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Abstract. Any hyperbolic surface bundle over the circle gives rise to a con-
tinuous surjection from the circle to the sphere, by work of Cannon–Thurston
and Bowditch. We prove that the order in which this surjection fills out the
sphere is dictated by a natural triangulation of the surface bundle (introduced
by Agol) when all singularities of the invariant foliations are at punctures of
the fiber.

1. Introduction

Surface bundles over the circle are historically an important source of examples
in hyperbolic 3-manifold theory. Thurston proved that, barring natural topological
obstructions, they always carry complete hyperbolic metrics, which was a first step
towards Perelman’s geometrization of 3-manifolds. Cannon and Thurston [6] found
surprising sphere-filling curves naturally associated to hyperbolic surface bundles.

In [1], Agol singled out a special class of hyperbolic surface bundles: the ones
for which singularities of the invariant foliations occur only at punctures of the
fiber. He proved that such surface bundles come with a natural (topological) ideal
triangulation.

The purpose of this paper is to exhibit, for this family of surface bundles, a cor-
respondence between Agol’s triangulation and the corresponding Cannon-Thurston
map. The correspondence takes the form of a pair of tessellations of the plane C:
(1) the link of a vertex Ω of the universal cover of Agol’s triangulation; (2) a plane
tiling recording the order in which the Cannon-Thurston map fills out the sphere
C ∪ {∞}, switching colors at each passage through the parabolic fixed point ∞.
Object (1) is clearly a triangulation of the plane, though it may not be realized by
non-overlapping Euclidean triangles in C (Agol’s triangulation is only topological,
not geodesic). Object (2) is clearly a partition of C, although it will take work
to determine that it is actually a tessellation into topological disks (typically with
fractal-looking boundaries). In the end (Theorem 1.3 below), the two tessellations
turn out to fully determine each other at the combinatorial level, and in particular
share the same vertex set. This connection between tessellations was previously
known for punctured torus bundles by results of Cannon–Dicks [4] and Dicks–
Sakuma [5], whose work was a crucial inspiration. These results were announced
in [9].
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1.1. Hyperbolic mapping tori and invariant foliations. Let S be an oriented
surface with at least one puncture, and ϕ : S → S an orientation-preserving home-
omorphism. Define the mapping torus Mϕ := S × [0, 1]/∼ϕ, where ∼ϕ identifies
(x, 1) with (ϕ(x), 0). The topological type of the 3-manifold Mϕ depends only on
the isotopy type of ϕ.

Suppose S has a half-translation structure, i.e. a singular Euclidean metric with
a finite number of conical singularities of cone angle kπ (k ≥ 3), and total cone
angle k′π (k′ ≥ 1) around each puncture. Every straight line segment in S then
belongs to a unique (singular) foliation by parallel straight lines. The surface S
with cone points removed admits an isometric atlas over R2 whose chart maps are
all of the form (x, y) 7→ (α, β)±(x, y) for some reals α, β. The group SL2(R) acts on
the space of such atlases by composition with the charts, hence PSL2(R) acts on the
space of (isometry classes of) half-translation surfaces endowed with a privileged
pair of perpendicular foliations by straight lines. A landmark result of Thurston’s
[7, 15] is

Fact A. Suppose the isotopy class [ϕ] preserves no finite system of simple closed
curves on S (ϕ is called pseudo-Anosov). Then there exists a half-translation struc-
ture on S such that ϕ : S → S is realized by a diagonal element ( α α−1 ), where
α > 1; the vertical and horizontal foliations of S for this structure, called λ+ and
λ−, are preserved by ϕ and come equipped with transverse measures that are pre-
served up to a factor α (resp. α−1).

Moreover, the mapping torus Mϕ admits a (unique) complete hyperbolic metric:
Mϕ ≃ Γ\H3 for some discrete group Γ < PSL2C = Isom0(H

3).

In Thurston’s proof, which gave the first abundant source of examples of hyper-
bolic 3-manifolds, the foliations λ± are in fact an important tool to construct the
hyperbolic metric on Mϕ. The half-translation structure on S in the result above
is itself unique up to the action of diagonal elements of PSL2(R).

1.2. Combinatorics of veering triangulations. We now describe a construction
of Agol’s triangulation, an alternative to [1] which may be of separate interest. An
ideal tetrahedron is a space diffeomorphic to a compact tetrahedron minus its 4
vertices. An ideal triangulation of a 3-manifold M is a realization of M as a union
of finitely many ideal tetrahedra, glued homeomorphically face-to-face.

Definition. A taut structure on an ideal triangulation of an oriented 3-manifoldM
(into n tetrahedra) is a map from the set of all 6n dihedral angles of the tetrahedra
into {0, π} such that each tetrahedron has one pair of opposite edges labeled π and
all other edges labeled 0; and each degree-k edge of M is adjacent to precisely two
angles labelled π and (k − 2) edges labelled 0.

A taut structure can be viewed as a crude attempt at endowing the tetrahedra
of M with geometric shapes in order to realize the hyperbolic metric (very crude
indeed since all tetrahedra look flat!). The term is inspired by the fact that, up to
a degree 2 cover, such a structure gives rise to a taut foliation.

In a rhombus of R2 symmetric across both coordinate axes, we call the two edges
with positive slope rising, the other two edges falling. The diagonals, which are
segments of the coordinate axes, are called vertical and horizontal.

Definition. A taut structure on an ideal triangulation of an oriented 3-manifold
M is called veering if its edges can be 2-colored, in red and blue, so that every
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tetrahedron can be sent by an orientation-preserving map to the one pictured in
Figure 1: a thickened rhombus in R2 × R with π on the diagonals and 0 on other
edges; with the vertical diagonal in front, the horizontal diagonal in the back, rising
edges red, and falling edges blue. (The diagonals might be any color.)

π

π

0

0

0

0

π

0 0

base

tip

Figure 1. Left : a flattened tetrahedron with 4 colored edges.
Right : the triangular link at any of the 4 vertices. Angles 0 and
π are indicated by a graphical, train-track-like convention. The
tip and base, drawn in grey, receive colors (blue/red) from the
adjacent triangles. The triangle is called hinge if and only if the
tip and base have different colors.

In [11] and [8], veering triangulations are shown to admit positive angle struc-
tures : this is a less crude (linearized) version of the problem of finding the complete
hyperbolic metric on M endowed with a geodesic triangulation. Interestingly how-
ever, Hodgson, Issa and Segerman found veering triangulations that are in fact not
realized geodesically but have instead some tetrahedra turning “inside out” [10].

In [1], Agol described a canonical, veering triangulation of a general hyperbolic
mapping torus M = Mϕ, provided all singularities of the foliations λ+, λ− occur
at punctures of the fiber S. Our first main result is an alternative construction of
Agol’s triangulation (details in Section 2).

Theorem 1.1. Suppose all singularities of the invariant foliations λ± of the pseudo-
Anosov monodromy ϕ : S → S are at punctures of S. Any maximal immersed
rectangle R in S with edges along leaf segments of λ± contains one singularity in
each of its four sides. Connecting these four ideal points, and thickening in the
direction transverse to S, yields a tetrahedron ∆R ⊂ S × R. The tetrahedra ∆R

glue up to yield a veering triangulation of S × R, compatible with the equivalence
relation (x, t+ 1) ∼ϕ (ϕ(x), 0), hence descending to Mϕ.

The veering structure in the above theorem is given as follows: ∆R has its π-
angles at the edges connecting points belonging to opposite sides of R (the edge
connecting horizontal sides being in front); an edge of positive slope is red; an edge
of negative slope is blue.

Remark: unlike Agol’s original definition, this construction does not rely on any
auxiliary choices (e.g. of train tracks). As a result, it should generalize to the
Cannon-Thurston maps of degenerate surface groups built by Mahan Mj [14], when
the ending laminations define foliations with no saddle-point connection. The focus
of this paper being combinatorics, we choose however to restrict to surface bundles.
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In order to state the main result, we now point out some features inherent to
any veering triangulation T : see Figure 2, and [8] for detailed proofs. The link of

a vertex Ω of the universal cover T̃ is a tessellation ∆ of the plane. The vertices
and edges of ∆ receive colors (red/blue) from the edges of T .

Figure 2. Three adjacent ladders in the vertex link ∆ of a veer-
ing triangulation. Ladderpoles (vertical) are slightly thicker. The
middle ladder is ascending (tips above base rungs). The colors
of the rungs are determined by the combinatorics of this chunk
of ∆, except the 3 dotted rungs. Triangles with no dotted edge are
shaded when they are hinge.

Among the triangles of ∆, we may distinguish two types: a triangle coming
from truncating a tetrahedron (thickened rhombus) whose diagonals are of opposite
colors is called hinge; other triangles are non hinge. See Figure 1 and its caption.

