
THE BLUM-HANSON PROPERTY

SOPHIE GRIVAUX

Abstract. Given a (real or complex, separable) Banach space, and a contraction T on
X, we say that T has the Blum-Hanson property if whenever x, y ∈ X are such that Tnx
tends weakly to y in X as n tends to infinity, the means

1

N

N∑
k=1

Tnkx

tend to y in norm for every strictly increasing sequence (nk)k≥1 of integers. The space
X itself has the Blum-Hanson property if every contraction on X has the Blum-Hanson
property. We explain the ergodic-theoretic motivation for the Blum-Hanson property,
prove that Hilbert spaces have the Blum-Hanson property, and then present a recent
criterion of a geometric flavor, due to Lefèvre-Matheron-Primot, which allows to retrieve
essentially all the known examples of spaces with the Blum-Hanson property. Lastly,
following Lefèvre-Matheron, we characterize the compact metric spaces K such that the
space C(K) has the Blum-Hanson property.

1. Introduction

These notes present the material for a mini-course on the Blum-Hanson property, given
within the framework of the ACOTCA 2019 conference in Marne-la-Vallée (France) in
June 2019. They were written down by Clément Coine. The mini-course consisted of
three lectures of 45 minutes. The structure of this course is preserved in these notes,
and the contents of the three lectures correspond to the contents of Sections 2, 3 and 4
respectively.

We will be concerned in this series of lectures with a property of contractions of bounded
operators on Banach spaces, called the Blum-Hanson property. It originated in the work
[8] of Blum and Hanson in the 60’s who characterized a certain property of measure-
preserving dynamical systems (strong mixing) in terms of a mean ergodic theorem along
all subsequences. Just like in the ergodic theorem of von Neumann, this theorem of Blum
and Hanson has an abstract formulation for contractions on a (real or complex, separable)
Hilbert space, which is Theorem 1 below. It was proved by Akcoglu-Sucheston [3] and
Jones-Kuftinec [11] independently.

Whenever (xn) is a sequence of elements of a Banach space X, and x ∈ X, the notation

xn
‖.‖−−→ x
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2 S. GRIVAUX

means that xn tends to x in norm in X as n tends to infinity, while the notation xn
w−→ x

means that xn tends weakly to x in X. We denote by B(X) the algebra of bounded
operators on X, by BX the closed unit ball of X, and by SX its unit sphere.

Theorem 1. [3, 11] Let H be a (real or complex) Hilbert space, and let T ∈ B(H) with

‖T‖ ≤ 1. If x, y ∈ H are such that Tnx
w−→ y, then

1

N

N∑
k=1

Tnkx
‖.‖−−→ y

for every strictly increasing sequence (nk)k≥1 of (positive) integers.

This theorem motivates the following definition:

Definition 2. Let X be a (real or complex, separable) Banach space, and let T ∈ B(X).
We say that T has the BH property (or simply has BH) if whenever x, y ∈ X are such

that Tnx
w−→ y,

1

N

N∑
k=1

Tnkx
‖.‖−−→ y

for every strictly increasing sequence (nk)k≥1 of integers. We say that X itself has the BH
property if every contraction on X has the BH property.

In the first part of these lectures (Section 2), we will quickly present the theorem of
Blum and Hanson and its ergodic-theoretic motivation. We will also prove Theorem 1 and
give some examples of spaces which have BH. During the second lecture (Section 3), we
will present and prove a recent criterion, due to Lefèvre-Matheron-Primot [15], proving
that certain contractions (sometimes all contractions) on certain Banach spaces have BH.
We will present some of its applications, as well as its limits. Finally, the last part of
this mini-course (Section 4) be devoted to the study of spaces which do not have the BH
property.

2. Strongly mixing dynamical systems and the BH Theorem

Let (X,B, µ) be a probability space, and let φ : X → X be a measure-preserving
transformation of (X,B, µ): this means that µ(φ−1(A)) = µ(A) for every A ∈ B. One
associates to φ a canonical isometry Uφ on L2(X,B, µ), called the Koopman operator and
defined as follows:

Uφ : f 7→ f ◦ φ, f ∈ L2(X,B, µ).

When φ is an invertible measure-preserving transformation, Uφ is a unitary operator. For
a first reading in ergodic theory, we recommend the classical book [18] by Walters.

Von Neumann’s mean ergodic theorem implies that

1

N

N∑
k=1

f ◦ φk =
1

N

N∑
k=1

Ukφf
‖.‖−−→ Pker(Uφ−I)f in L2(X,B, µ)

for every f ∈ L2(X,B, µ), where Pker(Uφ−I) denotes the orthogonal projection on the

eigenspace ker(Uφ − I) of Uφ in the space L2(X,B, µ).



