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Abstract
Using techniques from the theory of finite-dimensional commutative
Banach algebras, we discuss integral representations of square positive
functionals in an absttract setting, extending and completing some results
concerning the positive Riesz functionals in finite-dimensional spaces of
polynomials.

0 Introduction

Let © be a Hausdorff (topological) space, and let S be a vector space consisting
of complex-valued Borel functions, defined on 2. We assume that 1 € S and
if f €S, then f € S. For convenience, and following [14, 15], we say that
S, having these properties, is a function space (on ). The symbol RS will
designate the "real part“ of S, that is {f € S; f = f}.

Now, let S be the vector space spanned by all products of the form fg
with f,¢ € S, which is itself a function space. We have S ¢ S@, and & = S®)
when S is an algebra.

Important examples of function spaces are associated with the space P of
all polynomials in n > 1 real variables, with complex coefficients. For every
integer m > 0, let P, be the subspace of P consisting of all polynomials p with
deg(p) < m, where deg(p) is the total degree of p. Note that PP = Pom and
P2 = P, the latter being an algebra.

We occasionally use the notation P instead of P,, and P" instead of P
when the number n should be specified.

Let S be a function space and let A : S@ — C be a linear map with the
following properties:

(1) A(f) = A(f) for all f €SP,

(2) A(Jf]?) > 0 for all f € S;

(3) A1) =1.

Adapting some terminology from [10] to our context (see also [14], [15]), a
linear map A with the properties (1)-(3) is said to be a unital square positive
functional, briefly a uspf.




If A:S® — C is a uspf, we have the Cauchy-Schwarz inequality:

IA(f9)l* < A(SIP)AU9), f.g €S (1)

Putting Zy = {f € S;A(|f]?) = 0}, the Cauchy-Schwarz inequality shows
that Z, is a vector subspace of S and that S > f — A(|f[)'/? € R, is a
seminorm. Moreover, the quotient §/Zx is an inner product space, with the
inner product given by

(f,9) = A(f9), (2)
where f = f + I, is the equivalence class of f € S modulo Zy.
In fact, Zy = {f € S;A(fg) =0Vg € S} and T, - S C ker(A).
If S is finite dimensional, then Ha := S/Zy is actually a Hilbert space.
We also put RHa := {f+Zx; f € RS}, which is a real Hilbert space. When
f € RH,, we may and shall always assume that f € RS.

When the uspf A : S@) — C is given, we shall use the notation Zx, Ha, f,
with the meaning from above, if not otherwise specified.

The (abstract) moment problem for a given uspf A : 8@ — C, where S
is a fixed function space on a Hausdorff space §2, means to find conditions
insuring the existence of a probability measure p with support in 2, such that
A(f) = [fdu, f € S®). When such a measure ju exists, it is said to be a
representing measure for A. Such a framework for stating and solving moment
problems has been already used by other authors (see for instance [9]).

Note that the map S@?) 3 f | fdp € C, where p is a probability measure
with support in €2, is a uspf, as one can easily see.

In some special cases, a uspf A : S — C may have an atomic representing
measure in 2, which in this text means that there exists a finite subset Qs =
{wi,...,wq} C Q and positive numbers Ay, ..., A\g, with A\ +---+ Xy = 1, such
that A(f) = 37_; A f(w;) for all f € S,

When S is finite dimensional and the uspf A on S has an arbitrary rep-
resenting measure, then one expects that this measure may be replaced by an
atomic one. Such a property, going back to Tchakaloff (see Corollary 2 in [12];
see also [3, 4, 11, 15] etc.), will be discussed in Section 5 (see especially our
Theorem 4).

In a previous work (see [15]), the author presented a new approach to trun-
cated moment problems in several variables, via a concept of idempotent with
respect to a Riesz type functional, naturally associated to the problem.

In this work we exhibit some generalizations of the results from [15], in a
more abstract context, and present some new assertions and examples.

Next chapter contains comments, definitions and results (without proofs),
necessary for further development. Some new definitions are also given (see
Subsection 1.4).

In the second chapter we recapture some results from [15], in the present
context. Generally, we follow the lines of the corresponding results from [15],



but we give complete and sometimes improved arguments, often different from
those in [15]. As a consequence of Theorem 2, some uspf’s with no representing
measure may have certain integral representations (see Example 3).

The third chapter deals with two abstract approaches to the existence of
representing measure for square positive functionals. They are rather explicit
characterizations but their consequences for concrete solutions of the moment
problems are still to be proved.

The fourth chapter extends the concept of an orthogonal basis consisting of
relative idempotents that is ”multiplicative* with respect to a uspf and a tuple
generating the given function space. The main result (Theorem 3) generalizes
Theorem 2 from [15].

A discussion related to Tchakaloff’s Theorem is presented in the fifth section.
In particular, we extend (see our Theorem 2) the well-known result asserting
that if a uspf has a representing measure on a finite dimensional function space
of polynomials then it necessarily has an atomic representing measure.

The final chapter is an approach to the moment problem on finite dimen-
sional function spaces when the number of atoms of a representing measure is
not necessarily equal to the cardinal of an orthogonal basis consisting of idem-
potents. The basic result of this section (Theorem 5) presents an extension of
Theorem 4 from [15].

1 Preliminaries

1.1 Tchakaloff’s Theorem

Cubature formulas are of particular interest both in the abstract analysis as well
as in numerical analysis for the computation or approximation of some integrals.

In 1957, V. Tchakaloff essentially proved the following cubature formula (see
[12], Théoréme II):

Theorem A Let F' C R? be a bounded closed set. Fizing an integer n > 1
and setting N = (n + 1)(n + 2)/2, there are points (uy,vy) € R? and constants
ar >0, k=1,...,N, such that

//Fp(u, v)dudv = kZ:akp(uk, V)

for all polynomials p in two variables, of total degre < n.

This result was improved by several authors: R. Curto and L. Fialkow [4],
M. Putinar [11], C. Bayer and J. Teichmann [1] etc.

In 2006, C. Bayer and J. Teichmann proved the following version of Tchakaloff’s
result (see [1], Corollary 1):

Theorem B Let p be a positive Borel measure on R™ and let A C R™ be
measurable, with p(R™\ A) =0. If

/ (£ + -+ )Y 2du(t) < +oo,



there exist an integer k < n, k points &,...,& € A, and weights A\ >
0,...,Ax > 0 such that

k
[ o) = > xp(6)).

for every polynomial p of total degree equal to 1.

In the proof of our Theorem 4, we shall use a consequence of Theorem B,
namely Corollary 2 from [1].

