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Abstract
Using techniques from the theory of finite-dimensional commutative

Banach algebras, we discuss integral representations of square positive
functionals in an absttract setting, extending and completing some results
concerning the positive Riesz functionals in finite-dimensional spaces of
polynomials.

0 Introduction

Let Ω be a Hausdorff (topological) space, and let S be a vector space consisting
of complex-valued Borel functions, defined on Ω. We assume that 1 ∈ S and
if f ∈ S, then f̄ ∈ S. For convenience, and following [14, 15], we say that
S, having these properties, is a function space (on Ω). The symbol RS will
designate the ”real part“ of S, that is {f ∈ S; f = f̄}.

Now, let S(2) be the vector space spanned by all products of the form fg
with f, g ∈ S, which is itself a function space. We have S ⊂ S(2), and S = S(2)

when S is an algebra.
Important examples of function spaces are associated with the space P of

all polynomials in n ≥ 1 real variables, with complex coefficients. For every
integer m ≥ 0, let Pm be the subspace of P consisting of all polynomials p with

deg(p) ≤ m, where deg(p) is the total degree of p. Note that P(2)
m = P2m and

P(2) = P, the latter being an algebra.
We occasionally use the notation Pnm instead of Pm and Pn instead of P

when the number n should be specified.
Let S be a function space and let Λ : S(2) 7→ C be a linear map with the

following properties:
(1) Λ(f̄) = Λ(f) for all f ∈ S(2);
(2) Λ(|f |2) ≥ 0 for all f ∈ S;
(3) Λ(1) = 1.

Adapting some terminology from [10] to our context (see also [14], [15]), a
linear map Λ with the properties (1)-(3) is said to be a unital square positive
functional, briefly a uspf.
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If Λ : S(2) 7→ C is a uspf, we have the Cauchy-Schwarz inequality:

|Λ(fg)|2 ≤ Λ(|f |2)Λ(|g|2), f, g ∈ S. (1)

Putting IΛ = {f ∈ S; Λ(|f |2) = 0}, the Cauchy-Schwarz inequality shows
that IΛ is a vector subspace of S and that S 3 f 7→ Λ(|f |2)1/2 ∈ R+ is a
seminorm. Moreover, the quotient S/IΛ is an inner product space, with the
inner product given by

〈f̂ , ĝ〉 = Λ(fḡ), (2)

where f̂ = f + IΛ is the equivalence class of f ∈ S modulo IΛ.
In fact, IΛ = {f ∈ S; Λ(fg) = 0 ∀g ∈ S} and IΛ · S ⊂ ker(Λ).
If S is finite dimensional, then HΛ := S/IΛ is actually a Hilbert space.
We also put RHΛ := {f +IΛ; f ∈ RS}, which is a real Hilbert space. When

f̂ ∈ RHΛ, we may and shall always assume that f ∈ RS.

When the uspf Λ : S(2) 7→ C is given, we shall use the notation IΛ, HΛ, f̂ ,
with the meaning from above, if not otherwise specified.

The (abstract) moment problem for a given uspf Λ : S(2) 7→ C, where S
is a fixed function space on a Hausdorff space Ω, means to find conditions
insuring the existence of a probability measure µ with support in Ω, such that
Λ(f) =

∫
fdµ, f ∈ S(2). When such a measure µ exists, it is said to be a

representing measure for Λ. Such a framework for stating and solving moment
problems has been already used by other authors (see for instance [9]).

Note that the map S(2) 3 f 7→
∫
fdµ ∈ C, where µ is a probability measure

with support in Ω, is a uspf, as one can easily see.

In some special cases, a uspf Λ : S(2) 7→ C may have an atomic representing
measure in Ω, which in this text means that there exists a finite subset ΩΛ =
{ω1, . . . , ωd} ⊂ Ω and positive numbers λ1, . . . , λd, with λ1 + · · ·+ λd = 1, such

that Λ(f) =
∑d
j=1 λjf(ωj) for all f ∈ S(2).

When S is finite dimensional and the uspf Λ on S(2) has an arbitrary rep-
resenting measure, then one expects that this measure may be replaced by an
atomic one. Such a property, going back to Tchakaloff (see Corollary 2 in [12];
see also [3, 4, 11, 15] etc.), will be discussed in Section 5 (see especially our
Theorem 4).

In a previous work (see [15]), the author presented a new approach to trun-
cated moment problems in several variables, via a concept of idempotent with
respect to a Riesz type functional, naturally associated to the problem.

In this work we exhibit some generalizations of the results from [15], in a
more abstract context, and present some new assertions and examples.

Next chapter contains comments, definitions and results (without proofs),
necessary for further development. Some new definitions are also given (see
Subsection 1.4).

In the second chapter we recapture some results from [15], in the present
context. Generally, we follow the lines of the corresponding results from [15],
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but we give complete and sometimes improved arguments, often different from
those in [15]. As a consequence of Theorem 2, some uspf’s with no representing
measure may have certain integral representations (see Example 3).

The third chapter deals with two abstract approaches to the existence of
representing measure for square positive functionals. They are rather explicit
characterizations but their consequences for concrete solutions of the moment
problems are still to be proved.

The fourth chapter extends the concept of an orthogonal basis consisting of
relative idempotents that is ”multiplicative“ with respect to a uspf and a tuple
generating the given function space. The main result (Theorem 3) generalizes
Theorem 2 from [15].

A discussion related to Tchakaloff’s Theorem is presented in the fifth section.
In particular, we extend (see our Theorem 2) the well-known result asserting
that if a uspf has a representing measure on a finite dimensional function space
of polynomials then it necessarily has an atomic representing measure.

The final chapter is an approach to the moment problem on finite dimen-
sional function spaces when the number of atoms of a representing measure is
not necessarily equal to the cardinal of an orthogonal basis consisting of idem-
potents. The basic result of this section (Theorem 5) presents an extension of
Theorem 4 from [15].

1 Preliminaries

1.1 Tchakaloff’s Theorem

Cubature formulas are of particular interest both in the abstract analysis as well
as in numerical analysis for the computation or approximation of some integrals.

In 1957, V. Tchakaloff essentially proved the following cubature formula (see
[12], Théorème II):

Theorem A Let F ⊂ R2 be a bounded closed set. Fixing an integer n ≥ 1
and setting N = (n+ 1)(n+ 2)/2, there are points (uk, vk) ∈ R2 and constants
ak ≥ 0, k = 1, . . . , N, such that∫ ∫

F

p(u, v)dudv =

N∑
k=1

akp(uk, vk)

for all polynomials p in two variables, of total degre ≤ n.

This result was improved by several authors: R. Curto and L. Fialkow [4],
M. Putinar [11], C. Bayer and J. Teichmann [1] etc.

In 2006, C. Bayer and J. Teichmann proved the following version of Tchakaloff’s
result (see [1], Corollary 1):

Theorem B Let µ be a positive Borel measure on Rn and let A ⊂ Rn be
measurable, with µ(Rn \A) = 0. If∫

Rn

(t21 + · · ·+ t2n)1/2dµ(t) < +∞,
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there exist an integer k ≤ n, k points ξ1, . . . , ξk ∈ A, and weights λ1 >
0, . . . , λk > 0 such that ∫

Rn

p(t)dµ(t) =

k∑
j=1

λjp(ξj),

for every polynomial p of total degree equal to 1.

In the proof of our Theorem 4, we shall use a consequence of Theorem B,
namely Corollary 2 from [1].

Using different methods, we have obtained (see [15], Corollary 4) another
version of Tchakaloff’s theorem:

Theorem C Let µ be a positive Borel measure on Rn such that∫
Rn

(t21 + · · ·+ t2n)dµ(t) < +∞,

Then there exist a subset Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn and positive numbers
λ1, . . . , λd, where d ≤ n+ 1, such that∫

Rn

p(t)dµ(t) =

d∑
j=1

λjp(ξ
(j)).

for all polynomials p of total degree at most 2.

Although the hypothesis of Theorem C is stronger than the that of Theorem
B, its consequences seem to be useful in concrete situations, because the weights
λ1, . . . , λd, and the nodes ξ(1), . . . , ξ(d) as well, can be given by explicit formulas.

1.2 Idempotents with respect to a uspf

In this subsection we recall the concept of idempotent element with respect to
a given uspf, as defined in [15].

