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Abstract
This paper studies cyclic long-memory processes with
Gegenbauer-type spectral densities. For a semiparamet-
ric statistical model, new simultaneous estimates for
singularity location and long-memory parameters are
proposed. This generalized filtered method-of-moments
approach is based on general filter transforms that
include wavelet transformations as a particular case. It
is proved that the estimates are almost surely conver-
gent to the true values of parameters. Solutions of the
estimation equations are studied, and adjusted statistics
are proposed. Monte-Carlo study results are presented
to confirm the theoretical findings.
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1 INTRODUCTION

The importance of long memory can be seen in various applications, for instance in finance,
internet modeling, hydrology, linguistics, DNA sequencing, and other areas (see Cont, 2005;
Leonenko & Olenko, 2014; Park et al., 2011; Pipiras & Taqqu, 2017; Samorodnitsky, 2007;
Samorodnitsky, 2016; Willinger, Paxson, Riedi, & Taqqu, 2003, and the references therein).

Usually, for a stationary finite-variance random process X(t), t ∈ ℝ, long-memory or
long-range dependence is defined as nonintegrability of its covariance function B(r) = cov(X(t +
r),X(t)), that is, ∫ ∞

0 |B(r)|dr = +∞, or, more precisely, as a hyperbolic asymptotic behavior of B(·).
It is known that the phenomenon of long-range dependence is related to singularities of spec-

tral densities; see Leonenko and Olenko (2013). The majority of publications study the case when
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FIGURE 1 Realizations of three types of time series (with a periodic deterministic trend, ARMA, and cyclic
long-range dependent) and their wavelet power spectra [Colour figure can be viewed at wileyonlinelibrary.com]

spectral densities are unbounded at the origin. However, singularities at nonzero frequencies
play an important role in investigating cyclic or seasonal behavior of time series. Contrary to
seasonal time series, nonseasonal cycles are often unknown in advance for various physical or
financial data.

Two classical models in the literature to describe cyclic behaviors of time series are

(i) a sum of a periodic deterministic trend and a stationary random noise, and
(ii) an ARMA model with a spectral peak outside the origin.

A cyclic long-range dependent process, which will be referred to as (iii), is an intermedi-
ate case between (i) and (ii) as it has a pole in its spectral density; see Giraitis, Hidalgo, and
Robinson (2001).

The first row of Figure 1 shows realizations of models (i), (ii), and (iii) from left to right.
The stochastic processes X(t) = 2 sin(t) + 𝜀t and X(t) = 0.9X(t − 1) − 0.8X(t − 2) + 𝜀t,

where 𝜀t is a zero-mean white noise, were used as models (i) and (ii), respectively. The Gegen-
bauer random process from Section 6 was used as model (iii) in the simulations. For each
simulation, the second row of Figure 1 gives the corresponding wavelet power spectra. It sug-
gests that estimation of parameters might be more challenging problem for model (iii) than
for cases (i) and (ii). Unexpectedly, relatively few publications on the matter are related to
cyclic or seasonal long-memory processes. A survey of some recent asymptotic results for cyclic
long-range dependent random processes and fields can be found in Arteche and Robinson (1999);
Ivanov, Leonenko, Ruiz-Medina, and Savich (2013); Klykavka, Olenko, and Vicendese (2012); and
Olenko (2013). It was demonstrated in Olenko (2013) that singularities at nonzero frequencies
can play an important role in limit theorems even for the case of linear functionals.

Several parametric and semiparametric methods were proposed for the case when poles
of spectral densities are unknown; see Arteche and Robinson (2000), Giraitis et al. (2001),
Hidalgo (1996), Whitcher (2004), and the references therein. Various problems in statistical infer-
ence of random processes and fields characterized by certain singular properties of their spectral
densities were investigated in Leonenko (1999); Tsai, Rachinger, and Lin (2015); and Dehling,
Rooch, and Taqqu (2013). Some methods for estimating a singularity location were suggested by
Arteche and Robinson (2000), Giraitis et al. (2001), and Ferrara and Guígan (2001).

http://wileyonlinelibrary.com
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The asymptotic theory for Gaussian maximum likelihood estimates (MLE) of seasonal
long-memory models was developed in Giraitis et al. (2001). The quasilikelihood methods were
studied in Hosoya (1997). The paper of Hidalgo (1996) studied limit theorems for spectral density
estimators and functionals with spectral density singularities at the origin and possibly at other
frequencies. Some results about consistency and asymptotic normality of the spectral density
estimator were obtained. The paper of Yajima (1985) proposed the MLE and the least squares esti-
mator for the long-memory time series models from Granger and Joyeux (1980) and the ARFIMA
model in Hosking (1981). They examined the consistency, the limiting distribution, and the rate
of convergence of these estimators. The least square estimator method was used in Beran, Ghosh,
and Schell (2009) to estimate the long-range dependence parameter assuming that the singularity
point is at the origin.

The minimum contrast estimator (MCE) methodology has been applied in a variety of sta-
tistical areas, in particular, for long-range dependent models. The article of Anh, Leonenko,
and Sakhno (2007) discussed consistency and asymptotic normality of a class of MCEs for ran-
dom processes with short- or long-range dependence based on the second- and third-order
cumulant spectra. In Guo, Lim, and Meerschaert (2009), it was demonstrated that the Whittle
maximum likelihood estimator is consistent and asymptotically normal for stationary seasonal
autoregressive fractionally integrated moving-average processes. Consistency and asymptotic nor-
mality of MCEs for parameters of Gegenbauer random processes and fields were obtained in
Espejo, Leonenko, Olenko, and Ruiz-Medina (2015). More details on the current state of the MCE
theory for long-memory processes and additional references can be found in Alomari et al. (2017).

Unfortunately, the results in Alomari et al. (2017), Espejo et al. (2015), and Leonenko and
Sakhno (2006) for Gegenbauer-type long-memory models use specific weight functions that
approach zero at the known singularity point, which, for example, was estimated before or deter-
mined by particular applications. It is not obvious how to modify these methods if locations
of singularities are unknown. New approaches are required for the situations where both the
long-memory and seasonality parameters are unknown or have to be estimated simultaneously.
It is known that, for nonlarge sample cases, simultaneous estimation methods yield substantial
gains compared to multistage estimation methods.

Another disadvantage of fully parametric approaches for cyclic long-memory models is that
incorrect specifications of models can result in inconsistent estimates of long-memory parame-
ters; see Hidalgo (2005), and the references therein.

The article of Whitcher (2004) proposed to use wavelet transforms to estimate parameters of
cyclic long-memory time series. Simulation studies were used to validate the approach and to
compare it with other techniques. Unfortunately, there were no rigorous studies to justify the
method and establish statistical properties of the estimators, except the case of the singularity at
the origin; see Clausel, Roueff, Taqqu, and Tudor (2014), and the references therein.

This research addresses the above problem and gives first steps in developing simultaneous
estimators for both the parameters. This paper deals with Gegenbauer-type cyclic long-memory
semiparametric models. The Gegenbauer spectral density f(·) has the following form and asymp-
totic behavior around its poles ±𝜈:

𝑓 (𝜆) = C(2 |cos 𝜆 − cos 𝜈|)−2𝛼 = C
(

4
||||sin

(
𝜆 + 𝜈

2

)
sin

(
𝜆 − 𝜈

2

)||||
)−2𝛼

∼ C|𝜆2 − 𝜈2|−2𝛼,

when 𝜆→ ±𝜈.
The detailed review of the statistical inference theory for Gegenbauer random processes and

fields can be found in Espejo et al. (2015).
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We use the idea from Bardet and Bertrand (2010) to develop the first estimation equation.
Namely, we study asymptotic properties of a filter transformation of cyclic long-memory pro-
cesses. As a particular case, this transformation includes wavelet transformations. To get the
second estimation equation, we propose a new approach that is based on asymptotic behavior
of increments of the filter transformation. Finally, we investigate properties of the solutions to
the estimation equations and propose adjusted statistics for both the cyclic and long-memory
parameters. This generalized filtered method-of-moments methodology includes wavelet trans-
formations as a particular case. Therefore, it is potentially very useful for real applications as it can
employ the existing wavelet methods and software, which are more powerful and faster than pro-
grams for numerical integration and optimization required by the ordinary least squares, MLE,
and MCE methods.

The simulation studies in Section 6 show that the proposed estimates rapidly converge to
true solutions. One needs only a small number of different widths of a filter response function
to reliably estimate the parameters. However, as feasible values of the parameters are nonnega-
tive, it would be impossible to obtain exact nonasymptotic distributions for a fixed filter width.
Small-sample simulation studies of the distributions of the estimators, limit distributions when
widths of filters decrease, and other extensions (see Section 7) are omitted due to the page limit,
but will be addressed in the following publications.

This article is organized as follows. In Section 2, we give basic definitions and notations.
The first equation to estimate the parameters is derived in Section 3. Section 4 further studies
properties of filter transforms and their increments. Then, these results are used to derive the sec-
ond estimation equation. In Section 5, estimators of location and long-memory parameters are
proposed and studied. Simulation studies that support the theoretical findings are presented in
Section 6. The proofs of all results are in the Appendix.

All computations and simulations in this article were performed using the software R ver-
sion 3.5.0 and Maple 17, Maplesoft, see Supporting information.

2 DEFINITIONS AND AUXILIARY RESULTS

This section introduces classes of stochastic processes and their filter transforms that are studied
in this paper.

We consider a measurable mean-square continuous stationary zero-mean Gaussian stochastic
process X(t), t ∈ ℝ, defined on a probability space (Ω, ,P), with the covariance function

B(r) ∶= Cov(X(t),X(t′)) = ∫ℝ
eiu(t−t′)F(du), t, t′ ∈ ℝ,

where r = t − t′ and F(·) is a nonnegative finite measure on ℝ.

Definition 1. The random process X(t), t ∈ ℝ, is said to possess an absolutely continuous
spectrum if there exists a nonnegative function 𝑓 (·) ∈ L1(ℝ) such that

F(u) = ∫
u

−∞
𝑓 (𝜆)d𝜆, u ∈ ℝ.