Using different methods, we have obtained (see [15], Corollary 4) another
version of Tchakaloff’s theorem:

Theorem C Let p be a positive Borel measure on R™ such that
[ @4t 2)ante) < oc,

Then there exist a subset 2 = {€W, ... ¢@DY c R and positive numbers
Aly..oy Mg, where d < n+ 1, such that

d
[ p0autt) = 3" i)
| 2

for all polynomials p of total degree at most 2.

Although the hypothesis of Theorem C is stronger than the that of Theorem
B, its consequences seem to be useful in concrete situations, because the weights
A, ..., Aa, and the nodes €D ... €@ as well, can be given by explicit formulas.

1.2 Idempotents with respect to a uspf

In this subsection we recall the concept of idempotent element with respect to
a given uspf, as defined in [15].

Example 1 Let Q = {wy,...,wq} be an arbitrary (finite) set and let C(Q) be
the (finite dimensional) C*-algebra of all complex-valued functions defined on €2,
endowed with the sup-norm. Assume that 6 = (61,...,6,) is an n-tuple in C'(£2)
generating this algebra. In other words, every element of C(Q) is a polynomial
in 61,...,60,. Moreover, with the standard notation for multi-indices, the set
{0% o € Z7 } must contain a subset {%;a € Z%,|a| < m}, for some integer
m > 1, which spans the vector space C(€2).

Fixing an integer m > 1 as above, the linear map P, 2 p+— pod € C(Q) is
surjective.

Consider the measure v = Z?:l Ajd;, with 0; the Dirac measure at wj,

>0 forall j=1,...,d, and 0 A = 1.



{ (f)etting(g;ﬂ}‘) = 0(w)), p({€D}) = v({w;}) = Xj,j = 1,...,d, and = :=
&€ C R™, we put

A(p) :/pd:u:/poedl/a pEPQW,
= Q

which is a uspf, for which p is a representing measure.

Let now f € C(Q2) be an idempotent. In other words, f is the caracteristic
function of a subset of 2. Our previous discussion implies the existence of a
polynomial p € P,,, which may be supposed to have real coefficients, such that
pob = f. Consequently, A(p?) = [, p*cfdv = [, pofdr = A(p). This shows that
some of the solutions the equation A(p?) = A(p), which can be expressed only in
terms of A, play an important role when trying to reconstruct the representing
measure /.

This remark leads us to the concept of idempotent with respect to a uspf,
recalled in the following (see [15], Definition 1).

Let S be a finite dimensional function space on a Hausdorff space Q). Fixing
auspf A:S® i C, let Zp, Hp = S/Za be defined as in Introduction. We also
denote by (x, ), || * || the inner product, as in (2), and the corresponding norm
induced on Hp, respectively.

We recall that RH, designate the subspace {f € Ha; f € RS}, which is a
real Hilbert space, and that if f € RHa, we always suppose the representative
feRS.

Definition 1 ([15]) An element p € RH, is said to be A-idempotent (or simply
idempotent if A is fixed) if it is a solution of the equation

151> = (5, 1). (3)

Remark 1 Note that p € RH, is idempotent if and only if A(p?) = A(p), via
(2). Set R
ID(A) = {p € RH; |pII” = (p, 1) # 0}, (4)

which is the family of nonnull idempotent elements from R . This family is
nonempty because 1 € ZD(A).
Note that two elements p, § € Ha are orthogonal if and only if A(pg) = 0.

The existence of orthogonal bases consisting of idempotents with respect to
a given uspf follows from the following result, which is part of Lemma 4 from
[15].

Lemma 1 Let A : 8@ s C be a uspf, and let Ta = {0 € RHa; |0 = 1}.

If the set {oy,...,94} C Ta is an orthonormal basis of Ha with (i;,1) #
0,j = 1,...,d, the set {(01,1)01,...(0q,1)04} is an orthogonal basis of Ha
consisting of idempotents. Moreover,

(D1, 1)1 + -+ + (g, 1)0g = 1.



From Lemma 1, it follows readily the next result (which is Theorem 1 from

[15]).

Theorem 1 For every uspf A : S — C, the Hilbert space Ha has infinitely
many orthogonal bases consisting of idempotent elements.

Corollary 1 Let A : S@ s C be a uspf. Then there are functions by, ..., by €
RS such that A(b?) = A(bj) >0, A(bjby) =0 forall j,k=1,...,d, j #k, and
every f € S can be uniquely represented as

d

= Alby) T A(fbb; + fo,

Jj=1

with fo € Zn and d = dimH .
This assertion is Corollary 1 from [15].

1.3 Multiplicative Structures

As in [15], the bases consisting of idempotents can be associated with multi-
plicative structures. We recall in the following this construction.

Remark 2 Let S be a finite dimensional function space on a Hausdorff space,
and let A : 8@  C be a uspf. Let B € ID(A) be a collection of nonnull
mutually orthogonal elements whose sum is 1 (in particular an orthogonal basis),
and let Hp be the complex vector space spanned by B in H . Using the basis B of
the space Hp, we may define a multiplication, an involution, and a norm on Hp,
makmg it a unital, commutatlve finite dlmenblonal C*- algebra Spemﬁcally, if

= {bl,.. bd} with 1 = Z 1 b], and if f ZJ Laibi, g = Z] 1ﬂjbj, are
elements from H g, their product is given by f g= Zd 10 ﬁjb The involution

is defined by f* = Zd L @;bj, and the norm is given by || f|lee = maxi<j<a o],
for f = ijl 04] i

Having in mind this construction, we may speak about the C*-algebra (struc-
ture of ) Hp induced by B.

When B is actually a basis, we clearly have Hg = H.

If for some f,g € S we also have fg € S, the element f g, computed for
instance in the algebra Hy, is, in general, different from fg In particular, if
0 = (01,...,0,) is an n- tuple of elements of S, then #* = 0 . 5; " is, in
general, different from 00‘, when 0% € S for some multi-index o = (al, cooa) €
7", where, as usually, we put % := 67" --- 0.

It is easily seen that the space of characters of the C*-algebra Hp induced
by B, say A = {d1,...,d4}, coincides with the dual basis of B. As Hp is also
a Hilbert space as a subspace of #,, we note that §;(f) = A(b;)"*(f,b;), f €
Hp, j =1,...,d. This also shows that C*-algebra Hp induced by B is semi-
simple.



1.4 Finitely Generated Function Spaces

Let S be a function space on a Hausdorff space 2. We assume that there exist
an n-tuple 6 = (0y,...,0,) of elements of RS, and an integer m > 1, such that
such that the family ©,, := {6%; |a| < m} spans the space S.

