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Abstract

In this paper we define a composition between two quotient morphisms

and prove a multiplication formula for the index of the composition of two

Fredholm quotient morphisms. Using this formula and the fact that any

linear relation can be seen as a quotient morphism, we obtain a multipli-

cation formula for the index of the composition of two Fredholm linear

relations.
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1 Introduction

The importance of the quotient vector spaces and associated morphisms has
been emphasized in a long series of papers by L. Waelbroeck (see, for instance,
the works [14] - [17], to quote only a few). The main idea in Waelbroeck’s con-
tributions is to consider quotients of topological (or bornological) vector spaces
by continuously embedded subspaces. The resulting quotient spaces, although,
in general, not separated as topological spaces, have a very rich structure, allow-
ing, in particular, the development of the spectral theory of the morphisms in
one or several variables, the construction of the analytic functional calculus and
other (somehow unexpected) properties, traditionally considered in the context
of complete vector spaces (usually Banach or Fréchet spaces) with separated
topologies (see also [11, 12]).
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The Fredholm and spectral theory, developed in the framework of quotient
Banach spaces (in the more restricted sense of quotients of Banach spaces by
closed subspaces) also has some important advantages due to appropriate duality
properties (see [1, 2], etc.).

The aim of this paper is to study linear maps defined between spaces of the
form X/X0, where X is a vector space and X0 is a vector subspace of X . As
X/X0 is itself a vector space, a legitimate question is why to complicate the
matter instead of simply using vector spaces. The answer to this question is
that this framework allows us to introduce a composition of morphisms which
is more complex than the usual one (see Remark 3.4), as well as other algebraic
operations, which are natural only in this context. The motivation of this ap-
proach comes from the theory of linear relations, introduced many years ago by
Arens in [3] (but emphasized even earlier by J. von Neumann [13]), a concept
which lately has been systematically studied by many authors (see, for instance,
[5, 6, 9], as well as the works cited by these authors). As any linear relation
can be associated with a unique linear map with values in a quotient space,
which is a particular case of what we already called a quotient morphism, an
independent study of quotient morphisms is rewarding when applied to linear
relations, as we shall see in the last section. We also specify that the compo-
sition of two relations is a particular case of the composition of the quotient
morphisms mentioned above.

In the next section we deal with linear maps which are not everywhere de-
fined, extending the concept of Fredhom unbounded transformation in a Banach
space, and proving a multiplication of the index result in this algebraic context
(see Theorem 2.1).

The third section is dedicated to the study of quotient morphisms. We intro-
duce the composition of quotient morphisms mentioned above, as well as other
algebraic operations, and prove a generalization of the result concerning the
multiplication of the index (using partially Theorem 2.1) for Fredholm quotient
morphisms (see Theorem 3.8).

In the last section, we apply these results to linear relations (see Theorem
4.5), obtaining more general statements than the corresponding ones from [5].
This is possible because the associated morphism of a composition of two rela-
tions is the composition, in our generalized sense, of the morphisms associated
with the corresponding relations (see Proposition 4.3).

2 Fredholm applications

In this section we consider vector spaces over the field K, which is either the
real field R or the complex one C (other fields might also be considered). If X is
a vector space over K, we designate by dimX the dimension (finite or infinite)
of X over K. Note that if

0 → X
A
−→ Y

B
−→ Z → 0 (1)
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is an exact sequence of vector spaces and linear maps (for elementary algebraic
properties see, for instance [8]), then dimY = dimX + dimZ.

Having in mind the case of unbounded linear operators in Banach spaces,
we shall discuss linear transformations which are not, in general, everywhere
defined. Specifically, we consider linear maps between two arbitrary vector
spaces X, Y having the form T : D(T ) ⊂ X 7→ Y , where D(T ), which is itself
a vector space, is the domain of definition of T . The range of T , the kernel (or
the null space) of T and the graph of T will be denoted by R(T ), N(T ) and
G(T ), respectively.

Given two arbitrary linear maps T : D(T ) ⊂ X 7→ Y and S : D(S) ⊂
Y 7→ Z, we define their composition S ◦ T in the following way. The domain
D(S ◦ T ) ⊂ D(T ) is given by T−1(D(S)) and (S ◦ T )(x) = S(T (x)) for all
x ∈ D(S ◦ T ). Note that R(S ◦ T ) = S(R(T ) ∩ D(S)).

When T : X 7→ Y and S : Y 7→ Z, the composition S ◦ T will be simply
denoted by ST .

As usually (see, for instance, [7] or [2]), we say that a linear map T : D(T ) ⊂
X 7→ Y is Fredholm if both dimN(T ) and dimY/R(T ) are finite. In that case,
the (algebraic) index of T , denoted by ind(T ), is given by

ind(T ) = dimN(T ) − dimY/R(T ).

In this section we study the index of the composition S ◦T of two Fredholm
single-valued maps T, S, extending the standard multiplication result for the
Fredholm index (see, for instance, [7] or [2]). We have the following assertion,
for which we give a direct proof.

Theorem 2.1 Let T : D(T ) ⊂ X 7→ Y, S : D(S) ⊂ Y 7→ Z be linear maps.