Example 1 Let Ω = {ω1, . . . , ωd} be an arbitrary (finite) set and let C(Ω) be
the (finite dimensional) C∗-algebra of all complex-valued functions defined on Ω,
endowed with the sup-norm. Assume that θ = (θ1, . . . , θn) is an n-tuple in C(Ω)
generating this algebra. In other words, every element of C(Ω) is a polynomial
in θ1, . . . , θn. Moreover, with the standard notation for multi-indices, the set
{θα;α ∈ Zn+} must contain a subset {θα;α ∈ Zn+, |α| ≤ m}, for some integer
m ≥ 1, which spans the vector space C(Ω).

Fixing an integer m ≥ 1 as above, the linear map Pm 3 p 7→ p ◦ θ ∈ C(Ω) is
surjective.

Consider the measure ν =
∑d
j=1 λjδj , with δj the Dirac measure at ωj ,

λj > 0 for all j = 1, . . . , d, and
∑d
j=1 λj = 1.
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Setting ξ(j) := θ(ωj), µ({ξ(j)}) = ν({ωj}) = λj , j = 1, . . . , d, and Ξ :=
{ξ(1), . . . , ξ(d)} ⊂ Rn, we put

Λ(p) =

∫
Ξ

pdµ =

∫
Ω

p ◦ θdν, p ∈ P2m,

which is a uspf, for which µ is a representing measure.
Let now f ∈ C(Ω) be an idempotent. In other words, f is the caracteristic

function of a subset of Ω. Our previous discussion implies the existence of a
polynomial p ∈ Pm, which may be supposed to have real coefficients, such that
p◦θ = f . Consequently, Λ(p2) =

∫
Ω
p2◦θdν =

∫
Ω
p◦θdν = Λ(p). This shows that

some of the solutions the equation Λ(p2) = Λ(p), which can be expressed only in
terms of Λ, play an important role when trying to reconstruct the representing
measure µ.

This remark leads us to the concept of idempotent with respect to a uspf,
recalled in the following (see [15], Definition 1).

Let S be a finite dimensional function space on a Hausdorff space Ω. Fixing
a uspf Λ : S(2) 7→ C, let IΛ, HΛ = S/IΛ be defined as in Introduction. We also
denote by 〈∗, ∗〉, ‖ ∗ ‖ the inner product, as in (2), and the corresponding norm
induced on HΛ, respectively.

We recall that RHΛ designate the subspace {f̂ ∈ HΛ; f ∈ RS}, which is a

real Hilbert space, and that if f̂ ∈ RHΛ, we always suppose the representative
f ∈ RS.

Definition 1 ([15]) An element p̂ ∈ RHΛ is said to be Λ-idempotent (or simply
idempotent if Λ is fixed) if it is a solution of the equation

‖p̂‖2 = 〈p̂, 1̂〉. (3)

Remark 1 Note that p̂ ∈ RHΛ is idempotent if and only if Λ(p2) = Λ(p), via
(2). Set

ID(Λ) = {p̂ ∈ RHΛ; ‖p̂‖2 = 〈p̂, 1̂〉 6= 0}, (4)

which is the family of nonnull idempotent elements from RHΛ. This family is
nonempty because 1̂ ∈ ID(Λ).

Note that two elements p̂, q̂ ∈ HΛ are orthogonal if and only if Λ(pq̄) = 0.

The existence of orthogonal bases consisting of idempotents with respect to
a given uspf follows from the following result, which is part of Lemma 4 from
[15].

Lemma 1 Let Λ : S(2) 7→ C be a uspf, and let TΛ = {v̂ ∈ RHΛ; ‖v̂‖ = 1}.
If the set {v̂1, . . . , v̂d} ⊂ TΛ is an orthonormal basis of HΛ with 〈v̂j , 1̂〉 6=

0, j = 1, . . . , d, the set {〈v̂1, 1̂〉v̂1, . . . 〈v̂d, 1̂〉v̂d} is an orthogonal basis of HΛ

consisting of idempotents. Moreover,

〈v̂1, 1̂〉v̂1 + · · ·+ 〈v̂d, 1̂〉v̂d = 1̂.
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From Lemma 1, it follows readily the next result (which is Theorem 1 from
[15]).

Theorem 1 For every uspf Λ : S(2) 7→ C, the Hilbert space HΛ has infinitely
many orthogonal bases consisting of idempotent elements.

Corollary 1 Let Λ : S(2) 7→ C be a uspf. Then there are functions b1, . . . , bd ∈
RS such that Λ(b2j ) = Λ(bj) > 0, Λ(bjbk) = 0 for all j, k = 1, . . . , d, j 6= k, and
every f ∈ S can be uniquely represented as

f =

d∑
j=1

Λ(bj)
−1Λ(fbj)bj + f0,

with f0 ∈ IΛ and d = dimHΛ.

This assertion is Corollary 1 from [15].

1.3 Multiplicative Structures

As in [15], the bases consisting of idempotents can be associated with multi-
plicative structures. We recall in the following this construction.

Remark 2 Let S be a finite dimensional function space on a Hausdorff space,
and let Λ : S(2) 7→ C be a uspf. Let B ⊂ ID(Λ) be a collection of nonnull
mutually orthogonal elements whose sum is 1̂ (in particular an orthogonal basis),
and letHB be the complex vector space spanned by B inHΛ. Using the basis B of
the space HB, we may define a multiplication, an involution, and a norm on HB,
making it a unital, commutative, finite dimensional C∗-algebra. Specifically, if
B = {b̂1, . . . , b̂d} with 1̂ =

∑d
j=1 b̂j , and if f̂ =

∑d
j=1 αj b̂j , ĝ =

∑d
j=1 βj b̂j , are

elements from HB, their product is given by f̂ ·ĝ =
∑d
j=1 αjβj b̂j . The involution

is defined by f̂∗ =
∑d
j=1 αj b̂j , and the norm is given by ‖f̂‖∞ = max1≤j≤d |αj |,

for f̂ =
∑d
j=1 αj b̂j .

Having in mind this construction, we may speak about the C∗-algebra (struc-
ture of) HB induced by B.

When B is actually a basis, we clearly have HB = HΛ.
If for some f, g ∈ S we also have fg ∈ S, the element f̂ · ĝ, computed for

instance in the algebra HΛ, is, in general, different from f̂g. In particular, if

θ = (θ1, . . . , θn) is an n-tuple of elements of S, then θ̂α = θ̂1

α1 · · · θ̂n
αn

is, in

general, different from θ̂α, when θα ∈ S for some multi-index α = (α1, . . . αn) ∈
Zn+, where, as usually, we put θα := θα1

1 · · · θαn
n .

It is easily seen that the space of characters of the C∗-algebra HB induced
by B, say ∆ = {δ1, . . . , δd}, coincides with the dual basis of B. As HB is also

a Hilbert space as a subspace of HΛ, we note that δj(f̂) = Λ(bj)
−1〈f̂ , b̂j〉, f̂ ∈

HB, j = 1, . . . , d. This also shows that C∗-algebra HB induced by B is semi-
simple.
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1.4 Finitely Generated Function Spaces

Let S be a function space on a Hausdorff space Ω. We assume that there exist
an n-tuple θ = (θ1, . . . , θn) of elements of RS, and an integer m ≥ 1, such that
such that the family Θm := {θα; |α| ≤ m} spans the space S.

When such a pair (θ,m) exists, we shortly say that the function space S is
m-generated by θ. Clearly, in this case S is of finite dimension, and the family
Θ2m spans the space S(2). In fact, S = {p◦θ; p ∈ Pm}, where Pm, as mentioned
before, is the space of polynomials of total degree less or equal to m.

In particular, S is 1-generated by θ if and only if S is the span of {θ, 1}.
Clearly, if S is a finite dimensional function space, it is at least 1-generated by a
basis θ = (θ1, . . . , θn). Nevertheless, the case of an S m-generated by a tuple θ
with m > 1 is also of some interest. Also note that if S is a function space that
is m-generated by an tuple θ of elements of S, and if Λ : S(2) 7→ C is a uspf,
the Hilbert space HΛ must be of finite dimension less or equal to the cardinal
of the set Θm.

