Uy C U is totally decomposed if the product induces a homeomorphism IL. cof (Ua N Ug) 5 Uy for any

order on <I>+ (e.g. UO = UNK where K C G is a maximal compact subgroup which is special with
respect to Z7 cf. [HVI5l § 6.6, Remark 2]).
6The naturality of a morphism involving 71, will mean its functoriality with respect to o.
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Since the left cosets N’ /N’ we deduce from

w,0

, S, :
(13) a natural N7, -equivariant isomorphism

~ sm (1 A7/ sm 77/ Tw
Try, = @ C (”NJ,Iw,m s <UJ’wJ,O' ))

’ ’ ’
n'eN N
€ J,Iw/ J,Iw,O

form an open partition of N },Iw’

!
where NV w0

acts by right translation on the terms of the direct sum. The latter are
N L’]’vao—acyclic by Shapiro’s lemma (since they are induced discrete A[N 3 ,wvo]-modules)
and the N’ ,-cohomology commutes with direct sums (since the image of a locally

constant cochain is finite by compactness), thus mz, is N'; -acyclic. O

There is a natural smooth A-linear action of B” .

Ty ¥ (U, X N, ) on € (U, 07):
we already defined the action of By, = B}, xUj, in§ and we define the action

of n” € N7, on f € Cim(Ub’,,wJ,alw) by setting

(n" - f) () =n"- f ()
for all ' € UY,, -

Lemma 3.2.2. For alln € N, there is a natural ijJ—equivariant morphism

n 7 N Lo n 7 sm / )
H J,I”LU,O’ 7rIw o — H ( J,Iw,0> C (UJ7IUJ’ g ))
such that the Hecke action of z on its kernel and cokernel is locally nilpotent.

Proof. We will implicitly make use of the isomorphism . For each n" € N',; /N, o,
evaluation at n’ induces a natural A-linear surjection

N;Iwo sm / U
evy 1w, = G (UJ’wJ,O' )

We define a natural A-linear surjection

N/
o . J,w,0 sm ! Ty
Ev = E eVy 1 Ty, — C; <UJ7wJ, o ) :
/ ! !
" GNJ,Iw/NJ,Iw,O

!/

N
We prove that Ev is BJ,, -equivariant: for any f € W,wj’l“”o and b € Bj,, , we have

B (b= Y S b0

/ ! / / / ! —1
n'eN N nyEN b b
€ J,Iw/ J,1w,0 0 J,Iw,o/ J,1w,0

— Z Z b- f(b'n'ngh)

/ ! / / / ! —1
n'eN N nyEN b b
€ J,Iw/ J,1w,0 0 J,Iw,o/ J,1w,0

= > b f (b'n'b)

’ ’ ’ —1
n'eN’ ;N b

=By (f)
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where the last equality results from the change of variable n’ — bn/b~!. We prove that

Ev is also N

N’
] w,0 " " !/ /
7 1 0-Cquivariant: for any f € m, ", n" € N w0 and v’ € U}, , we have

v )= Y @) )W)

n EN/ I /NJ Iw 0
_ Z n' . f (u/ 1n// 1u/n/n//) (u/)
n ENJ I /NJ Lo
=n"-Ev(f) (),
where the last equality results from the fact that when n' runs among N, /N’ Jhw.0
have v/~ 1n” YWn'n” = (u/"'n"~1u'n”)(n"~tn'n") with on the one hand n’"~ ln’n” running
among N’ /N’ , and on the other hand '~ In/=tu/n" € N, being constant. We

deduce that Ev induces natural BJr ,-équivariant morphisms in N 0.0 -cohomology.
We prove that the Hecke action of z on the kernel of Ev is locally nilpotent: for

N’
any f € m,” "0 there exists ¢ € N such that supp(f) C z_ZN’ T Oz (since z is strictly
contracting N } 1w, Which is open in N ' 1), thus for any n' € N / Jhw,0» We have
CH )
(=" 1) ) = > (mz" - £) ()
GNZT Iy O/z J Iw 0 =

= Z 2 f (272" (27'ng2"))

nOENJ Iy O/ZiNg,Iw,oz_i
)2 Ev(f) if " € Njp, o
0 ifn' ¢ N J, 0

Using the long exact sequence of J 1, 0-cohomology, we deduce that the Hecke action of
z on the kernels and cokernels of the morphlsms induced by Ev in N j 1,0 -cohomology is

locally nilpotent. O

The subgroup B, C By, normalises N’ ; ~and the conjugation action coincides
with the action induced by the quotient actlon of Bjw, on N7, . We define an open

submonoid B}, C BY,, by setting
B = {' e BY

Jowy

1" AT 1—1 1"
b NJ,Iw,Ob - NJ,Iw,O} :

Jw gy
Lemma 3.2.3. We have B, € B}, x U}, .

Proof. We have a semidirect product B,,,, = B}, x U], . Let b € BIwJ. We write
b =" with V" € B}, andu € U, . We prove that b € B} . Let n” € N o
Proceeding as in the proof of Lemma we see that u'n"u/~ 1n” ''e N/, so that
u'n"v'~! = n'n" with n’ € N, . Thus bn”b 1 = V'Y H(V'nY ) e Nszo, and since

N1, is totally decomposed, we deduce that v'n"b"~! € N H

JIw,0°

Lemma 3.2.4. For alln € N, there is a natural Bﬂ;] x U}, -equivariant isomorphism

(Vg (U ) (U 1 (Vo))
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Proof. Let 6 bea B} x N7,  -representation. The A-modules H*(N7,, ,,C:" (U}, ,,5))
and C"(U),,,, H* (N7, 1, G)) are naturally B x U, -representations. The identity

of C*(U},,,:0) induces a natural U Jw,~€quivariant isomorphism
~ N// ~ NN
. sm ! I sm / ~ I
[/'CC (UJ,ZUJ7O-) J,fw,0 HCC <UJ,1UJ70 J; w,O) .

- 1+ A sm (77 NN "+
We prove that ¢ is also B, -equivariant: for any f € C;™(U},,,,&) »™0, 0" € B}, and
!/ /
u' €U}, , we have

(0 r) W) = > L") ()

1 " /! 1 /r—1
n"eN b N b
€ J,Iw,o/ J w0

_ Z 'y (f) (b//flu/b//)

11 " /! 1 /r—1
n"eN V' N b
€ J,Iw,o/ J w0

—p H L (f) (b//—lulb//)
=" (f)) ().

We will prove that deriving ¢ yields the desired isomorphisms with ¢ = o
The functor C*(U},,,, —) is A-linear and exact and the é-functor H*(N7,, ,, —) is uni-

versal, thus denoting by R' the right derived functors on the category Mod, By kNt (A),

we have morphisms of functors

R* <C§m<U}’wJ, (—)N‘/’/”w’o)> C (Ul B (N 00 =)
R* <C§m(U§,w(,a —)N/J/‘Iw’()) = H (N7 105 C™ (Ul =) -

In order to show that the second one is also an isomorphism, it is enough to prove that

Ca™(Uf.,,» —) takes injective objects of Mod; B,,+ wv (A) to N7, -acyclic objects. If
J,Iw,O

& is an A-module, then we have a natural N/, -equivariant isomorphism

J,w,0

Cbm(UJw_ﬂcml( JIwO’ )) Cbm( JIwO’Cbm(UJwJ’ ))’

so that C"(Ul,,,,C™ (N}, 0,0)) is Nj,, g-acyclic. Now if & is an injective object of

Modihs  yn (A), then it is also an injective object of Modi\rf}/ (A) (cf. [EmelOb, Pro-
,w g Jdw,0 w;0

position 2.1.11] and [Haul6al, Lemme 3.1.1]), thus the natural N”

71, 0-€dquivariant injection

o = C™(N7,, 0, 0) defined by v = (n” = n”-v) admits an N, Vo—equivariant retraction,
so that & is a direct factor of C™(N Jhw+ 0), and therefore & is N T oacyclic. O

We now assume that o is locally admissible.

Lemma 3.2.5. For all n € N, there is a natural By}, x U}, -equivariant morphism

I,,J

w
n
<H OrdLlﬂPmeJ(J) O')

LjNP7 wsB
sm n Iy . JUE AL, J-1(1) JbJ
C: (UJwJ,H ( Jiw0 O )) — c—mdLmP,

Jndwd — 1(1)

such that the action of z on its kernel and cokernel is locally nilpotent.
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Proof. We have natural Bgfuj—equivariant isomorphisms

I'LU
H( 002 IW> ~ 1 (N, o)™ (22)
Since 'wN", hw=' = Uy N w/N;w’~! is the unipotent radical of L; N P (g (see

Lemma [2.1.1 (iu)), we define an open submonoid of L, () by setting

ijIwJ o =€ Lipn gy | VwNG, o'w™ 17 C NG, o™}
We have wB"Jr ™t = B, et 0 L, sy We let ZF st € Zinws(s) be the
open submon01d Zianes gy N Lm,wJ(J) Since o is locally admissible, H®*( wN",’I Ofw_l, o)

is locally Z +ﬂ, s(yy-finite by [Emel0b, Theorem 3.4.7 (1)], and thus locally ‘wzlw™-finite.

Note that ‘wzlw 1 e 7t T () is strictly contracting ‘wN" o, OIw Therefore, localising

with respect to (wzlwfl) gives rise to LT 1w (J )—equlvarlant morphisms

I I -1
H* ("wN7,, )'w™ o) = H*Ordr,np, 10, O

such that the action of wzhw™! on their kernels and cokernel is locally nilpotent (see

Remark (3 . Using (2 , we deduce Bf,’f{UJ—equivariant morphisms
1

H.< le 09 I ) - (H.OrdLIﬂplmle(J) 0)

such that the action of z on their kernels and cokernels is locally nilpotent. Applying the
functor C™(UY,,,, —), we obtain B77 x U}, -equivariant morphisms

w

I
€ (U T (N 100 0™ )) ﬁ@m(a’,’w, (H°0rdr0r, 100, ©) )

such that the action of z on their kernel and cokernel is still locally nilpotent (because the
functions in their sources and targets have finite images). We conclude using the inverse

of the B, ,-equivariant isomorphism with 6 = (H'OrdmemeJ(J> o)’ O

We combine the previous results into the following one.