THE BLUM-HANSON PROPERTY 3

The transformation φ is said to be ergodic when the only φ-invariant functions f ∈
L2(X,B, µ) are constant almost everywhere: f ◦ φ = f µ-a.e. ⇒ f = c µ-a.e. Another
way of saying this is that ker(Uφ − I) is 1-dimensional. In this case,

1

N

N∑
k=1

f ◦ φk ‖.‖−−→
∫
X
fdµ for every f ∈ L2(X,B, µ),

and hence

1

N

N∑
k=1

〈
f ◦ φk, g

〉
−→

N→+∞

(∫
X
fdµ

)(∫
X
gdµ

)
for every f, g ∈ L2(X,B, µ),

where 〈 . , . 〉 denotes the scalar product in L2(X,B, µ). This is equivalent to the condition

1

N

N∑
k=1

µ(φ−n(A) ∩B) −→
N→+∞

µ(A)µ(B) for every A,B ∈ B,

and to the condition that if A ∈ B is such that φ−1(A) = A up to a set of µ-measure 0,
then µ(A) = 0 or µ(A) = 1.

Ergodic systems are the basic building blocks for all measure-preserving systems (a good
illustration of this is given by the Ergodic Decomposition Theorem, see for instance [1,
Th. 2.2.9]); they satisfy Birkhoff’s pointwise ergodic theorem: for every f ∈ L1(X,B, µ),

1

N

N∑
k=1

f(φkx) −→
N→+∞

∫
X
fdµ for µ− a.e. x ∈ X.

which is classically rephrased as “the time means equal the space mean µ-a.e.”.
The simplest examples of ergodic systems are the irrational rotations on the unit circle,

but there are many more examples (see one of the references [18], [17] or [9]).

Let us go back to the definition of ergodicity in terms of Koopman operators: for all
f, g ∈ L2(X,B, µ),

1

N

N∑
k=1

〈
Ukφf, g

〉
−→

N→+∞
〈f, 1〉 〈g, 1〉.

There are several natural reinforcements of this notion, where one requires a different kind

of convergence of the quantities
〈
Ukφf, g

〉
above. One of them is strong mixing :

Definition 3. A measure-preserving transformation φ of (X,B, µ) is strongly mixing if
for every f, g ∈ L2(X,B, µ), 〈

UNφ f, g
〉
−→

N→+∞
〈f, 1〉 〈g, 1〉.

This is equivalent to the condition µ(φ−N (A)∩B)→ µ(A)µ(B) for every A,B ∈ B, i.e.
to the condition that the events φ−N (A) and B become asymptotically independent as N
goes to infinity. Hence the terminology ”strongly mixing”.

Rotations of the unit circle are never strongly mixing. But endomorphisms of the tori
Rn/Zn are strongly mixing as soon as they are ergodic. Endomorphisms of tori are given
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by n× n matrices with integer entries: to each such matrix

A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 one associates the map ΦA :

Rn/Zn −→ Rn/Zn x1
...
xn

 7−→ A

 x1
...
xn


Here are the simplest examples of endomorphisms of tori: take n = 1, A = (p) with

p ∈ N\ {0, 1}: one obtains the map

R/Z −→ R/Z
x 7−→ px mod 1.

Endomorphisms of tori preserve Haar measure (for example, check that for every open
arc I in R/Z, µ({x ; px mod 1 ∈ I}) = µ(I)). When ΦA is surjective (which happens
exactly when det(A) 6= 0), ΦA is ergodic if and only ifA has no roots of unity as eigenvalues,
if and only if ΦA is strongly mixing. See [18] for details.

Going back to the theory of strongly mixing systems, we observe that φ is strongly

mixing if and only if UNφ f
w−→ 0 for every f ∈ L2

0(X,B, µ), where

L2
0(X,B, µ) :=

{
f ∈ L2(X,B, µ),

∫
X
f dµ = 0

}
i.e. UNφ → Pker(Uφ−I) in the so-called Weak Operator Topology.

Here is the characterization of strongly mixing systems obtained by Blum and Hanson
in 1960.

Theorem 4. [8] The (measure-preserving) dynamical system (X,B, µ;φ) is strongly mix-
ing if and only if for every strictly increasing sequence (nk)k≥1, we have∥∥∥∥∥ 1

N

N∑
k=1

Unkφ f −
∫
X
fdµ

∥∥∥∥∥
2

−→
N→+∞

0 for every f ∈ L2(X,B, µ).