Example 2 As before, let P = Pn be the algebra of all polynomials in n
real variables, say t1, . . . , tn, with complex coefficients, and fix a k-tuple θ =
(θ1, . . . , θk) of elements of P. Also let Pθ,m be the span of the set Θm :=
{θα; |α| ≤ m} in P, that is, Pθ,m is a function spacem-generated by θ. It consists
of certain polynomials of degree less or equal to max{α1d1+· · ·+αkdk; |α| ≤ m},
with dj := deg(θj); j = 1, . . . , k. In particular, if θj = tj , j = 1, . . . , n, then
Pm = Pθ,m, is a function space m-generated by t := (t1, . . . , tn).

1.5 Continuous Point Evaluations

A discussion concerning the point evaluations in the context of function spaces
on Rn can be found in [15], Section 4. Some assertions of interest in the context
of Hausdorff spaces can be obtained from those in [15], with minor modifications.

Let S be a finite dimensional function space on the Hausdorff space Ω, and
let Λ : S(2) 7→ C be a uspf. For every point ω ∈ Ω, we denote by δω the point
evaluation at ω, that is, δω(f) = f(ω), for every function f ∈ S.

Definition 2 The point evaluation δω is said to be Λ-continuous if there exists
a constant cω > 0 such that

|δω(f)| ≤ cωΛ(|f |2)1/2, f ∈ S.

Let ZΛ be the subset of those points ω ∈ Ω such that δω is Λ-continuous.
For every function f let us denote by Z(f) the set of its zeros.

Lemma 2 We have the equality

ZΛ = ∩f∈IΛ
Z(f).

The proof of Lemma 2 is similar to that of Lemma 6 from [15], and will be
omitted.

Note that IΛ = {0} implies ZΛ = Ω.
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Remark 3 (1) The previous lemma shows that the set ZΛ extends the concept
of algebraic variety of the moment sequence associated to Λ (see for instance
(1.6) from [3]).

(2) It also follows from Lemma 2 that for each ω ∈ ZΛ, the functional δω
induces a functional δ̂ω on HΛ given by δ̂ω(f̂) = f(ω), f ∈ S.

(3) When the map Ω 3 ω 7→ δω is injective, we may regard the elements of

HΛ as functions on ZΛ, putting f̂(ω) = f(ω), f̂ ∈ HΛ, ω ∈ ZΛ.

The next result extends an assertion from [2] (see also [15], Lemma 7).

Lemma 3 Suppose that the uspf Λ : S(2) 7→ C has an atomic representing
measure µ in Ω. Then supp(µ) ⊂ ZΛ.

The proof of Lemma 3 is similar to that of Lemma 7 from [15] and will be
omitted.

2 Integral Representations

In this Section we recapture, in the context of function spaces on a Hausdorff
space Ω, some integral representation, stated in [15] for polynomial function
spaces on the real n-dimensional Euclidean space (n ≥ 1). As in Example 1, for
every finite set Ξ, we denote by C(Ξ) the finite dimensional C∗-algebra of all
complex-valued functions defined on Ξ.

Remark 4 Let S be a finite dimensional function space on Ω, and let Λ :
S(2) 7→ C be a uspf. Let also C = {ĉ1, . . . , ĉv} be an orthogonal family in HΛ

consisting of nonnull idempotents, and let HC be the span of the set C in HΛ.
We denote by SC the set of those f ∈ S with f̂ ∈ HC , and by G the linear span of
the (linearly independent) family {c1, . . . , cv} in S. Then we have SC = G+ IΛ,
which is obvious, and G ∩ IΛ = {0}. Indeed, if g =

∑v
j=1 βjcj ∈ IΛ, with βj

scalars, then

Λ(|g|2) =

v∑
j,k=1

βjβkΛ(cjck) =

v∑
j=1

|βj |2Λ(cj) = 0,

whence g = 0, because Λ(cj) > 0 for all j. See also Corollary 1.

Proposition 1 Let S be a finite dimensional function space on Ω, and let Λ :
S(2) 7→ C be a uspf. Assume that the space HΛ is endowed with the C∗-algebra
structure induced by an orthogonal basis consisting of idempotent elements. Let
also Hθ be the sub-C∗-algebra generated by the set {θ̂0 = 1, θ̂1, . . . , θ̂n} in HΛ,
where θ := (θ1, . . . , θn) is a fixed n-tuple of RS.

Then there exist a finite subset Ξ of Rn, whose cardinal is ≤ dimHΛ, and a
linear map Sθ 3 u 7→ u# ∈ C(Ξ), whose kernel is IΛ, such that

Λ(u) =

∫
Ξ

u#(ξ)dµ(ξ), u ∈ Sθ,

where Sθ = {u ∈ S; û ∈ Hθ}, and µ is a probability measure on Ξ.
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Proof. Let B = {b̂1, . . . , b̂d} be an orthogonal basis of HΛ consisting of
idempotent elements, inducing the C∗-algebra structure of HΛ. Let also ∆ =
{δ1, . . . , δd} be the set of all characters of the C∗-algebra HΛ. First of all,
we shall deal with the structure of the sub-C∗-algebra Hθ, which consists of
arbitrary polynomials in θ̂1, . . . , θ̂n. We can write θ̂k = τk1b̂1 + · · · + τkdb̂d,
where τkj = δj(θ̂k), k = 1, . . . , n, j = 1, . . . , d. Put τ (j) = (τ1j , . . . , τnj) ∈
Rn, j = 1, . . . , d. With the notation from Remark 2, let us show, by recurrence,
that

θ̂α =

d∑
j=1

(τ (j))αb̂j , (5)

for all multi-indices α = (α1, . . . , αn). As (5) clearly holds if |α| = 1, assuming
that (5) holds if |α| < m for an integer m > 1, we have, for some fixed k ∈
{1, . . . , n},

θ̂k · θ̂α =
n∑
l=1

d∑
j=1

τkl(τ
(j))αb̂l · b̂j =

d∑
j=1

τkj(τ
(j))αb̂j = θ̂α(k) ,

where α(k) = (α1, . . . , αk−1, αk + 1, αk+1 . . . , αn), showing that (5) holds when-

ever |α| ≤ m. Consequently, p(θ̂) =
∑d
j=1 p(τ

(j))b̂j for every p ∈ P.

Let Ξ = {ξ(1) . . . , ξ(v)} be the distinct points from the set {τ (1) . . . , τ (d)},
with v ≤ d. Let also Ij = {k; τ (k) = ξ(j)}, j = 1, . . . , v.

If p ∈ P is arbitrary, then, as above,

p(θ̂) =

v∑
j=1

p(ξ(j))ĉj , (6)

where ĉj =
∑
k∈Ij b̂k, j = 1, . . . , v, which is a family of mutually orthogonal

idempotents, whose sum is 1̂.
Consider now the space S ′θ given by

S ′θ = {
v∑
j=1

p(ξ(j))cj + r; p ∈ P|Ξ, r ∈ IΛ} = Gθ + IΛ,

with Gθ = {
∑v
j=1 p(ξ

(j))cj ; p ∈ P|Ξ}, where P|Ξ is the space of all restrictions
of arbitrary polynomials to the set Ξ.

Let us remark that the sum Gθ + IΛ is direct. Indeed, because S ′θ is a
subspace of the space spanned by {c1, . . . , cv}, it follows that the intersection
Gθ ∩ IΛ = {0}, via Remark 4. In particular, if u =

∑v
j=1 p(ξ

(j))cj + r ∈ S ′θ, the
function p|Ξ is uniquely determined.

Further, we have a linear map S ′θ 3 u 7→ u# ∈ C(Ξ), defined in the following
way. Taking an element u =

∑v
j=1 p(ξ

(j))cj+r ∈ S ′θ for some p ∈ P and r ∈ IΛ,

we put u#(ξ) = p(ξ), ξ ∈ Ξ. As the function p|Ξ is uniquely determined by u,
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the definition of u# is correct, the assignment u 7→ u# is linear, and its kernel
is precisely IΛ. In addition, S ′θ = {u ∈ Pm; û ∈ Hθ} = Sθ. Indeed, if û ∈ Hθ
there exists an integer m ≥ 0 such that û =

∑
|α|≤m aαθ̂

α =
∑v
j=1 pu(ξ(j))ĉj ,

via (6) aplied to tα for each α, where pu(t) =
∑
|α|≤m aαt

α.

