A spectral sequence for the homology of a finite algebraic delooping

Birgit Richter
joint work in progress with Stephanie Ziegenhagen

Lille, October 2012
Aim:
1) Approximate Quillen homology for E_n-algebras by Quillen homology of Gerstenhaber algebras.
Aim:
1) Approximate Quillen homology for E_n-algebras by Quillen homology of Gerstenhaber algebras.
2) Reduce this further to Quillen homology of graded Lie-algebras and of commutative algebras, aka André-Quillen homology.
Aim:
1) Approximate Quillen homology for E_n-algebras by Quillen homology of Gerstenhaber algebras.
2) Reduce this further to Quillen homology of graded Lie-algebras and of commutative algebras, aka Andr´ e-Quillen homology.
3) Apply this for instance to the Hodge decomposition of higher order Hochschild homology (in the sense of Pirashvili).
E_n-homology

A resolution spectral sequence

A Blanc-Stover spectral sequence

Hodge decomposition
Little n-cubes

Let C_n denote the operad of little n-cubes. Then $(C_* C_n(r))_r, \ r \geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of $C_* C_n$.

Theorem [Fresse 2011] There is an n-fold bar construction for E_n-algebras, B_n, such that $H_{E_n s}(\bar{A}_*) \cong H_s(\Sigma^{-n} B_n(\bar{A}_*))$.

I.e., E_n-homology is the homology of an n-fold algebraic delooping.
Little n-cubes

Let C_n denote the operad of little n-cubes. Then $(C_\ast C_n(r))_r$, $r \geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of $C_\ast C_n$. For an augmented E_n-algebra A_\ast let \bar{A}_\ast denote the augmentation ideal.
Little n-cubes

Let C_n denote the operad of little n-cubes. Then $(C_* C_n(r))_r$, $r \geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of $C_* C_n$. For an augmented E_n-algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n-homology group of \bar{A}_*, $H^E_n(s)(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_*.

I.e., it is Quillen homology of the E_n-algebra A_*.

Theorem [Fresse 2011] There is an n-fold bar construction for E_n-algebras, B^E_n, such that $H^E_n(s)(\bar{A}_*) \cong H^s(\Sigma^{-n} B^E_n(\bar{A}_*))$.

I.e., E_n-homology is the homology of an n-fold algebraic delooping.
Little n-cubes

Let C_n denote the operad of little n-cubes. Then $(C_\ast C_n(r))_r$, $r \geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of $C_\ast C_n$. For an augmented E_n-algebra A_\ast let \bar{A}_\ast denote the augmentation ideal.

The sth E_n-homology group of \bar{A}_\ast, $H^E_{s,n}(\bar{A}_\ast)$ is then the sth derived functor of indecomposables of \bar{A}_\ast. I.e., it is Quillen homology of the E_n-algebra A_\ast.

Theorem [Fresse 2011]

There is an n-fold bar construction for E_n-algebras, B_n, such that $H^E_{s,n}(\bar{A}_\ast) \sim H_s(\Sigma^{-n} B_n(\bar{A}_\ast))$. I.e., E_n-homology is the homology of an n-fold algebraic delooping.
Little n-cubes

Let C_n denote the operad of little n-cubes. Then $(C_\ast C_n(r))_r$, $r \geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of $C_\ast C_n$. For an augmented E_n-algebra A_\ast let \bar{A}_\ast denote the augmentation ideal.

The sth E_n-homology group of \bar{A}_\ast, $H_{s}^{E_n}(\bar{A}_\ast)$ is then the sth derived functor of indecomposables of \bar{A}_\ast. I.e., it is Quillen homology of the E_n-algebra A_\ast.