One can replace the norm ‖.‖2 by any norm ‖.‖p, 1 ≤ p < +∞, in the statement of
Theorem 4. But one cannot replace it by pointwise convergence. An example of a strongly
mixing system (X,B, µ;φ) for which there exists a strictly increasing sequence (nk)k≥1 of
integers and a function f ∈ L2(X,B, µ) such that

lim inf
N→+∞

1

N

N∑
k=1

Unkφ f = 0 and lim sup
N→+∞

1

N

N∑
k=1

Unkφ f = 1 µ− a.e.

was first given in [10], and then Krengel proved in [12] that there exists a universal
strictly increasing sequence (nk)k≥1 of integers such that for every strongly mixing system
(X,B, µ;φ), there exists a set A ∈ B with the property that

lim inf
N→+∞

1

N

N∑
k=1

Unkφ 1A = 0 and lim sup
N→+∞

1

N

N∑
k=1

Unkφ 1A = 1 µ− a.e.,

where 1A denotes the indicator function of A.
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As we already mentioned, the theorem of Blum and Hanson admits an abstract formu-
lation valid for all contractions T on a Hilbert space H (Theorem 1 above), also called a

mean ergodic theorem along all subsequences: if Tnx
w−→ y, then∥∥∥∥∥ 1

N

N∑
k=1

Tnkx− y

∥∥∥∥∥→ 0

for every strictly increasing sequence of integers (nk)k≥1. In the case where nk = k for all
k, this is a classical mean ergodic theorem, see for instance [13, Ch.2, Th. 1.1]. In the same
circle of ideas, recall that whenever T is a power-bounded operator on a reflexive Banach
space X (i.e. sup ||Tn|| < +∞; this holds true in particular when T is a contraction), the
averages

1

N

N∑
k=1

T kx

converge in norm in X to a vector y belonging to ker(T − I).

Let us now prove Theorem 1.

Proof of Theorem 1. Without loss of generality, we can assume that y = 0. Thus, we

assume that Tnx
w−→ 0. We have∥∥∥∥∥ 1

N

N∑
k=1

Tnkx

∥∥∥∥∥
2

=
1

N2

N∑
i,j=1

<e 〈Tnix, Tnjx〉 .

An important ingredient in all the existing proofs of Theorem 1 is the following fact.

Fact 5. Let (cij)i,j≥1 be a bounded sequence of nonnegative numbers. If cij → 0 as
|i− j| → +∞, then

1

N2

N∑
i,j=1

cij → 0 as N → +∞.

Proof. Let M = sup
i,j

cij . Let ε > 0 and K ∈ N be such that 0 ≤ cij < ε for every (i, j)

with |i− j| ≥ K. We have

1

N2

N∑
i,j=1

cij ≤
1

N2

∑
|i−j|<K

cij +
1

N2

∑
|i−j|≥K

cij

≤ 1

N2
(2K + 1)N + ε.

�

Once this fact is observed, there are several ways of proving Theorem 1. Probably the
most elegant argument is the one presented in [15, Sec. 6.1], which relies on the existence
of spectral measures for contractions on complex Hilbert spaces. We prefer to follow here
the elementary approach from [3] (see [13, Ch.8, Th. 1.3]), which runs as follows:

Note that the sequence (‖Tnx‖)n≥1 is decreasing so that the limit lim
n→+∞

‖Tnx‖ exists.

Hence, given ε > 0, there exists K ≥ 0 such that, for all k ≥ K and for all i ≥ 0,

0 ≤ ‖T kx‖2 − ‖T k+ix‖2 < ε2 and |
〈
T kx, x

〉
| ≤ ε.
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One now observes the following fact: if S ∈ B(H) and u ∈ H are such that ‖S‖ ≤ 1 and
0 ≤ ‖u‖2 − ‖Su‖2 < ε2, then

| 〈u, y〉 − 〈Su, Sy〉 | ≤ ε‖y‖ for every y ∈ H.

Indeed,

| 〈u, y〉 − 〈Su, Sy〉 | = | 〈(I − S∗S)u, y〉 | ≤ ‖u− S∗Su‖‖y‖

≤ (‖u‖2 − ‖Su‖2)1/2‖y‖
≤ ε‖y‖.

Apply this with S = T i and u = T kx, y = x to get

|
〈
T kx, x

〉
−
〈
T i+kx, T ix

〉
| ≤ ε‖x‖

and hence

|
〈
T i+kx, T ix

〉
| ≤ (1 + ‖x‖)ε

for every i ≥ 0, k ≥ K. So

|
〈
T jx, T ix

〉
| ≤ (1 + ‖x‖)ε

for every 0 ≤ i < j with j− i ≥ K. Hence Fact 5 can be applied, and this proves Theorem
1. �

More generally, it now makes sense to investigate whether Theorem 1 can be extended
to contractions on other Banach spaces, or at least to certain classes of contractions. Here
is a quick list of what is known and what is not known:

(1) By [16, Ex. 4.1], there exist power bounded operators on H which do not have the
BH. Consequently, there exist reflexive spaces which do not have the BH property
(see the beginning of Section 4 for a bit more on this example).

(2) `1(N) has Schur’s property and hence trivially has BH.
(3) `p(N), for 1 < p <∞, has BH, see [16, Th. 2.5].
(4) By [4], positive contractions on spaces Lp(Ω,F , µ), 1 < p < +∞, where (Ω,F , µ)

is a standard probability space, have BH. It is unknown whether all contractions
on Lp(Ω,F , µ) have BH, i.e. whether Lp(Ω,F , µ) has BH for 1 < p 6= 2 < +∞.
This is one of the major open question concerning the BH property, see [5].