Consequently, if u =
∑v
j=1 p(ξ

(j))cj + r for some p ∈ P and r ∈ IΛ, we have

Λ(u) =

v∑
j=1

p(ξ(j))Λ(cj) =

∫
Ξ

u#(ξ)dµ(ξ),

where µ is the measure with weights Λ(cj) at ξ(j), j = 1, . . . , v, which concludes
the proof.

Theorem 2 Let S be a finite dimensional function space on Ω, and let Λ :
S(2) 7→ C be a uspf. Assume that the space HΛ is endowed with the C∗-algebra
structure induced by an orthogonal basis consisting of idempotent elements. Also
assume that the elements {1̂, θ̂1, . . . , θ̂n} generate the C∗-algebra HΛ where θ =
(θ1, . . . , θn) is a given n-tuple of S. Then there exist a finite subset Ξ of Rn,
whose cardinal equals dimHΛ, and a surjective linear map S 3 u 7→ u# ∈ C(Ξ),
whose kernel is IΛ, with the property

Λ(u) =

∫
Ξ

u#(ξ)dµ(ξ), u ∈ S,

where µ is a probability measure on Ξ.
Moreover, the map S 3 u 7→ u# ∈ C(Ξ) induces a ∗-isomorphism between

C∗-algebras HΛ and C(Ξ).

Proof. We follow the lines and use the notation of the proof of Proposition
1. We must have Hθ = HΛ, and Sθ = S. Moreover, if B = {b̂1, . . . , b̂d} is the
orthogonal basis of HΛ consisting of idempotent elements given by the hypoth-
esis, and ∆ = {δ1, . . . , δd} is the set of the characters of the C∗-algebra HΛ,
the points τ (j) ∈ R, j = 1, . . . , d, are distinct because the family of generators
{θ̂1, . . . , θ̂n} separates the points of ∆, so

δj(θ̂) = τ (j) = ξ(j) = (ξ
(j)
1 , . . . , ξ(j)

n ) ∈ Rn, j = 1, . . . , d,

and also cj = bj , ξ
(j)
k = δj(θ̂k), j = 1, . . . , d, k = 1, . . . , n.

Note that the space S can be written as

S = {
d∑
j=1

p(ξ(j))bj + r; p ∈ P, r ∈ IΛ} = G + IΛ,

with G = {
∑d
j=1 p(ξ

(j))bj ; p ∈ P}, and where the sum of spaces is direct.

Consequently, if u ∈ S, we must have u =
∑d
j=1 p(ξ

(j))bj + r for some p ∈ P
and r ∈ IΛ. Moreover, the function p|Ξ is uniquely determined by u, and setting
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u# = p|Ξ, we have a linear map S 3 u 7→ u# ∈ C(Ξ), whose kernel is IΛ. In
addition, as in Proposition 1, we also have the formula

Λ(u) =

∫
Ξ

u#(ξ)dµ(ξ), u ∈ S,

where µ is the measure with weights Λ(bj) at ξ(j), j = 1, . . . , d.
Note that the map S 3 u 7→ u# ∈ C(Ξ) is also surjective because, taking

an arbitrary element of C(Ξ) written under the form p|Ξ for some p ∈ P, the

function u =
∑d
j=1 p(ξ

(j))bj ∈ G has the property u# = p|Ξ.

Since the map S 3 u 7→ u# ∈ C(Ξ) is surjective, and its kernel is precisely
IΛ, the induced map HΛ 3 û 7→ û# ∈ C(Ξ) is correctly defined and bijective,
where û#(ξ) = u#(ξ), ξ ∈ Ξ. This map is actually a ∗-isomprphism.

To prove this assertion, let us first choose the functions pk ∈ P and rk ∈ IΛ

with the property bk =
∑d
j=1 pk(ξ(j))bj + rk, k = 1, . . . , d. The uniqueness of

this representation shows that rk = 0, pk(ξ(j)) = 1 if k = j, and = 0 otherwise,

for all k, j = 1, . . . , d. In addition, b̂#k = pk|Ξ, k = 1, . . . , d.

Because (b̂j · b̂k)#(ξ) = 0 = pj(ξ)pk(ξ) if j 6= k, and (b̂j · b̂j)#(ξ) = b̂#j (ξ) =

pj(ξ) = pj(ξ)
2, for all ξ ∈ Ξ and j, k = 1, . . . , d, it follows that the map HΛ 3

û 7→ û# ∈ C(Ξ) is multiplicative. Taking into account the definitions given in
Remark 2, the equalities

1̂#(ξ) =

d∑
j=1

(b̂j)
#(ξ) =

d∑
j=1

pj(ξ) = 1,

as well as (û∗)# = û#, show that the map HΛ 3 û 7→ û# ∈ C(Ξ) is a unital

∗-morphism. In addition, if û =
∑d
j=1 p(ξ

(j))b̂j ∈ HΛ is arbitrary,

‖û‖∞ = max
1≤j≤d

|p(ξ(j))| = ‖û#‖∞,

proving that HΛ 3 û 7→ û# ∈ C(Ξ) is a ∗-isomorphism.

Remark 5 We keep the conditions and notation from Theorem 2 and its proof.
First of all, because HΛ is finite dimensional, there exists a nonnegative inte-
ger m such that the set Θ̂m := {θ̂α; |α| ≤ m} generates the C∗-algabra HΛ.
Consequently,

S = {
d∑
j=1

p(ξ(j))bj + r; p ∈ Pm, r ∈ IΛ} = G + IΛ,

with G = {
∑d
j=1 p(ξ

(j))bj ; p ∈ Pm}, where the sum of spaces is direct.
In addition, the algebra Pm contains a family {p1, . . . , pd}, which interpolates

the set Ξ, where pj = b̂#j for all j.
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Example 3 As in [5], Example 2.1 (see also [15], Examples 1 and 3), we con-
sider the uspf Λ : P1

4 7→ C, given by Λ(tk) = 1, k = 0, 1, 2, 3, and Λ(t4) = 2,
extended to P1

4 by linearity. It is known that this uspf has no representing mea-
sure. Nevertheless, according to Theorem 2, the restriction Λ|P1

2 has a certain
integral representations, with respect to any fixed orthogonal basis of HΛ con-
sisting of idempotents, to be explicitly presented in the following. We use some
information from [15], Examples 1 and 3. We have IΛ = {p(t) = u−ut;u ∈ C},
and HΛ = {p̂ ; p(t) = u + ut + vt2, u, v ∈ C}. In particular, 1̂ = t̂, and so

HΛ = {u1̂ + vt̂2, u, v ∈ C}.
We fix the elements b1 = t2/2 and b2 = 1/2 + t/2− t2/2, satisfying Λ(b21) =

Λ(b1) = 1/2,Λ(b22) = Λ(b2) = 1/2, and Λ(b1b2) = 0.

As we have dimHΛ = 2, it follows that {b̂1, b̂2} is an orthogonal basis of HΛ

consisting of idempotents, with b̂1 = t̂2/2, b̂2 = 1̂− t̂2/2.

Put θ1 = t, θ2 = t2. Clearly, the set {θ̂1, θ̂2} generates the C∗-algebra HΛ.
Using the dual basis ∆ = {δ1, δ2}, we infer that

ξ(1) = (δ1(θ̂1), δ1(θ̂2)) = Λ(b1)−1(Λ(θ1b1),Λ(θ2b1)) = (1, 2),

ξ(2) = (δ2(θ̂1), δ2(θ̂2)) = Λ(b2)−1(Λ(θ1b2),Λ(θ2b2)) = (1, 0).

In other words, Ξ = {(1, 2), (1, 0)} ⊂ R2. If p = u + wt + vt2 is an arbitrary
element of P1

2 , then

p̂ = u1̂ + vt̂2 = (u+ 2v)b̂1 + ub̂2 ∈ HΛ, u, v ∈ C,

and we have

Λ(p) = p#(ξ(1))Λ(b1) + p#(ξ(2))Λ(b2) = u+ v,

where p#(x) = ux1 + vx2, x = (x1, x2) ∈ R2, is computed by formula (6).
Therefore, Λ(p) =

∫
Ξ
p#(ξ)dν(ξ), p ∈ P1

2 , where ν is the atomic measure with

weights Λ(b1),Λ(b2) at ξ(1), ξ(2), respectively. In addition, the map HΛ 3 p̂ 7→
p#|Ξ ∈ C(Ξ) is a ∗-isomprphism.