An edge of ∆ connecting two vertices of the same color is called a ladderpole edge
(and is always of the opposite color). The other edges are called rungs. It turns
out that each vertex belongs to exactly two ladderpole edges, and ladderpole edges
arrange into infinitely many, disjointly embedded simplicial lines of alternating
colors, called ladderpoles. Every rung connects two vertices from two consecutive
ladderpoles. The region between two consecutive ladderpoles is called a ladder.
In each ladder, all triangles have their π-angle, or tip, on the same side of their
base rung (say above the base rung if we arrange the ladder vertically with suitable
orientation); in the next ladder the tips are on the other side (below the base rungs).
Ladders of the former type are called ascending, of the latter type descending; see
Figure 2.

Note that vertices of ∆ have well-defined coordinates in the plane C (up to
similarity), given by any developing map of the hyperbolic metric onMϕ that takes
Ω to ∞ ∈ P1C = ∂∞H3. However, we will usually draw the ladderpoles as vertical
lines (with regular meanders to respect the train-track convention for angles 0 and
π as in Figure 2), emphasizing the combinatorics at the expense of the geometry.

1.3. The Cannon-Thurston map, and the Main Result. Let Σ (a disk) be
the universal cover of the fiber S of the hyperbolic surface bundle M =Mϕ, and S

(a circle) the natural boundary of Σ. The inclusion S → M lifts to a map ι : Σ →
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H3 between the universal covers. Bowditch [3], generalizing work of Cannon and
Thurston [6], proved the following surprising fact.

Fact B. The map ι extends continuously to a boundary map ι : S → P1C which is
a surjection from the circle to the sphere. The endpoints of any leaf of λ± (lifted
to Σ) have the same image under ι, and this in fact generates all the identifications
occurring under ι.

In this note, we prove a correspondence between the combinatorics of the Cannon-
Thurston map ι (the “order in which ι fills out the sphere”) and the triangulation
∆ of the plane. To state the correpondence, we will first need to prove facts about ι
(details in Section 4).

Recall the chosen parabolic fixed point∞ of the Kleinian group Γ. The surjection
ι : S → C∪{∞} goes infinitely many times through the point ∞, by Fact B (indeed
there are infinitely many leaves terminating at a given parabolic boundary point
of Σ). We may imagine that ι changes color (red/blue) each time it goes through∞:
the resulting coloring of the plane C becomes an interesting object to look at.

Theorem 1.2. There exists a Z-family of Jordan curves Ji of C ∪ {∞}, bounding
domains Di, with the following properties:

• For all i the curve Ji goes through ∞;
• · · · ⊃ D−1 ⊃ D0 ⊃ D1 ⊃ D2 ⊃ . . . ;
•
⋂

i∈Z
Di = ∅ and

⋃
i∈Z

Di = C;
• Ji ∩ Ji′ = {∞} if and only if |i′ − i| > 1;
• For every i ∈ Z, the closure of Di r Di+1 in C is the union of a family
{δis}s∈Z of closed disks, all disjoint except that each δis shares one boundary
point with δis+1;

• Between the i-th and (i+1)-st color switches, the map ι fills out the δis one
by one; the order of filling switches with the parity of i.

By this theorem, the trajectory of the plane-filling curve ι is reminiscent of
that of a plowing ox (or boustrophedon, the name of an ancient writing style):
we consequently call the closure of Di r Di+1 a furrow ; see Figure 3. The disks
{δis}(i,s)∈Z2 making up all the furrows define a tessellation of C in which every
vertex has order 4, and is adjacent to two consecutive disks of the i-th furrow, one
disk of the (i− 1)-st furrow and one disk of the (i+1)-st furrow (for some i). Each
disk δ of the i-th furrow has:

• 2 vertices (the gates of δ) shared with other disks of the i-th furrow;
• some nonnegative number of vertices (called spikes of δ) shared with disks
of the (i+ 2)-nd or (i − 2)-nd furrow.

Edges of the tessellation always separate disks from consecutive furrows; they come
in two types (Figure 3):

• in-furrow edges, connecting consecutive gates of the same furrow (or equiv-
alently, two consecutive spikes of some disk of the adjacent furrow);

• cross-furrow edges, connecting two gates of adjacent furrows (or equiva-
lently, the first or last spike on one side of some disk to the adjacent gate).

With this terminology, we can state our main result, which consists of (1) a full
dictionary between the various features of the two tessellations, and (2) a recipe
book to reconstruct (combinatorially) one tessellation from the other.
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J0 J1 J2 J3 J4 J5

δ

•

•

◦

◦

◦ ◦

ε

ε′

ε in-furrow edge

ε′ cross-furrow edge

• gate of δ

◦ spike of δ

Figure 3. Six Jordan curves Ji through ∞ bound 5 consecutive
furrows, alternatingly red and blue. The domain Di is the area to
the right of Ji. The disk δ belongs to the furrow D2 rD3. Arrows
materialize in which order furrows are filled out by ι.

Theorem 1.3. (1) Dictionary. The Cannon-Thurston tessellation and the link ∆
of the Agol triangulation have the same vertex set, and there are natural bijections
between the following objects:

Cannon-Thurston tessellation Triangulation ∆
Vertices Vertices
Furrows Ladderpoles

Disks Ladderpole edges
Spikes Rungs

In-furrow
Cross-furrow

}
edges

Non-hinge
Hinge

}
triangles

(2) Recipe book. Given the link ∆, we can obtain topologically the 1-skeleton
of the Cannon-Thurston tessellation by drawing, for each triangle, an arc from its
tip to the tip of the next triangle across the base rung (this may create double edges
along the ladderpoles: keep them). See Figure 4, left.

Conversely, given the Cannon-Thurston tessellation, we can obtain the 1-skeleton
of the triangulation ∆ by adding edges connecting each gate of a blue (resp. red)
cell to all the vertices clockwise (resp. counterclockwise) until the other gate, and
deleting redundant edges. See Figure 4, right.

In (2), the redundant edges to be deleted in the last step can be either present in
the initial Cannon-Thurston tessellation (namely, the boundary of a cell δis with no
spikes consists of two mutually isotopic edges along a ladderpole; Figure 3 shows
four such “small” cells) — or they can be created during the process of adding extra
edges.

Remark 1.4. As mentioned above, the vertices of the two tessellations of Theorem
1.3 are well-defined complex algebraic numbers. Due to the orientation issue raised
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Figure 4. Left : two ladders (ascending and descending) of the
Agol triangulation, with, superimposed in green, the tip-to-tip
edges to be drawn to obtain the topological 1-skeleton of the
Cannon-Thurston tessellation. Hinge triangles are shaded.
Right : two disks (from a red and a blue furrow) of the Cannon-
Thurston tessellation, with, superimposed in green, the edges to
be inserted to obtain the Agol cusp triangulation (before deletion
of redundant edges).

in [10], however, edges of ∆ must be thought of combinatorially, not as straight seg-
ments. On the other hand, edges of the Cannon-Thurston tessellation are precise,
fractal-looking plane curves: some examples are beautifully rendered in [4, 5].

Notation. Throughout the paper, we will denote by Σ the universal cover of the
fiber S of the surface bundle Mϕ, and by Σ and S the metric completions of Σ and
S respectively, for the locally Euclidean metric. There is a commutative diagram

(1.1)
Σ →֒ Σ
↓ ↓
S →֒ S.

However, note that the righmost vertical map Σ → S is not a universal covering:
it has infinite branching above all the points representing punctures of S.

1.4. Plan of the paper. In Section 2 we prove Theorem 1.1. In Section 3 we
study geodesics in a half-translation surface to produce a combinatorial description
of the source circle S of the Cannon-Thurston map ι. In Section 4 we use this
understanding to prove Theorem 1.2 on the combinatorics of ι. Finally, in Section 5
we prove Theorem 1.3, making each line of the “dictionary” correspond to a certain
type of rectangle in the foliated surface (Σ, λ±). In Section 6 we give some extra
illustrations.

I am grateful to Makoto Sakuma for pointing out a mistake in an earlier version
of Section 3, and to the anonymous referee for remarks that helped improve the
exposition. This work was completed during an extended visit to the Wolfgang-
Pauli Institute, Vienna.
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2. The canonical veering triangulation

We now prove Theorem 1.1. Let S, λ±, ϕ be as in the theorem, and S,Σ,Σ as
in (1.1). Let g0 be a singular Euclidean metric on Σ that makes the measured

foliations λ+ and λ− vertical and horizontal, and gt := (e
t

e−t)g0.
By a singularity-free rectangle in Σt := (Σ, gt), we mean an embedded rectan-

gle whose sides are leaf segments of λ± and which contains no singularity except
possibly in its boundary. Note that a singularity-free rectangle contains at most
one singularity in each edge: indeed no leaf of λ+ or λ− can connect two singulari-
ties, otherwise there would be arbitrarily short such leaves (by applying ϕ±1 many
times), contradicting the fact that the singular set is finite in the quotient S.