Theorem [Fresse 2011]
There is an n-fold bar construction for E_n-algebras, B^n, such that

$$H_{s}^{E_n}(\bar{A}_\ast) \cong H_{s}(\Sigma^{-n} B^n(\bar{A}_\ast)).$$
Little n-cubes

Let C_n denote the operad of little n-cubes. Then $(C_* C_n(r))_r$, $r \geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of $C_* C_n$. For an augmented E_n-algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n-homology group of \bar{A}_*, $H^E_{s}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_*. I.e., it is Quillen homology of the E_n-algebra A_*.

Theorem [Fresse 2011]
There is an n-fold bar construction for E_n-algebras, B^n, such that

$$H^E_{s}(\bar{A}_*) \cong H_s(\Sigma^{-n}B^n(\bar{A}_*)) .$$

I.e., E_n-homology is the homology of an n-fold algebraic delooping.
Some results

Cartan (50s): H^E_n of polynomial algebras, exterior algebras and some more.
Some results

Cartan (50s): H^E_n of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for H^E_n for augmented commutative algebras. $H^E_n(\overline{A}^*) \sim = \text{HH}[^n*](A;k), \text{Hochschild homology of order } n \text{ in the sense of Pirashvili.}$

Can we gain information about $\text{HH}[^n*](A;k)$, at least rationally?

What is $H^E_n(\overline{A}^*)$ in other interesting cases such as Hochschild cochains, $A^* = C^*(B, B)$, or $A^* = C^*(\Omega^n X)$?
Some results

Cartan (50s): H^E_{*n} of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Some results

Cartan (50s): $H_{*}^{E_{n}}$ of polynomial algebras, exterior algebras and some more.
Fresse (2011): X a nice space: $B^{n}(C^{*}(X))$ determines the cohomology of $\Omega^{n}X$.

$H_{*}^{E_{n}}(\overline{A}) \cong HH_{*+n}^{[n]}(A; k)$, Hochschild homology of order n in the sense of Pirashvili.
Cartan (50s): $H_{*}^{E_{n}}$ of polynomial algebras, exterior algebras and some more.
Fresse (2011): X a nice space: $B^{n}(C^{*}(X))$ determines the cohomology of $\Omega^{n}X$.
$H_{*}^{E_{n}}(\bar{A}) \cong HH_{*+n}^{[n]}(A; k)$, Hochschild homology of order n in the sense of Pirashvili.
Can we gain information about $HH_{*}^{[n]}(A; k)$, at least rationally?
Some results

Cartan (50s): $H^E_{\ast n}$ of polynomial algebras, exterior algebras and some more.
Fresse (2011): X a nice space: $B^n(C^\ast(X))$ determines the cohomology of $\Omega^n X$.

$H^E_{\ast n}(\overline{A}) \cong HH^{[n]}_{\ast + n}(A; k)$, Hochschild homology of order n in the sense of Pirashvili.
Can we gain information about $HH^{[n]}_{\ast}(A; k)$, at least rationally?
What is $H^E_{\ast n}(\overline{A}_\ast)$ in other interesting cases such as Hochschild cochains, $A_\ast = C^\ast(B, B)$, or $A_\ast = C_\ast(\Omega^n X)$?
In the following k is a field, most of the times $k = \mathbb{F}_2$ or $k = \mathbb{Q}$. The underlying chain complex of A_* is non-negatively graded.
In the following k is a field, most of the times $k = \mathbb{F}_2$ or $k = \mathbb{Q}$. The underlying chain complex of A_\ast is non-negatively graded. Over \mathbb{F}_2: $n = 2$; for \mathbb{Q}: arbitrary n.
1-restricted Lie algebras

