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Abstract

We present an approach to the spectrum and analytic functional calcu-
lus for quaternionic linear operators, following the corresponding results
concerning the real linear operators. In fact, the construction of the an-
alytic functional calculus for real linear operators can be refined to get
a similar construction for quaternionic linear ones, in a classical manner,
using a Riesz-Dunford-Gelfand type kernel, and considering spectra in
the complex plane. A quaternionic joint spectrum for pairs of operators
is also discussed, and an analytic functional calculus is constructed, via a
Martinelli type kernel in two variables.
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1 Introduction

In this text we consider R-,C-, and H-linear operators, that is, real, complex
and quaternionic linear operators, respectively.

While the spectrum of a linear operator is traditionally defined for complex
linear operators, it is sometimes useful to have it also for real linear operators,
as well as for quaternionic linear ones. The definition of the spectrum for a
real linear operator goes seemingly back to Kaplansky (see [10]), and it can be
stated as follows. If T is a real linear operator on the real vector space V, a
point u + iv (u, v ∈ R) is in the spectrum of T if the operator (u − T )2 + v2

is not invertible on V, where the scalars are identified with multiples of the
identity on V. Although this definition involves only operators acting in V, the
spectrum is, nevertheless, a subset of the complex plane. As a matter of fact, a
motivation of this choice can be illustrated via the complexification of the space
V (see Section 2).

The spectral theory for quaternionic linear operators is largely discussed in
numerous work, in particular in the monographs [5] and [4], and in many of their
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references as well. In these works, the construction of an analytic functional cal-
culus (called S-analytic functional calculus) means to associate to each function
from the class of the so-called slice hyperholomorphic or slice regular functions
a quaternionic linear operator, using a specific noncommutative kernel.

The idea of the present work is to replace the class of slice regular functions
by a class holomorphic functions, using a commutative kernel of type Riesz-
Dunford-Gelfand. These two classes are isomorphic via a Cauchy type transform
(see [21]), and the image of the analytic functional calculus is the same, as one
might expect (see Remark 8).

As in the case of real operators, the verbatim extension of the classical
definition of the spectrum for quaternionic operators is not appropriate, and
so a different definition using the squares of operators and real numbers was
given, which can be found in [5] (see also [4]). We discuss this definition in
our framework (see Definition 1), showing later that its ”complex border“ con-
tains the most significant information, leading to the construction of an analytic
functional calculus, equivalent to that obtained via the slice hyperholomorphic
functions.

In fact, we first consider the spectrum for real operators on real Banach
spaces, and sketch the construction of an analytic functional calculus for them,
using some classical ideas (see Theorem 2). Then we extend this framework to
a quaternionic one, showing that the approach from the real case can be easily
adapted to the new situation.

As already mentioned, and unlike in [5] or [4], our functional calculus is
obtained via a Riesz-Dunford-Gelfand formula, defined in a partially commu-
tatative context, rather than the non-commutative Cauchy type formula used
by previous authors. Our analytic functional calculus holds for a class of ana-
lytic operator valued functions, whose definition extends that of stem functions,
and it applies, in particular, to a large family of quaternionic linear operators.
Moreover, we can show that the analytic functional calculus obtained in this
way is equivalent to the analytic functional calculus obtained in [5] or [4], in the
sense that the images of these functional calculi coincide (see Remark 8).

We finally discuss the case of pairs of commuting real operators, in the spirit
of [20], showing some connections with the quaternionic case. Specifically, we
define a quaternionic spectrum for them and construct an analytic functional
calculus using a Martinelli type formula, showing that for such a construction
only a sort of ”complex border“ of the quaternionic spectrum should be used.

This work is just an introductory one. Hopefully, more contributions on this
line will be presented in the future.

2 Spectrum and Conjugation

Let A be a unital real Banach algebra, not necessarily commutative. As men-
tioned in the Introduction, the (complex) spectrum of an element a ∈ A may
be defined by the equality
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σC(a) = {u+ iv; (u− a)2 + v2 is not invertible, u, v ∈ R}, (1)

This set is conjugate symmetric, that is u+ iv ∈ σC(a) if and only if u− iv ∈
σC(a). A known motivation of this definition comes from the following remark.

Fixing a unital real Banach algebra A, we denote by AC the complexification
of A, which is given by AC = C⊗RA, written simply as A+ iA, where the sum
is direct, identifying the element 1 ⊗ a + i ⊗ b with the element a + ib, for all
a, b ∈ A.

Then AC is unital complex algebra, which can be organized as a Banach
algebra, with a (not necessarily unique) convenient norm. To fix the ideas, we
recall that the product of two elements is given by (a+ ib)(c+ id) = ac− bd+
i(ad+bc) for all a, b, c, d ∈ A, and the norm may be defind by ‖a+ib‖ = ‖a‖+‖b‖,
where ‖ ∗ ‖ is the norm of A.

In the algebra AC, the complex numbers commute with all elements of A.
Moreover, we have a conjugation given by

AC 3 a+ ib 7→ a− ib ∈ AC, a, b ∈ A,

which is a unital conjugate-linear automorphism, whose square is the identity.
In particular, an arbitrary element a + ib is invertible if and only if a − ib is
invertible.

The usual spectrum, defined for each element a ∈ AC, will be denoted by
σ(a). Regarding the algebra A as a real subalgebra of AC, one has the following.

Lemma 1 For every a ∈ A we have the equality σC(a) = σ(a).

Proof. The result is well known but we give a short proof, because a similar
idea will be later used.

Let λ = u + iv with u, v ∈ R arbitrary. Assuming λ − a invertible, we also
have λ̄− a invertible. From the obvious identity

(u− a)2 + v2 = (u+ iv − a)(u− iv − a),

we deduce that the element (u − a)2 + v2 is invertible, implying the inclusion
σC(a) ⊂ σ(a).

Conversely, if (u − a)2 + v2 is invertible, then both u + iv − a, u − iv − a
are invertible via the decomposition from above, showing that we also have
σC(a) ⊃ σ(a).

Remark 1 The spectrum σ(a) with a ∈ A is always a conjugate symmetric
set.

We are particularly interested to apply the discussion from above to the
context of linear operators. The spectral theory for real linear operators is well
known, and it is developed actually in the framework of linear relations (see
[1]). Nevertheless, we present here a different approach, which can be applied,
with minor changes, to the case of some quaternionic operators.
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For a real or complex Banach space V, we denote by B(V) the algebra of all
bounded R-( respectively C-)linear operators on V. As before, the multiples of
the identity will be identified with the corresponding scalars.