When such a pair (6, m) exists, we shortly say that the function space S is
m-generated by 6. Clearly, in this case S is of finite dimension, and the family
Oam, spans the space S, In fact, S = {pob;p € Py}, where P,,, as mentioned
before, is the space of polynomials of total degree less or equal to m.

In particular, S is 1-generated by 6 if and only if S is the span of {6, 1}.
Clearly, if S is a finite dimensional function space, it is at least 1-generated by a
basis 6 = (01, ...,0,). Nevertheless, the case of an & m-generated by a tuple 6
with m > 1 is also of some interest. Also note that if S is a function space that
is m-generated by an tuple 6 of elements of S, and if A : S@ — C is a uspf,
the Hilbert space Ha must be of finite dimension less or equal to the cardinal
of the set ©,,.

Example 2 As before, let P = P™ be the algebra of all polynomials in n
real variables, say t1,...,t,, with complex coefficients, and fix a k-tuple § =
(01,...,0)) of elements of P. Also let Py, be the span of the set O, :=
{0%;|a| < m}in P, that is, Py ., is a function space m-generated by 6. It consists
of certain polynomials of degree less or equal to max{a d; +- - -+agdy; |a] < m},
with d; := deg(§;);j = 1,..., k. In particular, if §; = ¢t;, j = 1,...,n, then
Pm = Po,m, is a function space m-generated by ¢ := (t1,...,tn).

1.5 Continuous Point Evaluations

A discussion concerning the point evaluations in the context of function spaces
on R™ can be found in [15], Section 4. Some assertions of interest in the context
of Hausdorff spaces can be obtained from those in [15], with minor modifications.

Let S be a finite dimensional function space on the Hausdorff space €2, and
let A : 8@ - C be a uspf. For every point w € €, we denote by d,, the point
evaluation at w, that is, é,,(f) = f(w), for every function f € S.

Definition 2 The point evaluation d,, is said to be A-continuous if there exists
a constant ¢, > 0 such that

10, (F)] < coM(|fIP)Y?, fes.

Let Z5 be the subset of those points w € Q such that é, is A-continuous.
For every function f let us denote by Z(f) the set of its zeros.

Lemma 2 We have the equality
Zx =Ngez, 2(f).

The proof of Lemma 2 is similar to that of Lemma 6 from [15], and will be
omitted.

Note that Zy = {0} implies Z5 = Q.



Remark 3 (1) The previous lemma shows that the set £, extends the concept
of algebraic variety of the moment sequence associated to A (see for instance
(1.6) from [3]).

(2) It also follows from Lemma 2 that for each w € Z,, the functional ¢,
induces a functional é,, on H given by é,(f) = f(w), f € S.

(3) When the map Q 3 w — 4§, is injective, we may regard the elements of
Hy as functions on Z,, putting f(w) = f(w), f € Ha, w € Za.

The next result extends an assertion from [2] (see also [15], Lemma 7).

Lemma 3 Suppose that the uspf A : S@ +— C has an atomic representing
measure p in 2. Then supp(p) C Za.

The proof of Lemma 3 is similar to that of Lemma 7 from [15] and will be
omitted.

2 Integral Representations

In this Section we recapture, in the context of function spaces on a Hausdorff
space (), some integral representation, stated in [15] for polynomial function
spaces on the real n-dimensional Euclidean space (n > 1). As in Example 1, for
every finite set =, we denote by C(E) the finite dimensional C*-algebra of all
complex-valued functions defined on =.

Remark 4 Let S be a finite dimensional function space on 2, and let A :
S® — C be a uspf. Let also C = {é1,...,&,} be an orthogonal family in H,
consisting of nonnull idempotents, and let H¢ be the span of the set C in Hjy.
We denote by S¢ the set of those f € S with f € Hce, and by G the linear span of
the (linearly independent) family {c1,...,¢,} in S. Then we have S¢ = G + Zj,
which is obvious, and G NZ, = {0}. Indeed, if g = 23:1 Bjc; € Ia, with S,
scalars, then

Algl) = D BiBrAleser) = D 1Bi*Aley) =0,
j=1

4k=1
whence g = 0, because A(c;) > 0 for all j. See also Corollary 1.

Proposition 1 Let S be a finite dimensional function space on ), and let A :
S® 5 C be a uspf. Assume that the space Hy is endowed with the C*-algebra
structure induced by an orthogonal basis consisting of idempotent elements. Let
also Hg be the sub-C*-algebra generated by the set {éo = 1,@1, .. ,én} mn Ha,
where 0 := (61,...,0,) is a fired n-tuple of RS.

Then there exist a finite subset = of R™, whose cardinal is < dimHp, and a
linear map Sp > u — u? € C(Z), whose kernel is Tx, such that

Au) = / W (€)dp(), u € S,

where Sg = {u € S;4 € Hy}, and p is a probability measure on =.



Proof. Let B = {131, .. .,Bd} be an orthogonal basis of H, consisting of
idempotent elements, inducing the C*-algebra structure of H,p. Let also A =
{61,...,04} be the set of all characters of the C*-algebra H,. First of all,
we shall deal with the structure of the sub-C*-algebra Hy, which consists of
arbitrary polynomials in 91, ... 0n. We can write Hk = Tklbl + 4 debd,
where 7; = J; (Gk)7 k=1,....,n,j =1,....,d. Put 709 = (’7’1]'7...,7'“]') €
R* j=1,..., d. With the notation from Remark 2, let us show, by recurrence,
that

d
= >0, ®)
j=1
for all multi-indices & = (a,...,a,). As (5) clearly holds if |a| = 1, assuming

that (5) holds if |a| < m for an integer m > 1, we have, for some fixed k €

{1,...,n},

_ zn: zd: 7@ zd: 7@y b]. = §om)
=1 j=1 j=1

where o) = (a1,...,ax—1,01 +1,ap41...,0y), showing that (5) holds when-
ever |a| < m. Consequently, p(f) = Zj‘:l p(T(j))Bj for every p € P.

Let £ = {€M ... ¢} be the distinct points from the set {7(1) ... 7D},
with v < d. Let also I; = {k;7®) = ¢}, j=1,...,v

If p € P is arbitrary, then, as above,

0)=>_p(E), (6)

where ¢; = Zkte b, j =1,...,v, which is a family of mutually orthogonal

idempotents, whose sum is 1.
Consider now the space Sj given by

Sp= {Zp(ﬁ(j))cj +7r;p€PIE, r € In} =Gy + 1a,
j=1

with Gp = {>°7_, p(EW)ej;p e 79\_} where P|Z is the space of all restrictions
of arbitrary polynomlals to the set =.