The function f(·) is called the spectral density of the process X(t).
The process X(t), t ∈ ℝ, with absolutely continuous spectrum has the following isonormal

spectral representation:

X(t) = ∫ℝ
eit𝜆

√
𝑓 (𝜆)dW(𝜆),
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where W(·) is a complex-valued Gaussian orthogonal random measure on ℝ.
For simplicity, in this paper, we consider the case of real-valued X(t). Therefore, we assume

that f(·) is an even function and the random measure is such that W([𝜆1, 𝜆2]) = W([−𝜆2,−𝜆1]) for
any 𝜆2 > 𝜆1 > 0; see Section 6 in Taqqu (1979). As all estimates in this paper use absolute values
of integrands, the obtained results can also be rewritten for complex-valued processes.

Assumption 1. Let the spectral density f(·) of X(t) admit the following semiparametric
representation:

𝑓 (𝜆) = h(𝜆)|𝜆2 − s2
0|2𝛼

, 𝜆 ∈ ℝ,

where s0 > 0, 𝛼 ∈ (0, 1
2
) and h(·) is an even nonnegative bounded function that is four times

boundedly differentiable on [− 1
2
,

1
2
]. Its derivatives of order i are denoted by h(i)(·) and satisfy

h(i)(0) = 0, i = 1, 2, 3, 4. In addition, h(0) = 1, h(·) > 0 in some neighborhood of 𝜆 = ±s0, and
for all 𝜖 > 0, it holds

∫ℝ

h(𝜆)
(1 + |𝜆|)𝜀 d𝜆 <∞.

Remark 1. Stochastic processes satisfying Assumption 1 have seasonal/cyclic long mem-
ory, as their spectral densities have singularities at nonzero locations ±s0. The bounded-
ness of h(·) guarantees that the singularities of f(·) are only in ±s0. The parameter 𝛼 is a
long-memory parameter. The parameter s0 determines seasonal or cyclic behavior. Covari-
ance functions of such processes exhibit hyperbolically decaying oscillations and ∫ℝ|B(r)|dr =
+∞ as 𝛼 ∈ (0, 1∕2); see Arteche and Robinson (1999). The Gegenbauer random processes
have cyclic long-memory behavior determined by Assumption 1 as their spectral densities
𝑓 (𝜆) ∼ c|𝜆2 − s2

0|−2𝛼, 𝜆 → ±s0, around the Gegenbauer frequency s0; see Chung (1966) and
Espejo et al. (2015).

Remark 2. The conditions on h(·) guarantee that f(·) is a spectral density with only singularity
locations at 𝜆 = ±s0. The differentiability conditions on h(·) and its derivatives can be relaxed
and replaced by Hölder assumptions in some neighborhood of the origin.

The smoothness conditions guarantee the following technical inequalities required for the
proof.

Lemma 1. For 0 ≤ 𝜆 ≤ �̃� ≤ 1
2

, it holds

|h(�̃�) − h(𝜆)| ≤ c1|�̃�2 − 𝜆2|,
h(𝜆) ≤ 1 + c1,|h(𝜆) − 1| ≤ c1 · 𝜆4,

where c1 ∶= max𝜆∈[0, 1
2
](h(2)(𝜆), h(4)(𝜆)).

Example 1. The asymptotic behavior of the function h(𝜆) when 𝜆 → ∞ must guarantee that
𝑓 (·) ∈ L1(ℝ).

For example, the function 𝑓 (𝜆) = |𝜆2 − s2
0|−2𝛼I[−M,M](𝜆) satisfies Assumption 1, where

M > s0,
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FIGURE 2 Plots of the spectral density f (𝜆) with singularities at nonzero frequencies and the corresponding
covariance function B(r) [Colour figure can be viewed at wileyonlinelibrary.com]

I[−M,M](𝜆) =
⎧⎪⎨⎪⎩

1, 𝜆 ∈ [−M,M]

0, 𝜆 ∉ [−M,M]
is the indicator function of the interval [−M,M ].

Another example satisfying Assumption 1 is the following spectral density and corre-
sponding covariance function:

𝑓 (𝜆) =
⎧⎪⎨⎪⎩

1
(1−𝜆2)1∕4 , |𝜆| ≤ 1

1
𝜆(𝜆2−1)1∕4 , |𝜆| > 1,

B(r) =
√
𝜋

(√
2𝜋 +

(2
r

)1∕4
Γ
(3

4

)
J 1

4
(r) − 2

√
2r 1F2

(
1
4
; 3

4
,

5
4
; − r2

4

))
,

where J𝜈 is the Bessel function of the first kind, 1F2 is the hypergeometric function, and s0 = 1
and 𝛼 = 1∕8 were chosen. Plots of 𝑓 (𝜆) and B(r) are shown in Figure 2.

Remark 3. As we study seasonal or cyclic long-memory models, in this paper, we consider
the case of singularities at nonzero frequencies. The discussion about differences between the
cases with spectral singularities at the origin and at other locations can be found in Arteche
and Robinson (1999). As s0 is separated from zero, without loss of generality, we assume that
s0 > 1. Indeed, if a time series has a periodic component with the period T, then the corre-
sponding frequency s0 = 1∕T. Changing the time unit, the parameter s0 can be made greater
than 1.

Now, we introduce filter transforms of stochastic processes. To define filters, we use real-
valued functions 𝜓(t), t ∈ ℝ, with the Fourier transforms �̂�(·).

Throughout this article, we use the convention that the Fourier transform of an arbitrary
function 𝜓 belonging to L1(ℝ) is the function �̂� defined, for every 𝜆 ∈ ℝ, as

�̂�(𝜆) = ∫ℝ
e−i𝜆t𝜓(t)dt.

http://wileyonlinelibrary.com
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Assumption 2. Let 𝜓 ∈ L2(ℝ) be a real-valued function such that supp �̂� ⊂ [−A,A],A >

0, and �̂�(·) is continuous except at a finite number of points and of bounded variation on
[−A,A].

Remark 4. It follows from Assumption 2 that �̂� is bounded and 𝜓 ∈ L∞(ℝ) is an analytic
function.

Let us define the constants c2 ∶= ∫ℝ|�̂�(𝜆)|2d𝜆 and c3 ∶= 2∫ℝ𝜆2|�̂�(𝜆)|2d𝜆.
Some important for applications functions 𝜓(·) satisfying Assumption 2 are the wavelets; see

Daubechies (1992) and Meyer (1992), given in the next examples. However, in general, 𝜓(·) is not
required to be a wavelet.

Example 2. The function 𝜓(·) can be selected as the Shannon father or mother wavelets.
Indeed, the Shannon father wavelet

𝜓𝑓 (t) = sinc(𝜋t) =

{
sin(𝜋t)
𝜋t

, t ≠ 0,
1, t = 0

has the Fourier transform
�̂�𝑓 (𝜆) = I[−𝜋,𝜋](𝜆).

The corresponding constants are c2 = 2𝜋 and c3 = 4
3
𝜋3.

The Shannon mother wavelet

𝜓m(t) =
sin(2𝜋t) − cos(𝜋t)

𝜋
(

t − 1
2

)
has the Fourier transform

�̂�m(𝜆) = −e−
i𝜆
2 I[−2𝜋,−𝜋)∪(𝜋,2𝜋](𝜆).

The corresponding constants are c2 = 2𝜋 and c3 = 9 1
3
𝜋3.

Plots of 𝜓 f(t) and 𝜓m(t) are shown in Figure 3.

FIGURE 3 Plots of the Shannon father and mother wavelets 𝜓 f (t) and 𝜓m(t) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


8
Scandinavian Journal of Statistics

ALOMARI ET AL.

Example 3. The function 𝜓(·) can be selected as the Meyer father or mother wavelets
(see, e.g., Daubechies, 1992; Meyer, 1992). Indeed, the Meyer wavelets have the Fourier
transforms

�̂�m(𝜆) ∶=

⎧⎪⎪⎨⎪⎪⎩
sin

(
𝜋

2
𝜈
(

3|𝜆|
2𝜋

− 1
))

e
i𝜆
2 , if 2𝜋

3
≤ |𝜆| ≤ 4𝜋

3
,

cos
(
𝜋

2
𝜈
(

3|𝜆|
4𝜋

− 1
))

e
i𝜆
2 , if 4𝜋

3
≤ |𝜆| ≤ 8𝜋

3
,

0, otherwise,

�̂�𝑓 (𝜔) ∶=

⎧⎪⎪⎨⎪⎪⎩
1, if |𝜆| ≤ 2𝜋

3
,

cos
(
𝜋

2
𝜈
(

3|𝜆|
4𝜋

− 1
))

, if 2𝜋
3
≤ |𝜆| ≤ 4𝜋

3
,

0, otherwise,

where 𝜈(·) is a function with values in [0,1] that satisfies 𝜈(x)+𝜈(1−x) = 1, x ∈ ℝ.For example,
one can use

𝜈(x) =
⎧⎪⎨⎪⎩

0, if x < 0,
x, if 0 ≤ x ≤ 1,
1, if x > 1.

The corresponding constants for �̂�m(𝜆) are c2 = 2𝜋 and c3 = 12 4
9
𝜋(𝜋2 + 2) and c2 = 2𝜋 and

c3 = 1 7
9
𝜋(𝜋2 − 2) for �̂�𝑓 (𝜆).

Plots of |�̂�m(𝜆)| and �̂�𝑓 (𝜆) are shown in Figure 4.

Now, for any pair (a, b) ∈ ℝ+×ℝ,whereℝ+ = (0,+∞),we define the following filter transform
of the process X(t):

dx(a, b) ∶=
1√
a∫ℝ

𝜓

(
t − b

a

)
X(t)dt. (1)

FIGURE 4 Plots of the Fourier transforms of the Meyer mother and father wavelets |�̂�m(𝜆)| and �̂�𝑓 (𝜆) [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Remark 5. If 𝜓(·) is a wavelet, then dx(a, b) given by (1) defines the wavelet transform of the
process X(t).

The general filtration theory of stochastic processes guarantees that (1) is correctly defined
if the following assumption is satisfied; see Chapter V, Section 6, in Gikhman and
Skorokhod (2004).

Assumption 3. Let the integral ∫ℝ2𝜓(t)B(t−t′)𝜓(t′)dtdt′ exist as an improper Cauchy integral
on the plane.

Remark 6. Different assumptions on the process and the filter were used in Bardet and
Bertrand (2010). Namely, they assumed that 𝜓(·) is a mother wavelet that has two vanishing
moments and there are constants c𝜓 , c′𝜓 > 0 such that (1+|t|)|𝜓(t)| ≤ c𝜓 , |�̂�(𝜆)|+|�̂� ′(𝜆)| ≤ c′𝜓 ,
for all t, 𝜆 ∈ ℝ.