(5) The spaces L1(Ω,F , µ) have BH by [3, Th. 2.1].
(6) If K is a compact metric space, the space C(K) has BH if and only if K has finitely

many accumulation points. See [14, Th. 1.1] and Theorem 10 below.

We will present in the next lecture a criterion from [15] which allows to retrieve all
positive results on the BH property thanks to a rather geometric argument, involving the
asymptotic behavior at infinity of a certain “modulus of smoothness”.

3. A geometric criterion for the BH property

Let us begin by fixing some notation. Let X be a real, separable Banach space, C ⊂ X
a convex cone (that is, C is a non-empty convex set such that t C ⊂ C for every t ≥ 0). Let
us set

WN(BX ∩ C) =
{

(xn)n ⊂ BX ∩ C ; xn
w−→ 0

}
.



THE BLUM-HANSON PROPERTY 7

In other words, the set WN(BX ∩ C) consists of all weakly null sequences in BX ∩ C. For
every x ∈ C and every t ≥ 0, define

rC(x, t) = sup
(xn)∈WN(BX∩C)

‖x+ txn‖.

Theorem 6. [15] Suppose that for every x ∈ C,

lim
t→+∞

rC(x, t)− t ≤ 0.

Then every operator T ∈ B(X) with ‖T‖ ≤ 1 and T (C) ⊂ C satisfies the BH property at
every point x ∈ C.

Here are some straightforward remarks on this theorem.

– the map t 7→ rC(x, t) is 1-Lipschitz on [0,+∞), so that the function rC(x, t) − t is
decreasing and the quantity lim

t→+∞
(rC(x, t)− t) exists in R ∪ {−∞};

– if WN(BX ∩ C) contains a sequence (xn) ⊂ SX , then rC(x, t) ≥ t − ‖x‖, so that
lim

t→+∞
rC(x, t)− t ≥ −‖x‖;

– if moreover C is symmetric, i.e. if t C ⊂ C for every t ∈ R, then rC(x, t) ≥ t, so that
lim

t→+∞
rC(x, t)− t ≥ 0. Indeed, if (xn) ∈WN(BX ∩ C), (−xn) ∈WN(BX ∩ C) and

rC(x, t) ≥ sup
(xn)∈WN(BX∩C)

(
1

2
‖x+ txn‖+

1

2
‖x− txn‖) ≥ t sup

(xn)∈WN(BX∩C)
‖xn‖ = t.

– the function t 7→ rC(x, t) is increasing on [0,+∞).

Some applications and examples: if one wishes to show, thanks to Theorem 6, that a
given space X has the BH property, one applies it to C = BX .

(1) X = `p(N), 1 < p < +∞: in this case, rBX (x, t) = (‖x‖p + tp)1/p for every x ∈ X
and every t ≥ 0. Thus

rBX (x, t)− t ∼
t→+∞

‖x‖p

p

1

tp−1

for every x 6= 0, and this tends to 0 as t→ +∞. Hence X has the BH property.
(2) X = c0(N): in this case rBX (x, t) = max(‖x‖, t) = t if t ≥ ‖x‖. So X has the BH

property, see [7].
(3) X = Lp(Ω,F ,P), 1 < p < +∞, where (Ω,F ,P) is a standard probability space,

for instance ([0, 1],B,Leb): as we already mentioned at the end of Section 2, it is
unknown whether X has the BH for p 6= 2. We observe next, following [15, Sec.
6.4] that Theorem 6 does not apply in this case:

Proposition 7. For every 1 < p 6= 2 < +∞, lim
t→+∞

rBLp (x, t)− t > 0.

Proof. Let a, b > 0 with a 6= b and let λ ∈ (0, 1). Let (ξn)n be a sequence of independent
random variables on (Ω,F ,P) with P(ξn = a) = λ, P(ξn = −b) = 1 − λ, E(ξn) = 0 and
‖ξn‖p = 1. The last two conditions place constraints on the parameters a, b and λ. We
must have

λa− (1− λ)b = 0 and λap + (1− λ)bp = 1.