Let us remark that the sum Gy + Z, is direct. Indeed, because Sj is a
subspace of the space spanned by {c1,..., ¢}, it follows that the intersection
Go NZx = {0}, via Remark 4. In particular, if u =37, p(€W)e; +r € S), the
function p|E is uniquely determined.

Further, we have a linear map S 3 u — u# € C(Z), defined in the following
way. Taking an element u = Z}}:l p(ED)e;+r € S} for some p € P and r € 7y,

we put u” (&) = p(€), € € Z. As the function p|= is uniquely determined by u,



the definition of u# is correct, the assignment u — u# is linear, and its kernel
is precisely Zy. In addition, S) = {u € Pp,;14 € Ho} = Sp. Indeed, if & € Hy
there exists an integer m > 0 such that @ = 3|, @a0* = > pul(€D)ey,
via (6) aplied to t* for each a, where py(t) =3, < aal®

Consequently, if u = Z;):l p(€W)ej +r for some p € P and r € T,, we have

v

Aw) = 3 pED)A(e) = / W (€)du(),

j=1 =
where p is the measure with weights A(c;) at €U, j=1,...,v, which concludes
the proof. ™

Theorem 2 Let S be a finite dimensional function space on , and let A :
S®) — C be a uspf. Assume that the space Ha is endowed with the C*-algebra
structure induced by an orthogonal basis consisting of idempotent elements. Also
assume that the elements {i, él, ey én} generate the C*-algebra Hy where 0 =
(01,...,0,) is a given n-tuple of S. Then there exist a finite subset Z of R",
whose cardinal equals dim H ,, and a surjective linear map S 3 u — u# € C(E),
whose kernel is Iy, with the property

Aw) = [ w*©du(©). ues.

where @ is a probability measure on =.
Moreover, the map 8 > u +— u? € C(E) induces a *-isomorphism between
C*-algebras Hy and C(Z).

Proof. We follow the lines and use the notation of the proof of Proposition
1. We must have Hg = Hp, and Sy = S. Moreover, if B = {131, .. .,Bd} is the
orthogonal basis of H, consisting of idempotent elements given by the hypoth-
esis, and A = {01,...,04} is the set of the characters of the C*-algebra Ha,
the points 7) € R, j = 1,...,d, are distinct because the family of generators
{él, . ,én} separates the points of A, so

5;(0) =70 =¢0) = (¢ Dy eR", j=1,...,d,
and also ¢; = b;, f,(cj) :5j(ék), j=1,...,d, k=1,...,n.
Note that the space S can be written as
d .
S= "D +ripeP, reIn} =G +1x,
j=1

with G = {ijlp(ﬁ(j))bj; p € P}, and where the sum of spaces is direct.

Consequently, if u € S, we must have u = Z‘j:l p(£9)b; + r for some p € P
and r € Zp. Moreover, the function p|=Z is uniquely determined by u, and setting

10



u¥ = p|Z, we have a linear map S 3 u — u? € C(Z), whose kernel is Zy. In
addition, as in Proposition 1, we also have the formula

Au) = / HE)du(e), ue s,

where y is the measure with weights A(b;) at £9), j=1,...,d.

Note that the map S > u — u# € C(E) is also surjective because, taking
an arbitrary element of C'(Z) written under the form p|= for some p € P, the
function u = ijl p(€9))b; € G has the property u# = p|=.

Since the map S > u +— u¥ € C(Z) is surjective, and its kernel is precisely
Tx, the induced map Hp > @+ 4% € C(Z) is correctly defined and bijective,
where 4% (&) = u# (), € € . This map is actually a *-isomprphism.

To prove this assertion, let us first choose the functions pi € P and 7y € T
with the property by = Z;l=1 pk(f(j))bj + 7k, k=1,...,d. The uniqueness of
this representation shows that 7, = 0, p(€W)) = 1 if k = j, and = 0 otherwise,
for all k,j =1,...,d. In addition, b} = pi|Z, k=1,...,d.

Because (b; - b)#(€) = 0 = p;(§)pr(&) if j # k, and (b; - b;)# (&) = bT (€) =
p;i (&) = p;(&)?, for all £ € E and j,k = 1,...,d, it follows that the map Ha >
@ — 4% € C(Z) is multiplicative. Taking into account the definitions given in
Remark 2, the equalities

d

d
e =) )" © = p©) =1,

Jj=1 Jj=1

as well as (0*)# = 4#, show that the map Hp > @ — 4% € C(Z) is a unital
s*-morphism. In addition, if 4 = Z?Zl p(€W)b; € Hp is arbitrary,

i - UGN = |15#
Jill = mas 1p(€9)] = %
proving that H 2 @+ 47 € C(Z) is a *-isomorphism. [

Remark 5 We keep the conditions and notation from Theorem 2 and its proof.
First of all, because H, is finite dimensional, there exists a nonnegative inte-
ger m such that the set ©,, := {0%|a| < m} generates the C*-algabra Ha.
Consequently,

d
S= {Zp(f(j))bj +7;p € Py r €5} =G + I,
j=1

with G = {Z‘;:l p(f(j))bj; p € P}, where the sum of spaces is direct.
In addition, the algebra P, contains a family {p1, ..., ps}, which interpolates
the set =, where p; = b}# for all j.

11



Example 3 As in [5], Example 2.1 (see also [15], Examples 1 and 3), we con-
sider the uspf A : P} +— C, given by A(t*) = 1, k = 0,1,2,3, and A(t}) = 2,
extended to P} by linearity. It is known that this uspf has no representing mea-
sure. Nevertheless, according to Theorem 2, the restriction A|P4 has a certain
integral representations, with respect to any fixed orthogonal basis of H, con-
sisting of idempotents, to be explicitly presented in the following. We use some
information from [15], Examples 1 and 3. We have Ty = {p(t) = u —ut;u € C},
and Hp = {p p(t) = u + ut + vt?, u,v € C}. In particular, 1 = #, and so

—{u1+vt2 u,v € C}.

We fix the elements by = t2/2 and by = 1/2 + /2 — t2/2, satisfying A(b?) =
A(by) = 1/2,A(b3) = A(b2) = 1/2, and A(b1bs) = 0.

As we have dimH = 2, it follows that {1317 132} is an orthogonal basis of H
consisting of idempotents, with b, = t3/2, by =1— 15/5/2

Put 0, =t, 6, = t>. Clearly, the set {él,ég} generates the C*-algebra H,.

Using the dual basis A = {61, 2}, we infer that

€W = (61(61),01(02)) = A(b1) " (A(61b1), A(2br)) = (1,2),

¢® = (52( 1),82(02)) = A(ba) " (A(B1b2), A(62b2)) = (1,0).