Definition

A *1-restricted Lie algebra over* \mathbb{F}_2 *is a non-negatively graded* \mathbb{F}_2-*vector space*, g_*, together with two operations, a Lie bracket of degree one, $[-,-]$ and a restriction, ξ:

\[
[-,-] : \ g_i \times g_j \rightarrow g_{i+j+1}, \quad i,j \geq 0,
\]

\[
\xi : \ g_i \rightarrow g_{2i+1} \quad i \geq 0.
\]
1-restricted Lie algebras

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2-vector space, \mathfrak{g}_*, together with two operations, a Lie bracket of degree one, $[-,-]$ and a restriction, ξ:

$$
\begin{align*}
[-,-] : \ & \mathfrak{g}_i \times \mathfrak{g}_j \to \mathfrak{g}_{i+j+1}, \quad i, j \geq 0, \\
\xi : \ & \mathfrak{g}_i \to \mathfrak{g}_{2i+1} \quad i \geq 0.
\end{align*}
$$

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

$$
[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 \text{ for all homogeneous } a, b, c \in \mathfrak{g}_*.
$$

1-rL: The category of 1-restricted Lie algebras.
1-restricted Lie algebras

Definition

A 1-restricted Lie algebra over \(\mathbb{F}_2 \) is a non-negatively graded \(\mathbb{F}_2 \)-vector space, \(\mathfrak{g}_* \), together with two operations, a Lie bracket of degree one, \([-,-]\) and a restriction, \(\xi \):

\[
[-,-] : \mathfrak{g}_i \times \mathfrak{g}_j \to \mathfrak{g}_{i+j+1}, \quad i, j \geq 0, \\
\xi : \mathfrak{g}_i \to \mathfrak{g}_{2i+1} \quad i \geq 0.
\]

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

\[
[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 \text{ for all homogeneous } a, b, c \in \mathfrak{g}_*.
\]

2. The restriction interacts with the bracket as follows:

\[
[\xi(a), b] = [a, [a, b]] \text{ and } \xi(a + b) = \xi(a) + \xi(b) + [a, b] \text{ for all homogeneous } a, b \in \mathfrak{g}_*.
\]
1-restricted Lie algebras

Definition
A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2-vector space, \mathfrak{g}_*, together with two operations, a Lie bracket of degree one, $[-, -]$ and a restriction, ξ:

$$[-, -]: \mathfrak{g}_i \times \mathfrak{g}_j \to \mathfrak{g}_{i+j+1}, \quad i, j \geq 0,$$
$$\xi: \mathfrak{g}_i \to \mathfrak{g}_{2i+1} \quad i \geq 0.$$

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 \text{ for all homogeneous } a, b, c \in \mathfrak{g}_*.$$

2. The restriction interacts with the bracket as follows:

$$[\xi(a), b] = [a, [a, b]] \text{ and } \xi(a + b) = \xi(a) + \xi(b) + [a, b] \text{ for all homogeneous } a, b \in \mathfrak{g}_*.$$

1-rL: The category of 1-restricted Lie algebras.
1-restricted Gerstenhaber algebras

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2-algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:
1-restricted Gerstenhaber algebras

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2-algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

- (Poisson relation)

\[[a, bc] = b[a, c] + [a, b]c, \text{ for all homogeneous } a, b, c \in G_. \]
1-restricted Gerstenhaber algebras

Definition
A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2-algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

- (Poisson relation)

\[
[a, bc] = b[a, c] + [a, b]c, \quad \text{for all homogeneous } a, b, c \in G_*.
\]

- (multiplicativity of the restriction)

\[
\xi(ab) = a^2 \xi(b) + \xi(a)b^2 + ab[a, b] \quad \text{for all homogeneous } a, b \in G_*.
\]

1-rG: the category of 1-restricted Gerstenhaber algebras.
1-restricted Gerstenhaber algebras

Definition
A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2-algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

- (Poisson relation)
 \[[a, bc] = b[a, c] + [a, b]c, \text{ for all homogeneous } a, b, c \in G_. \]

- (multiplicativity of the restriction)
 \[\xi(ab) = a^2 \xi(b) + \xi(a) b^2 + ab[a, b], \text{ for all homogeneous } a, b \in G_. \]

1-rG: the category of 1-restricted Gerstenhaber algebras.
In particular, the bracket and the restriction annihilate squares:
\[[a, b^2] = 2b[a, b] = 0 \text{ and } \xi(a^2) = 2a^2 \xi(a) + a^2[a, a] = 0. \] Thus if 1 denotes the unit of the algebra structure in G_*, then $[a, 1] = 0$ for all a and $\xi(1) = 0$.
Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_*.