Then

dimN(S ◦ T ) + dimY/R(T ) + dimZ/R(S) =

dimZ/R(S ◦ T ) + dimN(T ) + dimN(S) + dimY/(R(T ) + D(S)).
(2)

In particular, when T, S are Fredholm maps, then S ◦ T is Fredholm and

ind(S ◦ T ) = ind(S) + ind(T ) + dimY/(R(T ) + D(S)). (3)

Proof. We first note that N(S ◦ T ) = T−1(N(S)). Therefore, the following
sequence of vector spaces

0 → N(T ) →֒ N(S ◦ T )
T0−→ R(T ) ∩ N(S) → 0 (4)

is exact, where T0 is the restriction of T . Moreover

dimN(S ◦ T ) = dimN(T ) + dimR(T ) ∩ N(S), (5)

showing, in particular, that N(S ◦ T ) is finite dimensional when T and S are
Fredholm.
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The inclusions R(S ◦ T ) ⊂ R(S) ⊂ Z induce the exact sequence of spaces

0 → R(S)/R(S ◦ T ) →֒ Z/R(S ◦ T )
J0−→ Z/R(S) → 0, (6)

where J0 is the induced map, implying the equality

dimZ/R(S ◦ T ) = dimR(S)/R(S ◦ T ) + dimZ/R(S). (7)

The exactness of the sequence

0 → N(S) →֒ D(S)
S
−→ R(S) → 0, (8)

as well as the exactness of the sequence

0 → R(T ) ∩ N(S) →֒ R(T ) ∩ D(S)
S0−→ R(S ◦ T ) → 0, (9)

where S0 is the restriction of S, are obvious. Consequently, if

Ŝ : D(S)/(R(T ) ∩ D(S)) 7→ R(S)/R(S ◦ T )

is the map induced by S and

J : N(S)/(R(T ) ∩ N(S)) 7→ D(S)/(R(T ) ∩ D(S))

is induced by the inclusions, the sequence

0 → N(S)/(R(T )∩N(S))
J
−→ D(S)/(R(T )∩D(S))

Ŝ
−→ R(S)/R(S◦T ) → 0 (10)

is exact, via the 3 × 3 lemma (see [8], Lemma II.5.1), because of the exactness
of the sequences (9) and (8) and that of the corresponding columns made of
(9), (8) and (10). The space D(S)/(R(T ) ∩ D(S)) is isomorphic to the space
(D(S) + R(T ))/R(T ), which in turn is a subspace of the space Y/R(T ). When
T is Fredholm, and so the space Y/R(T ) is finite dimensional, then the space
D(S)/(R(T )∩D(S)) is also finite dimensional, inferring by (10) that R(S)/R(S◦
T ) is finite dimensional. Therefore, when both T and S are Fredholm, then,
by (7), dimZ/R(S ◦ T )) is finite and, as we already saw, N(S ◦ T ) is finite
dimensional. Hence, we deduce that if T and S are Fredholm, the map S ◦ T is
also Fredholm.

Now, let us prove equality (2), with no restriction on T and S. Note that

dimR(T ) ∩ D(S) = dimR(T ) ∩ N(S) + dimR(S ◦ T ) (11)

by (9), and

dimD(S)/(R(T )∩D(S)) = dimN(S)/(R(T )∩D(S))+dimR(S)/R(S◦T ), (12)

via (10). Clearly,

dimN(S) = dimR(T ) ∩ N(S) + dimN(S)/(R(T ) ∩ N(S)) (13)
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and

dimY/R(T ) = dim(D(S) + R(T ))/R(T ) + dimY/(D(S) + R(T )). (14)

Therefore, by (5), (14), (12), (13) and (7) we have:

dimN(S ◦ T ) + dimY/R(T ) + dimZ/R(S) =

dimN(T ) + dimR(T ) ∩ N(S) + dim(D(S) + R(T ))/R(T )+

dimY/(D(S) + R(T )) + dimZ/R(S) =

dimN(T ) + dimY/(D(S) + R(T )) + dimN(S)/(R(T ) ∩ N(S))+

dimR(S)/R(S ◦ T ) + dimR(T ) ∩ N(S) + dimZ/R(S) =

dimN(T ) + dimN(S) + dimY/(D(S) + R(T )) + dimZ/R(S ◦ T ),

which is precisely equality (2), using again the isomorphism between the spaces
D(S)/(R(T ) ∩ D(S)) and (D(S) + R(T ))/R(T ).

Equation (3) is a direct consequence of (2), when T and S are Fredholm.

Remark 2.2 If T : X 7→ Y and S : Y 7→ Z are Fredholm maps, the previ-
ous theorem gives, in particular, the well known classical formula ind(ST ) =
ind(S) + ind(T ), which is the multiplication of the Fredholm index.

Remark 2.3 Let us verify formula (3) when X, Y, Z are finite dimensional,
using the previous remark. Let T : D(T ) ⊂ X 7→ Y, S : D(S) ⊂ Y 7→ Z be
linear maps. We may assume, with no loss of generality, that D(T ) = X . We
first verify (3) when Y = R(T )+D(S). Let Y1 be a complement of R(T )∩D(S)
in R(T ). Then Y1 is also a complement of D(S) in Y . Let X0 = T−1(D(S)),
and let X1 be a complement of N(T ) in T−1(Y1), which is also a complement
of X0 in X . This implies that the map T : X1 7→ Y1 is bijective. Therefore
ind(T ) = ind(T0), where T0 = T |X0. But S ◦ T = ST0. Thus ind(S ◦ T ) =
ind(ST0) = ind(S)+ ind(T0) = ind(S)+ ind(T ), via the previous remark, which
shows that (3) is true in this case.

When Y is not necessarily equal to R(T ) + D(S), we replace the map T by
T ′ : X 7→ R(T ) + D(S), T ′ = T . As we have, again by the previous remark,
that ind(T ) = ind(T ′) + ind(I ′), where I ′ is the inclusion R(T ) + D(S) ⊂ Y
with ind(I ′) = −dimY/(R(T ) + D(S)), and that S ◦ T = S ◦ T ′, we infer easily,
using the first part of the proof, that (3) holds in this case too.