Finally, a similar procedure may be applied to any pair of idempotents
{b̂1, b̂2}, which is an orthogonal basis of HΛ.

3 Representing Measures: Abstract Approaches

The previous section offers some integral representation formulas for certain
uspf’s. The existence of a representing measure for a general uspf is still an
open question, even in Rn. For a given uspf, the problem may have no solu-
tion, a unique solution or infinitely many solutions. In this section we present
some abstract criteria concerning the existence of a representing measure in the
context of Hausdorff spaces (see [2, 3, 14, 15] etc.).
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3.1 Contractive USPF’s

For a given uspf Λ, the associated set ZΛ is defined in Subsection 1.5.
Let S be a finite dimensional function space on a Hausdorff space Ω, and let

Λ : S(2) 7→ C be a uspf. We say that Λ is contractive if there exists a finite set
F ⊂ ZΛ such that |Λ(f)| ≤ ‖f‖F , f ∈ S(2), where ‖f‖F = maxω∈F |f(ω)|.

Proposition 2 The uspf Λ : S(2) 7→ C has an atomic representing measure if
and only if it is contractive.

Proof. The existence of an atomic representing measure of Λ implies an
equation of the form Λ(f) =

∑d
j=1 λjf(ωj) for each f ∈ S(2), where λ1 >

0, . . . , λd > 0,
∑d
j=1 λj = 1, and ω1, . . . , ωd are (distinct) points in Ω. Setting

F := {ω1, . . . , ωd}, we deduce easily that |Λ(f)| ≤ ‖f‖F , f ∈ S(2).
Conversely, assume that Λ is contractive, so |Λ(f)| ≤ ‖f‖F , f ∈ S(2), for

some F ⊂ ZΛ. Setting JF := {f ∈ S(2); f |F = 0}, we may define the map
S(2)/JF 3 f̃ 7→ f |F ∈ C(F )}, where f̃ = f + JF , f ∈ S(2). Clearly, this
map is correctly defined and linear. Moreover, putting ‖f̃‖F = ‖f‖F whenever
f̃ = f +JF , f ∈ S(2), we obtain a norm on the space S(2)/JF . In addition, the
map f̃ 7→ f |F is an isomatry.

On the subspace RΛ := {f |F ∈ C(F ); f̃ ∈ S(2)/JF }, which is isometrically
isomorphic to S(2)/JF , we may define the map Λ̃(f |F ) = Λ(f), which is cor-
rectly defined because Λ is contractive. This also shows that ‖Λ̃‖ ≤ 1. In fact,
as we have Λ̃(1) = 1, we must have ‖Λ̃‖ = 1.

We denote also by Λ̃ a norm preserving extension of Λ̃ to C(F ), which
therefore should be a positive functional. Denoting by δj the point evaluation
at ωj , j = 1, . . . , d, we deduce the existence of scalars λ1 > 0, . . . , λd > 0 such

that Λ̃ =
∑d
j=1 λjδj , and thus

Λ(f) = Λ̃(f |F ) =

d∑
j=1

λjf(ωj), f ∈ S(2),

In addition,
∑d
j=1 λj = Λ̃(1) = 1, showing that Λ has an atomic representing

measure on Ω.

Remark 6 Assume that the uspf Λ : S(2) 7→ C is contractive, so we have
|Λ(f)| ≤ ‖f‖F , f ∈ S(2) for a certain finite subset F in Ω. In particular, Λ has

representing measure, that is Λ(f) =
∑d
j=1 λjf(ωj), f ∈ S(2), via Proposition

2. Let us define the quantities

σ(f) := sup
g∈RS(2)

[−Λ(g)− ‖f + g‖F ],

τ(f) = inf
g∈RS(2)

[‖f + g‖F − Λ(g)],

where f ∈ RC(F ) is arbitrary. It follows from the standard proof of the Hahn-
Banach Theorem (see for instance [7]) that the equality σ(f) = τ(f) for all
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f ∈ RC(F ) implies the uniqueness of the extension, that is, the uniqueness of
the representing measure.

3.2 An Interpolation Approach

The existence of a representing measure can be also characterized in terms of an
interpolation property. A similar connection already appears in Remark 5. An
even stronger connection is given the following proposition, whose proof uses
some arguments from Subsection 1.5 (see especially Remark 3(2)).

Proposition 3 Let S be a finite dimensional function space on Ω. A uspf Λ :
S(2) 7→ C has a representing measure in Ω with d := dimHΛ atoms if and only if
there exist an orthogonal basis of HΛ consisting of idempotents B = {b̂1, . . . , b̂d},
and a set ΩΛ = {ω1, . . . , ωd} ⊂ ZΛ such that bj(ωj) = 1 and bk(ωj) = 0 for all
j, k = 1, . . . , d, j 6= k.

Proof. First assume that the uspf Λ : S(2) 7→ C has a representing measure
in Ω, say µ, given by

Λ(f) =

d∑
j=1

λjf(ωj), f ∈ S(2),

with λj > 0 for all j = 1, . . . , d, and
∑d
j=1 λj = 1, where d = dimHΛ, and the

points ω1, . . . , ωd are distinct. Set ΩΛ := {ω1, . . . , ωd}, which is a subset of ZΛ,
via Lemma 3.

Note that IΛ = {f ∈ S; f |ΩΛ = 0}. This shows that there exists a map ρ :

HΛ 7→ C(ΩΛ) given by f̂ 7→ f |ΩΛ, which is correctly defined, linear and injective.
This map is also surjective because we clearly have dim(HΛ) = dim(C(ΩΛ)).

Let χk ∈ C(ΩΛ) be the characteristic function of the set {ωk} and let b̂k ∈
HΛ be the element with ρ(b̂k) = χk, k = 1, . . . , d. As Λ(bjbk) =

∫
ΩΛ
χjχkdµ for

all j, k = 1, . . . , d, we deduce that the set {b̂1, . . . , b̂d} is a family of orthogonal
idempotents inHΛ, which is actually a basis. Moreover, bj(ωj) = 1 and bk(ωj) =
0 for all j, k = 1, . . . , d, j 6= k, proving the necessity of the condition in the
statement.

Conversely, if there exist an orthogonal basis ofHΛ consisting of idempotents
B = {b̂1, . . . , b̂d}, and a set ΩΛ = {ω1, . . . , ωd} ⊂ ZΛ such that bj(ωj) = 1 and
bk(ωj) = 0 for all j, k = 1, . . . , d, j 6= k, then Λ has a representing measure
whose support is ΩΛ. Indeed, as we have for every f ∈ S

f =

d∑
j=1

Λ(bj)
−1Λ(fbj)bj + r,

with r ∈ IΛ, we obtain

f(ωk) =

d∑
j=1

Λ(bj)
−1Λ(fbj)bj(ωk) = Λ(bk)−1Λ(fbk),
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because r(ωk) = 0, for all k = 1, . . . , d. Therefore

Λ(f) =

d∑
j=1

λjf(ω(j)), f ∈ S,

with λj = Λ(bj) for all j = 1, . . . , d.
Now, if h =

∑
l∈L flgl ∈ S(2) is arbitrary, with fl, gl ∈ S for all l ∈ L, L

finite, then fl =
∑
j fl(ωj)bj + rl, gl =

∑
k gl(ωk)bk + sl, with rl, sl ∈ IΛ for all

l ∈ L, we must have

Λ(h) =
∑
l∈L

Λ(flgl) =
∑
l∈L

d∑
j,k=1

fl(ωj)gl(ωk)Λ(bjbk) =

d∑
j=1

λj
∑
l∈L

fl(ωj)gl(ωj) =

d∑
j=1

λjh(ωj),

showing the existence of a representing measure of Λ in Ω having d atoms.

Remark 7 We keep the notation from Proposition 3 and its proof. Assuming
that there the uspf Λ : S(2) 7→ C has a representing measure in Ω with support in
ΩΛ := {ω1, . . . , ωd} ⊂ ZΛ, we have constructed an orthogonal basis {b̂1, . . . , b̂d}
consisting of idempotents inHΛ. IfHΛ is given the C∗-algebra structure induced
by {b̂1, . . . , b̂d}, then HΛ and C(ΩΛ) are isomorphic as C∗-algebras, via the map

HΛ 3 f̂ 7→ f |F ∈ C(F ), which is easily seen. Fixing a point ωl ∈ ΩΛ, we may

correctly define a linear map κl : HΛ 7→ C by the equation κl(f̂) = f(ωl), f ∈ S.