Using the above notations dx(a, b) can be rewritten in the frequency domain as

dx(a, b) =
√

a∫ℝ
eib𝜆�̂�(a𝜆)

√
𝑓 (𝜆)dW(𝜆).

This Gaussian random variable has a zero mean, that is, Edx(a, b) = 0. Its variance equals

E|dx(a, b)|2 = a∫ℝ
|�̂�(a𝜆)|2𝑓 (𝜆)d𝜆 ∶= J(a) (2)

and, thus, does not depend on b.
In the following sections, we assume that Assumptions 1–3 are satisfied.

3 FIRST STATISTICS

Spectral densities satisfying Assumption 1 have two parameters of interest (𝛼 and s0). This section
derives some properties of dx(a, b) and suggests a statistic based on dx(a, b) that can be used as an
estimate of s−4𝛼

0 .

Let {a𝑗}, {𝛾𝑗} ⊂ ℝ+, {m𝑗} ⊂ ℕ, 𝑗 ∈ ℕ, be sequences of positive numbers and {b𝑗k} ⊂ ℝ, 𝑗 ∈
ℕ, k ∈ ℤ, be an infinite array. In the following proofs, we assume that {aj} is an unboundedly
monotone increasing sequence and b𝑗k1 ≠ b𝑗k2 for all 𝑗 ∈ ℕ and k1 ≠ k2.

We will use the following notation:

𝛿𝑗k ∶= dx(a𝑗 , b𝑗k) =
√

a𝑗∫ℝ
eib𝑗k𝜆�̂�(a𝑗𝜆)

√
𝑓 (𝜆)dW(𝜆).

By Assumption 1,

𝛿𝑗k =
√

a𝑗∫ℝ
eib𝑗k𝜆

�̂�(a𝑗𝜆)
√

h(𝜆)||𝜆2 − s2
0
||𝛼 dW(𝜆).
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Therefore, for all 𝑗 ∈ ℕ and k1, k2 ∈ ℤ, it holds E𝛿𝑗k1 = 0 and

I( 𝑗, k1, k2) ∶= Cov
(
𝛿𝑗k1 , 𝛿𝑗k2

)
= E

(
𝛿𝑗k1𝛿𝑗k2

)
= a𝑗∫ℝ

ei
(

b𝑗k1−b𝑗k2

)
𝜆 |�̂�(a𝑗𝜆)|2h(𝜆)||𝜆2 − s2

0
||2𝛼 d𝜆

= s−4𝛼
0 ∫ℝ

e
i

b𝑗k1 −b𝑗k2
a𝑗

𝜆
|�̂�(𝜆)|2h

(
𝜆

a𝑗

)
||||( 𝜆

a𝑗 s0

)2
− 1

||||2𝛼 d𝜆. (3)

Lemma 2. Let Assumption 2 hold true. Then, for all k1, k2 ∈ ℤ2 and 𝑗 ∈ ℕ such that a𝑗
2A

≥ 1

|I( 𝑗, k1, k2)| ≤ c4(s0, 𝛼)
⎧⎪⎨⎪⎩

1, if k1 = k2,

a𝑗|b𝑗k1−b𝑗k2 | , if k1 ≠ k2,

where

c4(s0, 𝛼) ∶= 2s−4𝛼
0 max

(
2
3

c2(1 + c1), max
𝜆∈[−A,A]

|�̂�(𝜆)|2V 1∕2
−1∕2(h(·)) + (1 + c1) · V A

−A
(|�̂�(·)|2)) ,

V b
a ( 𝑓 ) denotes the total variation of a function f(·) on an interval [a, b].

Let us define

𝛿
(2)
𝑗· ∶= 1

m𝑗

m𝑗∑
k=1

𝛿2
𝑗k.

It follows from (2) that E𝛿(2)
𝑗· = J(a𝑗).

Lemma 3. Suppose that a𝑗
2A

≥ 1, the sequences {bjk} and {𝛾 j} are such that, for all 𝑗 ∈
ℕ, k1, k2 ∈ ℤ, it holds |b𝑗k1 − b𝑗k2 | ≥ |k1 − k2|𝛾𝑗 . Then,

Var
(
𝛿
(2)
𝑗·

) ≤ c5𝑗(s0, 𝛼)
m𝑗

,

where c5𝑗(s0, 𝛼) ∶= 2c2
4(s0, 𝛼)(1 + 𝜋2

3
a2
𝑗

𝛾2
𝑗

).

Lemma 4. Let {r𝑗} ⊂ ℝ+ be a decreasing sequence such that lim𝑗→∞r𝑗 = 0. Let us choose such
{mj} that

∑∞
𝑗=1

1
r2
𝑗

m𝑗

< +∞ and
∑∞
𝑗=1

a2
𝑗

r2
𝑗
𝛾2
𝑗

m𝑗

< +∞, where {𝛾 j} is from Lemma 3. Then, there
exists an almost surely finite random variable c6 such that, for all 𝑗 ∈ ℕ,|||𝛿(2)𝑗· − J(a𝑗)

||| ≤ c6r𝑗 .

The lemma below gives an upper bound on the deviation of J(aj) from s−4𝛼
0 c2.

Lemma 5. If 𝑗 ∈ ℕ is such that a𝑗
A
≥ 2, then one has

|||J(a𝑗) − c2s−4𝛼
0

||| ≤ c7(s0, 𝛼)
a2
𝑗

,

where c7(s0, 𝛼) ∶= ( 4(1+c1)
s2

0
+ c1)c2

A2

s4𝛼
0
.
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Combining Lemmas 4 and 5, we obtain the following.

Proposition 1. Under the conditions of Lemma 4, it holds 𝛿(2)
𝑗·

a.s.
−→ c2s−4𝛼

0 .Moreover, there exists
an almost surely finite random variable c8 such that, for all 𝑗 ∈ ℕ,|||𝛿(2)𝑗· − c2s−4𝛼

0
||| ≤ c8 max

(
r𝑗 , a−2

𝑗

)
.

4 SECOND STATISTICS

In this section, we further study properties of 𝛿(2)
𝑗· and J(aj). It allows us to suggest a new estimate

of 𝛼s−4𝛼−2
0 . The main idea is to find the asymptotic behavior of increments of 𝛿(2)

𝑗· . Therefore, we
start by deriving some results about increments of J(a𝑗) = 𝔼𝛿(2)

𝑗· .

Lemma 6. If {aj} is an unboundedly monotone increasing, then

lim
𝑗→+∞

J(a𝑗) − J(a𝑗+1)
a−2
𝑗

− a−2
𝑗+1

= 𝛼c3s−4𝛼−2
0 .

Now, we investigate the rate of convergence in Lemma 6.
Lemma 7. There is 𝑗0 ∈ ℕ such that, for all j ≥ j0, it holds

||||| J(a𝑗) − J(a𝑗+1)
a−2
𝑗

− a−2
𝑗+1

− 𝛼s−4𝛼−2
0 c3

||||| ≤ c326A2s−4𝛼−4
0

(
1 + 33c1s4

0∕26)
33a2

𝑗

(
1 −

(
a𝑗

a𝑗+1

)2
) .

Now, let us define Δ𝛿(2)
𝑗· =

𝛿
(2)
𝑗· −𝛿

(2)
𝑗+1·

a−2
𝑗
−a−2

𝑗+1
. Then, the following result holds.

Proposition 2. Let the assumptions of Lemma 4 hold true and there exist 𝜀 > 0 and 𝑗0 ∈ ℕ
such that aj+1 ≥ (1 + 𝜀)aj for all j ≥ j0. Then,

Δ𝛿(2)
𝑗·

a.s.
−→ 𝛼c3s−4𝛼−2

0 , 𝑗 → +∞.

Moreover, there exists an almost surely finite random variable c9 such that, for all 𝑗 ∈ ℕ, it holds|||Δ𝛿(2)𝑗· − 𝛼c3s−4𝛼−2
0

||| ≤ c9 max
(

a2
𝑗 r𝑗 , a

−2
𝑗

)
. (4)

Remark 7. As the rate of decay of {rj} can be arbitrary selected, the best upper bound given
by (4) has order a−2

𝑗
.

5 ESTIMATION OF (s0,𝜶)

In the previous sections, we proved that if the true values of parameters are (s0, 𝛼), then the vector
statistics (

𝛿
(2)
𝑗· ∕c2

Δ𝛿(2)
𝑗· ∕c3

)
a.s.
−→

( s−4𝛼
0

𝛼s−4𝛼−2
0

)
, 𝑗 → +∞.
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In this section, we investigate properties of the pair (ŝ0𝑗 , �̂�𝑗) that is a solution of the system

⎧⎪⎨⎪⎩
ŝ−4�̂�𝑗

0𝑗 = 𝛿
(2)
𝑗· ∕c2,

�̂�𝑗 ŝ
−4�̂�𝑗−2
0𝑗 = Δ𝛿(2)

𝑗· ∕c3.
(5)

To handle the cases, where (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) may not be in the feasible region of (s−4𝛼

0 , 𝛼s−4𝛼−2
0 ), we

propose adjusted estimates.
First, we discuss existence of solutions.

Lemma 8. Let ( y1, y2) ∈ Ry, where Ry ∶= {(𝑦1, 𝑦2) ∈ (0, 1) × (0, 𝑦2
1∕2)}. Then, the system

⎧⎪⎨⎪⎩
s−4𝛼

0 = 𝑦1,

𝛼s−4𝛼−2
0 = 𝑦2

(6)

has a solution (s0, 𝛼) ∈ (1,+∞) × (0, 1
2
).

Thus, if (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) ∈ Ry, then there is a pair (ŝ0𝑗 , �̂�𝑗) ∈ (1,+∞)× (0, 1

2
) that satisfies the system

of equations (5). Now, we will investigate uniqueness of solutions.

Lemma 9. Let ( y1, y2) ∈ Ry. Then, system (6) has a unique solution.

Now, we provide solutions to system (6). These solutions are given in terms of the Lam-
bert W function, which is defined as a solution of the equation tet = x, x ≥ −e−1, that is,
t = LambertW(x); see Corless, Gonnet, Hare, Jeffrey, and Knuth (1996).