Let V be a real Banach space, and let VC be its complexification, which,
as above, is identified with the direct sum V + iV. Each operator T ∈ B(V)
has a natural extension to an operator TC ∈ B(VC), given by TC(x + iy) =
Tx + iTy, x, y ∈ V. Moreover, the map B(V) 3 T 7→ TC ∈ B(VC) is unital,
R-linear and multiplicative. In particular, T ∈ B(V) is invertible if and only if
TC ∈ B(VC) is invertible.

Fixing an operator S ∈ B(VC), we define the operator S[ ∈ B(VC) to be
equal to CSC, where C : VC 7→ VC is the conjugation x+ iy 7→ x− iy, x, y ∈ V.
It is easily seen that the map B(VC) 3 S 7→ S[ ∈ B(VC) is a unital conjugate-
linear automorphism, whose square is the identity on B(VC). Because V = {u ∈
VC;Cu = u}, we have S[ = S if and only if S(V) ⊂ V. In particular, we have
T [C = TC. In fact, because of the representation

S =
1

2
(S + S[) + i

1

2i
(S − S[), S ∈ B(VC),

where (S + S[)(V) ⊂ V, i(S − S[)(V) ⊂ V, the algebras B(VC) and B(V)C are
isomorphic and they will be often identified, and B(V) will be regarded as a
(real) subalgebra of B(V)C. In particular, if S = U + iV , with U, V ∈ B(V), we
have S[ = U− iV , so the map S 7→ S[ is the conjugation of the complex algebra
B(V)C induced by the conjugation C of VC.

For every operator S ∈ B(VC), we denote, as before, by σ(S) its usual
spectrum. As B(V) is a real algebra, the (complex) spectrum of an operator
T ∈ B(V) is given by the equality (1):

σC(T ) = {u+ iv; (u− T )2 + v2 is not invertible, u, v ∈ R}.

Corollary 1 For every T ∈ B(V) we have the equality σC(T ) = σ(TC).

3 Analytic Functional Calculus for Real
Operators

Having a concept of spectrum for real operators, an important step for further
development is the construction of an analytic functional calculus. Such a con-
struction has been done actually in the context of real linear relations in [1].
In what follows we shall present a similar construction for real linear operators.
Although the case of linear relations looks more general, unlike in [1], we per-
form our construction using a class of operator valued analytic functions insted
of scalar valued analytic functions. Moreover, our arguments look simpler, and
the construction is a model for a more general one, to get an analytic functional
calculus for quaternionic linear operators.

If V is a real Banach space, and so each operator T ∈ B(V) has a com-
plex spectrum σC(T ), which is compact and nonempty, one can use the classical
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Riesz-Dunford functional calculus, in a slightly generalized form (that is, replac-
ing the scalar-valued analytic functions by operator-valued analytic ones, which
is a well known idea).

The use of vector versions of the Cauchy formula is simplified by adopting
the following definition. Let U ⊂ C be open. An open subset ∆ ⊂ U will be
called a Cauchy domain (in U) if ∆ ⊂ ∆̄ ⊂ U and the boundary of ∆ consists
of a finite family of closed curves, piecewise smooth, positively oriented. Note
that a Cauchy domain is bounded but not necessarily connected.

Remark 2 If V is a real Banach space, and T ∈ B(V), we have the usual
analytic functional calculus for the operator TC ∈ B(VC) (see [6]). That is, in
a slightly generalized form, and for later use, if U ⊃ σ(TC) is an open set in C
and F : U 7→ B(VC) is analytic, we put

F (TC) =
1

2πi

∫
Γ

F (ζ)(ζ − TC)−1dζ,

where Γ is the boundary of a Cauchy domain ∆ containing σ(TC) in U . In fact,
because σ(TC) is conjugate symmetric, we may and shall assume that both U
and Γ are conjugate symmetric. Because the function ζ 7→ F (ζ)(ζ − TC)−1 is
analytic in U \ σ(TC), the integral does not depend on the particular choice of
the Cauchy domain ∆.

A natural question is to find an appropriate condition to we have F (TC)[ =
F (TC), which would imply the invariance of V under F (TC).

With the notation of Remark 2, we have the following.

Theorem 1 Let U ⊂ C be open and conjugate symmetric. If F : U 7→ B(VC) is
analytic and F (ζ)[ = F (ζ̄) for all ζ ∈ U , then F (TC)[ = F (TC) for all T ∈ B(V)
with σC(T ) ⊂ U .

Proof. We use the notation from Remark 2, assuming, in addition, that Γ is
conjugate symmetric as well. We put Γ± := Γ∩C±, where C+ (resp. C−) equals
to {λ ∈ C;=λ ≥ 0} (resp. {λ ∈ C;=λ ≤ 0}). We write Γ+ = ∪mj=1Γj+, where
Γj+ are the connected components of Γ+. Similarly, we write Γ− = ∪mj=1Γj−,
where Γj− are the connected components of Γ−, and Γj− is the reflexion of Γj+
with respect of the real axis.

As Γ is a finite union of Jordan piecewise smooth closed curves, for each
index j we have a parametrization φj : [0, 1] 7→ C, positively oriented, such

that φj([0, 1]) = Γj+. Taking into account that the function t 7→ φj(t) is a
parametrization of Γj− negatively oriented, and setting Γj = Γj+ ∪Γj−, we can
write

Fj(TC) :=
1

2πi

∫
Γj

F (ζ)(ζ − TC)−1dζ =

1

2πi

∫ 1

0

F (φj(t))(φj(t)− TC)−1φ′j(t)dt
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− 1

2πi

∫ 1

0

F (φj(t))(φj(t)− TC)−1φ′j(t)dt.

Therefore,

Fj(TC)[ = − 1

2πi

∫ 1

0

F (φj(t))
[(φj(t)− TC)−1φ′j(t)dt

+
1

2πi

∫ 1

0

F (φj(t))
[(φj(t)− TC)−1φ′j(t)dt.

According to our assumption on the function F , we obtain Fj(TC) = Fj(TC)[

for all j, and therefore

F (TC)[ =

m∑
j=1

Fj(TC)[ =

m∑
j=1

Fj(TC) = F (TC),

which concludes the proof.