Taking f̂ =
∑
j cj b̂j , ĝ =

∑
k dk b̂k in HΛ, as we have

κl(f̂ · ĝ) =
∑
j

cjdjκl(b̂j) = cldl = f(ωl)g(ωl) = κl(f̂)κl(ĝ), f, g ∈ S,

the map κl is also multiplicative on the algebra HΛ, so it is a character.
Let ∆ = {δ1, . . . , δd} be the set of characters of the C∗-algebra HΛ induced

by B. Then for each index j there exists a unique point ωj ∈ ΩΛ such that

δj(f̂) = f(ωj), f ∈ S, j = 1, . . . , d. In other words, we can identify the sets ∆
and ΩΛ.

If θ = (θ1, . . . , θn) ⊂ RS provides a family of generators {θ̂1, . . . , θ̂n} of the

C∗-algebra HΛ, setting Ξ = {ξ(1), . . . , ξ(d)}, ξ(j) = δj(θ̂) ∈ Rn, we also have
that the algebras HΛ and C(Ξ) are isomorphic as C∗-algebras (as in the proof
of Theorem 2), with u#(ξ(j)) = u(ωj), j = 1, . . . , d.

4 Relative Multiplicativity

As in [15], we may characterize the existence of a representing measure in terms
of idempotents. We start with a basic concept, which generalizes the corre-
sponding one from [15], Definition 3.
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Definition 3 Let S be a function space m-generaterd by the n-tuple θ, let
Λ : S(2) 7→ C be a uspf and let B = {b̂1, . . . , b̂d} be an orthogonal basis of HΛ

consisting of idempotent elements. We say that the basis B is Λ-multiplicative
(with respect to θ) if

Λ(θαbj)Λ(θβbj) = Λ(bj)Λ(θα+βbj) (7)

whenever |α|+ |β| ≤ m, j = 1, . . . , d.

Lemma 4 Let S be a function space m-generaterd by the n-tuple θ, let Λ :
S(2) 7→ C be a uspf and let B = {b̂1, . . . , b̂d} be an orthogonal basis of HΛ

consisting of idempotent elements. The basis B is Λ-multiplicative if and only

if δ(θ̂α) = δ(θ̂α) whenever |α| ≤ m and δ is any character of the C∗-algebra HΛ

induced by B.

The proof of this lemma, using the formula of a character given in Remark
2 (and similar to that of Lemma 5 from [15]), will be omitted.

The next result is a generalization of Theorem 2 from [15]. Because of some
differences, we exhibit complete arguments.

Theorem 3 Let S be a function space on Ω, supposed to be m-generaterd by
the n-tuple θ = (θ1, . . . , θn). A uspf Λ : S(2) 7→ C has a representing measure
in Ω with d = dimHΛ atoms if and only if there exists an orthogonal basis B
of HΛ consisting of idempotent elements which is Λ-multiplicative, and δ(θ̂) ∈
θ(Ω), δ ∈ ∆, where ∆ is the dual basis of B.

Proof. Using the fact that B = {b̂1, . . . , b̂d} is Λ-multiplicative, we have

δ(θ̂α) = δ(θ̂α) whenever |α| ≤ m and δ ∈ ∆, via Lemma 4. In particular, we

must have the equality θ̂α = θ̂α whenever |α| ≤ m, because the algebra HΛ is

semi-simple. In addition, as the elements {θ̂α; |α| ≤ m} span the linear space

HΛ, the elements θ̂1, . . . , θ̂n have to generate the algebra HΛ. Therefore, the
family {θ̂1, . . . , θ̂n} separates the points of ∆ (which coincides with the set of
characters of the C∗-algebra HΛ induced by B), and so the map

∆ 3 δ 7→ (δ(θ̂1), . . . , δ(θ̂n)) ∈ Rn

is injective. Writing ∆ = {δ1, . . . , δd}, we set ξ(j) = (δj(θ̂1), . . . , δj(θ̂n)), j =
1, . . . , d, Ξ = {ξ(1), . . . , ξ(d)}.

As in Proposition 1 (see formula (5)), we have θ̂α =
∑d
j=1(ξ(j))αb̂j . There-

fore, θ̂α =
∑d
j=1(ξ(j))αb̂j whenever |α| ≤ m. If f =

∑
|α|≤m cαθ

α ∈ S, then

f̂ =

d∑
j=1

∑
|α|≤m

cα(ξ(j))αb̂j .

This shows that f#(ξ) =
∑
|α|≤m cαξ

α, as in the proof of Proposition 1.
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The hypothesis δ(θ̂) ∈ θ(Ω), δ ∈ ∆, allows to find a point ωj ∈ Ω such that

ξ(j) = θ(ωj) = δj(θ̂) for each j = 1, . . . , d. Therefore, with the notation from
above,

f#(ξ(j)) =
∑
|α|≤m

cαθ(ωj)
α = f(ωj), j = 1, . . . , d,

which leads to the equality

Λ(f) =

∫
ΩΛ

f(ω)dµ(ω), f ∈ S,

where ΩΛ := {ω1, . . . , ωd} and µ is the measure with weights Λ(bj) at ωj , j =
1, . . . , d, via the integral representation formula given by Proposition 1.

Now, if h ∈ S(2) have the form h =
∑
l∈L flgl, with fl, gl ∈ S for all l ∈ L, L

finite, proceeding as in the proof of Proposition 3, we infer that

Λ(h) =
∑
l∈L

d∑
j,k=1

fl(ωj)gl(ωk)Λ(bjbk) =

∫
ΩΛ

h(ω)dµ(ω),

which provides a representing measure of Λ on Ω.
Conversely, assume that the uspf Λ : S(2) 7→ C has a representing measure

in Ω with d = dimHΛ atoms. Using the notation and discussion in Remark
7, we know that the C∗-algebras HΛ and C(ΩΛ) are isomorphic via the map

HΛ 3 f̂ 7→ f |ΩΛ ∈ C(ΩΛ), which leads to the existence of an orthogonal basis
B of the Hilbert space HΛ consisting of idempotent elements. In addition, the
maps δj(f̂) = f(ωj), j = 1, . . . , d, are the characters of HΛ (see also Remark 7).
Therefore,

δj(θ̂α) = θα(ωj) = (θ1(ωj)
α1 · · · (θn(ωj)

αn = δj(θ̂
α),

whenever |α| ≤ m and j = 1, . . . , d, showing that B is a Λ-multiplicative basis,

via Lemma 4. Moreover, we clearly have δj(θ̂) = θ(ωj), j = 1, . . . , d, which
concludes the proof of Theorem 3.

Corollary 2 Let S be a function space on Ω which is m-generaterd by the n-
tuple θ = (θ1, . . . , θn), and let Λ : S(2) 7→ C be a uspf. Let also B = {b̂1, . . . , b̂d}
be an orthogonal basis of HΛ, consisting of idempotent elements, which induces
on HΛ a C∗-algebra structure. Assume that the basis B is Λ-multiplicative with
respect to θ. Then there exists a finite set Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn and a
probability measure µ on Ξ such that

Λ(h(θ)) =

∫
Ξ

h(ξ)dµ(ξ), h ∈ Pn2m.

Proof. For every polynomial p ∈ Pn, we have defined the element p(θ̂),
via the polynomial functional calculus. If ∆ = {δ1, . . . , δd} is the set of char-

acters of the C∗-algebra HΛ, we put ξ(j) = (δj(θ̂1), . . . , δj(θ̂n)), j = 1, . . . , d,
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Ξ = {ξ(1), . . . , ξ(d)}. According to formula (5), we have p(θ̂) =
∑d
j=1 p(ξ

(j))b̂j .

Therefore, p(θ̂)#(ξ) = p(ξ) for all ξ ∈ Ξ. Moreover, because B is Λ-multiplicative,

and if p ∈ Pnm, so p(θ̂) = p̂(θ), we obtain

Λ(p(θ)) =

∫
Ξ

p(ξ)dµ(ξ),

where µ is a probability measure with support in Ξ.
Further, if h ∈ Pn2m has the form h =

∑
l∈L plql, with pl, ql ∈ Pnm for all l ∈

L, L finite, since we have pl(θ) =
∑d
j=1 pl(ξ

(j))bj +rj , ql(θ) =
∑d
k=1 ql(ξ

(k))bk+
sk, with rj , sk ∈ IΛ, j, k = 1, . . . , d, we obtain

Λ(h(θ)) =
∑
l∈L

d∑
j,k=1

pl(ξ
(j))ql(ξ

(j))Λ(bjbk) =

∫
Ξ

h(ξ)dµ(ξ),

providing an integral representation of all functions of the form h ◦ θ, with
h ∈ Pn2m.