In other words, = = {(1,2),(1,0)} C R2. If p = u + wt + vt? is an arbitrary
element of Py, then

ﬁ:uiJrvt/i = (u+2v)l;1 + uby € Hp, u,v€C,
and we have

A(p) = p* (EW)A (1) +p* (€@ A(b2) = u + v,

where p# (z) = uxy + v22, z = (71,72) € R2, is computed by formula (6).
Therefore, A(p f_ p#(&)dv(€), p € P4, where v is the atomic measure with
weights A(by), A(bg) at €1 @) respectively. In addition, the map Ha > p —
p#|= € C(Z) is a *-isomprphism.

Finally, a similar procedure may be applied to any pair of idempotents
{51, 52}, which is an orthogonal basis of H.

3 Representing Measures: Abstract Approaches

The previous section offers some integral representation formulas for certain
uspf’s. The existence of a representing measure for a general uspf is still an
open question, even in R™. For a given uspf, the problem may have no solu-
tion, a unique solution or infinitely many solutions. In this section we present
some abstract criteria concerning the existence of a representing measure in the
context of Hausdorff spaces (see [2, 3, 14, 15] etc.).
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3.1 Contractive USPF’s

For a given uspf A, the associated set Z, is defined in Subsection 1.5.

Let S be a finite dimensional function space on a Hausdorff space {2, and let
A : 8@ 5 C be a uspf. We say that A is contractive if there exists a finite set
F C Z, such that |[A(f)] < ||fllr, f € S®), where ||f||r = max,er | f(w)].

Proposition 2 The uspf A : S — C has an atomic representing measure if
and only if it is contractive.

Proof. The existence of an atomic representing measure of A implies an
equation of the form A(f) = Z';Zl \jf(w;) for each f € S@) where \; >

A > 0, Z;l:l Aj =1, and wy,...,wq are (distinct) points in €. Setting
F = {wi,...,wq}, we deduce easily that |A(f)| < || f|lr, f € SP.

Conversely, assume that A is contractive, so |[A(f)| < ||fl|lr, f € S®, for

some F' C Z). Setting Jr := {f € S@); fIF = 0}, we may define the map

SP/Tr > f = fIF € C(F)}, where f = f + Jp, f € S®. Clearly, this
map is correctly defined and linear. Moreover, putting ||f||z = || f||» whenever
f=f+JTr, fe8?, weobtain a norm on the space S® /Jp. In addition, the
map f — f|F is an isomatry.

On the subspace Ry := {f|F € C(F); f € 8?3/ Tr}, which is isometrically
isomorphic to S@) /Jp, we may define the map A(f|F) = A(f), which is cor-
rectly defined because A is contractive. This also shows that ||A|| < 1. In fact,
as we have A(1) = 1, we must have ||A|| = 1.

We denote also by A a norm preserving extension of A to C(F), which
therefore should be a positive functional. Denoting by §; the point evaluation
at w;, j =1,...,d, we deduce the existence of scalars /\1 > 0,...,Ag > 0 such

that A = Z‘;Zl A;0;, and thus

A(f) = A(fIF) = fowj fes®,
Jj=1

In addition, E?Zl A; = A(1) = 1, showing that A has an atomic representing
measure on 2. [ |

Remark 6 Assume that the uspf A : S — C is contractive, so we have
A < Ifllr, f €SP for a certain finite subset F in . In particular, A has

representing measure, that is A(f) = Z?:I N f(wy), f e S@, via Proposition
2. Let us define the quantities

o(f):= sup [-A(g) —IIf +4lF],

geERS@

7(f) = inf (lIf+gllr—A9)l,

geERSP

where f € RC(F) is arbitrary. It follows from the standard proof of the Hahn-
Banach Theorem (see for instance [7]) that the equality o(f) = 7(f) for all

13



f € RC(F) implies the uniqueness of the extension, that is, the uniqueness of
the representing measure.

3.2 An Interpolation Approach

The existence of a representing measure can be also characterized in terms of an
interpolation property. A similar connection already appears in Remark 5. An
even stronger connection is given the following proposition, whose proof uses
some arguments from Subsection 1.5 (see especially Remark 3(2)).

Proposition 3 Let S be a finite dimensional function space on Q. A uspf A :
5@ — C has a representing measure in Q with d := dim Ha atoms if and only if
there exist an orthogonal basis of Ha consisting of idempotents B = {131, cee l;d},
and a set Qp = {w1,...,wq} C Zp such that bj(w;) =1 and by (w;) = 0 for all
g k=1,...,d,j#k.

Proof. First assume that the uspf A : S — C has a representing measure
in Q, say u, given by

d
A(f) =D Nifwy), fes?,
J=1

with A; > 0 for all j = 1,...,d, and 7_; \; = 1, where d = dimH,, and the
points wy, ... ,wq are distinct. Set Qp := {w1,...,wq}, which is a subset of Zj,
via Lemma 3.

Note that Zy = {f € S; f|Q2a = 0}. This shows that there exists a map p :
Ha — C(Qp) given by f — f|Qa, which is correctly defined, linear and injective.
This map is also surjective because we clearly have dim(H,) = dim(C(Q4)).

Let x, € C(€24) be the characteristic function of the set {wy} and let by, €
Ha be the element with p(l;k) =X k=1,...,d. As A(bjby) = fQA X;Xkdp for

all j,k=1,...,d, we deduce that the set {l;l, R Bd} is a family of orthogonal
idempotents in H s, which is actually a basis. Moreover, b;(w;) = 1 and by (w;) =
0 for all j,k = 1,...,d, j # k, proving the necessity of the condition in the
statement.

Conversely, if there exist an orthogonal basis of H s consisting of idempotents
B = {b,...,ba}, and a set Qp = {wi,...,wa} C Z, such that b;(w;) = 1 and
bi(w;) = 0 for all j,k =1,...,d, j # k, then A has a representing measure
whose support is 24. Indeed, as we have for every f € S

d
F= " Ab) T A(f)bs + 7,
j=1
with r € Z,, we obtain
d
Flwr) =D Aby) T ACfb;)b; (wi) = Albr) "M A(fbr),
j=1

14



because r(wy) = 0, for all k =1,...,d. Therefore

d

A =D Nfw), fes,

j=1

with A\; = A(b;) forall j =1,...,d.