Proposition 3. Let ( y1, y2) ∈ Ry. Then, the solution to system (6) is

s0 = exp
(

1
2

LambertW
(
𝑦1

𝑦2
ln

(
𝑦
− 1

2
1

)))
,

𝛼 = 𝑦2

𝑦1
exp

(
LambertW

(
𝑦1

𝑦2
ln

(
𝑦
− 1

2
1

)))
.

(7)

Remark 8. The Lambert W function has two real branches LambertW0 and LambertW−1.

The branch LambertW0 is defined on the interval [− 1
e
,+∞), but the branch LambertW−1 is

defined only on the interval [− 1
e
, 0). The point (− 1

e
,−1) is a branch point for LambertW0 and

LambertW−1. Hence, for y1 ∈ (0, 1), it holds ( 𝑦1
𝑦2
) ln(𝑦

− 1
2

1 ) > 0 and (7) gives a unique solution
to (6) with the branch LambertW0.

Now, we see that, for ( y1, y2) ∈ Ry, there is a unique solution (s0, 𝛼) to (6). If s0 and 𝛼 are
the true value of parameters, then the corresponding (y1, y2) ∈ Ry. As Ry is an open set, then

(y1, y2) ∈ int(Ry) = Ry, and there is some 𝑗0 ∈ ℕ such that (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) ∈ Ry for all j ≥ j0·, where

int(·) denotes the interior of a set. Therefore, starting from j0, system (5) has a unique solution.
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However, it might happen that (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) ∉ Ry for some j < j0 even if (y1, y2) ∈ Ry = int(Ry) for

the corresponding true value (s0, 𝛼). For the cases (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) ∉ Ry to define (ŝ0𝑗 , �̂�𝑗), we introduce

“adjusted” values (
𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
) ∈ Ry.

Definition 2. The adjusted statistics
𝛿
(2,a)
𝑗·

c2
and

Δ𝛿(2,a)
𝑗·

c3
are defined as follows:

• if
𝛿
(2)
𝑗·

c2
∈ (0, 1) and

Δ𝛿(2)
𝑗·

c3
≥ 1

2
(
𝛿
(2)
𝑗·

c2
)2, then

𝛿
(2,a)
𝑗· = 𝛿

(2)
𝑗· and Δ𝛿(2,a)

𝑗· = c3 max
⎛⎜⎜⎝
(
𝛿
(2)
𝑗·

c2

)2

−
Δ𝛿(2)

𝑗·

c3
,

1
4

(
𝛿
(2)
𝑗·

c2

)2⎞⎟⎟⎠ ;
• if

𝛿
(2)
𝑗·

c2
∈ (0, 1) and

Δ𝛿(2)
𝑗·

c3
≤ 0, then

𝛿
(2,a)
𝑗· = 𝛿

(2)
𝑗· and Δ𝛿(2,a)

𝑗· = c3 min
⎛⎜⎜⎝−

Δ𝛿(2)
𝑗·

c3
,

1
4

(
𝛿
(2)
𝑗·

c2

)2⎞⎟⎟⎠ ;
• if

𝛿
(2)
𝑗·

c2
≥ 1 and 0 <

Δ𝛿(2)
𝑗·

c3
<

1
2
, then

Δ𝛿(2,a)
𝑗· = Δ𝛿(2)

𝑗· and 𝛿
(2,a)
𝑗· = c2 max

⎛⎜⎜⎝2 −
𝛿
(2)
𝑗·

c2
,

1
2

⎛⎜⎜⎝1 +

(
2
Δ𝛿(2)

𝑗·

c3

) 1
2 ⎞⎟⎟⎠
⎞⎟⎟⎠ ;

• if
𝛿
(2)
𝑗·

c2
≥ 1 and

Δ𝛿(2)
𝑗·

c3
≥ 1

2
, then

Δ𝛿(2,a)
𝑗· = c3 max

(
1 −

Δ𝛿(2)
𝑗·

c3
,

1
4

)
and 𝛿

(2,a)
𝑗·

= c2 max
⎛⎜⎜⎝2 −

𝛿
(2)
𝑗·

c2
,

1
2

⎛⎜⎜⎝1 +

(
2
Δ𝛿(2,a)

𝑗·

c3

) 1
2 ⎞⎟⎟⎠
⎞⎟⎟⎠ ;

• if
𝛿
(2)
𝑗·

c2
≥ 1 and

Δ𝛿(2)
𝑗·

c3
≤ 0, then

Δ𝛿(2,a)
𝑗· = c3 min

(
−
Δ𝛿(2)

𝑗·

c3
,

1
4

)
and 𝛿

(2,a)
𝑗·

= c2 max
⎛⎜⎜⎝2 −

𝛿
(2)
𝑗·

c2
,

1
2

⎛⎜⎜⎝1 +

(
2
Δ𝛿(2,a)

𝑗·

c3

) 1
2 ⎞⎟⎟⎠
⎞⎟⎟⎠ ;

• otherwise, 𝛿(2,a)
𝑗· = 𝛿

(2)
𝑗· and Δ𝛿(2,a)

𝑗· = Δ𝛿(2)
𝑗· .

In the fourth and fifth cases the value of Δ𝛿(2,a)
𝑗· is computed first, and then, it is used to

compute the adjusted value 𝛿(2,a)
𝑗· .
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FIGURE 5 Plot of Ry, (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) and

the corresponding adjusted estimates

(
𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
) [Colour figure can be

viewed at wileyonlinelibrary.com]

Figure 5 clarifies geometric reasons to introduce the adjusted values (
𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
). Vertical

or horizontal reflections over boundaries of Ry are used with an additional constraint that the
reflected points do not go beyond the opposite boundaries of Ry. In addition, the reflected
points should not belong to the boundaries. For instance, this might happen, in the first case of

Definition 2 if one has
Δ𝛿(2)

𝑗·

c3
= 1

2
(
𝛿
(2)
𝑗·

c2
)2.

Remark 9. The main practical advantage of using the adjusted statistics, as opposed to remov-
ing nonfeasible values, is the case when the true values of parameters correspond to a
point that is close to the boundary of Ry. Then, for a finite sample, it might happen that

all (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) ∉ Ry. Nevertheless, even in this case, the adjusted statistics provide reliable

estimates for the parameters.

Remark 10. By the construction in Definition 2, the adjusted pair (
𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
) ∈ Ry and both

the (
𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
) and (

𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) converge to the same value (s−4𝛼

0 , 𝛼s−4𝛼−2
0 ) when j → +∞.

Remark 11. As only a finite number of (
𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) fall outside of Ry, then there is 𝑗0 ∈ ℕ such

that (
𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
) = (

𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
) for all j ≥ j0. Therefore, in this case, (

𝛿
(2,a)
𝑗·

c2
,
Δ𝛿(2,a)

𝑗·

c3
) and (

𝛿
(2)
𝑗·

c2
,
Δ𝛿(2)

𝑗·

c3
)

have the same rate of convergence to (s−4𝛼
0 , 𝛼s−4𝛼−2

0 ) when j → +∞.

Now, we are ready to formulate the main result.

Theorem 1. Let the process X(t) and the filter 𝜓(·) satisfy Assumptions 1 to 3. Let (ŝ0𝑗 , �̂�𝑗) be a
solution of the system of equations

⎧⎪⎨⎪⎩
�̂�𝑗(ŝ0𝑗)−4�̂�𝑗−2 = Δ𝛿(2,a)

𝑗· ∕c3,

ŝ−4�̂�𝑗
0𝑗 = 𝛿

(2,a)
𝑗· ∕c2,

http://wileyonlinelibrary.com
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where Δ𝛿(2,a)
𝑗· and 𝛿(2,a)

𝑗· are the adjusted statistics. Then,

ŝ0𝑗 = exp
⎛⎜⎜⎜⎝

1
2

LambertW
⎛⎜⎜⎜⎝

ln
(

c2∕𝛿(2,a)𝑗·

)
2q𝑗

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

𝛼𝑗 = q𝑗 exp
⎛⎜⎜⎜⎝LambertW

⎛⎜⎜⎜⎝
ln

(
c2∕𝛿(2,a)𝑗·

)
2q𝑗

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

(8)

where q𝑗 = c2
c3

Δ𝛿(2,a)
𝑗·

𝛿
(2,a)
𝑗·

.

If s0 and 𝛼 are the true values of parameters and the assumptions of Proposition 2 hold true,
then ŝ0𝑗

a.s.
−→ s0 and 𝛼𝑗

a.s.
−→ 𝛼, when j → +∞. Moreover, there are almost surely finite random

variables c10 and c11 such that, for all 𝑗 ∈ ℕ, it holds

|̂s0𝑗 − s0| ≤ c10 max
(

a2
𝑗 r𝑗 , a

−2
𝑗

)
and |𝛼𝑗 − 𝛼| ≤ c11 max

(
a2
𝑗 r𝑗 , a

−2
𝑗

)
.

Remark 12. Note that, for any sequences {aj} and {rj}, there exists a sequence {mj} such that
the sums

∑∞
𝑗=1

1
r2
𝑗

m𝑗

and
∑∞
𝑗=1

a2
𝑗

r2
𝑗
𝛾2
𝑗

m𝑗

are finite. Hence, one can get a specified convergence rate
at levels j by choosing a sufficiently fast increasing range of averaging over k.
Example 4. Let us consider the case of aj ≥ (1 + 𝜀)j−1, bjk = k, and r𝑗 = a−2.5

𝑗
, 𝑗 ∈ ℕ. Then|b𝑗k1 − b𝑗k2 | = |k1 − k2| and 𝛾 j = 1. For m𝑗 = a𝛽

𝑗
, the assumptions of Theorem 1 are satisfied if

∞∑
𝑗=1

1
r2
𝑗
m𝑗

=
∞∑
𝑗=1

1
a𝛽−5
𝑗

< +∞ and
∞∑
𝑗=1

a2
𝑗

r2
𝑗
𝛾2
𝑗

m𝑗

=
∞∑
𝑗=1

1
a𝛽−7
𝑗

< +∞,

which is true for 𝛽 > 7. Then, the order of the rate of convergence in Theorem 1 is
max(a2

𝑗
r𝑗 , a−2

𝑗
) = a−0.5

𝑗
.

6 SIMULATION STUDIES

This section presents some numerical studies to confirm the theoretical findings. It intends to give
an example illustrating the application of the developed methodology, rather than conducting
extensive numerical studies and providing practical recommendations for various possible sce-
narios, which will be explored in future publications. The results demonstrate that the approach
can be extended to other processes and filters.