The free graded commutative algebra $S(1rL(V_*))$ has a well-defined $1rG$ structure and is the free $1rG$ Gerstenhaber algebra generated by V_*.

For $G_* \in 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables.

Note: $Q_{1rG}(G_*) = Q_{1rL}(Q_a(G_*)).$
Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_*. The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_*. For $G^* \in 1rG$ let $Q 1rG(G^*)$ be the graded vector space of indecomposables. Note: $Q 1rG(G^*) = Q 1rL(Q a(G^*))$.
Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_*. The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_*:

$$1rG(V_*) = S(1rL(V_*)).$$
Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_*. The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_*:

$$1rG(V_*) = S(1rL(V_*)).$$

For $G_* \in 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables.
Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_*. The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by $V_*:\n\quad 1rG(V_*) = S(1rL(V_*)).$

For $G_* ∈ 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables. Note: $Q_{1rG}(G_*) = Q_{1rL}(Q_a(G_*)).$
Homology of free objects

Lemma

\[H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)). \]
Homology of free objects

Lemma

\[H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)). \]

Proof: Let \(X \) be a space. We have Cohen’s identification of \(H_*(C_2(X); \mathbb{F}_2) \).
Homology of free objects

Lemma

\[H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)). \]

Proof: Let \(X \) be a space. We have Cohen’s identification of \(H_*(C_2(X); \mathbb{F}_2) \).

Observation by Haynes Miller: \(H_*(C_2(X); \mathbb{F}_2) \cong 1rG(\bar{H}_*(X; \mathbb{F}_2)) \).

(Dyer-Lashof operations only give algebraic operations.)
Homology of free objects

Lemma

\[H_* (E_2(\overline{A}_*)) \cong 1rG(H_* (\overline{A}_*)). \]

Proof: Let \(X \) be a space. We have Cohen’s identification of \(H_* (C_2(X); \mathbb{F}_2) \).
Observation by Haynes Miller: \(H_* (C_2(X); \mathbb{F}_2) \cong 1rG(\overline{H_* (X; \mathbb{F}_2)}). \)
(Dyer-Lashof operations only give algebraic operations.)
Take \(X \) with \(\overline{H_* (X; \mathbb{F}_2)} \cong H_* (\overline{A}_*) \), then

\[
H_* (E_2(\overline{A}_*)) \cong \bigoplus_r H_* (E_2(r) \otimes_{\mathbb{F}_2[\Sigma_r]} H_* (\overline{A}_*) \otimes r)
\]

\[
\cong \bigoplus_r H_* (E_2(r) \otimes_{\mathbb{F}_2[\Sigma_r]} \overline{H_* (X; \mathbb{F}_2)} \otimes r)
\]

\[
\cong H_* (C_2(X); \mathbb{F}_2) \cong 1rG(H_* \overline{A}_*). \]
Theorem
There is a spectral sequence

\[E_{p,q}^2 \cong (\mathbb{L}_p Q_1 r\mathbb{G}(H_* (\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2} (\bar{A}_*). \]
Resolution spectral sequence

Theorem
There is a spectral sequence

\[E^2_{p,q} \cong (\mathbb{L}_p Q_{1_{rG}}(H_*(\bar{A}_*))))_q \Rightarrow H^{E_2}_{p+q}(\bar{A}_*). \]

Proof: Standard resolution \(E^{\bullet+1}_2(\bar{A}_*) \).
Resolution spectral sequence