Proposition 3.2.6. Let o be a locally admissible Li-representation and w € TW. We
write 'w = wlw; with 'w’ € "W’ and wy; € Wj;. For all n € N, there is a natural
BIwJ-equwariant morphism

I,,J

w
n
<H OrdLImPImeJ(J) O')

LjNP~
7 JmeJfl(I)w

LyNnP~
I eI ~1(p

—1I

H" (N‘wa,o, c-ind}7 " 0> s c-ind
I

such that the action of z on its kernel and cokernel is locally nilpotent. Furthermore, this

morphism is even L N Pm,wJ—l(I)—equivariant when wy =1 (see Remark )

Proof. Combining Lemmas [3.2.1] [3.2.2] [3.2.4], 3.2.5] and using Lemma [3.2.3] we obtain

the desired morphism. If w; = 1, then the previous lemmas and their proofs are true
verbatim with LJ AP ;,0- ' and L, /- 1(1) instead of B,,, and Bfiwl] respectively
(see Remark |2 , thus the morphism is LT N P, .. s-1(p-equivariant. ]
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3.3 Computations on parabolically induced representations

Let I,J C A, o be a locally admissible L;-representation and n € N. For any lower set

IwJ
I'wi C TW7, the natural Pj-equivariant injection FilPI‘/IV1 (Ind$- o) < Ind%- o induces
I I

an L j-equivariant morphism

H"Ordp, (Fil;‘j/f] (Indgl_ a>> — H"Ordp, (Indgl_ 0> , (23)
and by taking its image we define an L j-subrepresentation

Fil;}j/{ <H”OrdpJ (IndIGD; 0)) C H"Ordp, (Indg; O’> :

Proposition 3.3.1. The L ;-subrepresentations Filp (H"Ordp, (Indg; o)) form a natural

filtration of H”OrdPJ(Indgf o) indexed by "W . Furthermore, for all w’ € TW there is
I
a natural L j-equivariant isomorphism

Gl"gj (H”OrdPJ (Indgj, a>> ~ H"Ordp, (C—indllz?IwJPJ U) |

Proof. First, we prove for any lower sets ‘W3 C {W/ C 1W7 the short exact sequence
of Pj-representations

0= Fily)? (mdf o) - Fil)" (maf o)
I I
= Filp! " (. o) /Filp!? (nd§ o) -0 (24)
induces a short exact sequence of L j-representations

0 — H"Ordp, (Fﬂ}vﬁ' <1ndg_ a>) — H"Ordp, <F11;ZV1J (Indg_ a>)
I : I
n I/ SIwy
— H"Ordp, (FﬂPJ (Indfﬁ[_ a) /Fily? (Indgj_ 0)) 0. (25)
In particular, is injective and induces the isomorphism in the statement.
Let Njo € Ny, LY C Ly, Z; C Z; and z € Z; be as in §. Proceeding as in
the proof of [Haul6al, Proposition 2.2.3], we see that the first non-trivial morphism of

(24) induces an injection in Njg-cohomology. Using the long exact sequence of N -
cohomology, we deduce that induces a short exact sequence of L7 -representations

0 — H"(Nyo, Fil)? (1ndf o)) — H (N, Filp) " (nd§- o))
I I
—H" (NJ,O, Fil /7 (Indfﬁl_ a) /Fil ' (Indgj_ 0)) 0. (26)
Since o is locally admissible, IndIGD_ o is locally admissible (cf. [EmelOal, Proposition
I

4.1.7]), thus H'(NLO,IndIC;} o) is locally Z7-finite by [EmelObl Theorem 3.4.7 (1)]. We
deduce that each term of is locally Z7-finite (as a subquotient). We conclude that

localising with respect to 2" yields (see Remark [3.1.3)).
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We now prove that Fil}J(H”OrdPJ(Ind}GD_ 0)) is a filtration of H"OrdPJ(Indg_ o) in-

I I
dexed by ‘W, Since "W is finite and Fil}J(H”OrdPJ(Ind% o)) is inclusion-preserving
with Fily, (H"Ordp, (Indf}- 0)) = 0 and Fﬂ;?]V’(H"ordPJanng_ 0)) = H'Ordp, (Ind§, o)

by construction, it remains to prove that for any lower sets W/, TWy C IW7 the natural
short exact sequence of Pj-representations

IwJIwJ IwywJ IwywJ
0 Fily """ (naf. o) - P (naf o) @ Fi? (maf o)
JAwdulwy G
— Filp ' 7 72 (Indpf a) — 0
I

induces a short exact sequence of L j-representations

0 — Fil /1" <H”OrdpJ (Indg; a)>
— Fil " (H"Ordp, (Ind, o)) @ Fily)? (H"Ordp, (Ind§- o))
= Fil " (10rdp, (nd§ o)) 0.
This follows from the same arguments as above. O

Let 'w’ € W7, For any lower set W/ C /7’7" (D1}/; the natural B-equivariant (resp.
P lw’/ Py
1)

Pjanys-1(p-equivariant when W) = {1}, see Remark|2.2.2)) injection Filg‘/’ (c-ind

. PrTwIP . . .
— c—mdp_ "o induces a Bj-equivariant (resp. Lj N Pjan,s-1(p-equivariant when
I

W' = {1}) morphism

Py lw/p;
Pr

H"Ordp, <Filgf‘,’ <c—ind 0)) — H"Ordp, <C—ind1}z’:IwJPJ 0) , (27)

I

and by taking its image we define a B ;-subrepresentation (resp. L ;N Pjnr,s-1(p)-subrep-
resentation when W/ = {1})

A (s () s, (i)
Proceeding as in the proof of Proposition and using , we prove that is

injective and the following result.

Prlw’ Py
o))

_I’LUJ . _
natural filtration of H”OrdpJ(c—ind?, i o) indezed by A O 7 Furthermore, for
I

Proposition 3.3.2. The Bj-subrepresentations Fily(H"Ordp, (c-ind form a

all wy € meLl(DWJ there is a natural B j-equivariant isomorphism
G’ (HOrdp, (c-ind” ™" 5)) = H"Ordp, (c-ind’7 7"
B Py Py o - Py Py o
which is even L; (O Pjon,0-1(py-equivariant when wy =1 (see Remark .

We now state the main result of this section using Notation and Remark [2.3.4]
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Theorem 3.3.3. Let o be a locally admissible Ly-representation, ‘w’ € "W+7 and n € N.
For allwy € J”I”“”J_I(I)WJ, there is a natural B, ,-equivariant isomorphism

Gry’ (H”OrdpJ <c—ind£1:1wJPJ a))
I

IyJ
~ Gr%}j (Indiimp ((Hn—[F:Qp]deJ OrdlePImeJ(J) O'> X (w_l o (SIwJ)))

Jndwd — 1(])
which is even Lj N Pjyan,s-1(py-equivariant when wy = 1 (see Remark .
Proof. We use the notation of § . We let wy € 77" OW; and we put w = w’w;.

We let Njo C Ny, LT C Ly, Z7 C Z;, z € Z} and 7, be as in § In the course of
the proof of Proposition [3.3.2, we see that H"(N ¢, 71,) is locally Z7-finite (as we saw it

—1,J
for H™(N 0, c—indiﬂ Wik o) in the course of the proof of Proposition |3.3.1)).
I

Since ¢ is locally admissible, the L, ()-representations H*Ordz,n Pty O A€ loc-
ally admissible by [Emel0b, Theorem 3.4.7 (2)], thus locally Z;qn,(-finite by [Emel0Oal
Lemma 2.3.4]. Therefore, the Bj-representations

LJQP_ wJBJ

. Jnlwd ~(1) ° Ty’
c-ind - o, (H Ordr,;np, 1,0, o)
JNtw I

are locally Z;-finite, thus locally z-finite. We deduce from Proposition that the
BIwJ-representations H*(Nj 1,0, T1,) are locally z-finite and that there is a natural BIW-
equivariant (resp. LY NP, . s=1(py-eéquivariant when w; = 1) morphism

Hn—[F:Qp]deJ (NJ,Iw,Oa ﬂ'Iw) ® (W—l o 5ij)wJ

L(]ﬂP;ﬁI J_l(I)’LUJBJ [F Q ]d I,wJ L wy
X w n—|F:Qp I, J 15
—|c 1ndLmP_ S (H Ordr,np, 1,0, J) ® (w0 dns)" (28)

such that the action of z on its kernel and cokernel is locally nilpotent.

Using Proposition with L = B, (resp. L=L;NP, - 17y when wy = 1),
N=N; N = N1, (so that d — d' = di,s and 6 — &' = w7 (61,s) since conjugation by
wy induces an isomorphism of F-varieties N ;/N 1, = N,;/Njn,), 2= zand m = m,,
we deduce a natural BIwJ-equivariant (resp. L}r N Pjanys—1(p-equivariant when w; = 1)

morphism
Hni[F:QP]deJ (N]7Iw,07 771’11)) X (wil o 5Iw‘])w] - Hn(NJv()’ WIW) (29)

and the Hecke action of z on its kernel and cokernel is locally nilpotent.
Using Proposition [3.3.2} (9) with & = (H*~ 7.7 Ordy,p o) @ (w0 dn,)

ntwJ (J)
and the natural Bj-equivariant (resp. Lj N Pjnr,s-1p-equivariant when w; = 1) iso-

morphism

LynP

LJOP;ml 71 )’U)JBJ (F:Q,)d Iy 1 w,y
. n—[r: -
c-ind (H Pl Ordr,np, ) a) ® (w0 dn,0)

Nwd — 1( I)
LynpP~ 1, wyBy e
~ . Jnlwd 7H(1) n— [F Qp d] 7 -1
- w (@]
¢ 1ndLJmP, i ((H OrdLum 1wi O ® (w 51w1> ;

the locahsatlon of (128} . ) with respect to 22 and the inverse of the localisation of (29 . ) with
respect to 2% yield the desired isomorphism (see Remark [3.1.3 - O]

29



In particular with w; = 1 and & = (H*~[F:Qeldz, Ordy,np, o) @ (w0 bryr),

there is a natural Lj N Pjqn,s-1(p-equivariant injection

nlwJ (J)

LJQP;me‘],1

—I,wJ
Gry, (IndL" &) — H"Ordp, (c—indiﬂ P a) :
) 1
hence a natural L j-equivariant morphism

~ n . PrlwlP
AL ® iz, s 1) O, (IndLJ . a) — H"Ordp, <c—1ndpj_ Ja).

Lin JnlwJ =1(1)

In the proof of [Emel0Oa, Theorem 4.4.6], it is shown that such a morphism factors
uniquely through the natural L j-equivariant surjection

LJﬁPJmeJfl(I)

1 L ~ L -
AlL,] ®A[LJﬂPmeJ—1(I)] GrBJ (Ind ! U) — Ind’”’ 0.
Thus, the previous injection naturally extends to an L j-equivariant morphism

IyyJ

LJnPJﬁIwJ—l(I)

d ) (<Hn[F:Qp}dle OrdLumwa(J) U)

® (w o (LwJ))

— H"Ordp, (C—indP_IwJP" 0) . (30)

I
Pr
Conjecture 3.3.4. The natural morphism is an isomorphism.
We prove Conjecture in some special cases.

Proposition 3.3.5. (i) If H* [FQldn,s Ordr,np, o =0, then

nlwd (J)

H"Ordp, (c—ind?:IwJP" a) = 0.
I

(i) If w’(J) C I, then is a natural L ;-equivariant isomorphism

I,J

O’> B (%9 (w_l o (51wJ)

~ . PrwIp
— H"Ordp, (c—lndP’_ e a) .
I

nlwJ (J)

(Hn_ s Ord o,

(iii) Ifn =0 and 'w’ =1, then is a natural Lj-equivariant isomorphism

Y (Ordp,np, 0) = Ordp, (c-indf ™ o).