If X, Y are Banach spaces and T : D(T ) ⊂ X 7→ Y is linear, one usually sais
that T is Fredholm if T is closed and Fredholm as above (see Definition II.1.2
from [2]). As the composition of two closed operators is not necessarily a closed
operator, a consequence of Theorem 2.1 is the following.

Corollary 2.4 Assume that X, Y, Z are Banach spaces and let T : D(T ) ⊂
X 7→ Y, S : D(S) ⊂ Y 7→ Z be Fredholm closed operators such that S ◦ T is

closed. Then S ◦ T is Fredholm and

ind(S ◦ T ) = ind(S) + ind(T ) + dimY/(R(T ) + D(S)). (15)
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Corollary 2.4 seems not to be known in the framework of unbounded oper-
ators. Note also that if X, Y, Z are Banach spaces and T : D(T ) ⊂ X 7→ Y, S :
D(S) ⊂ Y 7→ Z are Fredholm paraclosed operators, then S ◦ T is paraclosed,
Fredholm, and ind(S ◦T ) satisfies the equation from the statement of Corollary
2.4. In other words, S ◦ T is automatically paraclosed (see [2], Section I.3 for
some details).

3 Quotient morphisms

Let X be a vector space over the field K and let Lat(X ) denote the lattice
(with respect to the inclusion) consisting of all vector subspaces of X . Let also
Q(X ) be the family of all (quotient) vector spaces of the form X/X0, with
X0, X ∈ Lat(X ), X0 ⊂ X . We note that in Q(X ), the equality X1/Y1 = X2/Y2

holds if and only if X1 = X2 and Y1 = Y2, for all X1, X2, Y1, Y2 ∈ Lat(X ) with
Y1 ⊂ X1 and Y2 ⊂ X2.

Remark 3.1 (1) There is a natural partial order in Q(X ), defined in the fol-
lowing way. We write X/X0 ≺ Y/Y0 if X ⊂ Y and X0 ⊂ Y0. In this case,
there exists a natural map X/X0 ∋ x + X0 7→ x + Y0 ∈ Y/Y0 called the
q-inclusion of X/X0 into Y/Y0. This map is injective iff X ∩ Y0 = X0, sur-
jective iff X + Y0 = Y , and therefore bijective iff X ∩Y0 = X0 and Y = X +Y0.
In fact, we have the following exact sequence:

0 → (X ∩ Y0)/X0 → X/X0 → Y/Y0 → Y/(X + Y0) → 0,

where the arrows are the natural q-inclusions.
Note also that we have X/(X∩Y ) ≺ (X+Y )/Y but the q-inclusion is, in this

case, a classical isomorphism. Nevertheless, if X/X0 ≺ Y/Y0 and Y/Y0 ≺ X/X0,
then X/X0 = Y/Y0.

(2) In the set Q(X) we may define the q-intersection and the q-sum of two
(or several) spaces, denoted by ⋓ and ⊎ respectively, via the formulas

X/X0 ⋓ Y/Y0 = (X ∩ Y )/(X0 ∩ Y0), X/X0 ⊎ Y/Y0 = (X + Y )/(X0 + Y0),

for any pair of spaces X/X0, Y/Y0 ∈ Q(X). When X0 = Y0, the q-intersection
is actually intersection and the q-sum is actually the sum of the corresponding
vector spaces.

Let Y be another vector space over K.

Definition 3.2 A quotient morphism (or, simply, a q-morphism) from X into
Y is any linear map T : X/X0 7→ Y/Y0, where X/X0 ∈ Q(X ) and Y/Y0 ∈ Q(Y).

When there exists a linear map T0 : X 7→ Y with T0(X0) ⊂ Y0 such that
T (x + X0) = T0x + Y0, x ∈ X , the q-morphism T : X/X0 7→ Y/Y0 is said to be
induced (by T0).
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This concept is similar to that of morphism defined by Waelbroeck (see [14];
see also [1, 11, 12], etc.). As noticed in [14], there exist q-morphisms which are
not induced by any linear map.

The family of all quotient morphisms from X into Y will be denoted by
QM(X ,Y). When X = Y, the family QM(X ,Y) will be denoted by QM(X ).

For the study of q-morphisms, we adapt the same notation and terminology
from [1].

Let T : X/X0 7→ Y/Y0 be a given q-morphism in QM(X ,Y). The space
X/X0, also denoted by D(T ), is the domain (of definition) of T . It can be
written as D0(T )/X0, where D0(T ) = X is called the lifted domain of T .

The range T (X/X0) of T is also denoted by R(T ) and can be represented as
R0(T )/Y0, where R0(T ) ∈Lat(Y) is called the lifted range of T .

The graph G(T ) of T in X/X0 × Y/Y0 is isomorphic to the space
G0(T )/(X0 × Y0), where

G0(T ) = {(x, y) ∈ X × Y ; T (x + X0) = y + Y0} ∈ Lat(X × Y)

is called the lifted graph of T .

Definition 3.3 Let Tj : Xj/X0j 7→ Yj/Y0j, j = 1, 2, . . . , n, be quotient mor-
phisms from QM(X ,Y). We define the q-sum of these morphisms, and denote
it by T1 ⊎ T2 ⊎ · · · ⊎ Tn or by ⊎n

j=1Tj, as the q-morphism

⊎n
j=1Tj : ⋓

n
j=1Xj/X0j 7→ ⊎n

j=1Yj/Y0j

given by the formula

⊎n
j=1Tj =

n∑

j=1

BjTjAj ,

where
Aj : ⋓

n
k=1Xk/X0k 7→ Xj/X0j

and
Bj : Yj/Y0j 7→ ⊎n

k=1Yk/Y0k

are the q-inclusions (j = 1, 2, . . . , n).