The generalized filtered method-of-moments approach in this paper was developed for
functional time series. However, only discrete time can be used for computer simulations. In
simulation studies and real-world applications, different discretization strategies are used for
approximating functional data (see, e.g., §6.4.3 in Ramsay & Silverman, 2013). In the available
literature, it is usually assumed as a matter of fact that the discretization error is negligible
with respect to the estimation error. There are only few known results that rigorously prove it
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(see Alodat & Olenko, 2018; Ayache & Bertrand, 2011; Bardet & Bertrand, 2010; Leonenko &
Taufer, 2006). We intend to devote another publication to investigating discretization errors.
Meantime, to illustrate the generalized filtered method-of-moments approach, we use Riemann
sums to approximate the integrals in 𝛿jk. To obtain high-precision approximations of the inte-
grals, we use 100 points per time unit in the Riemann sums and the length of time intervals equal
100,000 time units.

Remark 13. Theorem 1 shows that the accuracy of the parameter estimates increases with
increasing the number of levels j. However, in the case of real-world or simulated data, func-
tional time series are observed only at a finite number N of time points. In the wavelet
analysis of time series, it is recommended to select the maximum number of levels j satisfy-
ing N ≈ 2 j. New information tends to zero if j substantially exceeds log2N. The generalized
filtered method-of-moments approach deals with the case of general filters that allow using
mj points at each level. Hence, the maximum number of levels j should be selected to satisfy
N ≈ mj.

We consider the Gegenbauer random process X(t), t ∈ ℤ; see Alomari et al. (2017), Espejo
et al. (2015), and the references therein. This random process satisfies the following equation:

Δd
uX(t) ∶= (1 − 2uB + B2)dX(t) = 𝜀t,

where Δd
u is the fractional difference operator given by

Δd
u = (1 − 2uB + B2)d = (1 − 2 cos(𝜈)B + B2)d = [(1 − ei𝜈B)(1 − e−i𝜈B)]d;

B denotes the backward-shift operator for the time coordinate t, that is, BXt = Xt−1, u = cos 𝜈 (i.e.,
𝜈 = arccos(u), |u| ≤ 1), d ∈ (− 1

2
,

1
2
); and 𝜀t is a zero-mean white noise with the common variance

E(𝜀2
t ) = 𝜎2

𝜀 .

There exists the following representation of a stationary Gegenbauer random process:

X(t) =
∞∑

n=0
C(d)

n (u)𝜀t−n, (9)

where d ≠ 0 and the Gegenbauer polynomial C(d)
n (u) is given by

C(d)
n (u) =

[n∕2]∑
k=0

(−1)k (2u)n−2kΓ(d − k + n)
k!(n − 2k)!Γ(d)

,

where [n∕2] is the integer part of n∕2 and Γ(·) is the gamma function.
We generated the random process X(t) using the parameter values d = 0.1 and u = 0.3. The

chosen parameters d and u correspond to s0 and 𝛼 inside of the admissible region Ry. The realiza-
tions of X(t) were approximated by truncated sums with 100 terms in (9). Note that, for n → ∞, it
holds

C(d)
n (u) ∼

cos((n + d)𝜈 − d𝜋∕2)
Γ(d)sind(𝜈)

( 2
n

)1−d
,

where 𝜈 = arccos(u). Thus, for simulating Gegenbauer processes with different parameters,
especially when values of 𝜈 are close to 0, more terms may be required.
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FIGURE 6 Plots of the Mexican hat wavelet 𝜓(t) and its Fourier transform �̂�(𝜆) [Colour figure can be viewed
at wileyonlinelibrary.com]

The Mexican hat wavelet was used as a filter. It is defined by

𝜓(t) = 2√
3𝜎𝜋

1
4

(
1 −

( t
𝜎

)2
)

e−
t2

2𝜎2 .

Its Fourier transform is (see Liu, 2010)

�̂�(𝜆) =
√

8𝜋
1
4 𝜎

5
2√

3
𝜆2e−

𝜎2𝜆2

2 .

Note that the Fourier transform �̂�(𝜆) does not have a finite support but approaches zero very
quickly when 𝜆 → +∞. The value 𝜎 = 1 was used in computations. Plots of 𝜓(t) and �̂�(𝜆) are
shown in Figure 6. In this case, c2 and c3 are 2 and 10, respectively. The filter transform of X(t)
defined by (1) was computed using the R package WMTSA.

The random process X(t) was generated 1,000 times over the time grid specified above, and
the corresponding wavelet coefficients 𝛿jk were calculated for each generated trajectory. At first,
to compute ŝ0𝑗 and �̂�𝑗 , the statistics 𝛿(2)

𝑗· and Δ𝛿(2)
𝑗· were found using the values aj = j, bjk = k,

𝛾 j = 1, r𝑗 = a−2.5
𝑗

, and m𝑗 = a9
𝑗
, for j = 1, … , 7. By Example 4, for 𝜀 = 0.3, these values satisfy the

assumptions of Theorem 1. Figure 7 displays box plots of 𝛿(2)
𝑗· and Δ𝛿(2)

𝑗· for the simulated realiza-
tions. The values of aj are shown along the horizontal axe. The horizontal dashed lines show the
true values of the corresponding parameters. These plots confirm that 𝛿(2)

𝑗· and Δ𝛿(2)
𝑗· converge as

j increases. As expected, consult the upper bound (4) in Proposition 2, the rate of convergence of
Δ𝛿(2)

𝑗· is slower than in the case of 𝛿(2)
𝑗· . Finally, the estimates ŝ0𝑗 and �̂�𝑗 were calculated by (8) for

each simulation. Figure 8 demonstrates that ŝ0𝑗 convergence to s0 = arccos(u) and �̂�𝑗 to 𝛼 = d as
j increases.

As the true values of parameters correspond to a point inside of Ry, the majority of the param-
eter estimates are in the admissible region. Figures 7 and 8 suggest that the adjusted statistics
should be applied mainly for the cases j = 1 and 2.

Table 1 below gives numerical values of root mean square errors (RMSEs) for each parameter
estimated in Figures 7 and 8. These results numerically confirm the theoretical convergence.

http://wileyonlinelibrary.com
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Boxplot of Boxplot of 

FIGURE 7 Boxplots of the first and second statistics 𝛿(2)
𝑗· and Δ𝛿(2)

𝑗· and their true values (horizontal dashed
lines) [Colour figure can be viewed at wileyonlinelibrary.com]

Boxplot of ŝ Boxplot of ^

FIGURE 8 Boxplots of the estimates ŝ0𝑗 and 𝛼𝑗 . and the corresponding true values of parameters (horizontal
dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Root mean square error (RMSE) for each statistic and parameter

RMSEs 1 2 3 4 5 6

RMSE(𝛿(2)𝑗· ) 1.86690313 1.08704874 0.29951503 0.14773844 0.08741261 0.05930194
RMSE(Δ𝛿(2)

𝑗· ) 1.7436818 5.3719516 2.8432257 1.9604925 1.3885922 0.5747705
RMSE(ŝ0𝑗 ) 0.72478156 0.48657429 0.37222642 0.31216483 0.27854370 0.06254635
RMSE(�̂�𝑗 ) 0.09968069 0.07616249 0.08119757 0.06502088 0.04983931 0.01845817

7 DIRECTIONS FOR FUTURE RESEARCH

This paper has discussed statistical inference for parameters of cyclic long-memory processes with
a spectral singularity at a nonzero frequency. The results were derived for wide classes of models
with Gegenbauer-type spectral densities using very general filter transforms.

An important area for future explorations is obtaining similar results for the case of multiple
singularities with the long-memory parameters varying across singularity locations; see the dis-
cussion on SCLM (seasonal/cyclical long memory) in Arteche and Robinson (1999). For the case

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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of multiple unknown parameters, one can derive additional estimation equations similar to the
ones in Section 4 using higher order differences of 𝛿(2)

𝑗· .

As this paper studied the case of Gegenbauer-type spectral densities given in Assumption 1,
it would be interesting to apply the developed methodology to other cyclic long-memory models.

This paper develops statistical inference for parameters using functional data. There are
numerous applications where X(t) is observed only on a discrete grid or at random moments
of a finite time interval. In addition, cyclic long-memory processes are often determined by
discrete-time fractional autoregressive integrated moving average (FARIMA) models. In such
cases, approximate formulas are used to compute filter transforms; see Section 3.2 in Bardet
and Bertrand (2010). We plan to investigate statistical properties of the corresponding “approx-
imate” estimates using approaches similar to Ayache and Bertrand (2011) and Bardet and
Bertrand (2010).

Finally, it is important to extend the methodology to the multidimensional case of random
fields; see Espejo et al. (2015).
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APPENDIX A

Here, we give the proofs for all results.

Proof of Lemma 1. The first inequality follows from the estimate

|h(�̃�) − h(𝜆)| ≤ max
𝜆0∈[𝜆,�̃�]

|h′(𝜆0)||�̃� − 𝜆| = max
𝜆0∈[𝜆,�̃�]

|h′(𝜆0) − h′(0)||�̃� − 𝜆|
≤ max

𝜆0∈[𝜆,�̃�]
sup

�̃�0∈[0,𝜆0]
|h′′(�̃�0)| · 𝜆0 · |�̃� − 𝜆|

≤ sup
�̃�0∈

[
0, 1

2

] |h′′(�̃�0)| · |�̃� + 𝜆| · |�̃� − 𝜆| ≤ c1|�̃�2 − 𝜆2|.
Substituting 𝜆 = 0, we get the second inequality. Finally, the third upper bound is obtained
using the mean value theorem four times.

http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf
http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf
https://doi.org/10.1111/sjos.12404
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Proof of Lemma 2. If k1 = k2, then by (3),

I( 𝑗, k1, k1) = s−4𝛼
0

A

∫
−A

|�̂�(𝜆)|2h
(
𝜆

a𝑗

)
||||( 𝜆

a𝑗 s0

)2
− 1

||||2𝛼 d𝜆 ≤ c2s−4𝛼
0 sup

u∈
[

0, A
a𝑗

] h(u)
|||||1 −

(
A

a𝑗s0

)2|||||
−2𝛼

.