Proof. We use Theorem |3.3.3; if Hr—[FQpldr, g OrdmeI

Gry(H"Ordp, (C—indi?lw P

o = 0, then we deduce that

nlwd (J)

o)) = 0, hence (i); if 'w’(J) C I, then we deduce from

[Emel0b, Proposition 3.6.1] that Grg(H”OrdpJ(c—ind?:IwJPJ 0)) is concentrated in de-
I
gree 1, thus (30) is an isomorphism, hence (ii).
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We now prove (iii). Since all the functors involved commute with inductive limits, we
reduce to the case where o is admissible. By [AHV17, Corollaries 4.13 and 5.9], there is
a natural L j-equivariant isomorphism

Indé‘;mp, (Ordg,np, 0) — Ordp, (Indgl_ a) . (31)

I

Using (i), we deduce from Proposition [3.3.1f with n = 0 that Gr}J(OrdPJ(Indg_ o)) is
I
concentrated in degree 1, hence a natural L j-equivariant isomorphism

Ordp, <c—ind£§PJ o') — Ordp, (Indg; a> . (32)

The composition of with n = 0 and ‘w”’ = 1, (32) and the inverse of yields an

L j-equivariant endomorphism ¢ of Indij - (Ordp,np, o) which is injective in restriction
I

to Filj, (Indﬁjmp_ (Ordp,np, 0)). From [Emel0Oal Lemma 4.3.1 and Proposition 4.3.4] and
I

the left-exactness of Ordy,np,, we deduce that Ordy,np, ¢ is an injective Ln-equivariant
endomorphism of Ordy,np, 0. Since the latter is admissible by [Emel0al, Theorem 3.3.3],
it is Artinian (see § below), and thus co-Hopfian so that Ordy,p, ¢ is an isomorphism.
We deduce that ¢ is an isomorphism using [Emel0al Proposition 4.3.4 and Theorem 4.4.6].
We conclude that with n = 0 and “w”’ = 1 is an isomorphism as in the statement. [

Remark 3.3.6. Let R*Ordy,,~p, denote the derived functors of Ordy,~p, on Modljiidm(A).
By universality of derived functors, the isomorphism in (iii) extends uniquely to a morph-
ism of -functors

Ind"’ _ oR*Ordp,np, — H*Ordp, oc-ind," " (33)
I

LjNP;

(the left-hand side is the derived functor of Indﬁj Ap- © Ordz,np, by exactness of Indﬁj AP

and the right-hand side is a d-functor by the same arguments as in the proof of Pro-

position . Now, assume that [EmelOb, Conjecture 3.7.2] is true for L; N Py, i.e.
R*Ordz,np, — H*Ordy,np,. Then Conjecture for lw’ = 1 is equivalent to (33
being an isomorphism. We could prove this if we knew that the isomorphism of Theorem
with ‘w’ = 1 were Bj-equivariant for all w; € /"W).

Finally, we compute the derived ordinary parts of a parabolically induced represent-
ation in low degree when there is an inclusion between I and J.

Proposition 3.3.7. (i) If I CJ and 0 <n < [F : Q,], then H”OrdpJ(IndIGDI, o) =0.
(ii) If J C I and n < [F : Qy), then there is a natural L;-equivariant isomorphism

H"Ordy,np, 0 5 H'Ordp, (Indfj; a) .

(iti) If J € I and Ordp,np,,,, ., 0 = 0 for all a € AN\(IUJ*Y), then there is a natural
short exact sequence of Lj-representations

0 = HF@0rdy, p, 0 — HE0rdy, (1ndf, o)

— @ (Ordp,np, 0)" ® (wil o a) — 0.

aceJLIN\T
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Proof. We use Proposition and Lemma with ¢ : /W7 — N to obtain a filtration
Filf;;(H”OrdpJ(Inng_ 0)) indexed by N such that for all i € N, there is a natural L ;-

equivariant isomorphism

Grf;i (H"OrdpJ (Indg; a)) = EB .H”Ordp‘] <c—indllz§:[wjp‘] 0) . (34)

Assume n < [F: Q). If 'w’ # 1 (i.e. diys > 0), then H*Ordp, (c- 1ndP’ by o)=0

by Proposition [3.3.5] (i) since n — [F' : @pdr,s < 0, thus we deduce from (34) that
Gr?;;(H"OrdpJ(Indg; 0)) is concentrated in degree 0, so that assuming Conjecture [3.3.4

for ‘w’ = 1, we obtain a natural L j-equivariant isomorphism

L;nP;

Ind% (H"Ordy,p, o) adN H"Ordp, (Indgl_ 0) . (35)

Now, Conjecture is true for ‘w”’ = 1 in the following cases: n > 0 and I C J by
Proposition (i) since H*Ordy,np, = H"Ordy, = 0 (cf. [EmelObl, Proposition 3.6.1]),
in which case the source of is zero, hence (i); J C I by Proposition [3.3.5] (ii), in
which case the source of is H*Ordy,np, o, hence (ii).

Likewise, if fw’ 7£ 1 and 'w’/ # s, for all @ € AN(T U J) (i.e. di, > 1), then

HIEFIOrdp, (c- ind - PPy o) = 0 by Proposition[3.3.5| (i) since [F : Q] —[F : Qp]d1,s <0,
thus we deduce from (34) that Grl * (HF210rdp, (Ind€ P o)) is concentrated in degrees 0
and 1, so that assuming Conjecture “ 3.3.4 for n = [F Qp] and ‘w’ =1 or w’ = s, for

all « € A'\(I' U J), we obtain a short exact sequence of L j-representations

0— IndﬁJ Py (H[F:Qp]ordLmPJ U) — H[F:QP}OrdpJ (Indg; a>

= P wma, ((Odyar,, ) @ (@ oa)) 0. (30)

Jn I
a€AI\(IUJ) sall)

Assume J C [ and Ordy,np,, , 0 =0 forall a € AN\ (1U J1). Then Conjectureis
indeed true for n = [F : Q,] in the following cases: ‘w’ = 1 by Proposition (i), and
the first non-trivial term of is HF®lOrdy, qp, 0; w’! = s, with a € AN\(I U J*)
by Proposition [3.3.5] (i) and the hypothesis on o, and the corresponding summand of the
last non-trivial term of is zero; ‘w’ = s, with a € J&HM\I by Proposition m (ii)
since s,(J) = J C I, and the corresponding summand of the last non-trivial term of
is (Ordy,np, 0)* @ (w™ o ). Hence (iii). O

We reformulate Proposition in the case I = J, using the fact that in this case
H"Ordy,~np, = 0 if n > 0 (cf. [EmelOb, Proposition 3.6.1]). Note that if P = LN is a
standard parabolic subgroup, then for all « € A\Ap, the standard parabolic subgroup of
L corresponding to Ar, N s,(Ar) is L N s,Ps;! and it is proper if and only if o & A

Corollary 3.3.8. Let P = LN be a standard parabolic subgroup and o be a locally
admissible L-representation.

(i) For allm € N such that 0 < n < [F : Q,], we have H*Ordp(Ind$- o) = 0.
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(i) IfOrd , p,-10 =0 for alla € A\(ALUAY,), then there is a natural L-equivariant
isomorphism
HFlOrd p (IndIG} o) = @ 0" ® (wloa).

aEAf’l

4 Derived Jacquet functors

The aim of this section is to study the derived functors of the Jacquet functor. In § [4.1]
we review some results on pro-categories. In § [4.2] we relate the left derived functors
of the Jacquet functor in a pro-category with the derived ordinary parts functors and
we construct a new exact sequence to compute extensions by a parabolically induced
representation. In § [4.3] we adapt the results of § in order to partially compute the
derived Jacquet functors on a parabolically induced representation.

4.1 Pro-categories

Let H be a p-adic Lie group. Let € be the category whose objects are the A[H]-modules
such that for some (equivalently any) compact open subgroup Hy C H, the A[H,l-
action extends to a structure of A[Hy]-module of finite type, and whose morphisms are
the A[H]-linear maps. Since the completed group rings are Noetherian (cf. [Emel0al
Theorem 2.1.2]), the category € is A-abelian and Noetherian, i.e. it is essentially Smalllz]
and its objects are Noetherian. Let ¢€” be the category of contravariant functors ¢ — Set
and Ind-€ be the full subcategory of €" whose objects are the functors isomorphic to
a small inductive limit in €" of objects of € (using the Yoneda embedding € — €").
By [KS06, Theorem 8.6.5], the category Ind-€ is a Grothendieck categoryﬁ (in particular
it has enough injectives, cf. [KS06, Theorem 9.6.2]) and the natural A-linear functor
¢ — Ind-C is fully faithful and exact.

Now, Pontryagin duality induces an equivalence of categories (cf. [Emel0al (2.2.12)])

Mod™(A) = ¢°P.
Thus, the category Mod™(A) is Artinian, the pro-category
Pro-Mod%™(A) := (Ind-€)*
has enough projectives, and the natural A-linear functor
Mod™(A) — Pro-Mod3™(A) (37)

is fully faithful and exact. We let Ext}, and Extp,, 5 denote the bifunctors of Yoneda
extensions in the categories Mod%™(A) and Pro-Mod™(A) respectively. By [Oor64,
Theorem 3.5], induces A-linear isomorphisms

Exty (', m) — Extp, g (7', 7) (38)

for all objects 7, 7' of Mod%™(A).

TA category is essentially small if it is equivalent to a small category, i.e. if the isomorphism classes
of its objects form a set.

8 A Grothendieck category is an abelian category that admits a generator and small direct sums, and
in which inductive limits are exact.
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4.2 A second exact sequence

Let P C G be a parabolic subgroup and L C P be a Levi factor. We let P~ C G
denote the parabolic subgroup opposed to P with respect to L. There is a natural exact
sequence of A-modules (cf. [EmelObl (3.7.6)])

0 — Ext} (o,0rdp 1) — Extg (Indg_ o,m) = Homy, (0, H'Ordp ) (39)

for all objects o and 7 of Mod5™(A) and Mod%™ (A) respectively. We construct a second
exact sequence, in which parabolic induction is on the right.

By [Emel0al, Proposition 4.1.5 and Proposition 4.1.7], parabolic induction induces an
A-linear exact functor

Ind% : Modi®™(A) — Mod%™ (A).

By [EmelOb, Corollary 3.6.7], taking N-coinvariants induces an A-linear right-exact func-
tor (the so-called Jacquet functor)

(=) : Mod&™(A) — Modj™™ (A).

By Frobenius reciprocity and the universal property of coinvariants, there is a natural
A-linear isomorphism
Homyg (7, Ind$ o) = Homy, (7y,0). (40)

for all objects 7 and o of Mod™(A) and Modi*™(A) respectively.