The sequence (ξn)n tends weakly to 0 in Lp(Ω,F ,P). Indeed, ξn ∈ L2(Ω,F ,P) for each
n, and since the ξn’s are independent and satisfy E(ξn) = 0, they are orthogonal in
L2(Ω,F ,P): E(ξnξm) = E(ξn)E(ξm) = 0 if m 6= n. Moreover, ‖ξn‖∞ ≤ max(a, b), so

the sequence (ξn)n is bounded in L2(Ω,F ,P), and thus ξn
w−→ 0 in L2(Ω,F ,P). An
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approximation argument, using the fact that supn ‖ξn‖∞ < +∞, then shows that ξn
w−→ 0

in Lp(Ω,F ,P).
Now,

‖1 + tξn‖pp = λ|1 + ta|p + (1− λ)|1− tb|p

= λ(1 + ta)p + (1− λ)(tb− 1)p for t ≥ 1

b
·

Since ‖ξn‖p = 1,

rBLp (1, t) ≥ λ(1 + ta)p + (1− λ)(tb− 1)p for t ≥ 1

b
·

The fact that λap + (1− λ)bp = 1 and straightforward computations show that

lim
t→+∞

rBLp (1, t)− t ≥ λap−1 − (1− λ)bp−1.

Since λa = (1 − λ)b, the right-hand side is equal to λa(ap−2 − bp−2). If p = 2, this term
is equal to 0 and if p 6= 2, the parameters can be chosen in such a way that this term is
positive (take a < b if p < 2 and a > b if p > 2). �

On the other hand, Theorem 6 can be applied to show that positive contractions on
Lp(Ω,F ,P) have the BH property at every positive f ∈ Lp(Ω,F ,P): we apply the theorem
to C = BLp ∩ L+

p , where L+
p (Ω,F ,P) = {f ∈ Lp(Ω,F ,P) ; f ≥ 0 a.e. on Ω}.

Let (fn)n ⊂ C, fn
w−→ 0: since fn ≥ 0 for every n, (fn) converges in probability to 0, i.e.

P(|fn| > ε)→ 0 for every ε > 0. Hence, for any f ∈ Lp(Ω,F ,P),

lim
n→+∞

‖f + fn‖p ≤
(
‖f‖pp + lim

n→+∞
‖fn‖pp

)1/p

.

This inequality means that the supports of f and fn become asymptotically disjoint as n
goes to infinity. Thus lim

t→+∞
rC(f, t) − t = 0 for every f ∈ Lp(Ω,F ,P). Theorem 6 yields

that T has BH at every f ∈ L+
p .

Proof of Theorem 6. Let x ∈ C. In order to make the notation lighter, we write xn =

Tnx, n ≥ 0. We thus suppose that xn
w−→ 0. We will prove successively several equivalent

formulations of the BH property for the sequence (xn), which will ultimately yield the
result. Without loss of generality, we suppose that ‖x‖ = 1.

We claim that the following assertions are equivalent:

(1) For every strictly increasing sequence (nk)k≥1 of integers,∥∥∥∥∥ 1

N

N∑
k=1

xnk

∥∥∥∥∥ −→
N→+∞

0.

(2) Denote by FIN the class of all finite subsets of N:

1

|A|

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ −→ 0 as |A| → +∞, A ∈ FIN.

(3) For every s ∈ N, write FIN(s) = {A ∈ FIN, |A| = s} and

G(s) = sup
A∈FIN(s)

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ :
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then

G(s)

s
→ 0 as s→ +∞.

(4) For every d ∈ N, write FIN(s, d) = {A ∈ FIN(s) ; ∀i 6= j ∈ A, |i− j| ≥ d} and

Gd(s) = sup
A∈FIN(s,d)

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ .
Write also F (s) = inf

d∈N
Gd(s) = lim

d→+∞
Gd(s). Then

F (s)

s
→ 0 as s→ +∞.

– The equivalence between (1) and (2) is essentially obvious: (2) ⇒ (1) is clear. In the
converse direction, suppose that (2) is not true:

∃ε > 0, ∃(Ak)k ⊂ FIN, |Ak| → +∞, 1

|Ak|

∥∥∥∥∥∥
∑
n∈Ak

xn

∥∥∥∥∥∥ ≥ ε.
Then make the sets Ak disjoint, and enumerate a suitable infinite subsequence of (Ak) as
(nk).
– The equivalence between (2) and (3) is not difficult either.
– (3)⇒ (4) is obvious since for every d ∈ N, F (s) ≤ Gd(s) ≤ G(s).

– Let us prove (4)⇒ (1). Our assumption is that
F (s)

s
→ 0, so

∀ε > 0, ∃s0, ∀s ≥ s0, ∃ds ∈ N, Gds(s) ≤ εs

i.e. for all A ∈ FIN(s, ds),
∥∥∑

n∈A xn
∥∥ ≤ εs.

Writing d0 := ds0 , this implies in particular that for all A ∈ FIN(s0, d0) we have∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ ≤ εs0.
Let us now fix (nk)k, and let N ≥ 1. Let l be such that ls0d0 ≤ N ≤ (l + 1)s0d0. We

claim that it is possible to partition the interval [1, N ] as

[1, N ] =
⋃

1≤i≤l
1≤j≤d0

Bi,j
⋃

B

where Bi,j ∈ FIN(s0, d0) and |B| < s0d0. Indeed, let

Bi,j = {(i− 1)s0d0 + j, (i− 1)s0d0 + j + d0, . . . , (i− 1)s0d0 + j + (s0 − 1)d0} .
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Then |Bi,j | = s0, Bi,j ∈ FIN(s0, d0) and we let B = [1, N ]\
⋃

1≤i≤l
1≤j≤d0

Bi,j .