Remark 3.4 Let X/X0 ∈ Q(X ), Y/Y0, Z/Z0 ∈ Q(Y) and W/W0 ∈ Q(W). Let
also T : X/X0 7→ Y/Y0 and S : Z/Z0 7→ W/W0 be q-morphisms. Motivated by
further applications, we shall define a “composition” of the maps S and T in
the following way.

We first consider the subspace

(Y ∩ Z + Y0)/Y0 = Y/Y0 ⋓ (Z + Y0)/Y0,

and the map
T0 : D(T0) 7→ (Y ∩ Z + Y0)/Y0,

where D(T0) = T−1((Y ∩ Z + Y0)/Y0) and T0 = T |D(T0). Clearly, N(T0) =
N(T ), R(T0) = (R0(T ) ∩ Z + Y0)/Y0, and so R0(T0) = R0(T ) ∩ Z + Y0.
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Secondly, we note that there exists a natural map

U : (Y ∩ Z + Y0)/Y0 7→ Z/(Y0 ∩ Z + Z0).

The map U is the composition of the isomorphism of (Y ∩Z + Y0)/Y0 onto the
space (Y ∩Z)/(Y0∩Z) and the q-inclusion of (Y ∩Z)/(Y0∩Z) into Z/(Y0∩Z+Z0).

Thirdly, let S◦ be the restriction S|(Y0 ∩Z +Z0)/Z0 and Ŝ0 : (Z/Z0)/((Y0 ∩

Z + Z0)/Z0) 7→ W/R0(S
◦) be the linear map defined by Ŝ0(ξ + (Y0 ∩ Z +

Z0)/Z0) = w + R0(S
◦), where w ∈ S(ξ). Then, we define the linear map

S0 : Z/(Y0 ∩ Z + Z0) 7→ W/R0(S
◦),

via the composition of Ŝ0 and the natural isomorphism between (Z/Z0)/((Y0 ∩
Z + Z0)/Z0) and Z/(Y0 ∩ Z + Z0). Moreover, the space (W/R0(S

◦))/R(S0) is
isomorphic to W/R0(S).

Clearly, the composition S0UT0 is well defined. The map S0UT0 will be
designated by S ◦q T . We therefore have

S ◦q T : D(T0) 7→ W/R0(S
◦),

with D(T0) ⊂ X/X0 and R(S ◦q T ) ⊂ R0(S0)/R0(S
◦).

Note also that

D0(S ◦q T ) = {x ∈ X ; ∃z ∈ Z, (x, z) ∈ G0(T )}

and, if x ∈ X, z ∈ Z, w ∈ W are such that (x, z) ∈ G0(T ), (z, w) ∈ G0(S), then
(S ◦q T )(x + X0) = w + R0(S

◦).
The map S ◦q T will be called the q-composition of the maps S and T .
An important particular case of the construction from above is obtained

when Z/Z0 ≺ Y/Y0. In this case, T0 : D(T0) 7→ (Y0 + Z)/Y0, the map U is the
natural isomorphism U : (Y0 + Z)/Y0 7→ Z/(Y0 ∩ Z) and S0 : Z/(Y0 ∩ Z) 7→
W/R0(S

◦).
Note that for two linear maps T : D(T ) ⊂ X 7→ Y and S : D(S) ⊂ Y 7→ Z,

we have the equality S ◦q T = S ◦ T .

Remark 3.5 The q-composition defined in Remark 3.4 occurs in various situ-
ations. For instance, it occurs in relation with a concept of generalized inverse,
defined for every q-morphism.

Let T : X/X0 7→ Y/Y0 be a q-morphism with R(T ) = Y/Y0. We have a
natural isomorphism from R(T ) into (X/X0)/N(T ), associating to each η ∈
R(T ) the class ξ + N(T ) ∈ (X/X0)/N(T ), whenever Tξ = η. Identifying the
space (X/X0)/N(T ) with X/N0(T ), we therefore have an isomorphism from
R0(T )/Y0 into X/N0(T ), given by the assignment y+Y0 7→ x+N0(T ), whenever
(x, y) ∈ G0(T ). This q-morphism will be denoted by T−1 and called the q-
inverse of T . It coincides with the usual inverse when T is bijective. Moreover,

T−1 ◦ T = J
X/N0(T )
X/X0

, (16)
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T ◦q T−1 = IR(T ), (17)

where J
X/N0(T )
X/X0

is the q-inclusion X/X0 ≺ X/N0(T ) and IR(T ) is the identity

on R(T ).

The usefulness of the q-compositions of quotient morphisms also follows from
the fact that it is an associative operation.

Theorem 3.6 Let X/X0 ∈ Q(X ), Y/Y0, Z/Z0 ∈ Q(Y), W/W0, U/U0 ∈ Q(W)
and V/V0 ∈ Q(V). Let also T : X/X0 7→ Y/Y0, S : Z/Z0 7→ W/W0 and

P : U/U0 7→ V/V0 be q-morphisms. Then

P ◦q (S ◦q T ) = (P ◦q S) ◦q T.

Proof. Let us make the notation

S ◦q T = L and P ◦q S = K.

Hence,

L : D0(L)/X0 7→ W/R0(S
◦), K : D0(K)/Z0 7→ V/R0(P̃

◦),

where

D0(L) = {x ∈ X ; ∃z ∈ Z, (x, z) ∈ G0(T )}, S◦ = S|(Y0 ∩ Z + Z0)/Z0,

D0(K) = {z ∈ Z; ∃u ∈ U, (z, u) ∈ G0(S)}, P̃ ◦ = P |(W0 ∩ U + U0)/U0.