We deduce from [KS06, Proposition 6.1.9] that these functors and the adjunction
relation extend to the corresponding pro-categories. By [KS06, Corollary 8.6.8], Indg is
still exact so that (—)y still preserves projectives. Thus, denoting by Le(N, —) the left
derived functors of (—)y in Pro-Mod%™ (A), there is a Grothendieck spectral sequence of
A-modules

Exth,,  (Lj(N,7),0) = Ext5? (7, Ind% o)

whose low degree terms form a natural exact sequence of A-modules

0 — Extp,, , (Tn,0) = Extp, o (, Ind% o) — Hompyo.r, (L1 (N, 7) , 0)
— Exti, , (Tn, 0) = Exti o (T, Ind$ o) (41)

for all objects 7 and o of Pro-Mod%™(A) and Pro-Mod3"™(A) respectively.

We let d denote the integer dimp N and 6 € X*(L) denote the algebraic character of
the adjoint representation of L on detr(Lie N). We define A-linear functors by setting

H,(N, —) = HF@=*0Ord p @ (w0 6) .

We deduce from [EmelObl Corollary 3.4.8 and Proposition 3.6.1] that we obtain a homo-
logical -functor

H,(N, —) : Mod™(A) — Mod3™™(A)

and proceeding as in the proof of [KS06, Corollary 8.6.8], we see that it extends to a
homological -functor between the corresponding pro-categories.
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By [Emel0Obl, Proposition 3.6.2], there is an isomorphism of functors (hence the nota-
tion)
Ho(N, =) = (=)

which, by universality of derived functors, extends uniquely to a morphism of J-functors
Ho(N,—) — Lo(N, —) (42)

which is bijective in degree 0, and thus surjective in degree 1 (by a dimension-shifting
argument). Using (38)), we deduce from a natural exact sequence of A-modules

0 — Extj (mn,0) — Extg (7, Ind% o) — Homy, (H{(N,7),0) (43)

for all objects 7 and o of Mod%™(A) and Mod™™ (A) respectively.

Remark 4.2.1. (i) Nothing is known (to the author at least) regarding the nature of
the morphism in degree greater than 1.

(ii)) Let H be a p-adic Lie group. Taking inductive limits induces an A-linear exact
functor
ling : Tnd-Mod§™ (A) — Modj*™ (A)

which is essentially surjective, but not faithful nor full in general. Thus the situation
here (i.e. deriving in Pro-Mod™(A)) is not exactly dual to that of [Emel0b, § 3.7]
(i.e. deriving in Mod}4™(A)).

4.3 Adaptation of the computations

Let I,J C A, o be an Lj-representation and n € N. We let fw, = wrowy (resp.
J”I’“’J_l(f)wm = Wynn/-1(1)0Ws0) denote the image of wy (resp. wyo) in W (resp.
I’ D) and we define an auxiliary subset of A by setting I’ == fwy(I). We have
L; = w,L plwo_ Land P; = IwOP]_,IwO_ ! hence a natural G-equivariant isomorphism

md$, o 2 Ind% o0 (44)
I/

defined by f + (g +— f(fwog)).

Lemma 4.3.1. The map "W/ — "W defined by w’ — hwyhw’ 70" ™ Dy is an
order-reversing bijection.

Proof. First, note that W; = woWrwy, so that left translation by wy induces a bijection
WAW/W; = Wp\W/W,.

In particular, card /W = card "' W+. Thus, it is enough to prove that the order-reversing
composite
"Wl w S w

. I,J—1 el e e . . . .
where the first arrow is defined by ‘w”/ — wI,OIwJ‘m w (I)wJ’O (it is injective since TW7 is

a system of representatives of the double cosets W, \W /W, and order-preserving since the
projection W — fW is order-preserving) and the second arrow is the left multiplication
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by wy (it is an order-reversing bijection, cf. [BB05, Proposition 2.3.4 (i)]), takes values
in "'W7.

Now, let aw’ € WY, For all w € W and wyp € Wy, we have (using [BB03,
Proposition 2.3.2 (ii)])

14 (wplwa”w) 14 (wo (wowpwy) wl,olw)
{ (wo) — ((€ (wr) — £ (wowpwo)) + € ('w))
14

(wp) + ¢ (wow]’[)IU)) .

. I,J—1 _ I,J—1 ’ . .
Since hw’ /M Dy ;o € TW, we deduce that hwy M’ /0" Dy ;o € W, Likewise, for
all w’ € WY, we have woijj’(] € W. Since

_ I.,J—1
I, =11, J0tw? =1 (1)

_ r.J
Wy W0 = WolWr,o W Wjniys-1(1),0WJ,0

r.J
= WoWr,0Wrnhy’ (J),0 W WJo

Intw’(J)1 g
= U)o’U)LO w-wjo

I.,J —
and w%w iyl e W, we deduce that g w’ 0" Dy € WY, We conclude that
IwoflIwJJﬁIwJ*l(I)wJ’O e 'w. []

We deduce from Lemma that the left translate by ‘wq of the decomposition
G = Unprerws PI_,I{UJPJ is the decomposition G = | |1,scryys Prw’ Py with the op-
posite closure relations. Proceeding as in § 2.2] we can construct a natural filtration
Filp, (Indgl o) by Pj-subrepresentations indexed by /W7 with the opposite Bruhat order,
and there is a natural Pj-equivariant isomorphism

I”LU‘] G ~Yy : PII’LUJPJ
Grp, (IndPI 0’) = c-indp, o

for all ‘w”’ € W7, Furthermore, identifies this filtration with Fil}, (Ind$- o),
I/

using Lemma to identifiy the indexing posets, and induces a natural P;-equivariant

isomorphism
. P 1, JP ~ . P_, I{lUJPJ I
c-indp 77 0 = c-ind P} oo (45)
for all w’ € TW7 with “w’ = hwytw’ 70" "Dy, 5. We deduce from Proposition m
that FiI}J(Inng o) induces a filtration Filp (H, (N, IndJG;I 0)) by Lj-subrepresentations
indexed by W+ with the opposite Bruhat order and that there is a natural L j-equivariant
isomorphism
I,J . I.J
Grpy” (o (N, Ind§, 0)) 2 H, Ny, c-ind 7 o)

for all w’ € TW7.

Let w’ € "W/ and set fw’ = g hw? 70" Do We let & be an L jnns—1()-
representation. Note that J N aw’=1(1) = /0"’ Dy o (J N 1w’ =1(I)). We have

JNhw! =1(1) JNw!=N(1), —1

LJmeJ—l(I) = QUJ70LJOI’1UJ—1(I/) Wro

I,J—1 _ I,J—1 _
and LJ N PJﬂLwal(I) = /0w (I)wJ7OLJ N PJmﬂwal(I/)Jm v (I)wJ,(l)a
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hence a natural L j-equivariant isomorphism

I J—1
L ~ L ~Jntw (I)
Ind;’ - p ¢ = Ind "’ o wJ,0 (46)
J Jnlwd —1(1) L;NP~ Ly d — 111

defined by f — (I — f(7""" ' (Dy,4l)). Proceeding as in the proof of Lemma [4.3.1] we
obtain the following result.

Lemma 4.3.2. The map /""" DWW, — Jm]in?l(I,)WJ defined by wy — ‘ml“"]*l(l)wj’éwg]
is an order-reversing bijection.

We deduce from Lemma that the left translate by gy (resp. 77" Dy 0) of

oy —7/
the decomposition P;, ‘w’ Py = |_| eIl LNy, Pt w Jw', B

(resp. Ly= |_| LynP Jnlwd =1(1") wfIBJ)

I,J—1
leeJﬂ wJ aw;,

is the decomposition P;w’ P; = L, contwr 1, P'w/w; B

(resp. LJ = |_| LJ N PJmeJ—l([)UJJBJ)

wyedntwd ~HDOyy,

with the opposite closure relations. Proceeding as in § 2.2 we can construct a natural

filtration Filjg(c—indg fw’ Py o) (resp. Fily J(Indéj mPJ Tt 7)) by B-subrepresentations
n

(resp. Bj-subrepresentations) indexed by DW, with the opposite Bruhat order,
and there is a natural B-equivariant (resp. Bj-equivariant) isomorphism

JﬂIJl

. Pyl p . Priwlw B
Gry’ (C—md o a) >~ cindl Y o
T T

LJmPJmeJ—l(I)wJBJ ~
7)

(resp Grl”B (IndLJﬂP Alwd —1(1) O-) = C_lndLJﬂPJmeJfl(I)

for all w; e 7N Jﬁl(I)WJ. Furthermore, (45) (resp. (46)) identifies this filtration

. . Iwlpy ~Infwd =11 .
with Filj(c-ind ) Pyt o ") (resp. Fily (Indi" . g Dwio)) using Lemma
I JnThwd =1(17)

to identifiy the indexing posets, and induces a natural B-equivariant (resp. Bj-
equivariant) isomorphism

. P lwlw B P, lww' B 1
c-indp "7 0 = c-ind P’,’ g
. LuNP; 10— 1(])'wJBJ - LonP 5 (1) wyBy Il ), o
(resp. c-indy np cind, 7 a 0)
Jn )] Ly Jrlhed =1(17)
I, J-1 . I, J—1 ..
for all w; € /"W, with W' = Jw (I)wJOwJ We deduce from Proposition

3.3.2| that Fﬂg(c—indgwp" o) in%ufe? a filtration Flljg(Hn(NJ,c—indI;;IwJPJ o)) by By-
subrepresentations indexed by ‘7" (DWW, with the opposite Bruhat order and that
there is a natural Bj-equivariant isomorphism

i (5 ) 1, ()
for all wy € Jﬁ[w"*l(J)WJ.
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Theorem 4.3.3. Let o be a locally admissible Ly-representation, w’ € "W7 and n € N.
For all wy € J”I”“”J_I(I)WJ, there is a natural B, mzwjfl(,)wfluu-equz’vam’ant isomorphism
) J,0

Gry’ (Hn <NJ, c—indg’[w]PJ O’))
I,.,J

~ w L w
= GrBj (IndLjﬁPmeJ_1(1) (an[F:Qp}deJ (L[ N NImeJ(J), CT) ® (wo 51wJ)>)

_ Jnlw/ (1)

which is even Ly N P msz_l(I)wEé,wJ,l(I)—equz’vam’ant when wy = wy-

JnJ

Proof. We set fw’ = IwoilleJmeJil(I)'LU]’o and we define an L jnr,s-1(p)-representation
by setting

I J—1
JNtw I -1
g ( >wJ,0

G o= <(H[F:Q”](dJ_dI%J)_”OrdL,,ﬂPI "IwO) " @ wo (8~ )

'l d (7)

where d; denote the integer dimp N; and §; € X*(L;) denote the algebraic character
of the adjoint representation of L; on detp(LieN ;). We prove that there is a natural
L janys-1(py-equivariant isomorphism

Iy,J

o= Hn—[F:Qp]deJ (L[ N N[meJ(J), O') ® (wodn,s). (47)

~1 —1
We have L) = IwomeﬂwJu)IwO and Ly NP any0 () = IwoLpﬂPI,m%J(J)IwO , hence
natural L, y-equivariant isomorphisms