Remark 3 If A is a unital real Banach algebra, AC its complexification, and
U ⊂ C is open, we denote by O(U,AC) the algebra of all analytic AC-valued
functions. If U is conjugate symmetric, and AC 3 a 7→ ā ∈ AC is its natural con-
jugation, we denote by Os(U,AC) the real subalgebra of O(U,AC) consisting of
those functions F with the property F (ζ̄) = F (ζ) for all ζ ∈ U . Adapting a well
known terminology, such functions will be called (AC-valued ) stem functions.

When A = R, so AC = C, the space Os(U,C) will be denoted by Os(U),
which is a real algebra. Note that Os(U,AC) is also a bilateral Os(U)-module.

In the next result, we identify the algebra B(V) with a subalgebra of B(V)C.
In ths case, when F ∈ Os(U,B(V)C), we may write

F (T ) =
1

2πi

∫
Γ

F (ζ)(ζ − T )−1dζ,

because the right hand side of this formula belongs to B(V), via Theorem 1.

The properties of the map F 7→ F (T ), which can be called the analytic
functional calculus of T , are summarized by the following.

Theorem 2 Let V be a real Banach space, let U ⊂ C be a conjugate symmetric
open set, and let T ∈ B(V), with σC(T ) ⊂ U . Then the assignment

Os(U,B(V)C) 3 F 7→ F (T ) ∈ B(V)

is an R-linear map, and the map

Os(U) 3 f 7→ f(T ) ∈ B(V)

is a unital real algebra morphism.
Moreover, the following properties are true:
(1) For all F ∈ Os(U,B(V)C), f ∈ Os(U), we have (Ff)(T ) = F (T )f(T ).
(2) For every polynomial P (ζ) =

∑m
n=0Anζ

n, ζ ∈ C, with An ∈ B(V) for
all n = 0, 1, . . . ,m, we have P (T ) =

∑m
n=0AnT

n ∈ B(V).
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Proof. The arguments are more or less standard (see [6]). The R-linearity
of the maps

Os(U,B(V)C) 3 F 7→ F (T ) ∈ B(V), Os(U) 3 f 7→ f(T ) ∈ B(V),

is clear. The second one is actually multiplicative, which follows from the mul-
tiplicativiry of the usual analytic functional calculus of T .

In fact, we have a more general property, specifically (Ff)(T ) = F (T )f(T )
for all F ∈ Os(U,B(V)C), f ∈ Os(U). This follows from the equalities,

(Ff)(T ) =
1

2πi

∫
Γ0

F (ζ)f(ζ)(ζ − T )−1dζ =

(
1

2πi

∫
Γ0

F (ζ)(ζ − T )−1dζ

)(
1

2πi

∫
Γ

f(η)(η − T )−1dη

)
= F (T )f(T ),

obtained as in the classical case (see [6], Section VII.3), which holds because
f is C-valued and commutes with the operators in B(V). Here Γ, Γ0 are the
boundaries of two Cauchy domains ∆, ∆0 respectively, such that ∆ ⊃ ∆̄0, and
∆0 contains σ(T ).

Note that, in particular, for every polynomial P (ζ) =
∑m
n=0Anζ

n with
An ∈ B(V) for all n = 0, 1, . . . ,m, we have P (T ) =

∑m
n=0Anq

n ∈ B(V) for all
T ∈ B(V).

Example 1 Let V = R2, so VC = C2, endowed with its natural Hilbert space
structure. Let us first observe that we have

S =

(
a1 a2

a3 a4

)
⇐⇒ S[ =

(
ā1 ā2

ā3 ā4

)
,

for all a1, a2, a3, a4 ∈ C.
Next we consider the operator T ∈ B(R2) given by the matrix

T =

(
u v
−v u

)
,

where u, v ∈ R, v 6= 0. The extension TC of the operator T to C2, which is a
normal operator, is given by the same formula. Note that

σC(T ) = {λ ∈ C; (λ− u)2 + v2 = 0} = {u± iv} = σ(TC).

Note also that the vectors ν± = (
√

2)−1(1,±i) are normalized eigenvectors for
TC corresponding to the eigenvalues u±iv, respectively. The spectral projections
of TC corresponding to these eigenvalues are given by

E±(TC)w = 〈w, ν±〉ν± =
1

2

(
1 ∓i
±i 1

)(
w1

w2

)
,

for all w = (w1, w2) ∈ C2.

7



Let U ⊂ C be an open set with U ⊃ {u ± iv}, and let F : U 7→ B(C2)
be analytic. We shall compute explicitly F (TC). Let ∆ be a Cauchy domain
contained in U with its boundary Γ, and containing the points u±iv. Assuming
v > 0, we have

F (TC) =
1

2πi

∫
Γ

F (ζ)(ζ − TC)−1dζ =

F (u+ iv)E+(TC) + F (u− iv)E−(TC) =

1

2
F (u+ iv)

(
1 −i
i 1

)
+

1

2
F (u− iv)

(
1 i
−i 1

)
.

Assume now that F (TC)[ = F (TC). Then we must have

(F (u+ iv)− F (u− iv)[)

(
1 −i
i 1

)
= (F (u+ iv)[ − F (u− iv))

(
1 i
−i 1

)
.

We also have the equalities(
1 −i
i 1

)(
1
i

)
= 2

(
1
i

)
,

(
1 −i
i 1

)(
1
−i

)
= 0,

(
1 i
−i 1

)(
1
−i

)
= 2

(
1
−i

)
,

(
1 i
−i 1

)(
1
i

)
= 0,

Using these equalities, we finally deduce that

(F (u+ iv)− F (u− iv)[)

(
1
i

)
= 0,

and

(F (u− iv)− F (u+ iv)[)

(
1
−i

)
= 0,

which are necessary conditions for the equality F (TC)[ = F (TC). As a matter
of fact, this example shows, in particular, that the condition F (ζ)[ = F (ζ̄) for
all ζ ∈ U , used in Theorem 1, is sufficient but it might not be always necessary.

4 Analytic Functional Calculus for Quaternionic
Operators

4.1 Quaternionic Spectrum

We now recall some known definitions and elementary facts (see, for instance,
[5], Section 4.6, and/or [21]).

Let H be the abstract algebra of quaternions, which is the four-dimensional
R-algebra with unit 1, generated by the ”imaginary units“ {j,k, l}, which satisfy

jk = −kj = l, kl = −lk = j, lj = −jl = k, jj = kk = ll = −1.
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We may assume that H ⊃ R identifying every number x ∈ R with the
element x1 ∈ H.