A singularity-free rectangle in Σt receives a height and a width (depending on t)
from the metric gt. We speak of a singularity-free square if the height and width
are equal.

The following construction is an analogue of the Delaunay triangulation relative
to the singular set, with circles replaced by squares.1 In the context of this paper,
we will just refer to it as the Delaunay cellulation.

Proposition 2.1. Connecting the singularities found in the boundary of every
maximal singularity-free square of Σt produces, in the quotient St, finitely many
triangles and (exceptionally) quadrilaterals, which define a cellulation of St.

Proof. First, there exist maximal singularity-free squares in Σt: to find one, start
with a singularity p; construct a small square Q containing p in the interior of one
edge; then scale Q up with respect to p until Q bumps into another singularity p′. If
p′ belongs to the interior of the edge opposite to p then Q is maximal. Otherwise, Q
has a corner q whose two adjacent closed edges contain {p, p′} in their union; scale
Q further up with respect to q until Q bumps into a third singularity p′′, necessarily
in one of the two remaining edges. Then Q is maximal. (For exceptional values
of t, a fourth vertex p′′′ may simultaneously appear in the last edge.)

We call the convex hull of the singularities contained in the boundary of a max-
imal singularity-free square a Delaunay cell. Delaunay cells can be either edges, or
triangles, or quadrilaterals (the latter do not occur for generic t). We claim that:

(2.1)
Two distinct Delaunay cells in Σt can only intersect
(if at all) along an edge or a vertex.

To see this, consider two maximal singularity-free squares Q = ABCD and Q′ =
A′B′C′D′ in Σt. If Q and Q′ have disjoint interiors, the conclusion is immediate.
Otherwise, denote by DQ, DQ′ the Delaunay cells in Q and Q′ respectively. Up to
permuting Q,Q′, rotating and relabelling the vertices, we are in one of the following
5 situations (see Figure 5):

(1) The open segment (BC) intersects (A′B′) at a point E, and (CD) intersects
(A′D′) at a point F . Since no singularities lie in the interior of either
square, all singularities in ∂Q belong to the broken line [EBADF ], so DQ

is contained in the pentagon EBADF . Similarly DQ′ ⊂ EB′C′D′F . These
pentagons share just one edge EF , hence the result.

1An analogous construction works with circles (or squares) replaced by any convex, centrally
symmetric plane shape C, provided no straight segment between singularities is parallel to a
segment of ∂C. See [12] for related ideas in dimension ≥ 2, as well as [2] and references therein.
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Figure 5. Five possible relative positions of maximal singularity-
free squares Q = ABCD and Q′ = A′B′C′D′. The subsets of
∂Q and ∂Q′ that may contain singularities are marked by thicker
lines, respectively green and purple. Convex regions that contain
the Delaunay polygons DQ and DQ′ are shaded.

(2) The open segment (BC) intersects (A′B′) at a point E and (C′D′) at a
point F , with B,E, F,C lined up in that order. Then all singularities in
∂Q belong to the broken line [EBADCF ], so DQ is contained in its convex
hull ABCD; similarly DQ′ ⊂ EB′C′F . These rectangles share just one
edge EF , hence the result.

(3) The open segment (BC) intersects (A′B′) at a point E, the pointsD, D′, C,
C′ are lined up in that order, and [DC] contains a singularity F . Since the
leaves of λ± through F contain no other singularity than F , the singularities
of ∂Q (resp. ∂Q′) lie in the broken line [FDABE] (resp. [FC′B′E]). The
convex hulls of these broken lines are polygons sharing just one edge EF .

(4) The open segment (BC) intersects (A′B′) at a point E, the points D,
D′, C, C′ are lined up in that order, and [DC] contains no singularity.
The singularities of ∂Q (resp. ∂Q′) lie in the broken line [DABE] (resp.
CC′B′E). The convex hulls of these broken lines are polygons sharing just
one vertex E.

(5) The points A,A′, B,B′ are lined up in that order, and so are D,D′, C, C′.
Let E be a point on [AB′], equal to the singularity if there is one on this
segment. Let F be a point on [DC′], equal to the singularity if there is
one on this segment. The singularities in ∂Q (resp. ∂Q′) are in the broken
line [EADF ] (resp. [EB′C′F ]). The convex hulls of these broken lines are
polygons sharing just one edge EF . This proves (2.1).

Since the Delaunay polygons have disjoint interiors in Σt, in particular (2.1)
implies that the projections of these interiors in the quotient surface St are embedded
(not just immersed).

Next, we claim that every side [AB] of a Delaunay polygon is a side of exactly
one other Delaunay polygon, adjacent to the first one. This is clear if one considers
the 1-parameter family of all squares in the Euclidean plane containing a pair of
points {A,B} in their boundary (Figure 6): [AB] subdivides each square of the
family into two regions, which vary monotonically (for the inclusion) in opposite
directions with the parameter τ . Thus for each side of [AB] there is an extremal
value of τ at which the region on that side bumps for the first time into one or
(exceptionally) two singularities. The convex hull of the union of these singularities
and {A,B} is the Delaunay polygon on that side of [AB].

The Delaunay polygons therefore define a cell decomposition of some region
of S. This region is open and closed, because there are only finitely many Delaunay
polygons in S (the diameter of S gives an upper bound on the possible sizes of
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A

B

Figure 6. The extremal squares circumscribed to a segment [AB],
and two intermediate squares (colored). Dotted: the Delaunay
triangles containing [AB].

singularity-free squares, so a compactness argument applies). Therefore, the De-
launay polygons give a cell decomposition (generically a triangulation, but possibly
nonsimplicial) of S itself. �

Remark 2.2. The ideal Delaunay decomposition of St = (S, gt) (obtained by re-
moving the singularities of S) varies with t. The changes occur at the values of t
such that the decomposition contains a quadrilateral inscribed in a square Q (or sev-
eral such quadrilaterals). At such times t, the triangulation undergoes a diagonal
exchange: before t the triangulation contains an edge connecting the singularities
on the vertical sides of Q; after t the triangulation contains an edge connecting the
singularities on the horizontal sides of Q.

Interpreting such diagonal exchanges as (flattened) tetrahedra as in Figure 1, we
obtain a so-called layered taut ideal triangulation of S×R which naturally descends
to the quotient S-bundle Mϕ. This taut triangulation is veering by construction
if we just color edges in red or blue according to the sign of their slope in the
translation surface S. Theorem 1.1 is proved.

An important result of [1] is that there is at most one layered veering triangula-
tion of Mϕ, so it has to be the one constructed in Theorem 1.1.

3. Normal forms of points of ∂∞Σ

In this section, S is a half-translation surface with at least one puncture, no
singularities (except at punctures), and capable of carrying a complete hyperbolic
metric h, for which the punctures become cusps. The universal coverH2 of (S, h) has
a boundary at infinity which is a topological circle S. This circle S is topologically
independent of the choice of h, in the sense that if h′ is another hyperbolic metric
on S, then the identity map from (S, h) to (S, h′) lifts to a self-homeomorphism of
H2 which extends to a self-homeomorphism of S.

Alternatively we can obtain the circle S in the following way. The fundamental
group π1(S) is free, and its Gromov boundary ∂∞(π1(S)) is a Cantor set. Moreover,
∂∞(π1(S)) carries a natural cyclic order induced by the orientation of S (or its
universal cover, the disk Σ). The circle S is naturally identified with the quotient
of the Cantor set ∂∞(π1(S)) under the equivalence condition ∼ that collapses any
two points that are not separated by a third (distinct) point for the cyclic order.
Indeed, since any two such points are the attracting and repelling fixed points
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ξ+α , ξ
−
α ∈ ∂∞(π1(S)) of a peripheral element α of π1(S), a holonomy representation

ρ of the hyperbolic metric h on S takes α to a parabolic isometry ρ(α) of H2 fixing
a unique ideal point ηα ∈ ∂∞H2. The map {ξ+α , ξ

−
α } 7→ ηα extends naturally to a

ρ-equivariant homeomorphism

ψ : ∂∞(π1(S))/∼ −̃→ ∂∞H
2 = S.

In the proposition below, we describe the points of the circle S as “normalized”
paths (possibly semi-infinite) in the singular Euclidean surface Σ; see [13] for a
similar construction. The singular points of Σ are infinite branching points of the
covering map towards the completion S of S: let Ω ∈ Σ denote such a singular
point, fixed throughout the paper.

Proposition 3.1. There exists a natural parameterization Ψ of the circle S by the
collection of all piecewise straight paths γ in Σ starting at Ω and turning only at
singularities (leaving angles ≥ π as they turn), possibly terminating at a singularity.