For i = 1 we have

B1,1 = {1, 1 + d0, . . . , 1 + (s0 − 1)d0}
B1,2 = {2, 2 + d0, . . . , 2 + (s0 − 1)d0}

...

B1,d0 = {d0, 2d0, . . . , s0d0}

so
⋃

1≤j≤d0

B1,j = [1, s0d0].

In the same fashion,
⋃

1≤i≤l
1≤j≤d0

Bi,j = [1, ls0d0], so |B| < s0d0.

Write now Ai,j = {nk ; k ∈ Bi,j} and A = {nk ; k ∈ B}: Ai,j ∈ FIN(s0, d0), |A| < s0d0,
so ∥∥∥∥∥∥

∑
n∈Ai,j

xn

∥∥∥∥∥∥ ≤ εs0 and

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ < s0d0.

Hence ∥∥∥∥∥∥
∑

k∈[1,N ]

xnk

∥∥∥∥∥∥ ≤ ld0(εs0) + s0d0

so that

1

N

∥∥∥∥∥∥
∑

k∈[1,N ]

xnk

∥∥∥∥∥∥ ≤ ε ld0s0
N︸ ︷︷ ︸
≤1

+
s0d0
N︸ ︷︷ ︸

<ε if N> 1
ε
s0d0

·

It follows that
1

N

∥∥∥∥∥∥
∑

k∈[1,N ]

xnk

∥∥∥∥∥∥→ 0, and we are done.

We can now conclude the proof of the theorem. We need the following fact.

Fact 8. For every s ∈ N, we have F (s+ 1) ≤ rC(x, F (s)).

Proof. The definition of F (s+1) is F (s+1) = lim
d→+∞

sup
A∈FIN(s+1,d)

∥∥∑
n∈A xn

∥∥. Hence there

exists (Ad)d, Ad ∈ FIN(s+ 1, d), with∥∥∥∥∥∥
∑
n∈Ad

xn

∥∥∥∥∥∥→ F (s+ 1)



THE BLUM-HANSON PROPERTY 11

as d → +∞. Write Ad = {n1,d < n2,d < . . . < ns+1,d}, with nj,d − ni,d ≥ d for every pair
(i, j) of indices with j > i. Then, because T is a contraction, we have∥∥∥∥∥∥

∑
n∈Ad

xn

∥∥∥∥∥∥ =

∥∥∥∥∥∥
s+1∑
j=1

Tnj ,dx

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥x+

s+1∑
j=2

Tnj,d−n1,dx

∥∥∥∥∥∥ =

∥∥∥∥∥∥x+
s+1∑
j=2

xnj,d−n1,d

∥∥∥∥∥∥ .
Set

zd :=

s+1∑
j=2

xnj,d−n1,d
,

and observe that:

– zd ∈ C (because C is a convexe cone);

– zd
w−→ 0 as d→ +∞ (s is fixed, xn

w−→ 0, and nj,d − n1,d ≥ d for all j = 2, . . . , s+ 1);

– Bd = {nj,d ; 2 ≤ j ≤ s+ 1} belongs to FIN(s, d).

We have F (s+1) = lim
d→+∞

‖x+zd‖ ≤ rC(x, lim ‖zd‖). Now, ‖zd‖ =
∥∥∥∑n∈Bd xn

∥∥∥ ≤ F (s).

Since the function t 7→ rC(x, t) is increasing, F (s + 1) ≤ rC(x, F (s)) and this proves the
fact. �

Using Fact 8, we have F (s + 1) − F (s) ≤ rC(x, F (s)) − F (s). If F were increasing, we
would be able to deduce that F (s+1)−F (s) tends to 0, and hence by the Cesaro theorem
that

F (s)

s
→ 0.

It suffices to replace F (s) by the increasing function F̃ (s) = max(F (1), . . . , F (s)), and to

check that the same inequality as the one given in Fact 8 holds true for F̃ . This concludes
the proof of Theorem 6. �

An improved version of Theorem 6, which is also perhaps more natural, can be of use
in certain situations.

Theorem 9. Let T ∈ B(X), ‖T‖ ≤ 1 with T (C) ⊂ C. Suppose that for every x ∈ C,

inf
k∈N

lim
t→+∞

(rC(T
kx, t)− t) ≤ 0.

Then T satisfies the BH property at every x ∈ C.

Theorem 9 can be used to show that the space c = {(uk)k, limk uk exists}, endowed
with the norm ‖.‖∞, has the BH property ([14]).

4. Spaces which do not have the BH property

Our aim is now to investigate spaces which do not have the BH property. We will
present in particular a characterization, due to Lefèvre and Matheron [14] of the compact
metric spaces K which are such that C(K) has the BH property.