It follows that
P ◦q L : D0(P ◦q L)/X0 7→ V/R0(P

◦),

and D0(P ◦q L)/X0 ⊂ D0(L)/X0. Moreover, it is easy to see that

D0(P ◦q L) = {x ∈ D0(L); ∃u ∈ U, (x, u) ∈ G0(L)}

= {x ∈ X ; ∃z ∈ Z, ∃u ∈ U, (x, z) ∈ G0(T ), (x, u) ∈ G0(L)}.

Let us prove that actually

D0(P ◦q L) = {x ∈ X ; ∃z̃ ∈ Z, ∃u ∈ U, (x, z̃) ∈ G0(T ), (z̃, u) ∈ G0(S)}. (18)

Consider x ∈ X, z ∈ Z, u ∈ U such that (x, z) ∈ G0(T ), (x, u) ∈ G0(L). Let also
w ∈ W be fixed such that (z, w) ∈ G0(S). Then L(x + X0) = w + R0(S

◦), and
because L(x + X0) = u + R0(S

◦), we infer that w − u ∈ R0(S
◦), so we can find

a z ∈ Y0 ∩ Z such that (z, w − u) ∈ G0(S). It follows that (z − z, u) ∈ G0(S).
Consider z̃ = z − z ∈ Z and note that (z̃, u) ∈ G0(S). On the other hand,
because z̄ ∈ Y0 and (x, z) ∈ G0(T ), it follows that (x, z̃) ∈ G0(T ).

Conversely, if x ∈ X, z̃ ∈ Z, u ∈ U are such that (x, z̃) ∈ G0(T ), (z̃, u) ∈
G0(S) then (x, u) ∈ G0(L).

Note that, in the definition of P ◦q L, we have that

P ◦ = P |(R0(S
◦) ∩ U + U0)/U0.
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On the other hand,

K ◦q T : D0(K ◦q T )/X0 → V/R0(K
◦),

where

D0(K ◦q T ) = {x ∈ X ; ∃z ∈ D0(K), (x, z) ∈ G0(T ))} (19)

= {x ∈ X ; ∃z ∈ Z, ∃u ∈ U, (x, z) ∈ G0(T ), (z, u) ∈ G0(S)},

and
K◦ = K|(Y0 ∩ D0(K) + Z0)/Z0.

From (18) and (19) we deduce that

D0(P ◦q L) = D0(K ◦q T ).

We show now that
R0(P

◦) = R0(K
◦).

It is easy to see the inclusion R0(P
◦) ⊂ R0(K

◦).
Reciprocally, let v ∈ R0(K

◦). It follows that there exists a z ∈ Y0 ∩ D0(K)
such that (z, v) ∈ G0(K). Because z ∈ D0(K), we infer that there exists a
u ∈ U such that (z, u) ∈ G0(S). In particular, u ∈ R0(S

◦)∩U. Let us fix v̄ ∈ V

satisfying (u, v̄) ∈ G0(P ). Hence (z, v̄) ∈ G0(K) and v − v̄ ∈ R0(P̃
◦), implying

that there exists w ∈ W0 ∩U such that (w, v − v̄) ∈ G0(P ). This together with
(u, v̄) ∈ G0(P ) imply that (w + u, v) ∈ G0(P ). Taking ũ = w + u and noticing
that ũ ∈ R0(S

◦) ∩ U we infer that v ∈ R0(P
◦).

Finally, for x ∈ X, z ∈ Z, u ∈ U such that (x, z) ∈ G0(T ), (z, u) ∈ G0(S), and
v ∈ V such that (u, v) ∈ G0(P ), one obtains (x, u) ∈ G0(L) and (z, v) ∈ G0(K).
Hence

P ◦q L(x + X0) = v + R0(P
◦) = v + R0(K

◦) = K ◦q T (x + X0),

which completes the proof of the theorem.

Remark 3.7 (1) Let X/X0 ∈ Q(X ), Y/Y0, Z/Z0 ∈ Q(Y) and W/W0 ∈ Q(W).
Let also T : X/X0 7→ Y/Y0 and S : Z/Z0 7→ W/W0 be q-morphisms. The
previous result show that the q-composition have a behavior similar to that of
the usual composition. For this reason, from now on we write the q-composition
S ◦q T simply as S ◦ T .

(2) Let T : X/X0 7→ Y/Y0 be a q-morphism with R(T ) = Y/Y0 and let T−1 :
R0(T )/Y0 7→ X/N0(T ) be defined as in Remark 3.5. Using Proposition 3.6, we
can now show that T−1 is the only surjective q-morphism S : R0(T )/Y0 7→
X/N0(T ) satisfying (17), that is, T ◦ S = IR(T ). Indeed, choosing an S with
this property, we infer from (16) that

T−1 ◦ (T ◦ S) = J
X/N0(T )
X/X0

◦ S = T−1 ◦ IR(T ).
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According to Remark 3.4, the composition J
X/N0(T )
X/X0

◦ S is the composition

of three maps. The map T0 from Remark 3.4 is precisely S, because S is
surjective.The map U from Remark 3.4 is the identity on X/N0(T ). The map
S◦ from Remark 3.4 is actually the map 0 : N0(T )/X0 7→ X/N0(T ), and so
R0(0) = N0(T ), implying that the map S0 from Remark 3.4 is just the identity

on X/N0(T ). Therefore, J
X/N0(T )
X/X0

◦ S = S. Clearly, T−1 ◦ IR(T ) = T−1, and

thus S = T−1.
(3) As in the previous section, we say that a q-morphism T : X/X0 7→ Y/Y0

is Fredholm if both dimN(T ) and dim(Y/Y0)/R(T ) = dimY/R0(T ) are finite.
In that case, the index of T , denoted by ind(T ), is given by

ind(T ) = dimN(T ) − dimY/R0(T ).