Given two distinct, nontrivial such paths γ and γ′, the 3 ideal points Ψ(γ), Ψ(γ′),
Ψ(Ω) in ∂∞H2 (where Ω is the “trivial” path that stays at Ω) span an ideal triangle
of H2. This triangle is clockwise oriented if and only if the trajectory of γ′ in Σ
departs from that of γ to the right, possibly after a finite common prefix. This must
happen at a singularity which the paths may pass on either side, or stop at: see
Figure 7.

γ′

γ

γ′

γ γ′ γ

γ′

γ

γ′

γ

Figure 7. Illustration of Proposition 3.1. Top: a sequence of
paths passing through a singularity and progressing clockwise in
the space S of paths. Bottom: at a singularity, a path γ′ (green)
departs from another path γ (purple) to the right after a nonempty
common prefix (black), in all of 5 possible ways.

Proof of Proposition 3.1. A local minimizing argument shows that the geodesics of
Σ are exactly the piecewise straight curves γ that turn only at singularities, with
all turning angles being ≥ π. Since Σ is a CAT(0) space, geodesics exist between
any two points p, q of Σ and are unique.

The map ψ already identifies S with the quotient space ∂∞(π1(S))/∼. Let us
identify the latter set with the space of geodesics of Σ starting at Ω, via a map Φ
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to be defined. (Note that we cannot identify ∂∞(π1(S)) or ∂∞(π1(S))/∼ with a
“Gromov boundary of Σ”, as Σ is not Gromov-hyperbolic.)

We can find a connected, polygonal fundamental domain P of Σ with all vertices
at singularities, for example by taking an appropriate union of cells of one of the
Delaunay cellulations of Section 2. Up to fixing a connecting path between the
chosen singularity Ω and a lift of the basepoint of S, we can also view any ξ ∈
∂∞(π1(S)) as an infinite sequence (Pi)i≥0 of distinct copies of P in Σ such that ∂P0

contains Ω and each Pi shares an edge with Pi+1. Conversely, any such sequence
(Pi)i≥0 defines a point ξ ∈ ∂∞(π1(S)).

If ξ ∈ ∂∞(π1(S)) is a fixed point of a peripheral α ∈ π1(S), fixing a singularity
Ω′ 6= Ω of Σ, then there exists a (smallest) i0 such that all the Pi for i ≥ i0 share Ω′

as a vertex. The other fixed point ξ′ of α is obtained by replacing this suffix (Pi)i≥i0 ,
formed of a sequence of polygons turning around Ω′ in one direction, by the sequence
turning in the other direction. The pair {ξ, ξ′} ∈ ∂∞(π1(S))/∼ of peripheral fixed
points can thus naturally be identified with the unique geodesic path γ in Σ, issued
from Ω, visiting the polygons P0, . . . , Pi0 , and terminating at Ω′. (Exceptionally, γ
may be reduced to one edge of P0.) Thus, set Φ(γ) = {ξ, ξ′} ∈ ∂∞(π1(S))/∼.

By extension, if {ξ, ξ′} ∈ ∂∞(π1(S))/∼ is the pair of fixed points of the peripheral
fixing Ω itself, then {ξ, ξ′} identifies with the trivial path Ω: that is, Φ(Ω) =
{ξ, ξ′} ∈ ∂∞(π1(S))/∼.

Finally, if ξ ∈ ∂∞(π1(S)) is not a fixed point of any a peripheral element of π1(S),
then any singularity of Σ belongs to at most finitely many of the polygons Pi. As
a consequence, a local compactness argument applies to show that any sequence of
geodesics γi of Σ, connecting Ω to a point of Pi, converges to an infinite geodesic
ray of Σ. This ray γ is unique by standard CAT(0) estimates, since the Pi have
bounded diameter but escape far from Ω. We thus set Φ(γ) = {ξ} ∈ ∂∞(π1(S))/∼.

In short, the space of finite (resp. infinite) geodesics γ ⊂ Σ issued from Ω identi-
fies, via Φ, with the unordered pairs (resp. singletons) in the domain ∂∞(π1(S))/∼
of the map ψ. The map Ψ := ψ ◦Φ is a bijection from this set of geodesics in Σ to
the circle S ≃ ∂∞H2.

Lastly, to check the statement on clockwise orientations, pick points p 6= p′ in
S r {Ψ(Ω)}, let (γ, γ′) = (Ψ−1(p),Ψ−1(p′)) be the corresponding geodesic paths
in Σ, and let L,L′ be the oriented geodesics in H2 from Ψ(Ω) to p, p′.

Recall the holonomy representation ρ : π1(S) → Isom0(H
2) of the hyperbolic

metric h on S. The polygon P ⊂ Σ determines an ideal hyperbolic polygon Q of
H2 ≃ Σ, whose ρ(π1(S))-orbit tiles H

2.
The result then follows from the following facts:

• p′ lies to the right of p as seen from Ψ(Ω) if and only if L′ lies to the right
of L in H2;

• L (resp. L′ ) visits the interior of a tile ρ(γ) · Q of H2 if and only if γ
(resp. γ′) visits the interior of γ · P ;

• there exists an equivariant, orientation-preserving homeomorphism from
H2 to the regular part Σ of Σ, taking Q to P .

�

In the remainder of this paper, the word path will usually refer to a geodesic
path in Σ, issued from the singular point Ω. The topology on the space of paths is
induced by its identification with S (dropping Ψ from the notation). It may also be
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described thus: two nontrivial paths are close if, when followed from Ω, they stay
close in Σ for a great amount of length; or if they coincide up to a singularity at
which they both turn by a great amount. (Terminating at a singularity is interpreted
as infinite turning, a “cusp excursion of infinite depth” in the hyperbolic metric h.)

4. The combinatorics of the Cannon-Thurston map ι

In this section we prove Theorem 1.2 about the combinatorics of the Cannon-
Thurston map ι. Our tools are Proposition 3.1 for the description of the domain
of ι (paths) with its cyclic order, and Fact B for the fibers of ι.

As in the previous section, let Ω be a singularity of Σ (the metric completion
of the universal cover of the flat punctured surface S), and let the circle S be the
space of Σ-geodesic paths γ issued from Ω. By Fact B, the points γ of S that have
the same image as the trivial path Ω under the map ι (the “ι-fiber of Ω”) are Ω
itself, and all the rays shooting out from Ω along a leaf of λ+ or λ−. Since Ω is a
branching point of infinite order, these rays (which hit no other singularity than Ω)
form a Z-family, counting clockwise: for any integer i, the the i-th ray ℓi is vertical
for i even and horizontal for i odd.

4.1. Fibers of ι and colors. We apply a Möbius map to normalize so that ι(Ω) =
∞ ∈ P1C.

Every point γ of S that is not in the fiber of Ω falls inbetween ℓi and ℓi+1 for a
unique integer i, which is even (resp. odd) if and only if the initial segment of (the
geodesic representative of) γ has positive (resp. negative) slope. We say that the
directions between ℓi and ℓi+1 form a quadrant at Ω. There are countably many
quadrants.

Therefore, the rule that ι changes color at each passage through ∞ means that
the color of ι(γ) is determined by the sign of the slope of the initial segment of γ,
or equivalently, by the parity of the quadrant that contains this initial segment.

To understand the interfaces between the two colors in the image of ι, we must
therefore understand when a ι-fiber (described by Fact B) contains two paths γ, γ′

whose initial segments belong to different quadrants at Ω. In general, let Q(γ)
denote the quadrant containing the initial segment of γ: for example, a sequence
(γn) in S converges to the trivial path Ω exactly when Q(γn) escapes any finite
collection of quadrants.

Definition 4.1. For any i ∈ Z and t ∈ R+ := [0,+∞], let ℓi be the i-th leaf of λ±

issued from Ω for the clockwise order.
The right (resp. left) t-hook along ℓi, written Γ+

i (t) (resp. Γ
−
i (t)), is the geodesic

straightening of the path obtained by following the leaf ℓi from Ω, for a length t,
then making a right (resp. left) turn to follow a leaf of the other foliation — all the
way to infinity, or to another singularity.

In particular,

(4.1) Γ±
i (0) = ℓi±1 and Γ±

i (+∞) = ℓi and ι(Γ+
i (t)) = ι(Γ−

i (t))

where the last identity follows from Fact B. Also, Q(Γ+
i (t)) and Q(Γ−

i (t)) are con-
secutive quadrants for any 0 < t < +∞.