By the conditions a𝑗
2A

≥ 1 and s0 > 1, we get

A
a𝑗

≤ 1
2

and A
a𝑗s0

≤ 1
2
. (A1)

Hence, by Lemma 1,

|I( 𝑗, k1, k1)| ≤ c2s−4𝛼
0

1 + c1(
1 − 1

4

)2𝛼 ≤ 4
3
(1 + c1)c2s−4𝛼

0 . (A2)

Let us denote p(𝜆) ∶=
|�̂�(𝜆)|2h( 𝜆

a𝑗
)

|( 𝜆

a𝑗 s0
)2−1|2𝛼 . By Assumptions 1 and 2, the function p(·) is a nonnegative

integrable function on [−A,A]. Therefore, p̃(𝜆) ∶= p(𝜆)∕ ∫ A
−A p(𝜆)d𝜆 is a probability density.

Moreover, by Assumption 1, we get V
1
2

− 1
2

(h(·)) = ∫ 1
2

− 1
2

|h′(𝜆)|d𝜆 ≤ 2 ∫ 1
2

0 c1 · 𝜆d𝜆 < +∞.Hence, it

follows from Assumption 2 that p̃(𝜆) is a function of bounded variation on [−A,A].
Therefore, for k1 ≠ k2 by Theorem 2.5.3 in Ushakov (1999),|||||∫

A

−A
e

i
b𝑗k1 −b𝑗k2

a𝑗
𝜆
p̃(𝜆)d𝜆

||||| ≤ a𝑗|b𝑗k1 − b𝑗k2 |V A
−A(p̃).

Hence, if k1 ≠ k2, we obtain

|I( 𝑗, k1, k2)| ≤ s−4𝛼
0 ∫

A

−A
p (𝜆) d𝜆 · V A

−A (p̃) ·
a𝑗|b𝑗k1 − b𝑗k2 | = s−4𝛼

0 V A
−A (p) ·

a𝑗|b𝑗k1 − b𝑗k2 | .
It follows from (A1) and 𝛼 ∈ (0, 1∕2) that

V A
−A(p) ≤ 2V A

−A

(|�̂�(·)|2h
(

·
a𝑗

))

≤ 2
[

max
𝜆∈[−A,A]

|�̂�(𝜆)|2V A
−A

(
h
(

·
a𝑗

))
+ max
𝜆∈[−A,A]

h
(
𝜆

a𝑗

)
V A
−A(|�̂�(·)|2)

]

≤ 2
⎡⎢⎢⎣ max
𝜆∈[−A,A]

|�̂�(𝜆)|2V 1∕2
−1∕2 (h(·)) + max

𝜆∈
[
− 1

2
,

1
2

] h (𝜆)V A
−A(|�̂�(·)|2)

⎤⎥⎥⎦ .
Note that this upper bound does not depend on j, aj, bjk.

Hence,

|I (𝑗, k1, k2)| ≤ 2s−4𝛼
0

⎡⎢⎢⎣ max
𝜆∈[−A,A]

|�̂�(𝜆)|2V 1∕2
−1∕2(h(·)) + max

𝜆∈
[
− 1

2
,

1
2

] h(𝜆) · V A
−A(|�̂�(·)|2)

⎤⎥⎥⎦. (A3)

Comparing (A2) and (A3), we obtain the value of c4(s0, 𝛼) at the statement of Lemma 2.
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Proof of Lemma 3. Notice that, by (1), random variables 𝛿jk are centered Gaussian. For any
centered two-dimensional Gaussian vector (z1, z2), it holds Cov(z2

1, z
2
2) = 2Cov2(z1, z2).

Therefore, recalling (2) and the definition of I( j, k1, k2) in (3), we obtain

Var
(
𝛿
(2)
𝑗·

)
= Var

(
1

m𝑗

m𝑗∑
k=1
𝛿2
𝑗k

)
= 1

m2
𝑗

∑
1≤k1,k2≤m𝑗

Cov
(
𝛿2
𝑗k1
, 𝛿2
𝑗k2

)

= 2
m2
𝑗

∑
1≤k1,k2≤m𝑗

I2( 𝑗, k1, k2) =
2

m2
𝑗

⎛⎜⎜⎜⎜⎝
m𝑗∑

k1=1
I2( 𝑗, k1, k1) +

∑
1≤k1,k2≤m𝑗

k1≠k2

I2( 𝑗, k1, k2)

⎞⎟⎟⎟⎟⎠
.

By Lemma 2, it follows that

Var
(
𝛿
(2)
𝑗·

) ≤ 2
m2
𝑗

(
c2

4(s0, 𝛼)m𝑗 + 2c2
4(s0, 𝛼)

m𝑗∑
k1=1

m𝑗∑
k2=k1+1

a2
𝑗

(b𝑗k1 − b𝑗k2)2

)

≤ 2c2
4(s0, 𝛼)
m2
𝑗

(
m𝑗 +

2a2
𝑗

𝛾2
𝑗

m𝑗∑
k1=1

m𝑗∑
k2=k1+1

1
(k2 − k1)2

)

≤ 2c2
4(s0, 𝛼)
m2
𝑗

⎛⎜⎜⎝m𝑗 +
2a2

𝑗

𝛾2
𝑗

m𝑗∑
k1=1

∞∑̃
k2=1

1
k̃2

2

⎞⎟⎟⎠ =
2c2

4(s0, 𝛼)
m𝑗

(
1 + 𝜋2

3
a2
𝑗

𝛾2
𝑗

)
.

Proof of Lemma 4. Using Chebyshev inequality and Lemma 3, we obtain

P
(|||𝛿(2)𝑗· − J(a𝑗)

||| > r
𝑗

) ≤ Var
(
𝛿
(2)
𝑗·

)
r2
𝑗

≤ c5𝑗(s0, 𝛼)
r2
𝑗
m𝑗

= 2c2
4(s0, 𝛼)

(
1 + 𝜋2

3
a2
𝑗

𝛾2
𝑗

)
r2
𝑗
m𝑗

.

By the choice of {mj},
∞∑
𝑗=1

P
(|||𝛿(2)𝑗· − J(a𝑗)

||| > r
𝑗

)
< +∞.

Therefore, applying the Borel–Cantelli lemma, we obtain the required statement.

We will use the next technical result.

Lemma 10. For all 𝛼 ∈ (0, 1
2
) and x ∈ [0, 1

2
], it holds

0 ≤ (1 − x)−2𝛼 − 1 ≤ 4x.

Proof of Lemma 10. Applying the mean value theorem to the function 𝛾𝛼( y) = (1 − y)−2𝛼 on
the interval [0, x], we obtain

(1 − x)−2𝛼 − 1 = 𝛾𝛼(x) − 𝛾𝛼(0) = 𝛾 ′𝛼(a𝛼)x = 2𝛼(1 − a𝛼)−2𝛼−1x ≤ (1 − a𝛼)−2𝛼−1x,

where a𝛼 ∈ [0, x] ⊂ [0, 1
2
].

Therefore, as 𝛼 ∈ (0, 1
2
), we get (1 − x)−2𝛼 − 1 ≤ (1 − 1

2
)−2x = 4x.
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Proof of Lemma 5. Noting that J(aj) = I( j, k1, k1) and using (3), we get

J(a𝑗) − c2s−4𝛼
0 = s−4𝛼

0 ∫
A

−A
|�̂�(𝜆)|2

⎛⎜⎜⎜⎜⎝
h
(
𝜆

a𝑗

)
||||1 −

(
𝜆

a𝑗 s0

)2||||2𝛼 − 1

⎞⎟⎟⎟⎟⎠
d𝜆.

Now, by Lemma 10, the conditions on h(·) in Assumption 1 and Lemma 1, it follows

|||J(a𝑗) − c2s−4𝛼
0

||| ≤ s−4𝛼
0 ∫

A

−A
|�̂�(𝜆)|2

|||||||h
(
𝜆

a𝑗

)⎛⎜⎜⎝
(

1 −
(

𝜆

a𝑗s0

)2
)−2𝛼

− 1
⎞⎟⎟⎠ + h

(
𝜆

a𝑗

)
− 1

||||||| d𝜆

≤ s−4𝛼
0 ∫

A

−A
|�̂�(𝜆)|2

(
4h

(
𝜆

a𝑗

)(
𝜆

a𝑗s0

)2

+ c1

(
𝜆

a𝑗

)2
)

d𝜆.

Moreover, it follows from Lemma 1 and the conditions of the lemma that, for 𝜆 ∈ [−A,A],

4h
(
𝜆

a𝑗

)(
𝜆

a𝑗s0

)2

+ c1

(
𝜆

a𝑗

)2

≤
(

4(1 + c1)
A2

s2
0
+ c1A2

)
a−2
𝑗 ,

which completes the proof.

Proof of Lemma 6. By (2) and Assumption 1, we get

J(a𝑗+1) − J(a𝑗)
a−2
𝑗

− a−2
𝑗+1

= ∫ℝ

|�̂�(𝜆)|2

a−2
𝑗

− a−2
𝑗+1

⎛⎜⎜⎜⎜⎝
h
(

𝜆

a𝑗+1

)
||||s2

0 −
(

𝜆

a𝑗+1

)2||||2𝛼 −
h
(
𝜆

a𝑗

)
||||s2

0 −
(
𝜆

a𝑗

)2||||2𝛼

⎞⎟⎟⎟⎟⎠
d𝜆

= ∫
A

−A
|�̂�(𝜆)|2

h
(

𝜆

a𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼
− h

(
𝜆

a𝑗

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼

(
a−2
𝑗

− a−2
𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼 d𝜆.

As 𝜆 ∈ [−A,A] and aj → +∞ when j → +∞, then there is 𝑗0 ∈ ℕ, such that |𝜆|
a𝑗

≤ 1
2
, for all

𝜆 ∈ [−A,A] and j ≥ j0. Hence, using the inequality s0 > 1, for sufficiently large j ≥ j0, the
integrand can be bounded as it is shown as follows:

||�̂�(𝜆)||2

|||||h
(

𝜆

a𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼
− h

(
𝜆

a𝑗

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼|||||(
a−2
𝑗

− a−2
𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼

≤
||�̂�(𝜆)||2

|||||h
(

𝜆

a𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼
− h

(
𝜆

a𝑗

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼|||||(
a−2
𝑗

− a−2
𝑗+1

) ||||s2
0 − s2

0 max
𝜆∈[−A,A]

(
𝜆

a𝑗+1

)2||||2𝛼||||s2
0 − s2

0 max
𝜆∈[−A,A]

(
𝜆

a𝑗

)2||||2𝛼

≤ ||�̂�(𝜆)||2

||||h(
𝜆

a𝑗+1

)
− h

(
𝜆

a𝑗

)|||| ||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼
+ h

(
𝜆

a𝑗

) |||||||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼
−

||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼|||||(
3s2

0∕4
)4𝛼

(
a−2
𝑗

− a−2
𝑗+1

) . (A4)
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Applying the first inequality in Lemma 1 to h( 𝜆

a𝑗+1
) − h( 𝜆

a𝑗
) and the mean value theorem to

(s2
0 − ( 𝜆

a𝑗
)2)2𝛼 − (s2

0 − ( 𝜆

a𝑗+1
)2)2𝛼 , we obtain that the upper bound for the right part of (A4) is

||�̂�(𝜆)||2 c1s4𝛼
0 𝜆

2 + 2𝛼 (1 + c1)
(
3s2

0∕4
)2𝛼−1

𝜆2(
3s2

0∕4
)2𝛼 .