In particular, the q-inclusion of X/X0 into Y/Y0, say Q, is Fredholm if and only
if dimN(Q) = dim(X ∩ Y0)/X0 and codimR(Q) = dimY/(X + Y0) are both
finite, where “codim” stands for codimension.

It follows directly from Theorem 2.1 that if T : X/X0 7→ Y/Y0 and S :
D(S) ⊂ Y/Y0 7→ Z/Z0 are Fredholm quotient morphisms, then S◦T is Fredholm
and

ind(S ◦ T ) = ind(T ) + ind(S) + dimY/(R0(T ) + D0(S)).

The next result is a more general assertion.

Theorem 3.8 Let X/X0 ∈ Q(X ), Y/Y0, Z/Z0 ∈ Q(Y) and W/W0 ∈ Q(W).
Let also T : X/X0 7→ Y/Y0 and S : Z/Z0 7→ W/W0 be q-morphisms.

Assume that the maps S, T are Fredholm and that the dimensions

dim(Y ∩ Z0)/(Y0 ∩ Z0) and dimZ/(Y ∩ Z + Z0)

are finite. Then the dimensions

dimY/(R0(T ) + Y ∩ Z) and dim(Y0 ∩ N0(S) + Z0)/Z0

are finite, the map S ◦ T is Fredholm and we have

ind(S ◦ T ) = ind(T ) + ind(S) + dim(Y ∩ Z0)/(Y0 ∩ Z0)+

dimY/(R0(T ) + Y ∩ Z) − dim(N0(S) ∩ Y0 + Z0)/Z0 − dimZ/(Y ∩ Z + Z0).

Proof. We consider the maps T0, U, S0, as defined in Remark 3.4. The
map T being Fredholm, the subspaces R0(T ) and R0(T ) + Y ∩ Z are of finite
codimension in Y . Therefore

dim(R0(T ) + Y ∩ Z)/R0(T ) = dim(Y ∩ Z)/(R0(T ) ∩ Z) < +∞. (20)

The following q-inclusion

(Y ∩ Z)/(R0(T ) ∩ Z) ≺ (Y ∩ Z + Y0)/(R0(T ) ∩ Z + Y0) (21)
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is an isomorphism, because

Y ∩ Z + R0(T ) ∩ Z + Y0 = Y ∩ Z + Y0

and
Y ∩ Z ∩ (R0(T ) ∩ Z + Y0) = R0(T ) ∩ Z,

as one can easily see.
We prove first that the map T0 is Fredholm. Note that N(T0) = N(T ), as

observed in Remark 3.4, and the latter is finite dimensional. Note also that the
codimension of the range of T0 is finite, and we have

codimR(T0) = dim(Y ∩ Z + Y0)/(R0(T ) ∩ Z + Y0) < +∞,

via (20) and (21). Therefore,

ind(T0) = dimN(T )− dim(Y ∩ Z)/(R0(T ) ∩ Z),

using again the isomorphism (21). The exactness of the sequence

0 → (Y ∩ Z)/(R0(T ) ∩ Z) −→ Y/R0(T ) −→ Y/(R0(T ) + Y ∩ Z) → 0,

where the arrows are the natural q-morphisms, shows that

dim(Y ∩ Z)/(R0(T ) ∩ Z) = codimR(T )− dimY/(R0(T ) + Y ∩ Z).

Hence
ind(T0) = ind(T ) + dimY/(R0(T ) + Y ∩ Z). (22)

The map
U : (Y ∩ Z + Y0)/Y0 7→ Z/(Y0 ∩ Z + Z0)

is the composition of the isomorphism between the spaces (Y ∩Z + Y0)/Y0 and
(Y ∩ Z)/(Y0 ∩ Z), and the q-inclusion

Q : (Y ∩ Z)/(Y0 ∩ Z) 7→ Z/(Y0 ∩ Z + Z0).

Thus N(U) is isomorphic to

N(Q) = (Y ∩ (Y0 ∩ Z + Z0))/(Y0 ∩ Z) = (Y0 ∩ Z + Y ∩ Z0)/(Y0 ∩ Z)

and so N(U) is isomorphic to (Y ∩ Z0)/(Y0 ∩ Z0).
Note also that R(Q) = (Y ∩Z +Z0)/(Y0 ∩Z +Z0). Consequently, it follows

from the hypothesis that U is Fredholm and

ind(U) = dim(Y ∩ Z0)/(Y0 ∩ Z0) − dimZ/(Y ∩ Z + Z0). (23)

Finally, let us prove that the map S0 is also Fredholm. Indeed, N(S) is finite
dimensional by hypothesis, N(S0) is isomorphic to N(S)/N(So), and so N(S0)
must be finite dimensional too. Since

N(So) = N(S) ∩ ((Y0 ∩ Z + Z0)/Z0) = (Y0 ∩ N0(S) + Z0)/Z0,
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we have
dimN(S0) = dimN(S) − dim(Y0 ∩ N0(S) + Z0)/Z0.

Note also that codimR(S0) = dimW/R0(S) < ∞, showing that S0 is also Fred-
holm. Moreover,

ind(S0) = ind(S) − dim(Y0 ∩ N0(S) + Z0)/Z0. (24)

Consequently, S ◦ T = S0UT0 is a Fredholm map. In addition,

ind(S ◦ T ) = ind(T0) + ind(U) + ind(S0). (25)

Formula from the statement is a direct consequence of (22), (23), (24) and
(25).

Theorem 3.8 has the following important consequence.

Corollary 3.9 Let X/X0 ∈ Q(X ), Y/Y0, Z/Z0 ∈ Q(Y) and W/W0 ∈ Q(W) be

such that Z/Z0 ≺ Y/Y0. Let also T : X/X0 7→ Y/Y0 and S : Z/Z0 7→ W/W0 be

q-morphisms.