The algebra H has a natural multiplicative norm given by

‖x‖ =
√
x2

0 + x2
1 + x2

2 + x2
0, x = x0 + x1j + x2k + x3l, x0, x1, x2, x3 ∈ R,

and a natural involution

H 3 x = x0 + x1j + x2k + x3l 7→ x∗ = x0 − x1j− x2k− x3l ∈ H.

Note that xx∗ = x∗x = ‖x‖2, implying, in particular, that every element x ∈
H \ {0} is invertible, and x−1 = ‖x‖−2x∗.

For an arbitrary quaternion x = x0 + x1j + x2k + x3l, x0, x1, x2, x3 ∈ R, we
set <x = x0 = (x + x∗)/2, and =x = x1j + x2k + x3l = (x− x∗)/2, that is, the
real and imaginary part of x, respectively.

We consider the complexification C ⊗R H of the R-algebra H (see also [8]),
which will be identified with the direct sum M = H+ iH. Of course, the algebra
M contains the complex field C. Moreover, in the algebra M, the elements of H
commute with all complex numbers. In particular, the ”imaginary units“ j,k, l
of the algebra H are independent of and commute with the imaginary unit i of
the complex plane C.

In the algebra M, there also exists a natural conjugation given by ā = b−ic,
where a = b + ic is arbitrary in M, with b, c ∈ H (see also [8]). Note that
a + b = ā + b̄, and ab = āb̄, in particular ra = rā for all a,b ∈M, and r ∈ R.
Moreover, ā = a if and only if a ∈ H, which is a useful characterization of the
elements of H among those of M.

Remark 4 In the algebra M we have the identities

(λ− x∗)(λ− x) = (λ− x)(λ− x∗) = λ2 − λ(x + x∗) + ‖x‖2 ∈ C,

for all λ ∈ C and x ∈ H. If the complex number λ2 − 2λ<x + ‖x‖2 is nonnull,
then both element λ−x∗, λ−x are invertible. Conversely, if λ−x is invertible,
we must have λ2−2λ<x+‖x‖2 nonnull; otherwise we would have λ = x∗ ∈ R, so
λ = x ∈ R, which is not possible. Therefore, the element λ−x ∈M is invertible
if and only if the complex number λ2 − 2λ<x + ‖x‖2 is nonnull. Hence, the
element λ− x ∈M is not invertible if and only if λ = <x± i‖=x‖. In this way,
the spectrum of a quaternion x ∈ H is given by the equality σ(x) = {s±(x)},
where s±(x) = <x± i‖=x‖ are the eigenvalues of x (see also [20, 21]).

The polynomial Px(λ) = λ2 − 2λ<x + ‖x‖2 is the minimal polynomial of
x. In fact, the equality σ(y) = σ(x) for some x,y ∈ H is an equivalence
relation in the algebra H, which holds if and only if Px = Py. In fact, setting
S = {κ ∈ H;<κ = 0, ‖κ‖ = 1} (that is the unit sphere of purely imaginary
quaternions), representig an arbitrary quaternion x under the form x0 + y0κ0,
with x0, y0 ∈ R and κ0 ∈ S, a quaternion y is equivalent to x if anf only if it is
of the form x0 + y0κ for some κ ∈ S (see [3] or [21] for some details).
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Remark 5 Following [5], a right H-vector space V is a real vector space having a
right multiplication with the elements of H, such that (x+y)q = xq+yq, x(q+
s) = xq + xs, x(qs) = (xq)s for all x, y ∈ V and q, s ∈ H.

If V is also a Banach space the operator T ∈ B(V) is right H-linear if T (xq) =
T (x)q for all x ∈ V and q ∈ H. The set of right H linear operators will be
denoted by Br(V), which is, in particular, a unital real algebra.

In a similar way, one defines the concept of a left H-vector space. A real
vector space V will be said to be an H-vector space if it is simultaneously a right
H- and a left H-vector space. As noticed in [5], it is the framework of H-vector
spaces an appropriate one for the study of right H-linear operators.

If V is H-vector space which is also a Banach space, then V is said to be a
Banach H-space. In this case, we also assume that Rq ∈ B(V), and the map
H 3 q 7→ Rq ∈ B(V) is norm continuous, where Rq be the right multiplication
of the elements of V by a given quaternion q ∈ H. Similarly, if Lq is the left
multiplication of the elements of V by the quaternion q ∈ H, we assume that
Lq ∈ B(V) for all q ∈ H, and that the map H 3 q 7→ Lq ∈ B(V) is norm
continuous. Note also that

Br(V) = {T ∈ B(V);TRq = RqT, q ∈ H}.

To adapt the discussion regarding the real algebras to this case, we first
consider the complexification VC of V. Because V is an H-bimodule, the space
VC is actually an M-bimodule, via the multiplications

(q + is)(x+ iy) = qx− sy+ i(qy+ sx), (x+ iy)(q + is) = xq− ys + i(yq + xs),

for all q + is ∈ M, q, s ∈ H, x + iy ∈ VC, x, y ∈ V. Moreover, the operator
TC is right M-linear, that is TC((x + iy)(q + is)) = TC(x + iy)(q + is) for all
q + is ∈M, x+ iy ∈ VC, via a direct computation.

Let C be the conjugation of VC. As in the real case, for every S ∈ B(VC),
we put S[ = CSC. The left and right multiplication with the quaternion q on
VC will be also denoted by Lq, Rq, respectively, as elements of B(VC). We set

Br(VC) = {S ∈ B(VC);SRq = RqS, q ∈ H},

which is a unital complex algebra containing all operators Lq,q ∈ H. Note that
if S ∈ Br(VC), then S[ ∈ Br(VC). Indeed, because CRq = RqC, we also have we
have S[Rq = RqS

[. In fact, as we have (S+S[)(V) ⊂ V and i(S−S[)(V) ⊂ V, it
folows that the algebras Br(VC), Br(V)C are isomorphic, and they will be often
identified, where Br(V)C = Br(V) + iBr(V) is the complexification of Br(V),
which is also a unital complex Banach algebra.

Looking at the Definition 4.8.1 from [5] (see also [4]), we give the folowing.