Iwo

(] 1 ~ L]
H Ol"dLImPI,m,wJ(J) o= (H OrdL,um,wJ(J) a)
Using Lemma [2.1.1] (iii), we have (with notations analogous to d; and d,)

H.Ol"dLIﬂPI = H[FiQp](dmeJ(J)—dl)—° (L[ N N[meJ(J)7 —) ® ((,u_l o (6IﬂIwJ(J) — (5[)) .

nwd (1)

Thus in order to prove , it remains to check that

dy = (dlmeJ(J) - d]) ~+ dr,s + d;/wJ,
85 =™ (Srnps gy = O1) + Ongs + 77 Dy (61,0)
We do these computations on the corresponding Lie algebras: d; and §; correspond to
OIN\DY, (dirnys(y — dr) and 'w’ (671,05 — 1) correspond to (PH\PT) N w’ 1 (PF),
diys and s correspond to (®H\®F) N aw’~1(—=®F), and dp,, and 77" D o(60,,)
correspond to (PT\®F)Nw’ 1 (®T\®T) (noting that wy(—P*) = (@7 )L (PT\P]) and
(@T\®F) N w1 (=®}) = 0). Thus, the two equalities above follow from the partition

PM\@F = ((@\@F) N’ (7)) u ((2T\@F) N'w’ " (—2T))
U ((e"\@)) nfw’t (@F\27))

which is obtained from the partition ® = &} U (—®*) LU (®+\®]) by applying ‘w’ ! and
taking the intersection with &\ 7.
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I,J—1 I,J—1 _ . .
Let wy € /7" (W, and set w'y = /7 (I)wjv(l)wg]. By construction, (45)) induces
a natural Bj-equivariant isomorphism

Gry’ (Hn <NJ, c—indI;;IwJPJ 0))

’ — 19,7
>~ Gry’ (H[F:QP]dJ_”OrdpJ (C—ind?_' r 01“’0> ® (wo 5])) :

I’

By Theorem |3.3.3, there is a natural B, -equivariant isomorphism

, — 17,7
Gr? (H[F:Qp]dJ—”OrdPJ <c-ind£ﬂ " UIwO) ® (wo 5J))

I’

L‘]mPJmI’wal

I J—1
>~ Grly (IndLJ . & “>ww)
(€20

which is even L; N P It —1(py-equivariant when w’; = 1. By construction, and
induce a natural B j-equivariant isomorphism

W _anlwd=1(p)
Grg’ <IndL" - o w0
)

LJmPJmI’wJ—l(I/

I,J

~ wy L,
= GrBJ <IndLJmDmeJ_1 0

®(wo (5sz)>> :

(H”*[Ft@pldw (Lr OV Ninpa (g, 0)

Composing these three isomorphisms yields the result. O

We deduce from Theorem with wy; = I’ 1Dy, J0 a natural L j-equivariant
morphism analogous to

I,J

<Hn—[F:@p]dsz (L1 N Nipipr(),0) © @ (wo &wJ))

S H, (NJ, c-ind b Py a> (48)

Ly
IndLJﬂPJmeJ—l([)

and Conjecture is equivalent to being an isomorphism. We also have analogues
of Propositions 3.3.5 and [3.3.7 In the case I = J, we obtain the following analogue of

Corollary [3.3.8|

Corollary 4.3.4. Let P = LN be a standard parabolic subgroup and o be a locally
admissible L-representation.

(i) For allm € N such that 0 < n < [F : Q,], we have H,(N,Ind% ) = 0.

(ii) If 0 g, szt = 0 for all o € AT\(Af U ALY, then there is a natural L-equivariant
isomorphism

Hir.q,) (N, Ind$ o) = EB 0" ®(woa).

aEAi’l

Remark 4.3.5. The results hold true with P~, N~ and w™! instead of P, N and w
respectively.
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5 Application to extensions

The aim of this section is to compute the extensions between parabolically induced rep-
resentations of G. In § 5.1} we review some cuspidality and genericity properties and we
prove some preliminary results on extensions which will be used in the case where G is
split and Z is connected. Then, the main results are proved in § 5.2 Finally, some of
these results are lifted to characteristic 0 in §[5.3

5.1 Preliminaries

We fix a standard parabolic subgroup P = LN.

Cuspidality and genericity properties

We define some cuspidality properties and discuss the relations between them.

Definition 5.1.1. We say that an admissible smooth representation o of L over k is:
e supersingular if F, ®; o is supersingular (in the sense of [AHHV1T]),

o supercuspidal if it is irreducible and not a subquotient of Indéf for any proper
parabolic subgroup Q C L with Levi quotient Lq and any irreducible admissible
smooth representation 7 of Lg over &,

e right (resp. left) cuspidal if Ordgo = 0 (resp. oy, = 0) for any proper parabolic
subgroup Q C L with unipotent radical Nq.

Remark 5.1.2. In [AHV17, Definition 6.3], left and right cuspidality are defined for smooth
representations using the left and right adjoint functors of Ind%, namely Lé and Ré.
Since L = (—)n, and the restriction of R§ to admissible representations is Ordg- (cf.
[AHV17, Corollary 4.13]), these definitions coincide for admissible representations.

Lemma 5.1.3. Let o be an irreducible admissible smooth representation of L over k.
The following are equivalent.

(i) o is supercuspidal.
(ii) o is left and right cuspidal.
(iii) IF_p ®y 0 1s a (finite) direct sum of supersingular representations.
In particular, o is supersingular if and only if it is absolutely irreducible and supercuspidal.

Proof. Over F,, the equivalence between (i) and (ii) is [AHV17, Corollary 6.9], and the
equivalence between ‘supercuspidal’ and ‘supersingular’ is [AHHV17, Theorem 5]. By
[Emel0b, Lemma 4.1.2], F, ®; o is a finite direct sum of irreducible admissible smooth
representations of L over F,. Since Indé, (=)~ and Ordg commute with F, ®; —, we
deduce the equivalences over k. O

We now study some genericity property for smooth representations of L over k with
central character. We assume that Af’l # ().
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Lemma 5.1.4. Let o be a smooth representation of L over k with central character
C:Zp, —> k" and a € Af’l. IfCoa¥ =w™ then 0 ® (wloa)Xo.

Proof. For convenience, we recall the construction of the representation o ® (w™! o ).

Let G, C G be the standard Levi subgroup corresponding to . We fix a representative
Ne € N of s,. For every 8 € Ag, and for all integers 7,7 > 0, i + 78 € ® (since a L f3),
thus U, and Ugz commute for every § € Ap, by [BT65, Proposition 2.5], or more directly
using the Baker—Campbell-Hausdorff formula. We deduce that G, and L normalise each
other (since G, and L are generated by Z and respectively Uy, and (Ug)gesa,). In
particular, n, normalises L (since n, € G,) and the n,-conjugate ¢ does not depend
on the choice of n, in n,Z up to isomorphism (since Z C L). Furthermore, L normalises
U, and « extends (uniquely) to an algebraic character of L (since o € Al).

We let I, C L be the kernel of o : L — F*. Note that L = S1I,. We may and will
assume that n, lies in the subgroup of G, generated by Uy, (cf. [AHHVI1T7, § I1.4]) so
that n, commutes with I,,. Thus, the action of I, on 6* ® (w™! o a) and ¢ is the same.

Now, assume ¢ o @¥ = w™'. For any A € X,(S), A — 5,(\) = {(a,\)a" so that
A —5q(A) € Xu(SNZy) and

Co(A=sa(N) = (Coa) ™ =@V = (W ea) o\

We deduce that for any s € S, s(nosn;')™' € SNZp and ((s(nesn;') ™) = (woa)(s).
Thus, the action of S on 0* ® (w™' o a) and o is the same. O

The following result yields a converse to Lemma when G is split and Z is
connected (cf. [BHI15, Proposition 2.1.1]).

Lemma 5.1.5. Let o be a smooth representation of L over k with central character
C:Zp — k* and o € At Assume that there exists A € X,(Zy) such that (a,\) = 1
and (B,\) = 0 for all B € Ap"\{a}. If Coa" # w™, then s4()(w o) # ¢ and
Sa(O)(wW T oa) # s5(Q) (w0 B) for all € Ap" \{a}.

Proof. We have (s,(¢)(w0a))o ) = (CoN)((Coa)w)~" and (55(C)(w " 08))oA = (CoN)
for all B € Ap"\{a}. Thus, if 5,(¢)(w™ 0 a) = ¢ or 54() (W™ 0a) = s5()(w Lo p)
for some 3 € Afl\{a}, then precomposing each side of the equality with A yields the
equality (¢ o a¥)w = 1. O

Preliminary results on extensions

Let H be a p-adic Lie group. For locally admissible smooth representations m, 7" of L
over A, we let Ext%; (7', m) denote the A-modules of extensions computed in Mod;24™(A)
a la Yoneda or using an injective resolution of 7. If 7, 7" are admissible, then in degree 1
it is equivalent to compute Ext$, (7', 7) in Mod3s™(A) & la Yoneda, but this is not known
in higher degree (cf. [EmelOb, Remark 3.7.8]), except when H = GLy(Q,) (cf. [Pas13,
Corollary 5.17)). Let Z C H be a central closed subgroup and ¢ : Z — A* be a smooth
character. We write Modf"%m(A) for the full subcategory of Mod}2¥™(A) whose objects

are the representations on which Z acts via ¢. If Z acts on m, 7" via (, then we let
Exty; (7', 7) denote the A-modules of extensions computed in Modﬁ%m(A) a la Yoneda,
or equivalently using an injective resolution of .
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We now assume that G is split and we write T for the maximal split torus S = Z.
Using Notation [2.3.3] we have d,, = £(w) for all w € W, so that in particular A! = A.
Let L' C G be a standard Levi subgroup such that Ay, L Ajp,. Note that LL’ is the
standard Levi subgroup corresponding to Ar, LIA,. Let o be a locally admissible smooth
representation of L over k with central character { : Z;, — k*. The following construction
was communicated to me by N. Abe. B

First, we assume that G4 is simply connected and we let Z C Z be a closed subgroup.
Recall that this is equivalent to the existence of fundamental weights (itq)aca (cf. [BHIS,
Proposition 2.1.1]). We set x :== (0} ca (a0 pq). Thus xoa' =1forall a € Ag
and yoa¥ = (oa’ for all @ € Ayr, so that y extends uniquely to L and oy := 0 @ y !
extends uniquely to a locally admissible smooth representation of LL' over k by |[Abel3,
Lemma 3.2]. We let x': T"— k* be a smooth character such that XTZL/ = X|z,,, S0 that
X' extends uniquely to L, and we set o' := 09 ® x’. There is a commutative diagram of
k-vector spaces

Exty,,, (X)) —— Exty, (Indg; X',Indgzl x)

\, l

Bxty,,, (x) — Bxtiy, (ndfh ' mdfs y) (49)

| l

. . Lr L
EXtLC‘Z (0',0) —— EXtLL'7C|2 (IndLBL,/ o’ IndLBZ/ a>

where the horizontal arrows are induced by the functors Indg_ and Indég_ , the upper
/ LI

vertical arrows are induced by extending representations to L and LL’, and the lower
vertical arrows are induced by tensoring representations with oy. Furthermore, the lower
horizontal arrow of composed with the k-linear morphism induced by the functor
Indg—L/:

EXt’LU’C'Z (Indéég/ a, Indﬁé;/ U) — EXta7C|2 (IndG_ o', Ind%- o), (50)

is the k-linear morphism induced by the functor Ind%-:
. ’ . G ! G
ExtL’qZ (o',0) = EXtG,C‘Z (Ind%- ¢’,Ind%- o). (51)

Lemma 5.1.6. (i) In degree 1, there is a k-linear injection from the cokernel of the
upper horizontal arrow of into the cokernel of .