Examples of spaces without the BH property:

(1) The space C(T2) does not have the BH property. More precisely, there exists
a continuous map θ : T2 → T2 such that the associated composition operator
Cθ : f 7→ f ◦ θ on C(T2) fails the BH property. See [2].
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(2) By [16, Ex. 4.1], there exists a power bounded operator T on the Hilbert space H
which fails the BH property. Renorm H by setting

|||x||| = sup
n≥0
‖Tnx‖, x ∈ H.

The norm |||.||| is an equivalent norm on H, and thus (H, |||.|||) is a (super-)reflexive
space. The operator T is a contraction on (H, |||.|||), and it fails the BH property.

(3) In [15, Prop. 6.1], it is proved that if K is an uncountable metric space, C(K)
does not have the BH property: this result follows from the fact that C(T2) does
not have the BH property, combined with the so-called Milutin’s lemma and the
linear version, due to Borsuk, of Tietze extension theorem. See below for more
details.

Theorem 10. [14] Let K be a compact metric space. Then C(K) has the BH property if
and only if K has finitely many accumulation points.

Recall that s ∈ K is an accumulation point of K if V \ {s} 6= ∅ for every open neigh-
borhood V of s in K.

Proof. If K is a compact metric space, we denote by K ′ the set of its accumulation points.
This set K ′ is non-empty as soon as K is infinite, and K ′ is also a compact metric space.

The easy part of the proof is to show that if K ′ is finite, let us say K ′ = {a1, . . . , aN},
then C(K) has BH. There exist disjoint compact sets K1, . . . ,KN such that K ′i = {ai} for
every i = 1, . . . , N and K =

⋃
1≤i≤N Ki.

Indeed, let V1, . . . , Vn be open neighborhoods of a1, . . . , aN respectively, such that

V1, . . . , Vn are pairwise disjoint. Let K̃i = Vi ∩K. Then K̃i
′
= {ai} and K\ ∪1≤i≤N K̃i is

finite. Set Ki = K̃i for 2 ≤ i ≤ N and K1 = K̃1 ∪
(
K\ ∪1≤i≤N K̃i

)
.

Then
C(K) =

⊕
`∞

C(Ki) = c ⊕
`∞
· · · ⊕

`∞
c︸ ︷︷ ︸

N times

.

We have seen that c satisfies the assumption of Theorem 9; it is easy to check that the
direct `∞-sum of finitely many copies of c also satisfies it, and hence has BH.

Conversely, let K be such that K ′ is infinite. So K ′′ 6= ∅. The simplest of these compact
sets are the ones where K ′′ is reduced to one point. We study this case first. Let S be a
compact metric space such that

S′′ = {s∞,∞}
S′ = {s∞,k ; k ∈ N} , where s∞,k → s∞,∞ as k → +∞
S = {si,k ; i, k ∈ N} ∪ {s∞,k ; k ∈ N}︸ ︷︷ ︸

:=Sk

∪{s∞,∞}

where all the points si,k are distinct, si,k −→
i→+∞

s∞,k for every k ∈ N and Sk tends to s∞,∞

as k → +∞ in the sense that any neighborhood of s∞,∞ contains the sets Sk for all but
finitely many k’s.

Indeed, if S′′ = {s∞,∞}, S necessarily has this form: let Vk be a neighborhood of s∞,k
in S, with the sets Vk, k ∈ N , disjoint, diam(Vk) < 2−k, and s∞,∞ /∈ Vk. It is clear

that the sets Vk tend to s∞,∞ in the sense above. Let Sk = Vk ∩ S : S′k = {s∞,k} and
hence there exists (si,k)i such that Sk = {si,k ; i ∈ N} ∪ {s∞,k} , si,k −→

i→+∞
s∞,k. The set
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S\
(⋃

k≥1 Sk
⋃
{s∞,∞}

)
is finite, so we add these few points to S1, for instance, and we

are done.

Proposition 11. There exists a continuous map θ : S → S such that the contraction
Cθ : f 7→ f ◦ θ on C(S) does not have the BH property. Hence C(S) does not have the BH
property.

Proof. Define θ : S → S by setting

θ(si,k) = si,k−1 if k ≥ 2
θ(si,1) = si−1,i−1 if i ≥ 2
θ(s1,1) = s∞,∞
θ(s∞,k) = s∞,k−1 if k ≥ 2
θ(s∞,1) = s∞,∞
θ(s∞,∞) = s∞,∞.