Definition 4.2. A singularity p of Σ is called a ruling singularity if the geodesic
from Ω to p consists of a single straight Euclidean segment [Ω, p], equal to the
diagonal of a singularity-free rectangle. We also call [Ω, p] a ruling segment.
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Proposition 4.3. Let F be a fiber of ι, not containing Ω. One of the following
holds:

• Q(F) is a single quadrant;
• |Q(F)| = 2 and there exists a unique (i, t) ∈ Z× R∗

+ such that Γ±
i (t) ∈ F ;

• |Q(F)| = 3 and there exists a unique (i, t, t′) ∈ Z × R∗
+ × R∗

+ such that

{Γ±
i (t),Γ

±
i+1(t

′)} ⊂ F ; this happens exactly when F contains a ruling seg-
ment [Ω, p], inscribed in a singularity-free rectangle of sidelengths t, t′.

Proof. By Fact B, a fiber F may have cardinality 1, 2, or ∞. If |F| = 1 we are in
the first case.

γ′
γ

Ω
p

x

Figure 8. An ideal triangle in Σ, with one vertex Ω and the oppo-
site edge equal to a horizontal leaf. We also draw the geodesic from
Ω to x (a nonsingular point on that leaf). In Figures 8–9–10–11,
the shaded area is a portion of Σ containing no singularities.

Suppose now that F contains exactly two elements γ, γ′. By Fact B, the paths
γ and γ′ are then geodesic representatives of two paths that coincide up to a point
x at which they shoot off on opposite rays of a leaf of λ+ or λ− containing no
singularity. We may assume this leaf is horizontal. The ideal triangle spanned by
the endpoints of γ, γ′ and by their common origin Ω has one fully horizontal edge,
and two edges whose directions (followed towards Ω) depart monotonically from
horizontal until they merge at a singular point p, and then continue on together
(with arbitrary changes of direction) until the point Ω. See Figure 8. The total

γ′
γ

ℓi

p = Ω

t

x

Figure 9. Illustration of Proposition 4.3 when |F| = 2.

change of direction of γ between p and its endpoint at infinity of Σ, plus the total
change of direction of γ′ between p and its endpoint at infinity of Σ, is less than π.
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If the initial quadrants Q(γ) and Q(γ′) at the point Ω are distinct, then they are
consecutive and the only possibility is that p coincides with Ω and the segment
[p, x] can be taken vertical along a leaf ℓi. We then have the situation of Figure 9:
the number t is just the vertical distance px, and F = {Γ+

i (t),Γ
−
i (t)} = {γ, γ′};

the second case of Proposition 4.3 holds.
It remains to treat the case |F| = ∞. By Fact B, F then contains exactly:

• one path γ terminating at a singularity p, and
• all the paths γ̂ obtained from γ by tacking on a leaf ls of λ+ or λ− issued
from p (here s ranges over Z, the order being clockwise as seen from p).

γ′

γ

γ′′

γ̈

γ̇

Ω

p

t

ℓi

x

ls0

ls0+1

Figure 10. Possibilities for the path γ̂ include γ′, γ′′, γ̇, γ̈.

If |Q(F)| > 1, then in particular one of these paths, γ′, satisfies Q(γ′) 6= Q(γ).
It follows that {γ, γ′} = {Γ+

i (t),Γ
−
i (t)} for some (i, t) ∈ Z × R

∗
+: the argument

is similar to the case |F| = 2 above, except that the horizontal leaf through x
terminates at p (Figure 10, ignoring for the moment the paths labelled γ̇, γ̈, γ′′).

It remains to find the quadrants Q(γ̂) for the other elements γ̂ of the fiber F ,
obtained by tacking on to γ a leaf ls of λ

± issued from p. Only four paths γ̂ ∈ Fr{γ}
have geodesic representatives that do not go through p: these are the paths γ′, γ′′,
γ̇, γ̈ shown in Figure 10. These possibilities correspond to tacking on to γ any one
of four consecutive leaves ls0−1, ls0 , ls0+1, ls0+2:

• either a boundary leaf (say ls0+1 or ls0) of the quadrant at p containing the
last segment of γ (this yields geodesic representatives γ′ and γ′′);

• or one of the next closest leaves ls0+2, ls0−1 (this yields γ̇ and γ̈).

All other possible γ̂ go through p, and in particular satisfy Q(γ̂) = Q(γ). Closer
inspection shows that actually Q(γ̇) and Q(γ̈) are equal to Q(γ), too (see Figure10).
The remaining possibility, γ̂ = γ′′, can give two outcomes:

• If there is no ruling segment [Ω, p] (Figure 10), then Q(γ′′) = Q(γ) and we
are still in the second case of Proposition 4.3.

• If [Ω, p] is a ruling segment, then Q(γ′′) 6= Q(γ). This situation is portrayed
in Figure 11, and corresponds exactly to the third case of Proposition 4.3.

This concludes the proof of Proposition 4.3. �
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γ′

γ̂ = γ′′

γ

Ω

p

ℓi

t

ℓi+1
t′

ls0

ls0+1

Figure 11. When [Ω, p] is a ruling segment.

4.2. Color interfaces of the Cannon-Thurston map. We will use Proposi-
tion 4.3 to prove Theorem 1.2 concerning the combinatorics of the Cannon-Thurston
map ι. Here is a first step.

Proposition 4.4. Recall R+ := [0,+∞]. For all i ∈ Z, the map

R+ −→ P1C

Ji : t 7−→ ι(Γ+
i (t))

is continuous, injective on [0,+∞), and Ji(R+) is a Jordan curve.

(In this proposition, the image of Ji is the curve labelled “Ji” in Figure 3. The
t-hook Γ+

i (t) in the definition of Ji could be replaced by Γ−
i (t), due to (4.1) in

Definition 4.1.)

Proof. We first prove continuity. To fix ideas, suppose the leaf ℓi shoots off from Ω
vertically, upwards. We write Γ(t) for Γ+

i (t).
If t ∈ (0,+∞) and Γ(t) does not terminate on a singularity, then the geodesic

representative of Γ(t) makes infinitely many turns at singularities p1, p2, . . . . Con-
tinuity of Ji at t then follows from continuity of ι: indeed, for any integer N , if t′

is close enough to t then the geodesic representative of Γ(t′) will coincide with that
of Γ(t) at least up to pN .

If t ∈ (0,+∞) and Γ(t) terminates on a singularity p, consider t′ very close to t.
Suppose first that t′ < t. Let Γ(t−) be the path obtained from Γ(t) by tacking
on a leaf of λ∓ making an angle π with Γ(t) below p. Since ι(Γ(t)) = ι(Γ(t−)) by
Fact B, it is enough to prove that Γ(t′) approaches Γ(t−) in the space of paths as
t′ approaches t from below. This is the case, because the geodesic straightening of
Γ(t−) again goes through infinitely many singularities p1 p2, . . . (not including p),
and agrees with that of Γ(t′) up to any given pN provided t−t′ > 0 is small enough.
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In the case t′ > t, define similarly Γ(t+), the path obtained from Γ(t) by tacking
on a leaf of λ∓ making an angle π with Γ(t) above p. This time, p is the final
turn of Γ(t+). Since ι(Γ(t)) = ι(Γ(t+)) by Fact B, it is enough to prove that Γ(t′)
approaches Γ(t+) as t′ approaches t from above. This holds true because the next
turn of Γ(t′) after p lies arbitrarily far out in the horizontal direction if t′ − t > 0
is small enough.

If t = 0, the argument is similar to the case t′ > t just treated. If t = +∞,
just observe that for very large t′, the geodesic straightening of Γ(t′) starts with an
arbitrarily long, nearly vertical segment, so again Γ(t′) approaches Γ(+∞) = ℓi in
the space of paths as t′ → +∞.

Next, the identity Ji(0) = Ji(+∞) = ι(Ω) is clear by Fact B. Finally, we check
the injectivity properties of Ji. Note that, after straightening, Γ(t) and the other
t-hook Γ′(t) along ℓi (with the same initial segment) start into different quadrants:
Q(Γ(t)) 6= Q(Γ′(t)). Therefore, Proposition 4.3 applies, particularly the uniqueness
of t. �

4.3. Subdivision of quadrants. In a given quadrant at Ω, bounded by rays ℓi and
ℓi+1 and coordinatized by (R+)2, the ruling singularities {pis}s∈Z form a naturally
ordered Z-sequence, with vertical and horizontal coordinates varying monotonically
in opposite directions. To see this, one may for example consider for every t > 0
the initial length-t segment of the leaf ℓi, and push this segment in the direction
of ℓi+1 until it bumps into a singularity. The area swept out is a rectangle, and
the union of all these rectangles for all t > 0 forms a “staircase”, the pis being the
turning points at the back of each stair. See Figure 12. The indexing convention is
such that the path [Ω, pis] converges to ℓi+1 (resp. ℓi) as s→ +∞ (resp. s→ −∞).
This defines s only up to an additive shift depending on i, but we make no attempt
to harmonize these shifts (i.e. any choice will do).

Ω

ℓi

ℓi+1

pis

pis+1

pis+2
I
i

s+1

I
i

s

I
i

Figure 12. A staircase in the i-th quadrant, with ruling segments
[Ω, pis]. We mark the directions for initial segments of paths in the
subinterval Ii

s of S, as well as Ii =
⋃

s∈Z
Ii
s.