Now if h =30 figr € 8(2 is arbitrary, with f;,g; € S foralll € L, L
finite, then f; = Zj filwi)b; + 11, g1 = >k 91(wi)bi + s, with 77, s, € Zp for all
l € L, we must have

d
=Y Ahg) =Y Y filw)gi(wi)Abbe) =

leL leL j,k=1

d
E )‘ E fl w] gi WJ E
j=1 leL j=1

showing the existence of a representing measure of A in 2 having d atoms. B

Remark 7 We keep the notation from Proposition 3 and its proof. Assuming
that there the uspf A : S© — C has a representing measure in Q with support in
Qp = {wi,...,wq} C 2, we have constructed an orthogonal basis {by, ..., bq}
consisting of 1dempotents in Hy. If Hy is given the C*-algebra structure 1nduced
by {b1,...,ba}, then H, and C(£2) are isomorphic as C*-algebras, via the map
Ha > f — f|F € C(F), which is easily seen. Fixing a point w; € Qx, we may
correctly define a linear map #; : Hx — C by the equation x;(f) = f(w;), f € S.
Taking f = > ch;j, g=> diby, in Hy, as we have

ki(f-g) = chd ki(by) = cdy = fw)g(w) = mi(Hri(), f.9 €S,

the map k; is also multiplicative on the algebra H,, so it is a character.

Let A ={d1,...,d4} be the set of characters of the C*-algebra H, induced
by B. Then for each index j there exists a unique point w; € €24 such that
5j(f) = f(w;), f€S8,j=1,...,d. In other words, we can identify the sets A
and Q,.

If 0 = (61,...,0,) C RS provides a family of generators {0y, ...,0,} of the
C*-algebra Hy, setting = = {€M) ... @D} ¢0) = §,(d) € R", we also have
that the algebras H and C(E) are isomorphic as C*-algebras (as in the proof
of Theorem 2), with u#(£9)) = u(w;), 7 =1,...,d.

4 Relative Multiplicativity
As in [15], we may characterize the existence of a representing measure in terms

of idempotents. We start with a basic concept, which generalizes the corre-
sponding one from [15], Definition 3.
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Definition 3 Let S be a function space m-generaterd by the nm-tuple 6, let
A :8® — C be a uspf and let B = {131, . ,Bd} be an orthogonal basis of H
consisting of idempotent elements. We say that the basis B is A-multiplicative
(with respect to 6) if

A(0°0;)A(07b;) = A(b;)A(0°+b)) (7)
whenever |a| 4+ || <m, j=1,...,d.

Lemma 4 Let S be a function space m-generaterd by the n-tuple 0, let A :
S® — C be a uspf and let B = {bl,.. bd} be an orthogonal basis of Ha
consisting of idempotent elements. The basis B is A-multiplicative if and only
if 5(55) = §(6*) whenever || < m and 8 is any character of the C*-algebra H
induced by B.

The proof of this lemma, using the formula of a character given in Remark
2 (and similar to that of Lemma 5 from [15]), will be omitted.

The next result is a generalization of Theorem 2 from [15]. Because of some
differences, we exhibit complete arguments.

Theorem 3 Let S be a function space on §2, supposed to be m-generaterd by
the n-tuple 6 = (01,...,0,). A uspf A : S® s C has a representing measure
in Q with d = dimH atoms if and only if there exists an orthogonal basis B
of Ha consisting of idempotent elements which is A-multiplicative, and 5(@) €
0(Q), § € A, where A is the dual basis of B.

Proof.  Using the fact that B = {131, .. .,Bd} is A-multiplicative, we have
(5(5;) = §() whenever |a| < m and § € A, via Lemma 4. In particular, we
must have the equality o = > whenever |oz\ < m, because the algebra H, is
semi-simple. In addition, as the elements {90‘, || < m} span the linear space
Ha, the elements 01, .. Gn have to generate the algebra H,. Therefore, the
family {91, O } separates the points of A (which coincides with the set of
characters of the C*-algebra H induced by B), and so the map

A3 (0(01),...,6(0,)) e R®

is injective. Writing A = {01,...,dq4}, we set £U) = (6j(91),...,(5j(én)), j =
1...,d, 2 ={M .  ¢d
As in Proposition 1 (see formula (5)), we have § = Zj:1(§<j>)aéj. There-

fore, 0 = Z;l:l(f(j))al;j whenever [af <m. If f =37 ., caf® €S, then

d
Z Z 5(])
i=1la|<m

This shows that f7#(¢) = Z|a\§m co€%, as in the proof of Proposition 1.
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The hypothesis 6(0) € 6(2), § € A, allows to find a point w; € € such that
¢V = O(w;) = 6; (é) for each j = 1,...,d. Therefore, with the notation from
above,

FEED) = 37 cablws)® = f(wy), J=1,...d,

laf<m

which leads to the equality

<

A(f) = 2 fw)dp(w), f €S,

where Qp = {w1,...,wq} and p is the measure with weights A(b;) at w;, j =
1,...,d, via the integral representation formula given by Proposition 1.

Now, if h € S® have the form h = > ier fugr, with fi,gp € Sforalll € L, L
finite, proceeding as in the proof of Proposition 3, we infer that

d
Ah) =3 filw)a(wi) Absbi) = | h(w)dp(w),

leL j,k=1 Q4

which provides a representing measure of A on ).

Conversely, assume that the uspf A : S@) — C has a representing measure
in 2 with d = dim 7, atoms. Using the notation and discussion in Remark
7, we know that the C*-algebras Ha and C(Q4) are isomorphic via the map
Ha > f = f]Qa € C(Qy), which leads to the existence of an orthogonal basis
B of the Hilbert space H, consisting of idempotent elements. In addition, the
maps 5j(f) = f(wj), j =1,...,d, are the characters of H, (see also Remark 7).
Therefore,

3;(07) = 60%(w;) = (01(w;)" -+ (B w;) = 6;(0°),

whenever |a| < m and j = 1,...,d, showing that B is a A-multiplicative basis,
via Lemma 4. Moreover, we clearly have §;(8) = 6(w;), j = 1,...,d, which
concludes the proof of Theorem 3. [ |

Corollary 2 Let S be a function space on ) which is m-generaterd by the n-
tuple 0 = (01, ...,0,), and let A : S?) — C be a uspf. Let also B = {517...,6d}
be an orthogonal basis of Hy, consisting of idempotent elements, which induces
on Ha a C*-algebra structure. Assume that the basis B is A-multiplicative with
respect to . Then there exists a finite set = = {0, ... D} c R™ and a
probability measure p on = such that

A(h(0)) = / hE)du(€), h e P

Proof. For every polynomial p € P™, we have defined the element p(6),
via the polynomial functional calculus. If A = {dy,...,94} is the set of char-

acters of the C*-algebra H,, we put £U) = (5j(é1),...,5j(9n))7j =1,...,d,
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2={W .. @D} According to formula (5), we have p(f) = Z?le(f(j))l;j.