This upper bound is integrable and does not depend on j. Hence, one can use the dominated
convergence theorem. For 𝜆 ∈ [−A,A], it holds lim𝑗→+∞h( 𝜆

a𝑗
) = 1 and lim𝑗→+∞|s2

0 −( 𝜆
a𝑗
)2|2𝛼 =

s4𝛼
0 . Hence,

lim
𝑗→+∞

h
(

𝜆

a𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼
− h

(
𝜆

a𝑗

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼

(
a−2
𝑗

− a−2
𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗+1

)2||||2𝛼||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼

= lim
𝑗→+∞

h
(

𝜆

a𝑗+1

) ||||s2
0 −

(
𝜆

a𝑗

)2||||2𝛼

(
a−2
𝑗

− a−2
𝑗+1

)
s8𝛼

0

⎛⎜⎜⎜⎝1 −
h
(
𝜆

a𝑗

)
h
(

𝜆

a𝑗+1

)||||||||
s2

0 −
(

𝜆

a𝑗+1

)2

s2
0 −

(
𝜆

a𝑗

)2

||||||||
2𝛼⎞⎟⎟⎟⎠

= lim
𝑗→+∞

s−4𝛼
0

a−2
𝑗

− a−2
𝑗+1

⎛⎜⎜⎜⎝1 −
h
(
𝜆

a𝑗

)
h
(

𝜆

a𝑗+1

)||||||||1 +

(
𝜆

a𝑗

)2
−

(
𝜆

a𝑗+1

)2

s2
0 −

(
𝜆

a𝑗

)2

||||||||
2𝛼⎞⎟⎟⎟⎠ . (A5)

Using L'Hôpital's rule, one can see that, for 𝛼 ∈ (0, 1∕2), it holds limx→0
1−(1+x)2𝛼

x
= −2𝛼.

Noting that, for 𝜆 ∈ [−A,A], we get

||||h(
𝜆

a𝑗+1

)
− h

(
𝜆

a𝑗

)||||
a−2
𝑗

− a−2
𝑗+1

≤ sup
𝜆0∈[0,A]

|||||h′′
(
𝜆0

a𝑗

)||||| · 𝜆2 → 0,

when aj → +∞; we obtain that (A5) equals

lim
𝑗→+∞

s−4𝛼
0(

a−2
𝑗

− a−2
𝑗+1

) h
(
𝜆

a𝑗

)
h
(

𝜆

a𝑗+1

) ⎛⎜⎜⎜⎝
h
(

𝜆

a𝑗+1

)
h
(
𝜆

a𝑗

) − 1 + 1 −

||||||||1 +

(
𝜆

a𝑗

)2
−

(
𝜆

a𝑗+1

)2

s2
0 −

(
𝜆

a𝑗

)2

||||||||
2𝛼⎞⎟⎟⎟⎠

= lim
𝑗→+∞

s−4𝛼
0(

a−2
𝑗

− a−2
𝑗+1

) ⎛⎜⎜⎜⎝1 −

||||||||1 +

(
𝜆

a𝑗

)2
−

(
𝜆

a𝑗+1

)2

s2
0 −

(
𝜆

a𝑗

)2

||||||||
2𝛼⎞⎟⎟⎟⎠ = − lim

𝑗→+∞

2𝛼s−4𝛼
0

((
𝜆

a𝑗

)2
−

(
𝜆

a𝑗+1

)2
)

(
a−2
𝑗

− a−2
𝑗+1

)(
s2

0 −
(
𝜆

a𝑗

)2
)

= − 2𝛼s−4𝛼−2
0 𝜆2.
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Proof of Lemma 7. Note that

|||J(a𝑗) − J(a𝑗+1) − 𝛼s−4𝛼−2
0 c3 ·

(
a−2
𝑗 − a−2

𝑗+1
)|||

=

||||||||||∫
A

−A
|�̂�(𝜆)|2

⎛⎜⎜⎜⎜⎝
h
(
𝜆

a𝑗

)
||||s2

0 −
(
𝜆

a𝑗

)2||||2𝛼 − 2𝛼s−4𝛼−2
0

(
𝜆

a𝑗

)2

− s−4𝛼
0

⎞⎟⎟⎟⎟⎠
d𝜆

−∫
A

−A
|�̂�(𝜆)|2

⎛⎜⎜⎜⎜⎝
h
(

𝜆

a𝑗+1

)
||||s2

0 −
(

𝜆

a𝑗+1

)2||||2𝛼 − 2𝛼s−4𝛼−2
0

(
𝜆

a𝑗+1

)2

− s−4𝛼
0

⎞⎟⎟⎟⎟⎠
d𝜆

||||||||||
≤ s−4𝛼

0 ∫
A

−A
|�̂�(𝜆)|2

⎛⎜⎜⎜⎜⎝
||||h(

𝜆

a𝑗

)
− 1

||||||||1 −
(

𝜆

a𝑗 s0

)2||||2𝛼 +

|||||||||
1||||1 −

(
𝜆

a𝑗 s0

)2||||2𝛼 − 2𝛼
(

𝜆

a𝑗s0

)2

− 1

|||||||||
+

||||h(
𝜆

a𝑗+1

)
− 1

||||||||1 −
(

𝜆

a𝑗+1s0

)2||||2𝛼 +

|||||||||
1||||1 −

(
𝜆

a𝑗+1s0

)2||||2𝛼 − 2𝛼
(

𝜆

a𝑗+1s0

)2

− 1

|||||||||
⎞⎟⎟⎟⎟⎠

d𝜆. (A6)

Let us consider the function f (x) ∶= (1− x)−2𝛼 − 2𝛼x− 1, x ∈ [0, 1∕4], 𝛼 ∈ (0, 1∕2).Notice that
f (·) ∈ C2[0, 1∕4], f (0) = 0, f′(x) = 2𝛼(1 − x)−2𝛼−1 − 2𝛼, f′(0) = 0, f′′(x) = 2𝛼(2𝛼 + 1)(1 − x)−2𝛼−2.

Then, applying the mean value theorem twice, we get

|𝑓 (x) − 𝑓 (0)| ≤ sup
u∈[0,1∕4]

𝑓 ′′(u)x2, x ∈ [0, 1∕4].

Noting that supu∈[0,1∕4]𝑓
′′(u) ≤ 27

33 ; it follows |𝑓 (x) − 𝑓 (0)| ≤ 27

33 x2, x ∈ [0, 1∕4].
Therefore, if A

a𝑗 s0
≤ 1

2
, one can bound the second and the fourth terms of the integrand in

(A6) by 27

33 (
𝜆

a𝑗 s0
)4 and 27

33 (
𝜆

a𝑗+1s0
)4, respectively. By Lemma 1, if A

a𝑗
≤ 1

2
, then the first and third

terms in (A6) can be bounded by 2c1( 𝜆a𝑗 )
4 and 2c1( 𝜆

a𝑗+1
)4, respectively.

Combining the above bounds for sufficiently large j, we get

|||J(a𝑗) − J(a𝑗+1) − 𝛼c3s−4𝛼−2
0 ·

(
a−2
𝑗 − a−2

𝑗+1
)|||

≤ s−4𝛼
0 ∫

A

−A
|�̂�(𝜆)|2

[
27

33

(
𝜆

a𝑗s0

)4

+ 27

33

(
𝜆

a𝑗+1s0

)4

+ 2c1

[(
𝜆

a𝑗

)4

+
(

𝜆

a𝑗+1

)4
]]

d𝜆

≤ 28

33 s−4𝛼−4
0 a−4

𝑗 ∫
A

−A
|�̂�(𝜆)|2𝜆4 (1 + 33c1s4

0∕26) d𝜆.
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Thus, for sufficiently large j, we obtain||||| J(a𝑗) − J(a𝑗+1)
a−2
𝑗

− a−2
𝑗+1

− 𝛼c3s−4𝛼−2
0

||||| ≤ 27A2s−4𝛼−4
0

(
1 + 33c1s4

0∕26)
33a2

𝑗

(
1 −

a2
𝑗

a2
𝑗+1

) c3,

which completes the proof of Lemma 7.

Proof of Proposition 2. Note that Δ𝛿(2)
𝑗· can be rewritten as

Δ𝛿(2)
𝑗· =

(
𝛿
(2)
𝑗· − J(a𝑗)

)
−

(
𝛿
(2)
𝑗+1· − J(a𝑗+1)

)
+

(
J(a𝑗) − J(a𝑗+1)

)
a−2
𝑗

− a−2
𝑗+1

.

Thus, by Lemmas 4 and 7,

|||Δ𝛿(2)𝑗· − 𝛼c3s−4𝛼−2
0

||| ≤ c6(r𝑗 + r𝑗+1)
a−2
𝑗

− a−2
𝑗+1

+
26A2s−4𝛼−4

0
(
1 + 33c1s4

0∕26)
33a2

𝑗

(
1 −

(
a2
𝑗

a2
𝑗+1

)2
) c3

≤ 2c6

1 −
(

a𝑗
a𝑗+1

)2 a2
𝑗 r𝑗 +

26A2s−4𝛼−4
0

(
1 + 33c1s4

0∕26) c3

33
(

1 −
(

a𝑗
a𝑗+1

)2
) a−2

𝑗

≤ 2c6a2
𝑗
r𝑗

1 − 1
(1+𝜀)2

+
26A2s−4𝛼−4

0
(
1 + 33c1s4

0∕26) c3

33
(

1 − 1
(1+𝜀)2

) a−2
𝑗 ≤ c9 max

(
a2
𝑗 r𝑗 , a

−2
𝑗

)
,

where c9 ∶= 2c6

1− 1
(1+𝜀)2

+ 26A2s−4𝛼−4
0 (1+33c1s4

0∕26)c3

33(1− 1
(1+𝜀)2

)
.