(ii) Assume Z connected. In all degrees, there is a k-linear injection from the kernel of
the upper horizontal arrow of into the kernel of .

Proof. We prove (i). The map in question is induced by the composite right-hand side
vertical arrow of composed with . Let £ be an extension of Indéa X' by Indéa X

with central character x|z, (so that £ extends to LL'). Then Ind%-;, (0o ®E) is an exten-
sion of Ind$_ o’ by Ind%_ o on which Z acts via ¢. There are L-equivariant isomorphisms

OI'dp (IHdIGJ_L/ (O’o X S)) = OrdLBL/ (0'0 X 5) = (o)) X OI‘dBL, E.
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The first one results from [Emel0Oal, Proposition 4.3.4] and the second one from the fact
that Uy acts trivially on oy (note that Ordp,, £ extends to L). If the class of £ is not in
the image of the upper horizontal arrow of , then there is a T-equivariant isomorphism
Ordp,, £ 2 x, hence an L-equivariant isomorphism Ordp(Ind%- (0o ® £)) = o, thus the
class of Ind%_;, (0o ® &) is not in the image of (51).

We prove (ii). The map in question is induced by the left-hand side composite vertical
arrow of . Thus, it is enough to prove that the latter is injective. We assume
Z connected. Recall that this is equivalent to the existence of fundamental coweights
(Aa)aea (cf. [BHI5, Proposition 2.1.1]). We let T/ C T be the closed subgroup generated
by the images of (Aa)aeca,,, so that T/ C Zyg, and the product induces an isomorphism

T’ x Zy, — T. There is a commutative diagram of k-vector spaces

EXt’},X‘ZU (X/7X) ;> EXt%’ (X‘/T/7X|T’)

~

Eth,Xlg (X/7 X) EE— EXt%’ (X‘/Tla X|T’)

\, !

ExtLClZ (0',0) —— Ext}, (O"’T/,O"T/)

where the horizontal arrows are induced by restricting representations to 7" (the upper
one is bijective with inverse induced by tensoring representations with x|z ,, and the
middle and lower ones are well-defined since a locally admissible smooth representation
of L over k is locally Z;-finite, cf. [EmelOal, Lemma 2.3.4]), the left-hand side vertical
arrows are the same as in and the lower right-hand side vertical arrow is induced by
tensoring representations with oo (it is injective since 7" acts on oq via (x ). ]

Now, we do not assume G simply connected. Instead we take a z-extension of G,
i.e. an exact sequence of affine algebraic F-groups

157Z-5G =G =1

such that G is reductive with simply connected derived subgroup and Z is a central torus
(cf. [CTO8, § 3.1]). The projection G — G identifies the corresponding root systems.
We let P C G be the standard parabolic subgroups corresponding to P and LCPbe
the standard Levi subgroup corresponding to L. Note that L is a z-extensions of L. We
let 0’ be a locally admissible smooth representation of L over & with central character (.
By inflation, we obtain locally admissible smooth representations ¢ and &' of L over k.
There is a commutative diagram of k-vector spaces

Ext} (¢/,0) — Extg, (IndG_ o', Ind%- o)

lz le (52)

(5',5) — Exty, (mdf &', md§_5)

Ext G5

pd
L7C|Z
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where the horizontal arrows are induced by the functors Ind%_ and Indg_ and the vertical

arrows are induced by inflating representations to L and G (they are well defined and
bijective since ¢ is trivial).

Proposition 5.1.7. Assume F' = Q, and G split. Let o be a locally admissible smooth
representation of L over k with central character ( : Zy — k™.

(1) Assume Af # 0 and let « € AL. If (oaV # w™!, then the k-linear injection
Ext} (0" ® (w'oa),o) = Extg, (Indg_ o ® (woa) ,Ind$- o)
induced by the functor IndIGD, s not surjective.

(i) If p =2, then the functor Ind%_ induces a k-linear injection
Ext} (0,0) = Extg (Ind%- o, Ind%_ o)
whose cokernel is of dimension at least card{a € A{ | oV = 1}.

Remark 5.1.8. We expect the results to hold true for a non-split reductive group with
A;"' instead of Af.

Proof. By taking a z-extension of G and using , we can and do assume that G4 is
simply connected and prove analogous results for the morphism .

Assume Af # 0 and let « € Af. We use Lemma (i) with L defined by
Ay ={a}, x =Coa" oy, and X' = s,(x)(w™ o), so that 0/ = ¢* ® (w™! o ) (since
oy = 0o by Lemma with 1 instead of w). If (oa" # w™!, then the upper horizontal
arrow of in degree 1 is not surjective by the mod p analogue of [Haul7, Lemme 3.1.4]
(since xy oa¥ = (oa’ = 1), thus in degree 1 is not surjective, hence (i).

We use Lemma (i) with L/ defined by A, = {a € Af | (oa¥ = 1},
x = (o ZaeAL/(av o lty), and x' = ¥, so that ¢’ = . If p = 2, then the cokernel
of the upper horizontal arrow of in degree 1 is of dimension at least card Ay, by
[Haul7, Théoréme 3.2.4 (ii) and Remarque 3.2.5 (ii)] (since x o a¥ = ( o ¥ = 1 so that
Sa(x) = x by Lemma for all & € Ayr/), noting that all the extensions constructed in
loc. cit. have a central character (cf. [Haul7, Lemme 3.1.5]), thus the cokernel of
in degree 1 is of dimension at least card Ay, hence (ii). O

Proposition 5.1.9. Assume F' = Q,, G split and Z connected. Let o be a locally
admissible smooth representation of L over k with central character ( : Zp — k*. If
p # 2, then the functor Ind]Ggf induces a k-linear morphism

Ext} (0,0) — Ext, (Indg_ o, Ind%- o)
whose kernel is of dimension at least card{a € A{ | (oaV = w1},

Proof. By taking a z-extension of G (noting that the centre of G is also connected because
7 is connected) and using , we can and do assume that G is simply connected and
prove an analogous result for the morphism .

We use Lemma [5.1.6] (ii) with L’ defined by A, = {a € Af | (oa” = w™!} and
X' = x, so that ¢’ = 0. If p # 2, then we see in the proof of [Haul7, Théoreme 3.2.4 (i)]
that the kernel of the upper horizontal arrow of in degree 2 is of dimension at least
card Ay (since yoa' = (oa¥ =w™! for all @ € Ay/), thus the kernel of in degree
2 is also of dimension at least card Ay, hence the result. O
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5.2 Extensions between parabolically induced representations

We begin with a result when there is no inclusion between the two parabolic subgroups,
assuming a special case of Conjecture [3.3.4] (see also Remark [3.3.6)).

Proposition 5.2.1. Let P = LN, P’ = L'N’ be standard parabolic subgroups and o,c’ be
admissible smooth representations of L, L' respectively over k. Assume Conjecture[3.3./)]
is true for A=k, n=1and w’ =1. IfP' P, P P, and 0,0’ are right,left cuspidal
respectively, then

Extg; (Ind%- o, Ind§- o) = 0.

Proof. We put I := Ay, and J := Ay, Using (31)), with 7 = Indg; ocand Py, Ly, o

instead of P, L, o respectively yields an exact sequence of k-vector spaces

0 — Exty, (0’, Ind”*”

b o (Ordsep, 0)) ~ Extl (Indg; o’ IndS. a)

— Homy,, (0', H'Ordp, <Indgl_ 0)) . (B3)

Assume I Z J and o right cuspidal. Then Ordy,np, 0 = 0 (since L; NP is a proper
parabolic subgroup of L;) and there is a natural L j-equivariant isomorphism

Ind%” (HlordL,nPJ U) — HlOIdPJ <Ind}§1‘ U) : (54)

LyNP;

Indeed, by assumption is a natural L j-equivariant isomorphism

Indiijf (HlordLI”PJ U) — H'Ordp, <C_indllz§fPJ U)

Prlw’ Py

and by Proposition [3.3.5 (i) with n = 1, we have H'Ordp, (c-ind/ _ o) = 0 for all
fw’ € "W such that 'w” # 1 (since either di,s = 1 and Ordg,np, , ;0 =0, or dis > 1
and 1 — [F: Q,)dn,s < 0). Thus, we deduce from Proposition

Assume J € I and o’ left cuspidal. Then O',L] n- =10 (since L; NP} is a proper
. I

parabolic subgroup of L) and using with m =0’ and Ly, L; NP, Ly, Ly NNy,
H'Ordp,np, o instead of G, P, L, N, ¢ respectively, we obtain

Homy, (o', Ind}”_, (H'Ordp,ep, 0) ) =0,

LJQPF
We conclude using . O]

Now, we prove unconditional results whenever there is an inclusion between the two
parabolic subgroups. We treat the cases F' = Q, and F' # Q, separately.

Theorem 5.2.2. Assume F' = Q,. Let P = LN,P’ = L'IN’ be standard parabolic
subgroups and o,0’ be admissible smooth representations of L, L' respectively over k.

(i) If P' =P, 0,0 are supercuspidal and 0’ % 0* ® (w™'oa) for all a € Af’l, then
the functor Ind%_ induces a k-linear isomorphism

Ext} (0/,0) = Extg (Ind§- o/, Ind%- o) .
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(i) If P’ C P and o is right cuspidal, then the functor Ind%_ induces a k-linear iso-
morphism
Ext) (Indf,p- 0',0) — Extg, (Ind%- o/, Ind§- o).

(iii) If P C P’ and o' is left cuspidal, then the functor Ind%,_ induces a k-linear iso-
morphism
Ext;, (U’, Indgnp_ 0> 5 Extg, (Indg,_ o' Ind$- a) .