Therefore, p(8)#(£) = p(€) for all ¢ € =. Moreover, because B is A-multiplicative,

~ —

and if p € P, so p(6) = p(f), we obtain

A(p(68)) = / p(€)du().

where p is a probability measure with support in =.

Further, if A € Py, has the form h =}, piqi, with p;, q € Py, for all | €
L, L finite, since we have py(0) = 20_; pi(€9)b; +75,q1(0) = Sj_; au(€*)be+
Si, with r;,s, € Iy, j,k =1,...,d, we obtain

d
ARB) =3 S pi(€D) @) Absbe) = / B(E)dp(©).

leL j,k=1 =
providing an integral representation of all functions of the form h o 6, with
heP3,. ]

Theorem 2 from [15] can be obtained as a consequence of Theorem 3:

Corollary 3 The uspf A : Pay, — C has a representing measure in R™ pos-
sessing d := dim Hp atoms if and only if there exists a A-multiplicative basis of
Ha.

Proof. If S = P, for some m > 0, we have Q = R™, and P,, is m-
generated by the n-tuple t = (¢1,...,t,) consisting of the independent variables
on R™. Then §,(f) = w; = t(w;), j = 1, ...,n, showing that inclusion condition
appearing in the statement of Theorem 3 is automatically fulfilled. ]

Corollary 4 The uspf A : Pa,, — C has a representing measure in R™ pos-
sessing d = dim Ha atoms if and only if there exists a family of polynomials
{b1,...,ba} C RP,, with the following properties:

(1) A(b?) =A(b;) >0, j=1,...,d;

(it) A(bjbr) =0, j,k=1,...,d, j #k;

(#3i)

A(t*b;)A(t7b;) = A(b)A(t* b))

whenever 0 # |a| < |B], la| +18] <m, j=1,...,d.

This statement appears as Corolloary 3 in [15], and it follows directly from
Corollary 3. We omit the details.
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5 Results Related to Tchakaloff’s Theorem

For an arbitrary Hausdorff topological space 2, we denote by B(2) the space of
all complex-valued Borel functions on €2, and by Bor(Q2) the family of all Borel
subsets of (2.

Theorem 3 is particularly interesting when applied to a function space which
is 1-generated by a given tuple. This happens because, in this case, condition
(7) is automatically fulfilled.

Corollary 5 Let S be a function space on 2, which is 1-generaterd by the n-
tuple @ = (01, ...,6,), and let also A : S — C be a uspf. If either

(1) there exists an orthogonal basis B of Ha consisting of idempotent ele-
ments such that §(0) € 0(2), 6 € A, where A is the dual basis of B,

or

(2) 6() = R",
the uspf A has a representing measure in  with d = dim Hx atoms.

Proof.  Assertion (1) follows directly from Theorem 3, because condition
(7) is automatically fulfilled.

Assertion (2) is a particular case of assertion (1), but it is valid for any
orthogonal basis B of H, consisting of idempotent elements.

Example 4 The previous corollary provides an atomic representing measure for
a large class of 1-generated function spaces. Here is an example. Let r > n, r,n
be positive integers, let ' C R"™™ be a Borel set, and let Q@ = R™ x Q'. We
consider on € the functions 0;(¢t,t') = t; + ¢¥;(t'), j = 1,...,n, where ¢t =
(t1,...stn) € R U = (t),...,t._,) € @, and 11,...9, are Borel functions.
Let S be the function space on 2 spanned by 6 := (61, ...,0,) and 6y = 1. Then
every uspf A : S — C has an atomic representing measure in €. This follows

from the previous corollary, because we clearly have 8(Q) = R".

Remark 8 (1) We can give explicit formulas related to Corollary 5. Let S be a
function space on €2, which is 1-generaterd by the n-tuple 6 = (64, ...,60,), and
let also A : S@) — C be a uspf. We fix a basis B = {b1,...,bq} of H, consisting
of orthogonal idempotents, which is automatically A-multiplicative with respect
to 6, where d = dim(H,). Let also A = {d1,...,d4} be the dual basis. We set
€0 =5;(0) eR™, j=1,...,d,and E= {¢M, ... @D} Then, as in Remark 2,
if p € P3, we have A(p(#)) = [ p(£)du(€), where p is probability measure with
weights \; := A(b;) at €0, j=1,....d.

If 6;(8) = 6(w;), j = 1,...,d, we actually have A(h) = Z?:l Ajh(w;) for
every h € 8@ as in the proof of Theorem 3. In fact,

9((,«}]‘) = (A(bj)_lA(Hlbj), ce ,A(bj)_lA(enbj) e R, j=1,...,d.

Finally, when 6(Q) = R", the existence of the points w;, j = 1,...,d is
insured for any basis B of H consisting of orthogonal idempotents.

(2) Corollary 5(2) can be used to give a direct proof to our Theorem C,
which is a version of Tchakaloff’s theorem (see [15] for details).
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Theorem 4 Let S be a function space on 2, m-generaterd by the n-tuple 6 =
(01,...,6y), and let A : S® — C be a uspf. If A has a representing measure
then it has an atomic representing measure.

Proof. 'We consider the set Z'"™ := {a € Z7};|a] < m} endowed with the
lexicographic order. In addition, we assign to each integer j € {0,1,2,...,n,},
where n,, 4+ 1 is the cardinal of Z'™, a multi-index a(j) € ZP™ with j < k iff
a(j) < a(k), and «(0) = 0. In this way we have a map ¢ :  — R"™ given by
H(w) = (0D (w), .., 05 (@) € R

Now assume that A has a representing measure, so it has form A(h) =
fQ hdp, h € S@), where 1 is a positive Borel measure on 2, with p(€) = 1. Let
v be the measure induced by the measure p and the Borel map ¢. Note that

/ |z |dv(x) :/ |z; 0 ¢ldp S/ \9a(j)|du < A(92a(j))1/2 < o0,
Rnm Q Q

for all j = 1,...,n,,. This shows that we may apply Corollary 2 from [1] and
deduce the existence of a positive integer d < n.,, a set of points wy,...,wy in
the support of the measure p, and positive numbers Ay, ..., Ag such that

d
/ 0“du = ijea(wj)7 || < 2m.
Q -
j=1

As we clearly have Z?:l A; =1, it follows that A has an atomic representing
measure. |

Remark 9 Let S be a finite dimensional function space on 2, and let A :
S®) - C be a uspf having a representing measure which may be supposed to
be atomic, via Theorem 4. Let also Q := {q1,...,¢s} C RS, and let

Qo = fw e Lgy(w) = 0,5 =1,....s}.