Proof of Lemma 8. Let us find the range of the two-d–valued function

y(s0, 𝛼) =
(
𝑦1(s0, 𝛼)
𝑦2(s0, 𝛼)

)
∶=

( s−4𝛼
0

𝛼s−4𝛼−2
0

)
defined on the domain (s0, 𝛼) ∈ (1,+∞) × (0, 1

2
).

For simplicity, we use the notations y1 and y2 instead of y1(s0, 𝛼) and y2(s0, 𝛼) for the
following computations.

As s0 > 1, then for each 𝛼 ∈ (0, 1
2
), the range of possible values of y1 is (0, 1). For each

𝛼 ∈ (0, 1
2
) and y1 ∈ (0, 1), there is such s0 that 𝑦1 = s−4𝛼

0 . The variable y2 can be expressed in

terms of y1 as 𝑦2 = 𝛼 · 𝑦
1+ 1

2𝛼
1 . Therefore, we can assume that y1 is fixed and change only 𝛼 to

investigate the range of y2.

Notice that

(𝑦2)′𝛼 = 𝑦
1+ 1

2𝛼
1 + 𝛼𝑦

1+ 1
2𝛼

1 ln(𝑦1) ·
(
− 1

2𝛼2

)
= 𝑦

1+ 1
2𝛼

1

(
1 − ln(𝑦1)

2𝛼

)
.

If y1 ∈ (0, 1), then (𝑦2)′𝛼 > 0 and y2 is an increasing function of 𝛼 with the range (0, 𝑦2
1∕2).

Hence, the range of the function y(s0, 𝛼) on the domain (1,+∞)×(0, 1
2
) is Ry, which completes

the proof.
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Proof of Lemma 9. If (s0, 𝛼) and (s′0, 𝛼
′) are two solutions of the system (6) for some (y1, y2) ∈

Ry, then ⎧⎪⎨⎪⎩
s−4𝛼

0 =
(

s′0
)−4𝛼′

,

𝛼s−2
0 = 𝛼′

(
s′0
)−2

,

and therefore, ⎧⎪⎨⎪⎩
s𝛼0 =

(
s′0
)𝛼′
,(

𝛼

s2
0

)𝛼
=

(
𝛼′

(s′0)2

)𝛼

.

Hence, ( 𝛼
′

𝛼
)𝛼 = ( (s

′
0)

2

s2
0
)𝛼 = (s′0)

2(𝛼−𝛼′) and 𝛼′

𝛼
= (s′0)

2(1− 𝛼′

𝛼
).

Denoting 𝛼′

𝛼
= t and (s′0)

2 = a, we obtain the equation

tat−1 = 1, t ∈ ℝ+. (A7)

As s0 > 1, then s′0 must also be greater than 1 (otherwise, 𝛼′ < 0,which is not feasible). Hence,
a > 1 and the left-hand side of (A7) is an increasing function. Hence, the equation has the
only solution t = 1, which means 𝛼′ = 𝛼 and implies a unique solution of (6).

Proof of Proposition 3. Let us rewrite (6) as⎧⎪⎨⎪⎩
−4𝛼 ln(s0) = ln(𝑦1),

𝛼 = 𝑦2
𝑦1

s2
0,

and therefore, ⎧⎪⎨⎪⎩
𝛼
(

ln(𝛼) + ln
(
𝑦1
𝑦2

))
= − ln(𝑦1)

2
,

s0 =
√

𝑦1
𝑦2
𝛼.

Denoting t = ln(𝛼), the first equation can be rewritten as

et
(

t + ln
(
𝑦1

𝑦2

))
= − ln(𝑦1)

2
,

et+ln
(
𝑦1
𝑦2

) (
t + ln

(
𝑦1

𝑦2

))
= eln

(
𝑦1
𝑦2

)
ln

(
𝑦
− 1

2
1

)
= 𝑦1

𝑦2
ln

(
𝑦
− 1

2
1

)
.

Hence, by the definition of the Lambert W function, we obtain

t = LambertW
(
𝑦1

𝑦2
ln

(
𝑦
− 1

2
1

))
− ln

(
𝑦1

𝑦2

)
.

Finally, (7) follows from 𝛼 = et and s0 = ( 𝑦1
𝑦2
𝛼)

1
2 .

Proof of Theorem 1. The first statement of the theorem immediately follows from Propo-
sition 3. To investigate properties of the solutions (ŝ0𝑗 , �̂�𝑗), one has to study properties of
LambertW( x1

x2
).
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Notice that, by the two-dimensional mean value theorem, for any 𝑓 ∶ ℝ2 → ℝ that is from
C1(ℝ2), it holds

𝑓 (x) − 𝑓 (y) = (∇𝑓 ((1 − c)x + cy) , x − y) , x , y ∈ ℝ2,

where c ∈ [0, 1],∇ denotes the gradient and (·, ·) is the scalar product in ℝ2. Therefore,

|𝑓 (x) − 𝑓 (y)| ≤ sup
c∈[0,1]

||∇𝑓 ((1 − c)x + cy)|| · ||x − y|| .
Now, applying this result to the function 𝑓 (x) = exp( 1

2
LambertW( x1

x2
)), x = (ln( c2

𝛿
(2,a)
𝑗·

), 2q𝑗),

y = (4𝛼 ln(s0), 2𝛼
s2

0
), and noting that the solution ŝ0𝑗 is given by (8), we obtain

|̂s0𝑗 − s0| = ||||e 1
2

LambertW
(

x1
x2

)
− e

1
2

LambertW
(
𝑦1
𝑦2

)|||| ≤ sup
c∈[0,1]

||||||||∇e
1
2

LambertW
(

(1−c)x1+c𝑦1
(1−c)x2+c𝑦2

)||||||||
×
||||||
||||||
(

ln

(
c2

𝛿
(2,a)
𝑗·

)
− 4𝛼 ln(s0),

2c2

c3

Δ𝛿(2,a)
𝑗·

𝛿
(2,a)
𝑗·

− 2𝛼
s2

0

)||||||
|||||| . (A8)

Noting that (LambertW(x))′ = LambertW(x)
x(1+LambertW(x))

, we obtain

∇e
1
2

LambertW
(

x1
x2

)
= e

1
2

LambertW
(

x1
x2

) LambertW
(

x1
x2

)
2 x1

x2
(1 + LambertW( x1

x2
))

(
1
x2
,−x1

x2
2

)

= e
1
2

LambertW
(

x1
x2

) LambertW
(

x1
x2

)
1 + LambertW

(
x1
x2

) (
1

2x1
,− 1

2x2

)
.

By the properties of the adjusted estimates x = (ln( c2

𝛿
(2,a)
𝑗·

), 2q𝑗) → (4𝛼 ln(s0), 2𝛼
s2

0
), when j → ∞.

As both 4𝛼 ln(s0) and 2𝛼
s2

0
are strictly positive real numbers, then x1 and x2 are strictly positive

values separated from zero for sufficiently large j.Hence, 1
x1

and 1
x2

are bounded and the above

gradient is uniformly bounded for all sufficiently large values of j.
Now, we study the second multiplier in (A8),

||||||
||||||
(

ln

(
c2

𝛿
(2,a)
𝑗·

)
− 4𝛼 ln(s0),

2c2

c3

Δ𝛿(2,a)
𝑗·

𝛿
(2,a)
𝑗·

− 2𝛼
s2

0

)||||||
|||||| ≤

||||||ln
(

c2

𝛿
(2,a)
𝑗· s4𝛼

0

)|||||| +
||||||
2c2s2

0Δ𝛿
(2,a)
𝑗· − 2𝛼c3𝛿

(2,a)
𝑗·

c3s2
0𝛿

(2,a)
𝑗·

|||||| .
(A9)

As | ln(x1) − ln(𝑦1)| ≤ |x1−𝑦1|
min(x1,𝑦1)

for x1, 𝑦1 ∈ ℝ+, then by Proposition 1 and Remark 11, we can
estimate the first summand in (A9) as

||||||ln
(

c2s−4𝛼
0

𝛿
(2,a)
𝑗·

)|||||| ≤
|||𝛿(2,a)𝑗· − c2s−4𝛼

0
|||

min
(
𝛿
(2,a)
𝑗· , c2s−4𝛼

0

) ≤ c12 max
(

r𝑗 , a−2
𝑗

)
, (A10)

where c12 is an almost surely finite random variable.
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The second summand in (A9) can be estimated using Propositions 1 and 2 and
Remark 11 as||||||
2c2s2

0Δ𝛿
(2,a)
𝑗· − 2𝛼c3𝛿

(2,a)
𝑗·

c3s2
0𝛿

(2,a)
𝑗·

|||||| ≤
|||||||
2c2s2

0

(
Δ𝛿(2,a)

𝑗· − 𝛼s−4𝛼−2
0 c3

)
c3s2

0𝛿
(2,a)
𝑗·

||||||| +
|||||||
2𝛼c3

(
c2s−4𝛼

0 − 𝛿(2,a)
𝑗·

)
c3s2

0𝛿
(2,a)
𝑗·

|||||||
≤ c13

(
max

(
a2
𝑗 r𝑗 , a

−2
𝑗

)
+ max

(
r𝑗 , a−2

𝑗

)) ≤ 2c13 max
(

a2
𝑗 r𝑗 , a

−2
𝑗

)
, (A11)

where c13 is an almost surely finite random variable.
Putting together the results (A8)-(A11), we obtain |̂s0𝑗 − s0| ≤ c10 max(a2

𝑗
r𝑗 , a−2

𝑗
).

Finally, noting that

|𝛼𝑗 − 𝛼| = ||||x2

2
eLambertW

(
x1
x2

)
− 𝑦2

2
eLambertW

(
𝑦1
𝑦2

)||||
≤ 1

2
||||eLambertW

(
x1
x2

)
(x2 − 𝑦2)

|||| + 1
2

|||||𝑦2

(
eLambertW

(
x1
x2

)
− eLambertW

(
𝑦1
𝑦2

))|||||
and using the upper bounds in (A10) and (A11), we obtain |𝛼𝑗−𝛼| ≤ c11 max(a2

𝑗
r𝑗 , a−2

𝑗
), which

completes the proof.
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