Theorem 2 from [15] can be obtained as a consequence of Theorem 3:

Corollary 3 The uspf Λ : P2m 7→ C has a representing measure in Rn pos-
sessing d := dimHΛ atoms if and only if there exists a Λ-multiplicative basis of
HΛ.

Proof. If S = Pm for some m ≥ 0, we have Ω = Rn, and Pm is m-
generated by the n-tuple t = (t1, . . . , tn) consisting of the independent variables
on Rn. Then δj(t̂) = ωj = t̂(ωj), j = 1, . . . , n, showing that inclusion condition
appearing in the statement of Theorem 3 is automatically fulfilled.

Corollary 4 The uspf Λ : P2m 7→ C has a representing measure in Rn pos-
sessing d := dimHΛ atoms if and only if there exists a family of polynomials
{b1, . . . , bd} ⊂ RPm with the following properties:

(i) Λ(b2j ) = Λ(bj) > 0, j = 1, . . . , d;
(ii) Λ(bjbk) = 0, j, k = 1, . . . , d, j 6= k;
(iii)

Λ(tαbj)Λ(tβbj) = Λ(bj)Λ(tα+βbj)

whenever 0 6= |α| ≤ |β|, |α|+ |β| ≤ m, j = 1, . . . , d.

This statement appears as Corolloary 3 in [15], and it follows directly from
Corollary 3. We omit the details.
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5 Results Related to Tchakaloff’s Theorem

For an arbitrary Hausdorff topological space Ω, we denote by B(Ω) the space of
all complex-valued Borel functions on Ω, and by Bor(Ω) the family of all Borel
subsets of Ω.

Theorem 3 is particularly interesting when applied to a function space which
is 1-generated by a given tuple. This happens because, in this case, condition
(7) is automatically fulfilled.

Corollary 5 Let S be a function space on Ω, which is 1-generaterd by the n-
tuple θ = (θ1, . . . , θn), and let also Λ : S(2) 7→ C be a uspf. If either

(1) there exists an orthogonal basis B of HΛ consisting of idempotent ele-

ments such that δ(θ̂) ∈ θ(Ω), δ ∈ ∆, where ∆ is the dual basis of B,
or
(2) θ(Ω) = Rn,

the uspf Λ has a representing measure in Ω with d = dimHΛ atoms.

Proof. Assertion (1) follows directly from Theorem 3, because condition
(7) is automatically fulfilled.

Assertion (2) is a particular case of assertion (1), but it is valid for any
orthogonal basis B of HΛ consisting of idempotent elements.

Example 4 The previous corollary provides an atomic representing measure for
a large class of 1-generated function spaces. Here is an example. Let r > n, r, n
be positive integers, let Ω′ ⊂ Rr−n be a Borel set, and let Ω = Rn × Ω′. We
consider on Ω the functions θj(t, t

′) = tj + ψj(t
′), j = 1, . . . , n, where t =

(t1, . . . , tn) ∈ Rn, t′ = (t′1, . . . , t
′
r−n) ∈ Ω′, and ψ1, . . . ψn are Borel functions.

Let S be the function space on Ω spanned by θ := (θ1, . . . , θn) and θ0 = 1. Then
every uspf Λ : S(2) 7→ C has an atomic representing measure in Ω. This follows
from the previous corollary, because we clearly have θ(Ω) = Rn.

Remark 8 (1) We can give explicit formulas related to Corollary 5. Let S be a
function space on Ω, which is 1-generaterd by the n-tuple θ = (θ1, . . . , θn), and

let also Λ : S(2) 7→ C be a uspf. We fix a basis B = {b̂1, . . . , b̂d} of HΛ consisting
of orthogonal idempotents, which is automatically Λ-multiplicative with respect
to θ, where d = dim(HΛ). Let also ∆ = {δ1, . . . , δd} be the dual basis. We set

ξ(j) = δj(θ̂) ∈ Rn, j = 1, . . . , d, and Ξ = {ξ(1), . . . , ξ(d)}. Then, as in Remark 2,
if p ∈ Pn2 , we have Λ(p(θ)) =

∫
Ξ
p(ξ)dµ(ξ), where µ is probability measure with

weights λj := Λ(bj) at ξ(j), j = 1, . . . , d.

If δj(θ̂) = θ(ωj), j = 1, . . . , d, we actually have Λ(h) =
∑d
j=1 λjh(ωj) for

every h ∈ S(2), as in the proof of Theorem 3. In fact,

θ(ωj) = (Λ(bj)
−1Λ(θ1bj), . . . ,Λ(bj)

−1Λ(θnbj) ∈ Rn, j = 1, . . . , d.

Finally, when θ(Ω) = Rn, the existence of the points ωj , j = 1, . . . , d is
insured for any basis B of HΛ consisting of orthogonal idempotents.

(2) Corollary 5(2) can be used to give a direct proof to our Theorem C,
which is a version of Tchakaloff’s theorem (see [15] for details).
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Theorem 4 Let S be a function space on Ω, m-generaterd by the n-tuple θ =
(θ1, . . . , θn), and let Λ : S(2) 7→ C be a uspf. If Λ has a representing measure
then it has an atomic representing measure.

Proof. We consider the set Zn,m+ := {α ∈ Zn+; |α| ≤ m} endowed with the
lexicographic order. In addition, we assign to each integer j ∈ {0, 1, 2, . . . , nm},
where nm + 1 is the cardinal of Zn,m+ , a multi-index α(j) ∈ Zn,m+ with j ≤ k iff
α(j) ≤ α(k), and α(0) = 0. In this way we have a map φ : Ω 7→ Rnm given by
φ(ω) = (θα(1)(ω), . . . , θα(nm)(ω)) ∈ Rnm .

Now assume that Λ has a representing measure, so it has form Λ(h) =∫
Ω
hdµ, h ∈ S(2), where µ is a positive Borel measure on Ω, with µ(Ω) = 1. Let

ν be the measure induced by the measure µ and the Borel map φ. Note that∫
Rnm

|xj |dν(x) =

∫
Ω

|xj ◦ φ|dµ ≤
∫

Ω

|θα(j)|dµ ≤ Λ(θ2α(j))1/2 <∞,

for all j = 1, . . . , nm. This shows that we may apply Corollary 2 from [1] and
deduce the existence of a positive integer d ≤ nm, a set of points ω1, . . . , ωd in
the support of the measure µ, and positive numbers λ1, . . . , λd such that∫

Ω

θαdµ =

d∑
j=1

λjθ
α(ωj), |α| ≤ 2m.

As we clearly have
∑d
j=1 λj = 1, it follows that Λ has an atomic representing

measure.

Remark 9 Let S be a finite dimensional function space on Ω, and let Λ :
S(2) 7→ C be a uspf having a representing measure which may be supposed to
be atomic, via Theorem 4. Let also Q := {q1, . . . , qs} ⊂ RS, and let

ΩQ = {ω ∈ Ω; qj(ω) ≥ 0, j = 1, . . . , s}.

Let B = {b̂1, . . . , b̂d} be an orthogonal basis of HΛ consisting of idempotents,
constructed as in the first part of the proof of Proposition 3. The measure µ
has support in ΩQ if and only if Λ(qjbk) ≥ 0 for all j = 1, . . . , s; k = 1, . . . , d.
Indeed, if ΩQ = {ω1, . . . , ωd} is the support of µ, we have

Λ(qjbk) =

∫
ΩQ

qj(t)bk(t)dµ(t) = Λ(bk)qj(ωk), j = 1, . . . , s, k = 1, . . . , d,

implying our assertion.
This remark may be applied, in particular, to spaces of functions consistng

of polynomials, restricted to semi-algebraic sets.
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6 Function Spaces and Point Evaluations

In this section we continue the discussion from Subsection 1.5.

Remark 10 (1) It follows from Lemma 3 that a necessary condition for the
existence of a representing measure for Λ is ZΛ 6= ∅.