Definition 1 For a given operator T ∈ Br(V), the set

σH(T ) := {q ∈ H;T 2 − 2(<q)T + ‖q‖2) not invertible}

is called the quaternionic spectrum (or simply the Q-spectrum) of T .
The complement ρH(T ) = H \ σH(T ) is called the quaternionic resolvent (or

simply the Q-resolvent) of T .
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Note that, if q ∈ σH(T )), then {s ∈ H;σ(s) = σ(q)} ⊂ σH(T ).
Assuming that V is a Banach H-space, then Br(V) is a unital real Banach

H-algebra (that is, a Banach algebra which also a Banach H-space), via the
algebraic operations (qT )(x) = qT (x), and (Tq)(x) = T (qx) for all q ∈ H and
x ∈ V. Hence the complexification Br(V)C is, in particular, a unital complex
Banach algebra. Also note that the complex numbers, regarded as elements
of Br(V)C, commute with the elements of Br(V). For this reason, for each
T ∈ Br(V) we have the resolvent set

ρC(T ) = {λ ∈ C; (T 2 − 2(<λ)T + |λ|2)−1 ∈ Br(V)} =

{λ ∈ C; (λ− TC)−1 ∈ Br(VC)} = ρ(TC),

and the associated spectrum σC(T ) = σ(TC).
Clearly, there exists a strong connexion between σH(T ) and σC(T ). In fact,

the set σC(T ) looks like a ”complex border“ of the set σH(T ). Specifically, we
can prove the following.

Lemma 2 For every T ∈ Br(V) we have the equalities

σH(T ) = {q ∈ H;σC(T ) ∩ σ(q) 6= ∅}. (2)

and
σC(T ) = {λ ∈ σ(q); q ∈ σH(T )}. (3)

Proof. Let us prove (2). If q ∈ σH(T ), and so the T 2− 2(<q)T + ‖q‖2 is not
invertible, choosing λ ∈ {<q±i‖=q‖} = σ(q), we clearly have T 2−2(<λ)T+|λ|2
not invertible, implying λ ∈ σC(T ) ∩ σ(q) 6= ∅.

Conversely, if for some q ∈ H there exists λ ∈ σC(T ) ∩ σ(q), and so T 2 −
2(<λ)T + |λ|2 = T 2 − 2(<q)T + ‖q‖2 is not invertible, implying q ∈ σH(T ).

We now prove (3). Let λ ∈ σC(T ), so the operator T 2− 2(<λ)T + |λ|2 is not
invertible. Setting q = <(λ) +‖=λ‖κ, with κ ∈ S, we have λ ∈ σ(q). Moreover,
T 2 + 2(<q)T + ‖q‖2 is not invertible, and so q ∈ σH(T ).

Conversely, if λ ∈ σ(q) for some q ∈ σH(T ), then λ ∈ {<q ± i‖=(q)‖},
showing that T 2 − 2<(λ)T + |λ|2 = T 2 + 2(<q)T + ‖q‖2 is not invertible.

Remark As expected, the set σH(T ) is nonempty and bounded, which fol-
lows easily from Lemma 2. It is also compact, as a consequence of Definition 1,
because the set of invertible elements in Br(V) is open.

We recall that a subset Ω ⊂ H is said to be spectrally saturated (see [20],[21])
if whenever σ(h) = σ(q) for some h ∈ H and q ∈ Ω, we also have h ∈ Ω. As
noticed in [20] and [21], this concept coincides with that of axially symmetric
set, introduced in [5].

Note that the subset σH(T ) spectrally saturated.
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4.2 Analytic Functional Calculus

If V is a Banach H-space, because Br(V) is real Banach space, each operator T ∈
Br(V) has a complex spectrum σC(T ). Therefore, applying the corresponding
result for real operators, we may construct an analytic functional calculus using
the classical Riesz-Dunford functional calculus, in a slightly generalized form.
In this case, our basic complex algebra is Br(V)C, endowed with the conjugation
Br(V)C 3 S 7→ S[ ∈ Br(V)C.

Theorem 3 Let U ⊂ C be open and conjugate symmetric. If F : U 7→ Br(VC)
is analytic and F (ζ)[ = F (ζ̄) for all ζ ∈ U , then F (TC)[ = F (TC) for all
T ∈ Br(V) with σC(T ) ⊂ U .

Both the statement and the proof of Theorem 3 are similar to those of
Theorem 1, and will be omitted.

As in the real case, we may identify the algebra Br(V) with a subalgebra of
Br(V)C. In ths case, when F ∈ Os(U,Br(V)C) = {F ∈ O(U,Br(V)C);F (ζ̄) =
F (ζ)[ ∀ζ ∈ U} (see also Remark 3), we can write, via the previous Theorem,

F (T ) =
1

2πi

∫
Γ

F (ζ)(ζ − T )−1dζ ∈ Br(V),

for a suitable choice of Γ.
The next result provides an analytic functional calculus for operators from

the real algebra Br(V).

Theorem 4 Let V be a real Banach space, let U ⊂ C be a conjugate symmetric
open set, and let T ∈ B(V), with σC(T ) ⊂ U . Then the map

Os(U,Br(V)C) 3 F 7→ F (T ) ∈ Br(V)

is R-linear, and the map

Os(U) 3 f 7→ f(T ) ∈ Br(V)

is a unital real algebra morphism.
Moreover, the following properties are true:
(1) For all F ∈ Os(U,Br(V)C), f ∈ Os(U), we have (Ff)(T ) = F (T )f(T ).
(2) For every polynomial P (ζ) =

∑m
n=0Anζ

n, ζ ∈ C, with An ∈ Br(V) for
all n = 0, 1, . . . ,m, we have P (T ) =

∑m
n=0AnT

n ∈ Br(V).

The proof of this result is similar to that of Theorem 2 and will be omitted.

Remark 6 The algebra H is, in particular, a Banach H-space. As already
noticed, the left multiplications Lq, q ∈ H, are elements of Br(H). In fact, the
map H 3 q 7→ Lq ∈ Br(H) is a injective morphism of real algebras allowing the
identification of H with a subalgebra of Br(H).
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Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω) := {λ ∈
C,∃q ∈ Ω, λ ∈ σ(q)}, which is open and conjugate symmetric (see [21]). Denotig
by fH the function Ω 3 q 7→ f(q),q ∈ Ω, for every f ∈ Os(U), we set

R(Ω) := {fH; f ∈ Os(U)},

which is a commutative real algebra. Defining the FH in a similar way for each
F ∈ Os(U,M), we set

R(Ω,H) := {FH;F ∈ Os(U,M)},

which, according to the next theorem, is a right R(Ω)-module.
The next result is an analytic functional calculus for quaternions (see [21],

Theorem 5), obtained as a particular case of Theorem 4 (see also its predecessor
in [5]).