Theorem
There is a spectral sequence

\[E^2_{p,q} \cong (\mathbb{L}_p Q_1 r_G(H_*(\overline{A}_*)))_q \Rightarrow H^E_{p+q}(\overline{A}_*). \]

Proof: Standard resolution \(E_2^{\bullet+1}(\overline{A}_*) \).

\[E^1_{p,q} : H^E_q(E^p_{2+1}(\overline{A}_*)) \cong H_q(E^p_2(\overline{A}_*)) \]
Theorem
There is a spectral sequence

\[E^2_{p,q} \cong (\mathbb{L}_p Q_1 rG(H_*(\bar{A}_*)))_q \Rightarrow H^E_{p+q}(\bar{A}_*). \]

Proof: Standard resolution \(E^{\bullet+1}_2(\bar{A}_*) \).

\[E^1_{p,q} : H^E_q(E^{p+1}_2(\bar{A}_*)) \cong H_q(E^p_2(\bar{A}_*)) \]

\[H_q(E^p_2(\bar{A}_*)) \cong 1 rG^p(H_*\bar{A}_*)_q \cong Q_1 rG(1 rG^{p+1}(H_*\bar{A}_*))_q. \]
Resolution spectral sequence

Theorem
There is a spectral sequence

\[E^2_{p,q} \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H^{E^2}_{p+q}(\bar{A}_*). \]

Proof: Standard resolution \(E^{\bullet+1}_2(\bar{A}_*) \).

\[E^1_{p,q} : H^E_q(E^{p+1}_2(\bar{A}_*)) \cong H_q(E^p_2(\bar{A}_*)) \]

\[H_q(E^p_2(\bar{A}_*)) \cong 1rG^p(H_*(\bar{A}_*))_q \cong Q_{1rG}(1rG^{p+1}(H_*(\bar{A}_*)))_q. \]

\(d^1 \) takes homology wrt resolution degree.
For X connected:

$$(\mathbb{L}_p Q_{1rG}(H_{\ast}(C_{\ast}(\Omega^2 \Sigma^2 X; \mathbb{F}_2))))_{\ast} = (\mathbb{L}_p Q_{1rG}(1rG(\tilde{H}_{\ast}(X; \mathbb{F}_2))))_{\ast}.$$
For X connected:

\[
(\mathbb{L}_p Q_{1rG}(H_*(C_*(\Omega^2\Sigma^2 X; \mathbb{F}_2))))_* = (\mathbb{L}_p Q_{1rG}(1rG(\tilde{H}_*(X; \mathbb{F}_2))))_*.
\]

This reduces to $\tilde{H}_q(X; \mathbb{F}_2)$ in the $(p = 0)$-line and

\[
H^{E_2}_q(\tilde{C}_*(\Omega^2\Sigma^2 X; \mathbb{F}_2)) \cong \tilde{H}_q(X; \mathbb{F}_2).
\]
Rational case

The rational case is much easier:
Rational case

The rational case is much easier:

\[H_\ast (E_{n+1} \tilde{A}_\ast) \cong nG(H_\ast (\tilde{A}_\ast)), \]

the free \(n \)-Gerstenhaber algebra generated by the homology of \(\tilde{A}_\ast \).
The rational case is much easier:

\[H_\ast (E_{n+1} \tilde{A}_\ast) \cong nG(H_\ast (\tilde{A}_\ast)), \]

the free n-Gerstenhaber algebra generated by the homology of \tilde{A}_\ast. We get:

\[E^2_{p,q} \cong (\mathbb{L}_p Q nG(H_\ast (\tilde{A}_\ast)))_q \Rightarrow H^{E_{n+1}}_{p+q} (\tilde{A}_\ast) \]

for every E_{n+1}-algebra \tilde{A}_\ast over the rationals.
Let C and B be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let A be a concrete category (such as graded vector spaces) and $T : C \to B$, $S : B \to A$.

▶ Note: T, S non-additive.

▶ $\overline{S}t(\pi^*B) = \pi t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.