Definition 4.5. Inside the circle S of geodesic paths of Σ issued from Ω, we let:

• Ii be the closed interval of paths between the rays ℓi and ℓi+1;
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• Ii
s ⊂ Ii be the closed interval of paths between the ruling segments [Ω, pis]

and [Ω, pis+1].

Remark 4.6. An important feature is that the order on the Ii
s induced by the cyclic

order on S is the lexicographic order on pairs (i, s). In particular, fixing i ∈ Z,

• Γ−
i (t) ∈ Ii−1

s for an index s that is a nondecreasing function of t;
• Γ+

i (t) ∈ Ii
s for an index s that is a nonincreasing function of t.

Recall the Jordan maps Ji = ι ◦ Γ±
i : R+ → P1C from Proposition 4.4. The

following proposition classifies the intersection points of the Jordan curves Ji(R+).

Proposition 4.7. For (i, t) and (i′, t′) distinct elements of Z×R+, the relationship
Ji(t) = Ji′(t

′) holds if and only if:

• {t, t′} ⊂ {0,+∞}, or
• |i− i′| = 1 and the quadrant between ℓi and ℓi′ contains a ruling singularity
p at coordinates (t, t′).

Proof. For the “if” direction, the first case is again the characterization of the ι-
fiber of Ω by Fact B. The second case follows similarly from the characterization
of the ι-fiber of p (more precisely, of the path represented by the ruling segment
[Ω, p]).

For the “only if” direction, suppose first that Ji(t) = Ji′(t
′) is the point ι(Ω): by

Fact B, the corresponding hooks are degenerated to full leaves of λ±, i.e. t and t′

belong to {0,+∞}. If Ji(t) = Ji′(t
′) is some other point P , then we can apply the

second and third cases of Proposition 4.3: the fiber F = ι−1(P ) contains at most
two (opposite) t-hooks along any leaf ℓi, and this happens either for one value of i

(in which case P belongs only to the Jordan curve Ji(R+)) or for two consecutive
values of i (in which case P belongs to the two curves). The latter case arises
precisely when F contains a ruling segment, and (t, t′) are then its coordinates. �

4.4. Proof of Theorem 1.2. Propositions 4.4 and 4.7 show that two Jordan curves
Ji(R+) ⊂ P1C intersect only at ∞ and at a discrete subset of C, because ruling

singularities do not accumulate. More precisely, Ji(R+) ∪ Ji+1(R+) r {∞} is the
boundary of the union of an infinite string of disks (δis)s∈Z, each disk sharing just
one boundary point with the next.

To finish proving Theorem 1.2, it remains to check that the Jordan curves Ji(R+)
never cross each other (i.e. they bound nested disks Di), and that the Cannon-
Thurston map ι fills the string of disks Di rDi+1 in linear order.

First, define D′
i as the image under ι of all paths lying weakly clockwise from

the ray ℓi (and counterclockwise from the trivial path Ω):

D′
i := ι




⋃

j≥i

Ij



 .

Proposition 4.8. The set D′
i is the closure of one complementary component of

the Jordan curve Ji(R+) in the sphere P1C.

Proof. First, D′
i is closed, as it is the image of a compact interval under a continuous

map. Therefore D′
i r Ji(R+) is closed in P1C r Ji(R+); let us prove that it is also

open. Let γ be a nontrivial path lying clockwise from ℓi, and not equal to any
leaf ℓj .
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Suppose D′ does not contain any neighborhood of ι(γ). By surjectivity of the
Cannon-Thurston map ι, this means some paths lying counterclockwise from ℓi are
mapped by ι arbitrarily close to ι(γ). Taking limits it implies, by continuity of ι,
that the ι-fiber F of γ contains paths lying weakly counterclockwise from ℓi. Such
a limit cannot be ℓi itself (or Ω), since these belong to the fiber ι−1(∞) 6= F . So
F contains a path lying strictly counterclockwise from ℓi.

By Proposition 4.3, the fiber F contains paths belonging to (the interiors of) k
consecutive quadrants for some k ∈ {1, 2, 3}. The discussion above implies k ≥ 2.
The case k = 2 means, by Proposition 4.3, that some element of F is (the geodesic

straightening of) a t-hook along ℓi, hence ι(γ) belongs to the Jordan curve Ji(R+).
By Proposition 4.7, the case k = 3 means that ι(γ) belongs to the intersection of two

Jordan curves: Ji(R+)∩Ji+1(R+) or Ji(R+)∩Ji−1(R+). In any case, ι(γ) ∈ Ji(R+).

This proves openness of D′
i r Ji(R+) in P

1
C r Ji(R+).

To see that D′ is equal to only one side of Ji(R+), just remark that there are
ι-fibers all of whose elements start off counterclockwise from ℓi (a ι-fiber, other than
that of Ω, occupies at most 3 consecutive quadrants by Proposition 4.3). �

The proposition above implies that D′
i equals Di, the disk bounded by the i-th

Jordan curve Ji(R+). The inclusion Di ⊃ Di+1 is immediate from the definition
of D′

i. Therefore, by Proposition 4.8, the closure of Di r Di+1 is the union of a
Z-sequence of disks (δis)s∈Z, each having only one (boundary) point ι([Ω, pis]) in
common with the previous one.

Proposition 4.9. For any (i, s) ∈ Z2, we have ι(Ii
s) = δis.

Proof. As we just mentioned, the gate δis ∩ δ
i
s−1 is the image under ι of the s-th

ruling segment [Ω, pis] in the i-th quadrant.
Writing pis = ps = (xs, ys) the natural coordinates in the quadrant (ys is along ℓi,

and xs along ℓi+1), the boundary of δis is a Jordan curve that can be broken up
into two arcs:

ι(Γ+
i ([ys+1, ys])) = Ji([ys+1, ys]),

and ι(Γ−
i+1([xs, xs+1])) = Ji+1([xs, xs+1]).

The strategy is now similar to the proof of Proposition 4.8, replacing
⋃

j≥i I
j

with Ii
s. The set ι(Ii

s) r ∂δis is closed in P
1
C r ∂δis because Ii

s is compact; let
us prove that it is also open. Let γ ∈ Ii

s be a path. By surjectivity and continuity
of ι, it is enough to prove that if the ι-fiber F of γ does not contain (the geodesic
straightening of) a t-hook (i.e. ι(γ) /∈ ∂δis), then F is contained in Ii

s. Contra-

positively, prove that if F intersects two distinct subintervals Ii
s and Ii′

s′ , then F

intersects two distinct intervals Ii and Ii′′ .
If F is a singleton, then there is nothing to prove. If F consists of two elements,

then these are paths γ and γ′ asymptotic to the two ends of a foliation leaf ℓ (hor-
izontal, say), as in Figure 8 above: the two geodesics coincide up to a singularity p
(which they both pass on the same side unless p = Ω); then diverge from each
other, forming together with ℓ the boundary of a triangle containing no singularity.
If γ′ /∈ Ii

s, then the initial segments of γ and γ′ are distinct, meaning that p = Ω.
There are several possible situations (Figure 13):

• If the height y of the horizontal line ℓ is larger than ys, then the paths γ and
γ′ both lie in Ii

s. Indeed, the singularity ps prevents the geodesic straight-
ening γ′ from having an initial segment with slope any larger than ys

xs

.
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Ω

ps+1

ps

ℓ

γ

γ′

y

ℓi

ℓi+1 Ω

ps+1

ps

ℓ

γγ′

y

ℓi

ℓi+1

Figure 13. Case |F| = 2. The shaded regions contain no singularity.

(This will be the actual value if y − ys is small enough, but otherwise an-
other singularity can force the slope to be even lower, as in the left panel
of Figure 13).

• If y ∈ (ys+1, ys), then the absence of singularity in the rectangle [0, xs+1]×
[0, ys] causes the initial segment of γ′ to lie in a another quadrant: F
intersects a second interval Ii±1 in addition to Ii. See the right panel of
Figure 13. (In particular, γ and γ′ are t-hooks, with t = y, and ι(γ) ∈ ∂δis.)

• The case y < ys+1 is ruled out, as neither γ nor γ′ would belong to the
subinterval Ii

s. This finishes the case |F| = 2.