Theorem 5 Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω).
The space R(Ω) is a unital commutative R-algebra, the space R(Ω,H) is a right
R(Ω)-module, the map

Os(U,M) 3 F 7→ FH ∈ R(Ω,H)

is a right module isomorphism, and its restriction

Os(U) 3 f 7→ fH ∈ R(Ω)

is an R-algebra isomorphism.
Moreover, for every polynomial P (ζ) =

∑m
n=0 anζ

n, ζ ∈ C, with an ∈ H for
all n = 0, 1, . . . ,m, we have PH(q) =

∑m
n=0 anq

n ∈ H for all q ∈ H.

Most of the assertions of Theorem 5 can be obtained directly from Theorem
4. The injectivity of the map Os(U) 3 f 7→ fH ∈ R(Ω), as well as an alternative
complete proof, can be obtained as in the proof of Theorem 5 from [21].

Remark 7 That Theorems 3 and 4 have practically the same proof as Theo-
rems 1 and 2 (respectively) is due to the fact that all of them can be obtained
as particular cases of more general results. Indeed, considering a unital real
Banach algebra A, and its complexification AC, identifying A with a real subal-
gebra of AC, for a function F ∈ Os(U,AC), where U ⊂ C is open and conjugate
symmetric, the element F (b) ∈ A for each b ∈ A with σC(b) ⊂ U . The asser-
tion follows as in the proof of Theorem 1. The other results also have their
counterparts. We omit the details.

Remark 8 The space R(Ω,H) can be independently defined, and it consists
of the set of all H-valued functions, which are slice regular in the sense of [5],
Definition 4.1.1. They are used in [5] to define a quaternionic functional calcu-
lus for quaternionic linear operators (see also [4]). Roughly speaking, given a
quaternionic linear operator, each regular quaternionic-valued function defined
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in a neighborhood Ω of its quaternionic spectrum is associated with another
quaternionic linear operator, replacing formally the quaternionic variable with
that operator. This constraction is largely explained in the fourth chapter of
[5].

Our Theorem 4 constructs an analytic functional calculus with functions
from Os(U,Br(V)C), where U is a a neighborhood of the complex spectrum of a
given quaternionic linear operator, leading to another quaternionic linear oper-
ator, replacing formally the complex variable with that operator. We can show
that those functional calculi are equivalent. This is a consequence of the fact
that the class of regular quaternionic-valued function used by the construction
in [5] is isomorphic to the class of analytic functions used in our Theorem 5.
The advantage of our approach is its simplicity and a stronger connection with
the classical approach, using spectra defined in the complex plane, and Cauchy
type kernels partially commutative.

Let us give an argument concerning the equivalence of those analytic func-
tional calculi. For an operator T ∈ Br(V), the so-called right S-resolvent is
defined via the formula

S−1
R (s, T ) = −(T − s∗)(T 2 − 2<(s)T + ‖s‖)−1, s ∈ ρH(T ) (4)

(see [5], formula (4.27)). Fixing an element κ ∈ S, and a spectrally saturated
open set Ω ⊂ H, for Φ ∈ R(Ω,H) one sets

Φ(T ) =
1

2π

∫
∂(Σκ)

Φ(s)dsκS
−1
R (s, T ), (5)

where Σ ⊂ Ω is a spectrally saturated open set containing σH(T ), such that
Σκ = {u + vκ ∈ Σ;u, v ∈ R} is a subset whose boundary ∂(Σκ) consists of a
finite family of closed curves, piecewise smooth, positively oriented, and dsκ =
−κdu∧ dv. Formula (5) is a (right) quaternionic functional calculus, as defined
in [5], Section 4.10.

Because the space VC is also an H-space, we may extend these formulas to
the operator TC ∈ Br(VC), extending the operator T ∈ Br(V), by replacing T
by TC in formulas (4) and (5). For the function Φ ∈ R(Ω,H) there exists a
function F ∈ Os(U,Br(VC) such that FH = Φ. Denoting by Γκ the boundary
of a Cauchy domain in C containing the compact set ∪{σ(s); s ∈ Σκ}, we can
write

Φ(TC) =
1

2π

∫
∂(Σκ)

(
1

2πi

∫
Γκ

F (ζ)(ζ − s)−1dζ

)
dsκS

−1
R (s, TC) =

1

2πi

∫
Γκ

F (ζ)

(
1

2π

∫
∂(Σκ)

(ζ − s)−1dsκS
−1
R (s, TC)

)
dζ.

It follows from the complex linearity of S−1
R (s, TC), and from formula (4.49)

in [5], that
(ζ − s)S−1

R (s, TC) = S−1
R (s, TC)(ζ − TC)− 1,
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whence

(ζ − s)−1S−1
R (s, TC) = S−1

R (s, TC)(ζ − TC)−1 + (ζ − s)−1(ζ − TC)−1,

and therefore,

1

2π

∫
∂(Σκ)

(ζ − s)−1dsκS
−1
R (s, TC) =

1

2π

∫
∂(Σκ)

dsκS
−1
R (s, TC)(ζ − TC)−1+

1

2π

∫
∂(Σκ)

(ζ − s)−1dsκ(ζ − TC)−1 = (ζ − TC)−1,

because

1

2π

∫
∂(Σκ)

dsκS
−1
R (s, TC) = 1 and

1

2π

∫
∂(Σκ)

(ζ − s)−1dsκ = 0,

as in Theorem 4.8.11 from [5], since the M-valued function s 7→ (ζ − s)−1 is
analytic in a neighborhood of the set Σκ ⊂ Cκ for each ζ ∈ Γκ, respectively.
Therefore Φ(TC) = Φ(T )C = F (TC) = F (T )C, implying Φ(T ) = F (T ).

5 Some Examples

Example 2 One of the simplest Banach H-space is the space H itself. As
already noticed (see Remark 6), taking V = H, so VC = M, and fixing an
element q ∈ H, we may consider the operator Lq ∈ Br(H), whose complex
spectrum is given by σC(Lq) = σ(q) = {<q ± i‖=q‖}. If U ⊂ C is conjugate
symmetric open set containing σC(Lq), and F ∈ Os(U,M), then we have

F (Lq) = F (s+(q))ι+(sq̃) + F (s−(q))ι−(sq̃) ∈M, (6)

where s±(q) = <q± i‖=q‖, q̃ = =q, sq̃ = q̃‖q̃‖−1, and ι±(sq̃) = 2−1(1∓ isq̃)
(see [21], Remark 3).