Let B = {l;l, e l;d} be an orthogonal basis of H consisting of idempotents,
constructed as in the first part of the proof of Proposition 3. The measure p
has support in Qg if and only if A(g;by) > 0forall j=1,...,s;k=1,...,d.
Indeed, if Qo = {w1,...,wq} is the support of p, we have

Algsby) = /Q G (OO du(t) = AbR)as @)y j = 15 k= 1,....d,

implying our assertion.
This remark may be applied, in particular, to spaces of functions consistng
of polynomials, restricted to semi-algebraic sets.
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6 Function Spaces and Point Evaluations
In this section we continue the discussion from Subsection 1.5.

Remark 10 (1) It follows from Lemma 3 that a necessary condition for the
existence of a representing measure for A is Z, # ().

(2) Let A : S@ = C be a uspf with the property Zx # (). With the notation
from Remark 3(2), the set {J,;w € 25} is a subset in the dual of the Hilbert
space Hy. Therefore, for every w € Z, there exists a vector v,, € Ha such that

bu(f) = (f,0,) = A(fvw) = f(w) for all feS.

Set Vo = {0,;w € Zo}. The elements of Vs are not necessarily distinct. If
w' # W”, we have 9, # 0, iff the space S separates the points of .

The next result, which extends Theorem 4 from [15], is an approach to trun-
cated moment problems when the number of the atoms of the representing mea-
sures is not necessarily equal to the maximal cardinal of a family of orthogonal
idempotents. The basic elements are in this case projections of idempotents.

Theorem 5 Let S be a finite dimensional function space separating the points
of Q, and let A : S©® — C with Zx nonempty. The uspf A has a representing
measure in R™ consisting of d-atoms, where d > dimHp, if and only if there

exist a family {01,...,04} C RHa of distinct elements such that
A(’Uj) >0, 'lA)j/A(Uj) EVy, j7=1,...,d, (8)
f=Aw) T A(fun)on + -+ Ava) "M A(fva)da, | €S, (9)
and
d
Alvgvy) = Z A(vy) P A(vjur) A(vjv), ki =1,....d. (10)
j=1

Proof. Assume first that p = 2?21 Ay, is a representing measure for A,
with A; > 0 for all j = 1,...,d, with wi, ..., wg distinct, and 37_; A; = 1. The
set Qp 1= {w1,...,wq}, which is exactly the support of p, is a subset of Z,, by
Lemma 3.

We now proceed as in the proof of Proposition 3. Note that Zy = {f €
S; f1Qa = 0}, This shows that there exists a map p : Ha — C(£25) given by
f — f|Q, which is correctly defined, linear and injective (but not necessarily
surjective). Endoved with the norm f — ([, |f|2du) /2, the space C(25)
becomes a Hilbert space, denoted by L?(Q,u), and the map p becomes an
isomatry. This allows us to regard H, as closed subspace of L?(Qx, ).

Let xx € L*(Qa, ) be the characteristic function of the set {wy}. Clearly,
the family {xx; k = 1,...,d} consists of Ag-idempotents in the function space
L?(Qy, ), where Ag is the natural extension of A to L?(Qa, u). In fact, {xx; k =
1,...,d} is an orthogonal basis of L?(Q4, 1) consisting of idempotents.
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Let P denote the orthogonal projection of the L?(2,, ) onto H,. In par-
ticular, P1 = 1. Let also Let 9; = Px;, j=1,...,d. Then

A(fv)) = (f.Px;) = (f.xs) = Nif(wy), FE€S, j=1,....d,

so \j:= Aa(x;) = (1,x;) = Alv;) > 0, and v;/\; = vy, , which is precisely (8).
In addltlon as {x1,...,Xd} is an orthogonal basis of L2 (Qa, ),

f=Pf= P(AS N xx o+ AN xa)xa) =

A(vl)*lA(fvl)fDl e A(vg) A (vg)da,

for all f € S, showing that (9) holds.
Note also that

d
Avgyy) = Z)‘J vEv)( Z/\ YA(ogvy)A(vwy), k1 =1,....d,
j=1

because
(vgvr)(wy) = A(vkij)A(vlij) = )\j_zA(vkvj)A(vlvj)

for all k,l =1,...,d, proving that (10) also holds.

Conversely, assume that there exists a family {01,...,94} C RHa such that
(8), (9), (10) hold. We must have v;/\; = v, for a certain w; € Zj, with
Aj=A(v;)>0forall j=1,...,d.

Set Qp = {w1,...,wq} C ZA, and consider the map Ha > f — f|QA €
C(Q4). Note that this map is correctly defined because the equality f1 fg,
which is equivalent to fi — fo € Ty, implies f1|Qa = f2|Qa, by Lemma 2.

Moreover, the map is injective because f(w;) = /\j_lA(fvj) =0 for all j =

.,d implies f = 0, via (9).

Since, in virtue of (9),

AF) = (f,01) + -+ (f,94) = Mp(wr) + -+ + Aap(wa),

for all f € S, the map A|S admits the extension M(g) = 2?21 Ajg(wj),
g € C(Qy), which provides an integral representation for A|S.

We want to show that the map M also extends A. For, let h = ZJEJ fig;,
with f;,g; € S for all j € J, where J is a finite set of indices.

Note first that

k) = Z Filwr)gs(wr) = A? ZA(fjvk)A(gjvk)a (11)

jeJ JjeJ

for all k =1,...,d. Then, on one hand,

d
h):Z)\kf(Wk Z)\szj wk g] wk
k=1

k=1 jedJ
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so that, using (11),

d
M(h) = Z At Z A(fjve)A(gjvr). (12)

k=1 jeJ

On the other hand, writing by (9)

d
= Z/\lil pﬂ}l 01, g] Z)‘ QJ'US
=1

for all j € J, we have

d
h= % AT A (o) AlggusJuws € ker(A),

jeJ l,s=1

SO

S Y A A A A, =

jeJ l,s=1
d d
SO NI o)A (gvs) DAL T A (ko) Avrs) =
jed Ls=1 k=1
d
Z 7122)\1 A(fjo) Al Z Agjvs)Mvsvr) =
k=1 jes =1 —1

d
DoAY A(fue) Mg on),

k=1 jed
via (10), because of the equalities

d
N TIAC ) Avo), Alggoe) =Y AT A(gus)Avsor),

s=1

f]vk

an

derived from (9). This computation leads to the equality M (h) = A(h), for each
p of the given form. Formula (12) shows that, in fact, the equality M (p) = A(p)
does not depend on the particular representation of i as a finite sum of the form

> ics figj, with f;,g; € S, and so M(h) = A(h) holds for all h € S©). [

Remark 11 Condition d > dim H,, appearing in the previous statement, is a
necessary one, as follows from [2], Corollary 3.7.
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