Finally we discuss the case that the fiber F is infinite. The elements of F are a
certain path γ terminating at a (not necessarily ruling) singularity p, and all the
paths (γn)n∈Z obtained from γ by tacking on a vertical or horizontal leaf issued

from p. Each of these paths belongs to some I
i(γn)
s(γn)

, for some integers i(γn) and

s(γn) determined by the initial segment of (the geodesic straightening of) γn. If
γ ∈ F is a ruling segment, we have shown (see Figure 11 and Proposition 4.3)
that {i(γn)}n∈Z consists of three consecutive integers and the proof is finished.
If not, then (i, s) is a well-defined function on F = {γ} ∪ {γn}n∈Z, and we can
assume (i, s)(γ) 6= (i, s)(γn) for some n ∈ Z. Since γ and γn differ only by the final
leaf from p, the situation is analogous to the case |F| = 2 (Figure 13). The only
difference is that the leaf ℓ terminates at a point p, but the argument is exactly
the same (applied to γ, γn instead of γ, γ′): if the initial segments of the two paths

fall in distinct subintervals (I
i(γn)
s(γn)

6= I
i(γ)
s(γ)), then they fall in completely different

quadrants: i(γn) 6= i(γ). �

Theorem 1.2 is now proved: the boustrophedonic order of filling of the discs δis
derives from the opposite directions of monotonicity in Remark 4.6. In particular,
we can speak of the objects defined in Section 1.3: the i-th furrow

⋃
s∈Z

δis; cross-

furrow and in-furrow edges in ∂δis; gates δ
i
s ∩ δ

i
s±1, and spikes.

5. Proof of Theorem 1.3

The proofs of the previous section have made it clear that the maximal singularity-
free rectangles play an important role in the combinatorics of the Cannon-Thurston
map ι. Since these rectangles also govern the Agol triangulation by Theorem 1.1,
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a result such as Theorem 1.3 should now come as no surprise. In this section we
establish the detailed correspondence.

5.1. The dictionary or Theorem 1.3.(1). More precisely, we now discuss and
illustrate the various entries in the right column (Agol triangulation features) of
the dictionary table of Theorem 1.3. To each such feature, we associate first a type
of rectangle in the singular surface Σ, and then a feature of the Cannon-Thurston
tessellation (left column of the dictionary table). These correspondences will be
clearly bijective, proving Theorem 1.3.(1).

All figures in this section will obey the following convention:

• Left panel: the Cannon-Thurston tessellation.
• Middle panel: the singular Euclidean surface Σ.
• Right panel: the Agol triangulation (more precisely, its vertex link).

Each of the 3 panels may consist of several diagrams showing different possibilities
(orientation or color reversals, even/odd quadrants etc): these diagrams are in
natural correspondence between the 3 panels.

Note that the left and right panel both live in the (same) complex plane, while
the middle panel lives in the singular surface Σ. Each diagram in the middle panel
is considered up to a 180◦ rotation, since S is only a half -translation surface. Up to
this ambiguity, the figures are designed to systematically capture all possible cases.
Note also the following correspondence:

In Σ (middle panel) In the link of Ω (other panels)
Clockwise rotation Rightwards motion
Vertical direction Top end

Horizontal direction Bottom end.

Vertices (Figure 14). Ruling segments [Ω, p] in Σ correspond to vertices of the
Agol triangulation by Theorem 1.1, and to vertices of the Cannon-Thurston tessel-
lation by Proposition 4.7.

Cannon-Thurston tessellation Flat surface Σ Agol triangulation
Ω

Ω

Figure 14. In the middle panel, the green rectangle contains no
singularity in its interior and Ω is the dark vertex; this convention
is upheld in all pictures of Section 5.1.

Ladderpole edges (Figure 15). Recall that ladderpole edges in the Agol trian-
gulation are by definition edges connecting two vertices of the same color. These
two vertices necessarily come from two consecutive ruling edges of a given quadrant.
The paths (of Ii

s) inbetween these two ruling segments are mapped by ι to exactly
one 2-cell δis of the Cannon-Thurston tessellation, by Proposition 4.9.

Furrows
⋃

s∈Z
δis correspond to full quadrants

⋃
s∈Z

Ii
s = Ii in Σ, which corre-

spond to full sequences of ruling singularities (pis)s∈Z, and in turn to sequences of
ladderpole edges, i.e. ladderpoles, in the Agol triangulation.
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Ω

Ω

Ω

Ω

2-cells Triangles, Ω in corner Ladderpole edges

Figure 15. In the middle panel, we have also indicated ruling
singularities in the two quadrants adjacent to the one containing
the singularity-free rectangle. These singularities correspond to
spikes in the left panel. In the left panel, each arc indicated by an
arrow is isotopic to the ladderpole edge seen in the corresponding
diagram of the right panel.

Nonhinge triangles (Figure 16). A triangle in the Agol triangulation corre-
sponds by definition to a maximal singularity-free rectangle in Σ containing exactly
one singularity in every edge, one of these singularities being Ω. The triangle is
non-hinge exactly when the two diagonals of the quadrilateral spanned by the four
singularities have slopes of the same sign. Up to symmetry, we may then assume
that Ω = (0, 0) is the bottom vertex, and that the other three vertices T,R, L (Top,
Right, Left) satisfy: xL < xT < 0 < xR and 0 < yR < yL < yT , where (xp, yp) are
the coordinates of a point p.

Ω

R

T

L τ

In-furrow edges Nonhinge tetrahedra Nonhinge triangles

Figure 16. In the right panel, the nonhinge triangle under con-
sideration is shaded; we have also depicted the next triangle across
its base rung . The color of the base rung of that second triangle
(dashed) is determined by the position, in the middle panel, of the
next ruling singularity after L (also dashed), relative to the height
yR of R. Finally, each edge indicated by an arrow in the right
panel is isotopic to the edge seen in the corresponding diagram of
the left panel.

Note that R is a ruling singularity of the upper right quadrant at Ω, while L
and T are two consecutive ruling singularities of the upper left quadrant. The
ruling staircases in these two quadrants climb from opposite sides to the upwards
ray at Ω. The inequalities above mean precisely that no ruling singularity in the
quadrant of R has a vertical coordinate in [yL, yT ]. By Proposition 4.7, this means

that the Jordan curve Ji(R+), associated to t-hooks along the vertical leaf issued

from Ω, does not intersect Ji+1(R+) between Ji(yL) and Ji(yT ); the corresponding
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cell ι([ΩL,ΩT ]) of the Cannon-Thurston tessellation thus has no spike on this side,
but instead has an in-furrow edge (vertical edge) Ji([yL, yT ]).

Remark 5.1. This edge “LT” is topologically the same as an edge of the initial
nonhinge triangle τ of the Agol triangulation: namely the edge connecting the tip
of τ to the tip of the next triangle across the base rung of τ . This edge is indicated
by an arrow in Figure 16.

Hinge triangles (Figure 17). Similarly, a hinge triangle in the Agol triangulation

Ω

R

T

L

Cross-furrow edges Hinge tetrahedra Hinge triangles

Figure 17. In the right panel, the hinge triangle under consid-
eration is shaded; we have also depicted the next triangle across
its base rung . The color of the base rung of that second triangle
(dashed) is determined by the position, in the middle panel, of the
next ruling singularity after R (also dashed), relative to the height
yL of L. Finally, each edge indicated by an arrow in the right panel
is isotopic to the edge seen in the corresponding diagram of the
left panel.

corresponds in Σ (up to symmetries) to a maximal singularity-free rectangle whose
edges contain singularities (0, 0) = Ω, L, T,R such that xL < xT < 0 < xR and
0 < yL < yR < yT . Equivalently, L, T are consecutive ruling singularities in the
upper left quadrant and R is the highest of the ruling singularities in the upper
right quadrant whose vertical coordinate lies in [yL, yT ]. By Proposition 4.7, this

means the separator Ji(R+), followed downwards from the gate Ji(yT ) of the 2-cell
ι([ΩL,ΩT ]), has its first spike at Ji(yR). That is to say, the arc Ji([yR, yT ]) is a
cross-furrow edge.

Remark 5.2. This edge “RT” is topologically the same as an edge of the initial
nonhinge triangle τ of the Agol triangulation: namely the edge connecting the tip
of τ to the tip of the next triangle across the base rung of τ . This edge is indicated
by an arrow in Figure 17.

Rungs (Figure 18). By definition, a rung in the Agol triangulation is an edge
connecting two vertices of distinct colors. If we call L,R the corresponding ruling
singularities in Σ (belonging to adjacent quadrants), then we can assume up to
symmetry that yL < yR. The existence of a singularity-free rectangle circumscribed
to {Ω, R, L} means that if L′ denotes the next higher ruling singularity after L (in
the quadrant of L), then yR ∈ [yL, yL′ ]. This in turn means the arc Ji([yL, yL′ ]),
which connects the two gates of one cell of the Cannon-Thurston tessellation, has
a spike at Ji(yR).

All correspondences above are clearly bijective. This proves the first, “dictio-
nary” part of Theorem 1.3.
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Ω

R

L

Spikes Triangles, Ω in edge Rungs

Figure 18. In the right panel, each vertex indicated by an arrow
is the vertex of the spike shown in the correponding diagram of the
left panel. Also, in the right panel, we have drawn next to each
rung a ladderpole edge (thinner) which is the one corresponding
to the 2-cell in the left panel to which the spike belongs.