Remark 5.2.3. Assume P’ = P and o, ¢’ irreducible. In general, we do not know the
dimension of the cokernel of the k-linear injection Ext} (¢, o) < Extg(Ind%- o/, Ind%- o)
induced by Ind$_, but we prove that it is at most card{a € Ap' | 0/ 2 0* @ (w0 )}
whenever o is right cuspidal or ¢’ is left cuspidal (see the proof). If o, ¢’ are supersingular,
then letting ¢ : Z; — k* denote the central character of ¢ (cf. [EmelObl Lemma 4.1.7)),
we expect this dimension to be equal to

card{a e A ‘ o' 20*® (w ' oa) and (oa” # w_l}

except when p = 2 and in some exceptional cases (cf. [Haul7, Remarque 3.2.5] when G
is split and P = B). We prove this when G is split and Z is connected (see Theorem
- 5.2.7| below), in which case the cardinal above is equal to 1 if 0/ X 02 ® (w o) % o for
some o € Ap’' and 0 otherwise by Lemma . When G is split but Z is not connected,
one could prove that the cardinal above is a lower bound using Proposition [5.1.7 (i) and
some generalisation of [Haul7, § 2.2] for P # B.

Proof. We prove slightly more general results.

Assume P’ C P and o satisfies the condition in Corollary |3.3.8 (ii) e. g o is
right cuspidal Usmg [EmelOa Proposition 4.3.4] and Corollary [3.3.§ (ii), with
7 =Ind%- o and Ind%, p- ¢ instead of o yields an exact sequence of k-vector spaces

0 — Exty (Ind},p- o', 0) = Extg (Ind%- o', Ind%- o)

— EB Homy, (Ind}p-0',0* @ (w'oa)). (55)

aEAf’l

If P’ = P and o, 0’ are irreducible, then 6*® (w™! o) is also irreducible for all a E Ay
and thus the last term of (5%]) has dimension equal to card{a € AT | ol 2 oo®(w )}
hence (i). If P’ C P and o is right cuspidal, then L NP’ is a proper parabolic subgroup
of L and

Ordrnps (0 ® ( a)) = (Ordpnp 0)* ® (ufl o a) =0

for all a € AL’ , thus the last term of is zero by [EmelOal, Theorem 4.4.6], hence
(ii).

Assume P C P’ and o’ satisfies the condition in Corollary §.3.4] (ii) for P'~ = L'N'~,
e.g. o is left cuspidal. Using [Vigl6l, Theorem 5.3, 3] and Corollary [4.3.4] (ii) for
P~ = /N~ (see Remark [4.3.5 i with 7 = Ind%- ¢’ and P'~, I/, N, Ind%, - o
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instead of P, L, N, o respectively yields an exact sequence of k-vector spaces
0 — BExt}, (U', Indgnp_ a> — Extg, (Indg/_ o', Ind$- U)
— @ Hom/, (a’a ® (woa) Indb, - U) . (56)
acAL!

If P’ = P and o, ¢’ are irreducible, then 0’® @ (w™' o) is also irreducible for all a € Af’l,
and thus the last term of has dimension equal to card{a € Ay' | 0’ = 0@ (w 'oa)},
hence (i). If P C P’ and ¢’ is left cuspidal, then L' NP~ is a proper parabolic subgroup
of L and

(0@ w'oa)) v Z(0ay-)" @ oa)=0

for all & € Ay, thus the last term of is zero using with 7 = 0" ® (w0 )
and L', L'NP~, L' NL, L' N~ instead of G, P, L, N respectively, hence (iii). O

Theorem 5.2.4. Assume F' # Q,. Let P = LN be a standard parabolic subgroup. The
functor Indg, induces an A-linear isomorphism

Ext (0/,0) — Extg (Ind%- o/, Ind%- o)
for all locally admissible smooth representations o,0’ of L over A.

Proof. Let 0,0’ be locally admissible smooth representations of L over A. Using [Emel0al,
Proposition 4.3.4] and Corollary (i), (39) with 7 = Ind%_ o and o’ instead of o yields
the isomorphism in the statement. O

Corollary 5.2.5. Assume F # Q,. Let P = LN,P’ = L'N’ be standard parabolic
subgroups and o,0’ be admissible smooth representations of L, L' respectively over k.

(i) If P’ C P, then the functor Ind% induces a k-linear isomorphism

Exty (Indimp,_ o, 0) 5 Extg, (Indg/_ o', Ind$- J) .
(ii) If P C P, then the functor Indg,_ induces a k-linear isomorphism
Ext;, (a', Indﬁﬁnp, 0> 5 Extg, (Ind,(i,f o', Ind$- 0) .

Remark 5.2.6. Theorem [5.2.2] (i) and Theorem are encompassed in a more general
(but conditional to a conjecture of Emerton) result. Let P = LN be a standard parabolic
subgroup, o, ¢’ be locally admissible smooth representations of L over A and n € N. The
functor Ind%- induces an A-linear morphism

Ext} (o/,0) — Ext, (Indg_ o', Ind$_ o) (57)
and there is a spectral sequence of A-modules (cf. [EmelOb, (3.7.4)])
Ext’ (J’, R/Ordp (Indg, 0)) = Extgrj (Indg, o, Indg, 0) (58)

where R*Ordp denotes the right derived functors of Ordp : ModF™(A) — Mod ™ (A).
Now assume that [EmelOb, Conjecture 3.7.2] is true, i.e. R*Ordp — H*Ordp. Using

Corollary [3.3.8, one can deduce from that:
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o if n < [F:Q,), then (57) is an isomorphism;

o if n = [F: Qp, then is injective and if furthermore o, ¢’ are supercuspidal,
then the dimension of its cokernel is at most card{a € A | 0/ Z 0 @ (w0 a)}.

One can also generalise Proposition and Theorem [5.2.2] (ii) and (iii) in all degrees
n < [F:Q,

Finally, we complete Theorem m (i) when G is split and Z is connected.

Theorem 5.2.7. Assume F' = Q,,, G split and Z connected. Let P = LN be a standard
parabolic subgroup and o,c’ be supersingular representations of L over k.

(i) If o' 2 0*® (W o) o for some a € At, then Exty(o’,0) =0 and
dimy Extg; (Ind%- o/, Ind§- o) = 1.

(i) If either o' 2 o and p # 2, or 0’ # 0*® (wtoa) for any o € Ay, then the functor
Ind%_ induces a k-linear isomorphism

Ext (0/,0) — Extg (Indf- o/, IndG- o) .

(iii) If p = 2, then the functor Ind%_ induces a k-linear injection
Ext} (0/,0) < Extg (Ind%- o/, Ind§- o)
whose cokernel is of dimension card{a € A{ | 0/ = o°}.

Proof. Since o is absolutely irreducible, it has a central character ¢ : Z;, — k* (cf.
[Emel0Ob, Lemma 4.1.7]).

We first assume that o’ & 0*® (wloa) % o for some a € Af. We have (o # w™!
by Lemma so that o and ¢’ have distinct central characters by Lemma [5.1.5] thus
Ext; (¢/,0) = 0 (cf. [Pas10, Proposition 8.1]). Furthermore, ¢’ % 0 ® (w™' o 3) for any
B € Ag\{a} (since the central characters are distinct by Lemma[5.1.5)). Using with
P’ =P and L' = L, we deduce that

dimy, Extg, (IndIGD_ o', Ind$- a) <1

Since the left-hand side is non-zero by Proposition m (i), this proves (i).

We now prove (ii). If o/ % 0% ® (w™! o) for any a € A¢, then the result follows
from Theorem [5.2.2] (i). Assume that ¢/ = ¢ and p # 2. The terms of low degree of
form an exact sequence of k-vector spaces

0 — Ext} (0,0) — Extg (Indg, o, Ind%- o) — Homy, (0, R'Ordp (Indg, o))
— BExt? (0,0) — ExtZ, (Indg, o, Ind%- o). (59)

Since there is an injection of functors R*Ordp < H'Ordp (cf. [Emel0b, Remark 3.7.3]),
we deduce from Corollary (ii) and Lemma that

dim; Homp, (a, R'Ordp (IndIGD_ 0)) < card {a € Af ‘ Coa’ = w’l} )
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Thus, we deduce from Proposition that the third arrow of is zero, hence the
result.

Finally, we assume p = 2 and we prove (iii). By Proposition (ii) we have a
lower bound and using with P’ = P and L' = L we obtain an upper bound. Using
Lemmas and together with the fact that w = 1, we see that both are equal to
card{a € A{ | 0/ = 0°}. O

Remark 5.2.8. Theorem [5.2.7] (i) can also be generalised in the context of Remark [5.2.6]
Let P = LN be a standard parabolic subgroup and o, ¢’ be supersingular representations
of L over k such that ¢/ & 0* ® (w™' oa) % o for some a € Af. Assume G split,
Z connected and [EmelOb, Conjecture 3.7.2] is true. Using Corollary and Lemma

5.1.5, one can deduce from that Ext!"%!(¢’,¢) = 0 and
dimy, Extl, ¥ (Indé_ o', Ind%_ o) = 1.

Corollary 5.2.9. Assume G split and Z connected. If Conjecture|3.3.4|is true for A =k,
n =1 and 'w’ =1, then [Haul6b, Conjecture 3.17] is true.

Proof. Even though [Haul6b, Conjecture 3.17] is formulated under the hypotheses G
split, Z connected and G simply connected, we do not need the last one to prove it:
(i) is Proposition [5.2.1} which is conditional to Conjecture for A=k, n=1and
hy? = 1; (ii) is Theorem [5.2.7] (i); (iii) and (iv) are Corollary(i) and (ii) respectively
when F # Q,, Theorem @ (ii) and (iii) respectively when F' = Q, and P’ # P,
Theorem (ii) when F = Q,, P’ = P and p # 2, and Theorem (iii) when
F=Q,, P =P and p = 2 (noting that if p = 2, then w = 1 and IndJG} o is irreducible
if and only if 0% % o for all @ € Ay, cf. [Abel3, Lemma 5.8] and Lemma . O

5.3 Results for unitary continuous p-adic representations

Let H be a p-adic Lie group. A continuous representation of H over E is an E-Banach
space Il endowed with an E-linear action of H such that the map H xII — II is continuous.
It is admissible if the continuous dual IT* := Hom$"(II, E) is of finite type over the
Iwasawa algebra E®0 O[Hy| for some (equivalently any) compact open subgroup Hy C H
(cf. [ST02]). Tt is unitary if there exists an H-stable bounded open O-lattice II° C II. We
write Ban?{dm’u(E) for the category of admissible unitary continuous representations of H
over I/ and H-equivariant E-linear continuous morphisms. It is an F-abelian category.

We fix a uniformiser @ of ©. Following [Emel0al § 2.4], we let Mod% 2™ (O)f be the
category of w-torsion-free w-adically complete and separated O-modules I1° such that
1Y /o TI° is admissible as a smooth representation of H over k and H-equivariant O-linear
morphisms. It is an O-abelian category and the localised category E ®¢ Mod% 2™ (O)f
is equivalent to Banyy™"(E).