(2) Let Λ : S(2) 7→ C be a uspf with the property ZΛ 6= ∅. With the notation

from Remark 3(2), the set {δ̂ω;ω ∈ ZΛ} is a subset in the dual of the Hilbert
space HΛ. Therefore, for every ω ∈ ZΛ there exists a vector v̂ω ∈ HΛ such that
δ̂ω(f̂) = 〈f̂ , v̂ω〉 = Λ(fvω) = f(ω) for all f ∈ S.

Set VΛ = {v̂ω;ω ∈ ZΛ}. The elements of VΛ are not necessarily distinct. If
ω′ 6= ω′′, we have v̂ω′ 6= v̂ω′′ iff the space S separates the points of Ω.

The next result, which extends Theorem 4 from [15], is an approach to trun-
cated moment problems when the number of the atoms of the representing mea-
sures is not necessarily equal to the maximal cardinal of a family of orthogonal
idempotents. The basic elements are in this case projections of idempotents.

Theorem 5 Let S be a finite dimensional function space separating the points
of Ω, and let Λ : S(2) 7→ C with ZΛ nonempty. The uspf Λ has a representing
measure in Rn consisting of d-atoms, where d ≥ dimHΛ, if and only if there
exist a family {v̂1, . . . , v̂d} ⊂ RHΛ of distinct elements such that

Λ(vj) > 0, v̂j/Λ(vj) ∈ VΛ, j = 1, . . . , d, (8)

f̂ = Λ(v1)−1Λ(fv1)v̂1 + · · ·+ Λ(vd)
−1Λ(fvd)v̂d, f ∈ S, (9)

and

Λ(vkvl) =

d∑
j=1

Λ(vj)
−1Λ(vjvk)Λ(vjvl), k, l = 1, . . . , d. (10)

Proof. Assume first that µ =
∑d
j=1 λjδωj

is a representing measure for Λ,

with λj > 0 for all j = 1, . . . , d, with ω1, . . . , ωd distinct, and
∑d
j=1 λj = 1. The

set ΩΛ := {ω1, . . . , ωd}, which is exactly the support of µ, is a subset of ZΛ, by
Lemma 3.

We now proceed as in the proof of Proposition 3. Note that IΛ = {f ∈
S; f |ΩΛ = 0}, This shows that there exists a map ρ : HΛ 7→ C(ΩΛ) given by

f̂ 7→ f |ΩΛ, which is correctly defined, linear and injective (but not necessarily
surjective). Endoved with the norm f 7→ (

∫
ΩΛ
|f |2dµ)1/2, the space C(ΩΛ)

becomes a Hilbert space, denoted by L2(ΩΛ, µ), and the map ρ becomes an
isomatry. This allows us to regard HΛ as closed subspace of L2(ΩΛ, µ).

Let χk ∈ L2(ΩΛ, µ) be the characteristic function of the set {ωk}. Clearly,
the family {χk; k = 1, . . . , d} consists of ΛΩ-idempotents in the function space
L2(ΩΛ, µ), where ΛΩ is the natural extension of Λ to L2(ΩΛ, µ). In fact, {χk; k =
1, . . . , d} is an orthogonal basis of L2(ΩΛ, µ) consisting of idempotents.
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Let P denote the orthogonal projection of the L2(ΩΛ, µ) onto HΛ. In par-
ticular, P 1̂ = 1̂. Let also Let v̂j = Pχj , j = 1, . . . , d. Then

Λ(fvj) = 〈f̂ , Pχj〉 = 〈f̂ , χj〉 = λjf(ωj), f ∈ S, j = 1, . . . , d,

so λj := ΛΩ(χj) = 〈1̂, χj〉 = Λ(vj) > 0, and vj/λj = vωj , which is precisely (8).
In addition, as {χ1, . . . , χd} is an orthogonal basis of L2(ΩΛ, µ),

f̂ = P f̂ = P (λ−1
j 〈f̂ , χ1〉χ1 + · · ·+ λ−1

d 〈f̂ , χd〉χd) =

Λ(v1)−1Λ(fv1)v̂1 + · · ·+ Λ(vd)
−1Λ(vd)v̂d,

for all f ∈ S, showing that (9) holds.
Note also that

Λ(vkvl) =

d∑
j=1

λj(vkvl)(ωj) =

d∑
j=1

λ−1
j Λ(vkvj)Λ(vlvj), k, l = 1, . . . , d,

because
(vkvl)(ωj) = Λ(vkvωj

)Λ(vlvωj
) = λ−2

j Λ(vkvj)Λ(vlvj)

for all k, l = 1, . . . , d, proving that (10) also holds.
Conversely, assume that there exists a family {v̂1, . . . , v̂d} ⊂ RHΛ such that

(8), (9), (10) hold. We must have vj/λj = vωj
for a certain ωj ∈ ZΛ, with

λj = Λ(vj) > 0 for all j = 1, . . . , d.

Set ΩΛ := {ω1, . . . , ωd} ⊂ ZΛ, and consider the map HΛ 3 f̂ 7→ f |ΩΛ ∈
C(ΩΛ). Note that this map is correctly defined because the equality f̂1 = f̂2,
which is equivalent to f1 − f2 ∈ IΛ, implies f1|ΩΛ = f2|ΩΛ, by Lemma 2.

Moreover, the map is injective because f(ωj) = λ−1
j Λ(fvj) = 0 for all j =

1, . . . , d implies f̂ = 0, via (9).
Since, in virtue of (9),

Λ(f) = 〈f̂ , v̂1〉+ · · ·+ 〈f̂ , v̂d〉 = λ1p(ω1) + · · ·+ λdp(ωd),

for all f ∈ S, the map Λ|S admits the extension M(g) =
∑d
j=1 λjg(ωj),

g ∈ C(ΩΛ), which provides an integral representation for Λ|S.
We want to show that the map M also extends Λ. For, let h =

∑
j∈J fjgj ,

with fj , gj ∈ S for all j ∈ J , where J is a finite set of indices.
Note first that

h(ωk) =
∑
j∈J

fj(ωk)qj(ωk) = λ−2
k

∑
j∈J

Λ(fjvk)Λ(gjvk), (11)

for all k = 1, . . . , d. Then, on one hand,

M(h) =

d∑
k=1

λkf(ωk) =

d∑
k=1

λk
∑
j∈J

fj(ωk)gj(ωk),
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so that, using (11),

M(h) =

d∑
k=1

λk
−1

∑
j∈J

Λ(fjvk)Λ(gjvk). (12)

On the other hand, writing by (9)

f̂j =

d∑
l=1

λl
−1Λ(pjvl)v̂l, ĝj =

d∑
s=1

λs
−1Λ(qjvs)v̂s

for all j ∈ J , we have

h−
∑
j∈J

d∑
l,s=1

λl
−1λs

−1Λ(pjvl)Λ(qjvs)vlvs ∈ ker(Λ),

so

Λ(h) =
∑
j∈J

d∑
l,s=1

λl
−1λs

−1Λ(fjvl)Λ(gjvs)Λ(vlvs) =

∑
j∈J

d∑
l,s=1

λl
−1λs

−1Λ(fjvl)Λ(gjvs)

d∑
k=1

λ−1
k Λ(vkvl)Λ(vkvs) =

d∑
k=1

λk
−1

∑
j∈J

d∑
l=1

λl
−1Λ(fjvl)Λ(vlvk)

d∑
s=1

λs
−1Λ(gjvs)Λ(vsvk) =

d∑
k=1

λk
−1

∑
j∈J

Λ(fjvk)Λ(gjvk),

via (10), because of the equalities

Λ(fjvk) =

d∑
l=1

λl
−1Λ(fjvl)Λ(vlvk), Λ(gjvk) =

d∑
s=1

λs
−1Λ(gjvs)Λ(vsvk),

derived from (9). This computation leads to the equality M(h) = Λ(h), for each
p of the given form. Formula (12) shows that, in fact, the equality M(p) = Λ(p)
does not depend on the particular representation of h as a finite sum of the form∑
j∈J fjgj , with fj , gj ∈ S, and so M(h) = Λ(h) holds for all h ∈ S(2).

Remark 11 Condition d ≥ dimHΛ, appearing in the previous statement, is a
necessary one, as follows from [2], Corollary 3.7.
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