▶ \overline{S} takes the homotopy operations on π^*B into account (B a simplicial object in B): π^*B is a Π-B-algebra.

▶ $B = \text{Com}$: $\pi^*(B)$ has divided power operations.

▶ $B = r\text{Lie}$: $\pi^*(B)$ inherits a Lie bracket and has some extra operations.
General Blanc-Stover setting

Let \mathcal{C} and \mathcal{B} be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let \mathcal{A} be a concrete category (such as graded vector spaces) and $T: \mathcal{C} \to \mathcal{B}$, $S: \mathcal{B} \to \mathcal{A}$. If TF is S-acyclic for every free F in \mathcal{C}, then there is a Grothendieck composite functor spectral sequence for all C in \mathcal{C}

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_s T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$
General Blanc-Stover setting

Let \(C \) and \(B \) be some categories of graded algebras (e.g., Lie, Com, \(n \)-Gerstenhaber etc.) and let \(A \) be a concrete category (such as graded vector spaces) and \(T: C \to B \), \(S: B \to A \).

If \(T F \) is is \(S \)-acyclic for every free \(F \) in \(C \), then there is a Grothendieck composite functor spectral sequence for all \(C \) in \(C \)

\[
E^2_{s,t} = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.
\]

▶ Note: \(T, S \) non-additive.
General Blanc-Stover setting

Let \mathcal{C} and \mathcal{B} be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let \mathcal{A} be a concrete category (such as graded vector spaces) and $T : \mathcal{C} \to \mathcal{B}$, $S : \mathcal{B} \to \mathcal{A}$. If TF is S-acyclic for every free F in \mathcal{C}, then there is a Grothendieck composite functor spectral sequence for all C in \mathcal{C}

$$E^2_{s,t} = (\mathbb{L}_s \tilde{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- Note: T, S non-additive.
- $\tilde{S}_t(\pi_* B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
General Blanc-Stover setting

Let C and B be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let A be a concrete category (such as graded vector spaces) and $T : C \to B$, $S : B \to A$.

If TF is S-acyclic for every free F in C, then there is a Grothendieck composite functor spectral sequence for all C in C

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- Note: T, S non-additive.
- $\bar{S}_t(\pi_* B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
- \bar{S} takes the homotopy operations on $\pi_* B$ into account (B a simplicial object in B): $\pi_* B$ is a Π-B-algebra.
General Blanc-Stover setting

Let \mathcal{C} and \mathcal{B} be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let \mathcal{A} be a concrete category (such as graded vector spaces) and $T: \mathcal{C} \to \mathcal{B}$, $S: \mathcal{B} \to \mathcal{A}$. If TF is is S-acyclic for every free F in \mathcal{C}, then there is a Grothendieck composite functor spectral sequence for all C in \mathcal{C}

$$E^2_{s,t} = (\mathbb{L}_s \tilde{S}_t)(\mathbb{L}_t S)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

▶ Note: T, S non-additive.

▶ $\tilde{S}_t(\pi_* B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.

▶ \tilde{S} takes the homotopy operations on $\pi_* B$ into account (B a simplicial object in \mathcal{B}): $\pi_* B$ is a $\Pi_\mathcal{B}$-algebra.

▶ $\mathcal{B} = \text{Com}$: $\pi_*(B)$ has divided power operations.
General Blanc-Stover setting

Let \mathcal{C} and \mathcal{B} be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let \mathcal{A} be a concrete category (such as graded vector spaces) and $T : \mathcal{C} \to \mathcal{B}$, $S : \mathcal{B} \to \mathcal{A}$. If TF is S-acyclic for every free F in \mathcal{C}, then there is a Grothendieck composite functor spectral sequence for all C in \mathcal{C}

$$E^2_{s,t} = (\mathbb{L}_s \tilde{S}_t)(\mathbb{L}_s T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- **Note:** T, S non-additive.
- $\tilde{S}_t(\pi_* B) = \pi_t (SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
- \tilde{S} takes the homotopy operations on $\pi_* B$ into account (B a simplicial object in \mathcal{B}): $\pi_* B$ is a Π-\mathcal{B}-algebra.
- $\mathcal{B} = \text{Com}$: $\pi_*(B)$ has divided power operations.
- $\mathcal{B} = r\text{Lie}$: $\pi_* B$ inherits a Lie bracket and has some extra operations.
In our case