If the maps S, T are Fredholm, then the dimensions

dimY/(R0(T ) + Z) and dim(Y0 ∩ N0(S))/Z0

are finite, the map S ◦ T is Fredholm and we have

ind(S ◦ T ) = ind(T ) + ind(S)+

dimY/(R0(T ) + Z) − dim(N0(S) ∩ Y0)/Z0.

Proof. As noticed in Remark 3.4, if Z/Z0 ≺ Y/Y0, the map U is an isomor-
phism, and so the index of U is null.

Remark 3.10 The map U : (Y ∩Z + Y0)/Y0 7→ Z/(Y0 ∩Z + Z0) from Remark
3.4 is an isomorphism if and only if Y ∩ Z0 = Y0 ∩ Z0 and Y ∩ Z + Z0 = Z
(see also the map Q from the proof of Theorem 3.8). For this reason, assuming
T, S Fredholm and replacing the condition Z/Z0 ≺ Y/Y0 by the more general
conditions Y ∩Z0 = Y0 ∩Z0 and Y ∩Z + Z0 = Z in the statement of Corollary
3.9, we get the formula

ind(S ◦ T ) = ind(T ) + ind(S)+

dimY/(R0(T ) + Y ∩ Z) − dim(N0(S) ∩ Y0 + Z0)/Z0,

via a similar argument.

Let T : X/X0 7→ Y/Y0 be a q-morphism with X/X0 ≺ Y/Y0. We may
consider the iterates T ◦ T , T ◦T ◦ T etc., which are unambiguously defined. In
fact, defining T 0 as the q-inclusion X/X0 ≺ Y/Y0, for every integer n ≥ 1 we
may define by induction T n = T ◦ T n−1. Note that we may actually consider
polynomials of T , as in [3]. We think that a study of such polynomials would
be of some interest.
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4 Linear relations as quotient morphisms

In this section we discuss linear relations (see [3, 5, 6, 9]), which will be regarded
as particular cases of quotient morphisms.

Giving two linear spaces X and Y, following Arens [3], a linear relation is
any subspace Z ∈ Lat(X × Y). As we work only with linear relations, we shall
often call them simply relations.

In this text, for a given relation Z ∈ Lat(X × Y), we use the following
notation. Set

D(Z) = {x ∈ X ; ∃y ∈ Y : (x, y) ∈ Z},

and
R(Z) = {y ∈ Y; ∃x ∈ X : (x, y) ∈ Z},

called the domain, respectively the range of Z. We shall also use the spaces

N(Z) = {x ∈ D(Z); (x, 0) ∈ Z}

and
M(Z) = {y ∈ R(Z); (0, y) ∈ Z},

called the kernel, respectively the multivalued part of Z.
The inverse Z−1 ∈ Lat(Y,X ) of the relation Z ∈ Lat(X ,Y) is given by

{(y, x); (x, y) ∈ Z}. Clearly, D(Z−1) = R(Z), R(Z−1) = D(Z), N(Z−1) =
M(Z) and M(Z−1) = N(Z).

If V ⊂ X , we write Z(V ) to designate the set {y ∈ Y; ∃x ∈ V : (x, y) ∈ Z},
which is empty if V ∩D(Z) = ∅. Clearly, Z(V ) = Z(V ∩D(Z)). If V = {x}, x ∈
X , we write Z(x) for Z(V ). Note also that R(Z) = Z(D(Z)) and M(Z) = Z(0).

The linear relation Z can be associated with the map QZ : D(Z) 7→ R(Z)/M(Z),
defined by the formula QZ(x) = y+M(Z) whenever (x, y) ∈ Z. The map QZ is
correctly defined and linear. Moreover, it is surjective and its kernel is precisely
N(Z). In fact, QZ is a quotient morphism of a particular form.

Proposition 4.1 The map

Lat(X × Y) ∋ Z 7→ QZ ∈ QM(X ,Y)

is injective, and its range consists of all quotient morphisms Q ∈ QM(X ,Y) of

the form Q : X 7→ Y/Y0, which are surjective.

Proof. Recall that X1/Y1 = X2/Y2 is true if and only if X1 = X2 and
Y1 = Y2.

Let us show that the map Z 7→ QZ is injective. If QZ1
= QZ2

, we obtain,
via the previous remark, that D(Z1) = D(Z2), R(Z1) = R(Z2), and M(Z1) =
M(Z2). Fix a vector (x, y1) ∈ Z1. Then QZ1

(x) = y1 + M = QZ2
(x) = y2 + M ,

for some y2 ∈ R(Z2), where M = M(Z1) = M(Z2). Therefore y2 − y1 ∈ M ,
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and so (x, y1) = (x, y2) − (0, y2 − y1) ∈ Z2. Similarly, Z2 ⊂ Z1, showing that
Z1 = Z2.

Now, let Q : X 7→ Y/Y0 be surjective. Set

Z = G0(Q) = {(x, y) ∈ X × Y ; y + Y0 = Q(x)}.

We clearly have D(Z) = X and R(Z) ⊂ Y . In fact, R(Z) = Y because the map
Q is surjective. Moreover, as we have (0, y) ∈ G0(Q) if and only if y ∈ Y0, it
follows that M(Z) = Y0. Consequently, QZ(x) = y+M(Z) whenever (x, y) ∈ Z,
showing that QZ = Q.

The previous proposition allows us to designate the uniquely determined quo-
tient morphism QZ as the morphism of Z, for any relation Z ∈
Lat(X × Y).

