Evolution of starshaped hypersurfaces by general curvature functions

Rachid Regbaoui

We investigate a fully nonlinear evolution equation for hypersurfaces in the Euclidean space. More precisely, let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ $(n \ge 2)$ be a smooth function, and let $M_0 \subset \mathbb{R}^{n+1}$ be a starshaped hypersurface, which we suppose parametrized by a smooth immersion $X_0 : \mathbb{S}^n \to \mathbb{R}^{n+1}$. Then we consider the following evolution problem :

$$\begin{cases} \partial_t X(t,x) = \left(K(\kappa_1, \cdots, \kappa_n) - f(X(t,x)) \right) \nu(t,x) \\ X(0,x) = X_0(x) \end{cases},$$

where $X : [0,T) \times \mathbb{S}^n \to \mathbb{R}^{n+1}$ such that, for each $t \in [0,T)$, X(t,.) is the parametrization of a starshaped hypersurface M_t , $\nu(t,x)$ is the outer unit normal vector field at X(t,x), and K is a given function of the principal curvatures $(\kappa_1, \cdots, \kappa_n)$ of M_t , which we suppose symmetric and homogeneous of degre $k \leq 0$.

We prove, under some assumptions on K and f, that the above evolution equation admits a global smooth solution defined on $[0, +\infty)$, and as $t \to +\infty$, it converges to a smooth map $X_{\infty} : \mathbb{S}^n \to \mathbb{R}^{n+1}$ parametrizing a starshaped hypersurface M_{∞} , whose principal curvatures satisfy the following prescribed curvature equation :

$$K(\kappa_1,\cdots,\kappa_n)=f(X).$$