Theorem

- \(k = \mathbb{F}_2 \): For any \(C \in 1rG \):

\[
E^2_{s,t} = \mathbb{L}_s((\bar{Q}_{1rL})^t)(AQ_* (C|\mathbb{F}_2, \mathbb{F}_2)) \Rightarrow \mathbb{L}_{s+t}(Q_{1rG})(C).
\]
In our case

Theorem

- **\(k = \mathbb{F}_2 \):** For any \(C \in 1rG \):
 \[
 E^2_{s,t} = \mathbb{L}_s((\bar{Q}_{1rL})_t)(AQ_*(C|F_2, F_2)) \Rightarrow \mathbb{L}_{s+t}(Q_{1rG})(C).
 \]

- For \(k = \mathbb{Q} \) we get for all \(n \)-Gerstenhaber algebras \(C \):
 \[
 \mathbb{L}_s((\bar{Q}_{nL})_t)(AQ_*(C|\mathbb{Q}, \mathbb{Q})) \Rightarrow \mathbb{L}_{s+t}(Q_{nG})(C).
 \]
Hodge decomposition for $k = \mathbb{Q}$

Let $HH_{\ast}^{[n]}(A; \mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q}. Over \mathbb{Q}, $HH_{\ast}^{[n]}(A; \mathbb{Q})$ has a decomposition, the Hodge decomposition:
Hodge decomposition for $k = \mathbb{Q}$

Let $HH^{[n]}_*(A; \mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q}. Over \mathbb{Q}, $HH^{[n]}_*(A; \mathbb{Q})$ has a decomposition, the Hodge decomposition:

Theorem [Pirashvili 2000] For odd n we obtain

$$HH^{[n]}_{\ell+n}(A; \mathbb{Q}) = \bigoplus_{i+nj=\ell+n} HH^{(j)}_{i+j}(A; \mathbb{Q}).$$

Here $HH^{(j)}_*(A; \mathbb{Q})$ is the j-th Hodge summand of ordinary Hochschild homology.
Hodge decomposition for $k = \mathbb{Q}$

Let $HH_*^{[n]}(A; \mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q}. Over \mathbb{Q}, $HH_*^{[n]}(A; \mathbb{Q})$ has a decomposition, the *Hodge decomposition*:

Theorem [Pirashvili 2000] For odd n we obtain

$$HH_*^{[n]}(A; \mathbb{Q}) = \bigoplus_{i+nj=\ell+n} HH_{i+j}^{(j)}(A; \mathbb{Q}).$$

Here $HH_*^{(j)}(A; \mathbb{Q})$ is the j-th Hodge summand of ordinary Hochschild homology. For even n, however, the summands are different and described as follows in terms of functor homology:

$$HH_*^{[n]}(A; \mathbb{Q}) = \bigoplus_{i+nj=\ell+n} \text{Tor}_i^\Gamma(\theta^j, \mathcal{L}(A, \mathbb{Q})).$$
Hodge decomposition for $k = \mathbb{Q}$

Let $HH_*^{[n]}(A; \mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q}.