5.2. The recipe book or Theorem 1.3.(2). Remarks 5.1 and 5.2 above, and
the bijectivity of the dictionary, imply that the edges of the Cannon-Thurston
tessellation are obtained from the Agol triangulation by drawing an edge between
the tip of each triangle and the tip of the next triangle across its base rung. This
gives the recipe in the first direction of Theorem 1.3.(2).

Call Li the path of tip-to-tip edges thus formed inside the i-th ladder. The fact
that the second recipe in Theorem 1.3.(2) returns the original Agol triangulation
can be seen purely at the level of the tessellation itself, based on the fact that
Li visits all vertices of the i-th ladder exactly once, and that between any two
consecutive vertices on one ladderpole, Li visits a (possibly empty) sequence of
consecutive vertices on the other ladderpole. Theorem 1.3 is proved.

6. Illustrations

We finish with some extra illustrations to make the combinatorics of the filling
curve ι and the Cannon-Thurston tessellation more concrete. We will make no
effort to draw its fractal-looking edges realistically: the information is still purely
combinatorial.

6.1. Global illustration. In Figure 19 we show a relatively large sample of the
Cannon-Thurston tessellation (left) and of the Agol triangulation (right), for the
same underlying combinatorics. The picture shows in interaction many of the local
features described and illustrated in Section 5.1.

In the left panel, only the solid colored areas contain the information on the
Cannon-Thurston tessellation. However, we overlaid them with the 1-skeleton of
the Agol triangulation to help visualize the correspondences. Since all Cannon-
Thurston edges are isotopic to Agol edges, each of the former receives a natural
color (blue or red) even though it always just separates a blue area from a red
one. Also, each ladderpole edge in the Agol triangulation is isotopic to 0, 1, or 2
in-furrow edges of the Cannon-Thurston tessellation: in the resulting overlay (left
panel) we draw all 1,2 or 3 edges separately but with the same color. This was also
the convention in the left panel of Figure 15.

In short, this synthesis is useful to illustrate Theorem 1.3 and the interplay
between the various lines of the “dictionary”. However, it has two drawbacks:

• We cannot draw the corresponding features in the flat surface Σ, as the
figure would become too crowded.
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Cannon-Thurston tessellation Singular surface Σ Agol triangulation

Figure 19. Corresponding chunks of the two plane tessellations
(the combinatorics in Σ are not shown). Right panel : the 3 dotted
edges have undetermined color. Left panel : correspondingly, each
of the 3 unfinished (thick black) edges has undetermined endpoint
(at either end of the nearby dotted edge).

• In order to show exactly the same information in the two diagrams, we
must leave some details ambiguous near the outer boundaries.

For example, forcing a color upon the top-left dotted edge in the Agol-triangulation
panel would force an endpoint (and a color) upon the top-left, unfinished edge of the
Cannon-Thurston panel (interrupted here on a dotted arc). Conversely, choosing
specific numbers of spikes for the outer cells of the Cannon-Thurston tessellation
(presently truncated in a ragged style) would force some partial information upon
the adjacent ladders (not pictured) in the Agol triangulation.

The first drawback is unavoidable if we draw too large a portion of the tessella-
tions, but the second is unavoidable as long as we draw only a bounded portion.

6.2. Semi-local illustration. Thus, we try to strike a middle ground in Figure 20.
This figure shows two full cells of the Cannon-Thurston tessellation (left), along
with the corresponding data in Σ (middle) that allows to count their spikes, and
the corresponding chunk of the Agol triangulation (right). In the middle panel, the
whole green area is singularity-free.

The numbers of spikes chosen are 0, 1 in the top cell (on its left and right sides
respectively), and 2, 3 in the bottom cell. Up to varying these numbers, one can
build the Cannon-Thurston tessellation entirely out of 2-cells like the blue one
shown, and red ones obtained by a horizontal reflection and an exchange of colors.

The portrayed cell δs in the left panel is the image, under the Cannon-Thurston
map ι, of a subinterval Ii

s in the upper left quadrant of the middle panel. In the
right panel, the ladderpole edge corresponding to Ii

s is the thick red one, connecting
blue vertices. The ruling singularities that we show in the middle panel are:

• the two endpoints of Ii
s, mapping to the gates of δs, and connected to Ω in

blue (upper left quadrant);
• the ruling singularities in neighboring quadrants that correspond to spikes
of δs, connected to Ω in red (their coordinates, along the direction common
to the two consecutive quadrants, fall between the endpoints of Ii

s);
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δs

δs+1

δs−1

a′ c′

b′
d′

δs

δs+1

δs−1

a′ c′

b′ d′

a

c

b

d

a
c

b

d

a′′

c′′

b′′
d′′

a′′ c′′

b′′ d′′

Ω

Ω

Figure 20. The combinatorics associated to full cells (left panel)
of the Cannon-Thurston tessellation: the first cell has 0 spikes on
one side and 1 on the other; the second cell has 2 and 3. The cor-
responding subinterval Ii

s is shown as a green sector in the middle
panel.

• two more ruling singularities (gray) in each of the three quadrants, just
before and just after the ones already given. The corresponding points in
the left panel are six small, isolated dots.

Indeterminacies about how neighbors of δs glue up together give rise to cor-
responding indeterminacies in the other diagrams, of which we keep careful track.
Namely, each panel has some features left in gray: saddle point connections a, b, c, d
between gray singularities (middle panel); unfinished edges a′, b′, c′, d′ (left panel);
edges a′′, d′′ and vertices b′′, c′′ (right panel).

Each of the unfinished edges a′, b′, c′, d′ may end at one of two possible vertices,
blue or red. The two possible endpoints for a′ are the two endpoints of the edge a′′;
same for d′ and d′′. The two possible endpoints for b′ are the two possible positions
of the vertex b′′ (on one of two adjacent ladderpoles, of opposite colors); same for
c′ and c′′. The saddle point connections a, b, c, d are in fact never horizontal or
vertical, but we drew them nearly so, to insist that their slope could be of any sign,
deciding the endpoints of a′, b′, c′, d′ and colors of a′′, b′′, c′′, d′′. More precisely:

If the saddle point connection a has negative slope, then the unfinished edge a′

ends at the blue vertex (meaning the cell δs+1 above δs has no spike on the left),
and the edge a′′ is blue. Conversely, if a has positive slope, then a′ ends at the red
vertex (δs+1 has a spike on the left), and a′′ is red. The same holds of d, d′, d′′,
replacing spikes on the left in δs+1 with spikes on the right in δs−1.
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If the saddle point connection b has negative slope, then b′ ends at the red vertex
(δs−1 has a spike on the left) and b′′ is red. Conversely, if b has positive slope, then
b′ ends at the blue vertex (δs−1 has no spike on the left) and b′′ is blue. The same
holds of c, c′, c′′, replacing spikes on the left in δs−1 with spikes on the right in δs+1.
To summarize,

slope(a) < 0 a′ ends on blue a′′ blue
slope(a) > 0 a′ ends on red a′′ red
slope(b) < 0 b′ ends on red b′′ red
slope(b) > 0 b′ ends on blue b′′ blue
slope(c) < 0 c′ ends on red c′′ red
slope(c) > 0 c′ ends on blue c′′ blue
slope(d) < 0 d′ ends on blue d′′ blue
slope(d) > 0 d′ ends on red d′′ red.

Note that the edges b′ and c′ are necessarily red, while a′ and d′ could be any
color (the color opposite to that of their unknown endpoint). On the other hand,
the vertex b′′ (resp. c′′), if blue, is an endpoint of the edge d′′ (resp. a′′).

6.3. Further subdivisions of the Cannon-Thurston map. In Figure 21, we
show a schematic diagram of the order in which a cell δis = ι(Ii

s) of the Cannon-
Thurston tessellation is itself filled out. This involves two consecutive ruling singu-
larities ps, ps+1 of the top right quadrant, as well as a maximal sequence of k ≥ 2
singularities such that any two consecutive of them, together with ps and ps+1,
span a maximal singularity-free rectangle with [ps, ps+1] as the bottom left edge.
We show the cases k = 2, 3, 6.

Note that for each path γ that terminates at a singularity, such as the paths
numbered 0, 3, 8, 11 in the case k = 2 (top), the curve ι actually goes infinitely many
times through ι(γ) in a neighborhood of γ (we just draw one pass for simplicity).
Indeed, near ι(γ), the trajectory of ι is actually the image of the full boustrophedon
under a Möbius map, with ι(γ) playing the role of the point at infinity. This also
explains why so-called spikes do look “spiky”, in the sense that they are pinched
between two tangent circles, the Möbius image of a pair of furrow-parallel lines.
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