Visually, the map θ acts as follows:

s1,1•

--

oo
s2,1•

s3,1•

��

s4,1•

��

s∞,1•

��

s1,2•

cc

s2,2•

cc

s3,2•

cc

s∞,2•

OO

s1,3•

cc

s2,3•

cc

s3,3•

cc

s∞,3•

OO

s∞,∞• YY
The map θ is clearly continuous on S. Moreover, the orbit of any point s ∈ S under

the map θ attains s∞,∞ in a finite number of steps:

∀s ∈ S, # {n ∈ N ; θn(s) 6= s∞,∞} < +∞.
After reaching s∞,∞, the orbit remains stationary in s∞,∞. Moreover, set V1 = S\S1
(recall that S1 = {si,1 ; i ∈ N}∪{s∞,1}, which is an open neighborhood of s∞,∞ in S. For
every N ≥ 1,

# {n ∈ N ; θn(sN,1) /∈ V1} = N.

For every u ∈ C(S), Cnθ (u)(s) = u(θn(s)) −→
n→+∞

u(s∞,∞). Hence Cnθ u
w−→ u(s∞,∞)1.

Let f ∈ C(S) be such that f ≡ 1 on S1 and f ≡ 0 on V1 = S\S1. Then Cnθ f
w−→ 0. For

every N ≥ 1, consider the set IN = {n ∈ N ; θn(sN,1) ∈ S1} . Then |IN | = N and

1

|IN |

∥∥∥∥∥∥
∑
n∈IN

Cnθ f

∥∥∥∥∥∥
∞

≥ 1

N

∣∣∣∣∣∣
∑
n∈IN

f(θn(s1,N ))

∣∣∣∣∣∣ = 1.

Hence
1

|A|

∥∥∥∥∥∑
n∈A

Cnθ f

∥∥∥∥∥
∞

9 0 as |A| → +∞,

and we have proved that Cθ does not have the BH property. �
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The remaining part of the argument is rather general, and allows to pass from the space
C(S) to any space C(K) with K ′ infinite. It relies on several observations.

Fact 12. If K ′ is infinite, it contains a set S of the form above.

Proof. Since K ′ is infinite, K ′′ 6= ∅. Let s∞,∞ ∈ K ′′. Let (Vk)k be a neighborhood

basis of s∞,∞ with diam(Vk) < 2−k and Vk\Vk+1 6= ∅ for every k. For each k, choose
s∞,k ∈ K ′ ∩ Vk with s∞,k 6= s∞,∞. Without loss of generality, we can suppose that

s∞,k ∈ Vk\Vk+1. Let then (si,k) ⊂ K ∩
(
Vk\Vk+1

)
(which is an open neighborhood of

s∞,k) be such that si,k →
i
s∞,k with all the si,k distinct and distinct from s∞,k.

Finally, let Sk := {si,k ; 1 ≤ i ≤ +∞}: Sk ⊂ Vk and hence the sets Sk tend to s∞,∞.
The set S = {si,k ; 1 ≤ i, k ≤ +∞} then satisfies all the required properties. �

Theorem 13 (Borsuk’s linear isomorphic extension theorem). Let K be a compact metric
space, and let E be a closed subset of K. There exists a bounded operator J : C(E)→ C(K)
such that J1 = 1, ‖J‖ = 1, and J(f|E) = f for every f ∈ C(E).

In particular, J : C(E) → X := J(C(E)) is an isometry, and X is 1-complemented in
C(K).

To see that X is 1-complemented in C(K), observe that P : C(K) → X defined by
Pg = J(g|E), g ∈ C(K), is a projection of C(K) onto X.

Theorem 13 is a linear version of Tietze’s extension theorem which states that for every
f ∈ C(E), there exists g ∈ C(K) with ‖g‖∞ = ‖f‖∞ such that g|E = f . A proof of
Theorem 13 can be found for instance in [6, Th. 4.4.4].

As a consequence of Fact 14 and Theorem 13, we obtain that C(S) is isometric to a
1-complemented subspace X of C(K).

Fact 14. Let X be a 1-complemented subspace of a Banach space Z. If X fails the BH
property, so does Z.

Proof. Let P : Z → X be a projection of Z onto X, with ‖P‖ = 1. Let T ∈ B(X) be such

that ‖T‖ ≤ 1, Tnx
w−→ 0 for every x ∈ X, but there exists a strictly increasing sequence

(nk)k of integers and x0 ∈ X such that

lim sup
N→+∞

1

N

∥∥∥∥∥
N∑
k=1

Tnkx0

∥∥∥∥∥ > 0.

Set S = T ◦ P : Z → X ⊂ Z: then S ∈ B(Z), ‖S‖ ≤ 1, and Snz = Tn(Pz) for every

n ≥ 1 and z ∈ Z. Hence Snz
w−→ 0 for every z ∈ Z. But the vector x0 ∈ X ⊂ Z satisfies

Px0 = x0 and

lim sup
N→+∞

1

N

∥∥∥∥∥
N∑
k=1

Snkx0

∥∥∥∥∥ > 0.

�

By Proposition 11, C(S) fails BH, and hence, by Fact 14, C(K) fails BH as well. This
concludes the proof of Theorem 10. �
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