Example 3 Let X be a topological compact space, and let C(X,M) be the space
of M-valued continuous functions on X. Then C(X,H) is the real subspace
of C(X,M) consisting of H-valued functions, which is also a Banach H-space
with respect to the operations (qF )(x) = qF (x) and (Fq)(x) = F (x)q for all
F ∈ C(X,H) and x ∈ X. Moreover, C(X,H)C = C(X,HC) = C(X,M).

We fix a function Θ ∈ C(X,H) and define the operator T ∈ B(C(X,H)) by
the relation (TF )(x) = Θ(x)F (x) for all F ∈ C(X,H) and x ∈ X. Note that
(T (Fq))(x) = Θ(x)F (x)q = ((TF )q)(x) for all F ∈ C(X,H),q ∈ H, and x ∈ X.
In othe words, T ∈ Br(C(X,H)). Note also that the operator T is invertible if
and only if the function Θ has no zero in X.

Let us compute the Q-spectrum of T . According to Definition 1, we have

ρH(T ) = {q ∈ H; (T 2 − 2<qT + ‖q‖2)−1 ∈ Br(C(X,H))}.
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Consequently, q ∈ σH(T ) if and only if zero is in the range of the function

τ(q, x) := Θ(x)2 − 2<q Θ(x) + ‖q‖2, x ∈ X.

Similarly,

ρC(T ) = {λ ∈ C; (T 2 − 2<λT + ‖λ‖2)−1 ∈ Br(C(X,H))},
and so λ ∈ σC(T ) if and only if zero is in the range of the function

τ(λ, x) := Θ(x)2 − 2<λΘ(x) + |λ|2, x ∈ X.

Looking for solutions u+ iv, u, v ∈ R, of the equation (u−Θ(x))2 + v2 = 0,
a direct calculation shows that u = <Θ(x) and v = ±‖=Θ(x)‖. Hence

σC(T ) = {<Θ(x)± i‖=Θ(x)‖;x ∈ X} = ∪x∈Xσ(Θ(x)).

Of course, for every open conjugate symmetric subset U ⊂ C containing
σC(T ), and for every function Φ ∈ Oc(U,B(C(X,M))), we may construct the
operator Φ(T ) ∈ Br(C(X,H)), using Theorem 4.

6 Quaternionic Joint Spectrum of Paires

In many applications, it is more convenient to work with matrix quaternions
rather than with abstract quaternions. Specifically, one considers the injective
unital algebra morphism

H 3 x1 + y1j + x2k + y2l 7→
(

x1 + iy1 x2 + iy2

−x2 + iy2 x1 − iy1

)
∈M2,

with x1, y1, x2, y2 ∈ R, where M2 is the complex algebra of 2× 2-matrix, whose
image, denoted by H2 is the real algebra of matrix quaternions. The elements
of H2 can be also written as matrices of the form

Q(z) =

(
z1 z2

−z̄2 z̄1

)
, z = (z1, z2) ∈ C2.

A strong connection between the spectral theory of pairs of commuting oper-
ators in a complex Hilbert space and the algebra of quaternions has been firstly
noticed in [17]. Another connection will be presented in this section.

If V is an arbitrary vector space, we denote by V2 the Cartesian product
V × V.

Let V be a real Banach space, and let T = (T1, T2) ∈ B(V)
2

be a pair

of commuting operators. The extended pair TC = (T1C, T2C) ∈ B(VC)
2

also
consists of commuting operators. For simplicity, we set

Q(TC) :=

(
T1C T2C
−T2C T1C

)
which acts on the complex Banach space V2

C.
We now extend the definition of the quaternionic resolvent set and spectrum

for a single operator to the case of a pair of operators.
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Definition 2 Let V be a real Banach space. For a given pair T = (T1, T2) ∈
B(V)

2
of commuting operators, the set of those Q(z) ∈ H2, z = (z1, z2) ∈ C2,

such that the operator

T 2
1 + T 2

2 − 2<z1T1 − 2<z2T2 + |z1|2 + |z2|2

is invertible in B(V) is said to be the quaternionic joint resolvent (or simply the
Q-joint resolvent) of T, and is denoted by ρH(T).

The complement σH(T) = H2 \ ρH(T) is called the quaternionic joint spec-
trum (or simply the Q-joint spectrum) of T.

For every pair TC = (T1C, T2C) ∈ B(VC)
2

we put Tc
C = (T1C,−T2C) ∈

B(VC)
2
, and for every pair z = (z1, z2) ∈ C2 we put zc = (z̄1,−z2) ∈ C2

Lemma 3 A matrix quaternion Q(z) (z ∈ C2) is in the set ρH(T) if and only
if the operators Q(TC)−Q(z), Q(Tc

C)−Q(zc) are invertible in B(V2
C).

Proof The assertion follows from the equalities(
T1C − z1 T2C − z2

−T2C + z̄2 T1C − z̄1

)(
T1C − z̄1 −T2C + z2

T2C − z̄2 T1C − z1

)
=

(
T1C − z̄1 −T2C + z2

T2C − z̄2 T1C − z1

)(
T1C − z1 T2C − z2

−T2C + z̄2 T1C − z̄1

)
=

[(T1C − z1)(T1C − z̄1) + (T2C − z2)(T2C − z̄2)]I.

for all z = (z1, z2) ∈ C2, where I is the identity. Consequently, the operators
Q(TC)−Q(z), Q(Tc

C)−Q(zc) are invertible in B(V2
C) if and only if the operator

(T1C − z1)(T1C − z̄1) + (T2C − z2)(T2C − z̄2) is invertible in B(VC). Because we
have

T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2 =

[T 2
1 + T 2

1 − 2<z1T1 − 2<z2T2 + |z1|2 + |z2|2]C,

the operators Q(TC)−Q(z), Q(Tc
C)−Q(zc) are invertible in B(V2

C) if and only
if the operator T 2

1 + T 2
1 − 2<z1T1− 2<z2T2 + |z1|2 + |z2|2 is invertible in B(V).

Lemma 3 shows that we have the property Q(z) ∈ σH(T) if and only if
Q(zc) ∈ σH(Tc). Putting

σC2(T) := {z ∈ C2;Q(z) ∈ σH(T)},

the set σC2(T) has a similar property, specifically z ∈ σC2(T) if and only if
zc ∈ σC2(Tc). As in the quaternionic case, the set σC2(T) looks like a ”complex
border“ of the set σH(T).