The E-vector spaces Exty, (II', II) of Yoneda extensions between admissible unitary
continuous representations ILII' of H over E are computed in Bani™"(E). For all
n > 1, the O/w"O-modules Exty, (7, 7) of Yoneda extensions between admissible smooth
representations 7, 7’ of H over O /w"O are computed in Mod3™ (0 /w"O). The following
result is a slight generalisation of [Haul6al Proposition B.2].
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Proposition 5.3.1. Let H be a p-adic Lie group, I1,II' be admissible unitary continuous
representations of H and mw, 7" be the reductions mod w of H-stable bounded open O-
lattices TIO, TI° of TI, IT" respectively. Assume that dimy Hompy (7', 7) < co. There is an
E-linear isomorphism

Exty (I, IT) = E @0 lim (Exty (II°/@"1°, II°/="1") ) .

n>1
Furthermore, dimg Ext}, (I, 1) < dimy, Ext}, (7', 7).

Proof. In the proof of [Haul6al, Proposition B.2], the hypothesis that 7’ is of finite length
is only used to prove that Hom g (1T /" I1°, T1° /w™11°) is of finite type over O/w"O for
all n > 1. But this can be proved by induction using that dimy Homg (7', 7) < co. O

Let P = LN be a parabolic subgroup. We recall that the continuous parabolic
induction functor is defined for any continuous representation > of L over E by

Ind$_ ¥ = {f : G — Y continuous ‘ flpg) =p- flg) Vp € P~ Vg € G}.

We obtain an E-linear exact functor Ind%- : Ban’™"(E) — Ban™"(E) (cf. [Emel0a)
§ 4.1]). Furthermore, there is a natural G-equivariant E-linear continuous isomorphism
(cf. [EmelOal, Lemma 4.1.3])

Ind- ¥ 2 E @ lim (Indg- (X°/="%°)).

n>1

We extend the definition of the ordinary parts functor to any admissible unitary continu-
ous representation II of G over E by setting

Ordp I := E o lim (Ordp (II°/z"11"))

n>1

for some (equivalently any) G-stable bounded open O-lattice I1° C TI. We obtain an E-
linear left-exact functor Ordp : Ban®™"(E) — Ban3™"(E) which is a left quasi-inverse
and the right adjoint of Ind%_ (cf. [Emel0a, Theorem 3.4.8, Corollary 4.3.5 and Theorem

4.4.6)).

Definition 5.3.2. We say that an admissible unitary continuous representation > of L
over E is right cuspidal if Ordg ¥ = 0 for any proper parabolic subgroup Q C L.

Remark 5.3.3. We also extend the Jacquet functor to continuous representations of G' over
E by taking the Hausdorff completion of the N-coinvariants. We obtain the left adjoint
of Ind$ by Frobenius reciprocity and the universal property of coinvariants. However,
we do not know whether it preserves admissibility. For unitary representations, it does
not behave well with respect to reduction mod w” (n > 1). Nevertheless, we say that an
admissible unitary continuous representation X of L over E is left cuspidal if Xy, = 0
for any proper parabolic subgroup Q C L with unipotent radical Ngq.

We now turn to extensions computations. Our main tool is the following result, which
gives a weak p-adic analogue of the exact sequence (39).
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Proposition 5.3.4. Let P = LN be a standard parabolic subgroup, ¥, be admissible
unitary continuous representations of L respectively over E and 0,0’ be the reductions
mod w of L-stable bounded open O-lattices ¥°, X0 of ¥, %' respectively. Assume that
dimy Homy, (0’,0) < oco. There is a natural exact sequence of E-vector spaces

0 — Ext; (¥, %) — Extg (Ind%- ¥/, Ind- ¥)

— Homp (2’, E ®o lim (H'Ordp (Indp- (2° /wnzo)))> .
n>1

Proof. For all n > 1, with A = O/@"0, 7 = Ind$_ (X°/w"%0) and 0 = ¥ /"%
yields, using [Emel0al Proposition 4.3.4], an exact sequence of O/w™O-modules

0 — Ext} (2°/@"2?, 2°/@"L?) — Extg (Ind§- (8°/@"S"), IndG- (£°/="%0))
— Homy, (8°/@"S"°, H'Ordp (Indg- (2°/="%0))). (60)

Note that the composite H'Ordp o Ind%_ : Mod2™ (0 /@"©) — Modi¥™ (O /w"O) is left-
exact for all n > 1 by [Emel0Oal, Proposition 4.3.4] and [EmelObl Corollary 3.4.8]. Thus
fm 1(Hl()lrd p(Ind%_ (£°/@"%0))) is a w-adically admissible representation of L over O
by [Emel0a, Corollary 3.4.5]. Furthermore, it is w-torsion-free and the projective limit
topology coincide with the w-adic topology (cf. [Emel0Oal Proposition 3.4.3 (1) and (3)]).
Thus

E ®o lim (H'Ordp (Ind§. (°/w"50)))

n>1

is an admissible unitary continuous representation of L over E. Taking the projective
limit over n > 1 of and inverting @ and using Proposition yields the desired
exact sequence. ]

Remark 5.3.5. In order to obtain an analogue of for any admissible unitary continu-
ous representations Y, II of L, G respectively over F, one has to prove that the w-torsion
of l'&nnN(HlOrdP(HO/w”HO)) is of bounded exponent (i.e. annihilated by a power of w)

for some (equivalently any) G-stable bounded open O-lattice I1° C II.

We now use Proposition to compute extensions between parabolically induced
representations.

Theorem 5.3.6. Assume F' = Q,. Let P = LN,P’ = L'IN’ be standard parabolic
subgroups, X,%" be admissible unitary continuous representations of L, L' respectively
over E and o,0’ be the reductions mod w of L, L'-stable bounded open O-lattices of 33, >’
respectively. Assume that dimy, Homg(Ind$,- o', Ind- o) < oo and ¥ is right cuspidal.

(i) IfP' =P, 3, % are topologically irreducible and X' % Y°® (e o) for alla € Afl,
then the functor Ind%_ induces an E-linear isomorphism

Ext; (¥/,¥) — Extg (Indg- ¥/, Indf- %) .

(ii) If P’ C P, then the functor Ind%- induces an E-linear isomorphism

Ext} (Ind},p- ¥, %) — Extg (Indf- ¥, Ind%- ) .
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Remark 5.3.7. Assume P’ = P and ¥, ¥ topologically irreducible. We do not know the di-
mension of the cokernel of the E-linear injection Ext} (X', ¥) < Extg,(IndG- ¥/, Ind$- %)
induced by Ind$-, but we prove that it is at most card{a € Ap' | ¥ 2 ¥ ® (e ' oa)}
(see the proof). If ¥, 3 are absolutely topologically irreducible and supercuspidal, then
letting ¢ : Z;, — O* C E* be the central character of ¥ (cf. [DSI3| Theorem 1.1, 2)]),
we expect this dimension to be equal to

card {a e A

Y3 (eoa) andgoav#e’l}.

Proof. Let X° C ¥ be an L-stable bounded open O-lattice. For all n > 1, we deduce
from Propositions and (i) that there is a natural L-equivariant O/w"O-linear
isomorphism

H'Ordp (IndIGD, (20/@"s?)) = EB H'Ordp (c—indﬁ:S“P (Eo/w”20)> . (61)
acAN\AY,

Furthermore, if o € Af ! then there is a natural L-equivariant © /@ O-linear isomorph-
ism

H'Ordp <c—ind§:5ap (EO/W”EO)) = (Zo/w”ZO)a ® (woa)
hence a natural L-equivariant E-linear continuous isomorphism

E®o 1&1 (Hlordp (C—ind];:S“P (Zo/w"20)>> =23¥Q® (6_1 o a) ,

n>1

whereas if & ¢ Af, then there is natural filtration of H'Ordp(c-ind},_**"(2°/w"%?))
by Bp-subrepresentations such that each term of the associated graded representation is
isomorphic as an O/w"O-modules to

C (UL, 0rd,p,, py-r (8°/@"5°))
for some closed subgroup Uy, C Uy, and since Ord;, p,-13 = 0 we deduce that
E @o lim (H'Ordp (c-ind} " (2°/="5") ) ) = 0.
n>1

Thus, taking the projective limit of over n > 1 and inverting w yields a natural
L-equivariant E-linear continuous isomorphism

E ®o lim (H'Ordp (Ind§- (2°/"59))) = P " @ (¢ oa). (62)

n>1 EAL 1

Now Proposition with Ind},p— ¥’ instead of ¥’ yields, using (62)), an exact
sequence of E-vector spaces

0 — Ext} (Ind}p- ¥, %) — Extg (Indf- ¥, IndG- ¥)
— @ Homy, (Indj,p- ¥, 2@ (e 0a)). (63)

aEAi’l
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If P’ = P and X, Y are topologically irreducible, then ¥*® (¢! o a) is also topologically
irreducible for all a € Afl, and thus the last term of has dimension equal to
card{a € A{"' | ¥ =2 ¥* @ (e o a)}, hence (i). If P’ C P, then L NP’ is a proper
parabolic subgroup of L so that

Ordap (2 ® (67 o)) = (Ordpap )" @ (7' oa) =0
for all & € AL, thus the last term of is zero, hence (ii). O

Remark 5.3.8. Theorem [5.2.2] (iii) cannot be directly lifted to characteristic 0 because we
do not have a weak p-adic analogue of the exact sequence (43)) (since it uses the Jacquet
functor, see Remark . However, assuming Conjecture true for A = O/w"O
(r>1),n=1,1C Jand w’ = s, (a € A'\J), one can recover this case: with notation
and assumptions as in Theorem [5.3.6] if P C P’ and Y is left cuspidal, then the functor
Ind$,_ induces an E-linear isomorphism

Exty, (2, Ind},p- ) — Extf; (IndG- ¥/, Ind§- %)

Theorem 5.3.9. Assume F' # Q,. Let P = LN be a standard parabolic subgroup,
3, Y be admissible unitary continuous representations of L over E and o,0’ be the re-
ductions mod w of L-stable bounded open O-lattices of 3, respectively. Assume that
dimy, Homy (o', 0) < oo. Then, the functor IndS_ induces an E-linear isomorphism

Ext} (¥, %) = Extg, (Ind%- ¥/, Ind§- %)

Proof. Let ¥° C ¥ be an L-stable bounded open O-lattice. By Corollary (i), we have
H'Ordp(Ind%- (2°/@"%0)) = 0 for all n > 1. Thus, the result follows from Proposition
b.3.4 O

We end with a remark on the case where there is no inclusion between the two para-
bolic subgroups.

Remark 5.3.10. Let P = LN,P’ = L'N’ be standard parabolic subgroups, ¥,%’ be
admissible unitary continuous representations of L, L respectively over E and o, o’ be the
reductions mod w of L, L'-stable bounded open O-lattices of ¥, ' respectively. Assume
Conjecture is true for A = O/@"O (r > 1), n = 1 and 'w’ = 1. Assume further
dim Homg(Ind%,- ¢/, Ind%- o) < oo and the w-torsion of lim _ (H'Ord;np(2°/@"20))
is of bounded exponent (see Remark . Then, one can prove the following p-adic
analogue of Proposition if PP ¢ P, P € P, and X, are right,left cuspidal
respectively, then
Extg (Ind%- ¥, IndG- ¥) = 0.
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