If Z ⊂ X×Y for some X ∈ Lat(X ), Y ∈ Lat(Y), the q-morphism from D(Z)
into Y/M(Z) induced by QZ will be designated by QY

Z .

Remark 4.2 Given two relations Z ′′ ∈ Lat(X ×Y) and Z ′ ∈ Lat(Y ×Z), their
product (or composition) is the relation Z ′ ◦ Z ′′ ∈ Lat(X × Z) defined as

Z ′ ◦ Z ′′ = {(x, z) ∈ X × Z; ∃y ∈ Y : (x, y) ∈ Z ′′, (y, z) ∈ Z ′}.

It is well known, and easily seen, that

D(Z ′ ◦ Z ′′) = Z ′′−1(D(Z ′)),

R(Z ′ ◦ Z ′′) = Z ′(R(Z ′′)),

M(Z ′ ◦ Z ′′) = Z ′(M(Z ′′)).

Proposition 4.3 Given two relations Z ′′ ∈ Lat(X × Y) and Z ′ ∈
Lat(Y × Z), we have the equality QZ′◦Z′′ = QZ′ ◦ QZ′′ .

Proof. Let Q′ = QZ′ and Q′′ = QZ′′ . Therefore, D(Q′′) = D(Z ′′), R0(Q
′′) =

R(Z ′′), and similar relations hold for Q′.
We follow the construction of Q′ ◦ Q′′ as in Remark 3.4.
Let

x ∈ D(Z ′ ◦ Z ′′) = Z ′′−1(D(Z ′)).

We can find y ∈ D(Z ′) and z ∈ Z such that that (x, y) ∈ Z ′′ and (y, z) ∈ Z ′.
Hence, y ∈ D(Z ′) ∩ R(Z ′′) and

QZ′◦Z′′(x) = z + M(Z ′ ◦ Z ′′) ∈ R(Z ′ ◦ Z ′′)/M(Z ′ ◦ Z ′′).

We want to show that Q′ ◦ Q′′(x) = z + M(Z ′ ◦ Z ′′). Note that

y + M(Z ′′) ∈ (R0(Q
′′) ∩ D(Q′) + M(Z ′′))/M(Z ′′).

If
U : (D(Q′) + M(Z ′′))/M(Z ′′) 7→ D(Q′)/(D(Q′) ∩ M(Z ′′))
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is the natural isomorphism, then we have U(y +M(Z ′′)) = y +D(Q′)∩M(Z ′′).
Let

Q′

0 : D(Q′)/(D(Q′) ∩ M(Z ′′)) 7→ R0(Q
′)/R0(Q

′◦),

which corresponds to the map S0 in Remark 3.4, where Q′◦ is the restriction of
Q′ to M(Z ′′) ∩ D(Q′). Then we have

Q′

0(y + D(Q′) ∩ M(Z ′′)) = z + R0(Q
′◦).

We have only to observe that

Q′(M(Z ′′) ∩ D(Q′)) = Z ′(M(Z ′′))/M(Z ′) = M(Z ′ ◦ Z ′′)/M(Z ′),

whence we infer that R0(Q
′◦) = M(Z ′ ◦ Z ′′). Consequently, Q′ ◦ Q′′(x) =

QZ′◦Z′′(x), which is the assertion of the lemma.

Remark 4.4 Let X ∈ Lat(X ), Y ∈ Lat(Y) and let Z ⊂ X × Y be a relation.
Recall that the relation Z is said to be Fredholm [5] if both dimN(Z) and
dimY/R(Z) are finite. One sets ind(Z) = dimN(Z)− dimY/R(Z), which is the
index of Z. Clearly, the index of Z depends strongly on the space Y .

Note that Z ⊂ X × Y is Fredholm if and only if the map QY
Z : D(Z) 7→

Y/M(Z) induced by the morphism QZ of Z is Fredholm, and in this case
ind(Z) = ind(QY

Z ).

The next result is a version of the index theorem for the product of Fredholm
relations, extending the corresponding result from [5], Corollary I.6.12 (see also
[4]).

Theorem 4.5 Let X, Y, W be linear spaces and let Z ′′ ⊂ X × Y , Z ′ ⊂ Y ×
W be Fredholm relations. Then the dimensions dim(Y/(D(Z ′) + R(Z ′′)) and

dimN(Z ′) ∩ M(Z ′′) are finite, Z ′ ◦ Z ′′ is Fredholm and

ind(Z ′ ◦ Z ′′) = ind(Z ′) + ind(Z ′′)+

dim(Y/(D(Z ′) + R(Z ′′)) − dimN(Z ′) ∩ M(Z ′′).

Proof. The proof of Proposition 4.3 shows that, in fact, we have QW
Z′

◦Z′′ =
QW

Z′ ◦ QY
Z′′ . Therefore,

ind(Z ′ ◦ Z ′′) = ind(QW
Z′◦Z′′ ) = ind(QW

Z′ ◦ QY
Z′′).

The assertion is obtained directly from Corollary 3.9, applied to QW
Z′ , QY

Z′′ .

Corollary 4.6 Let X, Y, W be linear spaces and let Z ′′ ⊂ X × Y , Z ′ ⊂ Y ×W
be Fredholm relations. Assume that D(Z ′) = Y . Then Z ′ ◦ Z ′′ is Fredholm and

ind(Z ′ ◦ Z ′′) = ind(Z ′) + ind(Z ′′) − dimN(Z ′) ∩ M(Z ′′).

This statement is precisely Corollary I.6.12 from [5].

Proof. Since D(Z ′) = Y , we have dim(Y/(D(Z ′)+M(Z ′′)) = 0. The desired
formula is then given by Theorem 4.5.

Let us finally remark that a version of Theorem 4.5 has been independently
obtained in [10].
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