Remark 9 For the extended pair TC = (T1C, T2C) ∈ B(VC)
2

of the commuting
pair T = (T1, T2) ∈ B(V) there is an interesting connexion with the joint spectral
theory of J. L. Taylor (see [15, 16]; see also [19]). Namely, if the operator
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T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2 is invertible, then the point
z = (z1, z2) belongs to the joint resolvent of TC. Indeed, setting

Rj(TC, z) = (TjC − z̄j)(T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2)−1,

q = Q(z) for j = 1, 2, we clearly have

(T1C − z1)R1(TC, z) + (T2C − z2)R2(TC, z) = I,

which, according to [15], implies that z is in the joint resolvent of TC. A similar
argument shows that, in this case the point zc belongs to the joint resolvent of
Tc

C. In addition, if σ(TC) designates the Taylor spectrum of TC, we have the
inclusion σ(TC) ⊂ σC2(T). In particular, for every complex-valued function f
analytic in a neighborhood of σC2(T), the operator f(TC) can be computed via
Taylor’s analytic functional calculus. In fact, we have a Martinelli type formula
for the analytic functional calculus:

Theorem 6 Let V be a real Banach space, let T = (T1, T2) ∈ B(V)
2

be a pair of
commuting operators, let U ⊂ C2 be an open set, let D ⊂ U be a bounded domain
containing σC2(T), with piecewise-smooth boundary Σ, and let f ∈ O(U). Then
we have

f(TC) =
1

(2πi)2

∫
Σ

f(z))L(z,TC)−2(z̄1 − T1C)dz̄2 − (z̄2 − T2C)dz̄1]dz1dz2,

where

L(z,TC) = T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2.

Proof. Theorem III.9.9 from [19] implies that the map O(U) 3 f 7→ f(TC) ∈
B(VC), defined in terms of Taylor’s analytic functional calculus, is unital, linear,
multiplicative, and ordinary complex polynomials in z are transformed into
polynomials in TC by simple substitution, where O(U) is the algebra of all
analytic functions in the open set U ⊂ C2, provided U ⊃ σ(TC).

The only thing to prove is that, when U ⊃ σC2(T), Taylor’s functional
calculus is given by the stated (canonical) formula. In order to do that, we use
an argument from the proof of Theorem III.8.1 in [19], to make explicit the
integral III(9.2) from [19] (see also [12]).

We consider the exterior algebra

Λ[e1, e2, ξ̄1, ξ̄2,O(U)⊗ VC] = Λ[e1, e2, ξ̄1, ξ̄2]⊗O(U)⊗ VC,

where the indeterminates e1, e2 are to be associated with the pair TC, we put
ξ̄j = dz̄j , j = 1, 2, and consider the operators δ = (z1−T1C)⊗ e1 + (z2−T2C)⊗
e2, ∂̄ = (∂/∂z̄1) ⊗ ξ̄1 + (∂/∂z̄2) ⊗ ξ̄2, acting naturally on this exterior algebra,
via the calculus with exterior forms.

To simplify the computation, we omit the symbol⊗, and the exterior product
will be denoted simply par juxtaposition.
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We fix the exterior form η = η2 = fye1e2 for some f ∈ O(U) and y ∈ XC,
which clearly satisfy the equation (δ + ∂̄)η = 0, and look for a solution θ of the
equation (δ + ∂̄)θ = η. We write θ = θ0 + θ1, where θ0, θ1 are of degree 0 and
1 in e1, e2, respectively. Then the equation (δ + ∂̄)θ = η can be written under
the form δθ1 = η, δθ0 = −∂̄θ1, and ∂̄θ0 = 0. Note that

θ1 = fL(z,TC)−1[(z̄1 − T1C)ye2 − (z̄2 − T2C)]ye1

is visibly a solution of the equation δθ1 = η. Further, we have

∂̄θ1 = fL(z,TC)−2[(z1 − T1C)(z̄2 − T2C)yξ̄1e1 − (z1 − T1C)(z̄1 − T1C)yξ̄2e1+

(z2 − T2C)(z̄2 − T2C)yξ̄1e2 − (z2 − T2C)(z̄1 − T1C)yξ̄2e2] =

δ[fL(z,TC)−2(z̄1 − T1C)yξ̄2 − fL(z,TC)−2(z̄2 − T2C)yξ̄1],

so we may define

θ0 = −fL(z,TC)−2(z̄1 − T1C)yξ̄2 + fL(z,TC)−2(z̄2 − T2C)yξ̄1.

Formula III(8.5) from [19] shows that

f(TC)y = − 1

(2πi)2

∫
U

∂̄(φθ0)dz1dz2 =

1

(2πi)2

∫
Σ

f(z))L(z,TC)−2[(z̄1 − T1C)ydz̄2 − (z̄2 − T2C)ydz̄1]dz1dz2,

for all y ∈ XC, via Stokes’s formula, where φ is a smooth function such that
φ = 0 in a neighborhood of σC2(T), φ = 1 on Σ and the support of 1 − φ is
compact.

Remark 10 (1) We may extend the previous functional calculus to B(VC)-
valued analytic functions, setting, for such a function F and with the notation
from above,

F (TC) =
1

(2πi)2

∫
Σ

F (z))L(z,TC)−2(z̄1 − T1C)dz̄2 − (z̄2 − T2C)dz̄1]dz1dz2.

In particular, if F (z) =
∑
j,k≥0AjkCz

j
1z
k
2 , with Aj,k ∈ B(V), where the series is

convergent in neighborhood of σC2(T), we obtain

F (T) := F (TC)|V =
∑
j,k≥0

AjkT
j
1T

k
2 ∈ B(V).

(2) The connexion of the spectral theory of pairs with the algebra of quater-
nions is even stronger in the case of complex Hilbert spaces. Specifically, if H
is a complex Hilbert space and V = (V1, V2) is a commuting pair of bounded
linear operators on H, a point z = (z1, z2) ∈ C2 is in the joint resolvent of V if
and only if the operator Q(V)−Q(z) is invertible in H2, where

Q(V) =

(
V1 V2

−V ∗2 V ∗1

)
.
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(see [17] for details). In this case, there is also a Martinelli type formula
which can be used to construct the associated analytic functional calculus (see
[18],[19]). An approach to such a construction in Banach spaces, by using a
so-called splitting joint spectrum, can be found in [14].
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