Over \mathbb{Q}, $HH_*^{[n]}(A; \mathbb{Q})$ has a decomposition, the Hodge decomposition:

Theorem [Pirashvili 2000] For odd n we obtain

$$HH_*^{[n]}(A; \mathbb{Q}) = \bigoplus_{i+j = \ell + n} HH_*^{(j)}(A; \mathbb{Q}).$$

Here $HH_*^{(j)}(A; \mathbb{Q})$ is the j-th Hodge summand of ordinary Hochschild homology. For even n, however, the summands are different and described as follows in terms of functor homology:

$$HH_*^{[n]}(A; \mathbb{Q}) = \bigoplus_{i+j = \ell + n} \text{Tor}_i^\Gamma(\theta^j, \mathcal{L}(A, \mathbb{Q})).$$

Here, $\theta^j[n]$ is the dual of the \mathbb{Q}-vector space that is generated by the $S \subset \{1, \ldots, n\}$ with $|S| = j$.
Relationship to Taylor towers

The groups $\text{Tor}^\Gamma_i(\theta^j, \mathcal{L}(A, \mathbb{Q}))$ are related to a variant of Goodwillie’s calculus of functors for Γ-modules.
Relationship to Taylor towers

The groups $\text{Tor}^\Gamma_i(\theta^j, \mathcal{L}(A, \mathbb{Q}))$ are related to a variant of Goodwillie’s calculus of functors for Γ-modules.

Theorem [R,2000]

$$\text{Tor}^\Gamma_i(\theta^j, \mathcal{L}(A, \mathbb{Q})) \cong H_i(D_j(\mathcal{L}(A, \mathbb{Q}))[1])$$

where D_j is the jth homogenous piece in the Taylor tower of $\mathcal{L}(A, \mathbb{Q})$

$$D_j(\mathcal{L}(A, \mathbb{Q}))[\ast] = \text{cone}_{\ast+1}(P_j(\mathcal{L}(A, \mathbb{Q})) \rightarrow P_{j-1}(\mathcal{L}(A, \mathbb{Q})))$$

with

$$\ldots P_n(\mathcal{L}(A, \mathbb{Q})) \rightarrow P_{n-1}(\mathcal{L}(A, \mathbb{Q})) \rightarrow \ldots \rightarrow P_1(\mathcal{L}(A, \mathbb{Q})) \rightarrow \mathbb{Q}.$$
Theorem Let A be a commutative augmented \mathbb{Q}-algebra. For all $\ell, k \geq 1$ and $m \geq 0$:

$$HH^{(\ell)}_{m+1}(A; \mathbb{Q}) \cong (\mathbb{L}m Q_{2kG} \tilde{A})_{(\ell-1)2k}.$$
Hodge summands as Quillen homology of Gerstenhaber algebras

Theorem Let A be a commutative augmented \mathbb{Q}-algebra. For all $\ell, k \geq 1$ and $m \geq 0$:

1. $HH_{m+1}^{(\ell)}(A; \mathbb{Q}) \cong (\mathbb{L}_m Q_{2kG \bar{A}})(\ell-1)2k$.

2. $\text{Tor}^\Gamma_{m-\ell+1}(\theta^\ell, \mathcal{L}(A; \mathbb{Q})) \cong (\mathbb{L}_m Q_{(2k-1)G \bar{A}})(\ell-1)(2k-1)$.

Idea of proof

First we prove a stability result

\[(\mathbb{L}_m \mathcal{Q}_{nG} \bar{A})_{qn} \simeq (\mathbb{L}_m \mathcal{Q}_{(n+2)G} \bar{A})_{q(n+2)}.\]
Idea of proof

First we prove a stability result

\[(\mathbb{L}_m Q_{nG} \tilde{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G} \tilde{A})_{q(n+2)}.\]

We show this by producing an isomorphism of the corresponding Blanc-Stover spectral sequences.
Idea of proof

First we prove a stability result

\[(\mathbb{L}_m Q_{nG} \bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G} \bar{A})_{q(n+2)}.\]

We show this by producing an isomorphism of the corresponding Blanc-Stover spectral sequences. The remaining argument is just a matching of the decomposition pieces in the Hodge decomposition and the resolution spectral sequence.