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Sectional category of a class of maps

Jean-Paul Doeraene, Mohammed El Haouari, and Carlos Ribeiro

Abstract. We propose a definition of ‘sectional category of a class of maps’.
This combines the notions of ‘sectional category’ of James, and ‘category of a

class of spaces’ of Clapp and Puppe.

The category catX of a space X in the sense of Lusternik and Schnirelmann is
the smallest number n such that there exists an open covering {U0, . . . , Un} of X
for which each inclusion Ui ↪→ X is nullhomotopic. In [1], M. Clapp and D. Puppe
introduced the A-category of X, where A is a class of spaces, replacing ‘is nullhomo-
topic’ in the previous definition by ‘factors through some space of A’. On the other
hand, the sectional category secat p of a fibration p : E → X, originally defined by
Schwarz [12], is obtained by replacing ‘each inclusion Ui ↪→ X is nullhomotopic’ in
the previous definition by ‘p has a local section on each of the open sets Ui’. Here
we gather these ideas by defining the sectional category of a class of maps with
same target X.

We propose the Ganea and the Whitehead versions of this definition, as well
as the open covering approach.

Sectional category earned its renown recently thanks to Farber’s notion of topo-
logical complexity of a space A ([6]), which measures the difficulty of solving the
motion planing problem: the topological complexity of A is the sectional category of
the diagonal ∆: A→ A×A. Hence, particular attention is devoted to the sectional
category of classes of maps with target A×A containing (or not) the diagonal.

Throughout this paper T will be a category of topological spaces and maps.
It can be just topological spaces and continuous maps, but also pointed topolog-
ical spaces and maps, G-equivariant topological spaces and maps, or else filtered
topological spaces and maps. To assure that everything goes well, T should be a
J-category in the sense of [3]. In [11], it is shown that different notions of sectional
category are obtained for different J-structures, but coincide under reasonable con-
ditions.

1. The Ganea point of view

Definition 1.1. For any finite sequence S = (ι0 : A0 → X, . . . , ιn : An → X)
of maps of T, the Ganea construction of S is the following sequence of homotopy
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commutative diagrams (0 6 i < n):

Ai+1

αi+1 ##

ιi+1

''
Fi

βi !!

ηi
==

Gi+1 gi+1 // X

Gi

γi
;;

gi

77

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map gi+1 = (gi, ιi+1) : Gi+1 → X is the whisker map induced by
this homotopy pushout. The iteration starts with g0 = ι0 : A0 → X.

We can summarize all this by saying that gn is the iterated join over X of all
maps in S.

We denote Gn by G(S) and gn by g(S). We also write gn(ιX) instead of g(S)
when S = (ιX , . . . , ιX).

Definition 1.2. Let A be a class of maps of T with same target X. The
sectional category of A is the least integer n such that there exists a sequence S
of n + 1 maps in A, g(S) : G(S) → X having a homotopy section, i.e. a map
σ : X → G(S) such that g(S) ◦ σ ' idX .

We denote the sectional category by secat (A). We write secat (ιX) = secat (A)
when A is reduced to the single map ιX : A → X. In this case, there is only one
sequence of length n + 1 of maps in A which is (ιX , . . . , ιX). If T is pointed with
∗ as zero object, we write cat (X) = secat (A) when A is reduced to the single
map ∗ → X. The integer cat (X) is the ‘normalized’ version of the Lusternik-
Schnirelmann category.

We shall also write: infcat (A) = inf{secat (ι) | ι ∈ A}.

Remark 1.3. Clearly, for any class A, secat (A) 6 infcat (A).

Example 1.4. Let X be a fixed space in T, and let A be a class of spaces in
T. Then A-cat(X) in the sense of [1] is secat (Ā) where Ā is the class consisting of
all maps from any space in A to X.

Example 1.5. Let T be the category of stratified spaces and maps. Consider
X a foliated manifold in T and let A be the class of all inclusions A ↪→ X where
A is a transverse subspace of X, i.e. A ∩ F is at most countable for any leaf F
of X. Then secat (A) is actually the transverse LS-category of X introduced by
H. Colman [2] while infcat (A) is actually the open LS-category of X introduced by
J.-P. Doeraene, E. Macias-Virgós and D. Tanré [5].

In fact, it appears that here secat (A) = infcat (A). Indeed in the light of
Theorem 3.3, secat (A) 6 n when there is a covering of X with open subspaces Ui
(0 6 i 6 n) which are each deformable in X to a transverse subspace Ai of X, in

a stratified way. Then each Ui is deformable in a stratified way in X to A =
n⋃
i=0

Ai

which is also transverse. Hence infcat (A) 6 n.
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Proposition 1.6. Let f : X → Y be a map in T and assume that we have a
sequence of homotopy commutative squares in T (0 6 i 6 n):

A
ιi //

��

X

f

��
B

τi
// Y.

(†)

Then, for the corresponding sequences S = (ι0, . . . , ιn) and R = (τ0, . . . , τn) of
maps in T, there is a homotopy commutative diagram

G(S)
g(S) //

��

X

f

��
G(R)

g(R)
// Y.

(‡)

In particular, if for any map ι : A→ X in a class A there exists a map τ : B →
Y in a class B with a homotopy square (†), and if f has a homotopy section, then
secat (B) 6 secat (A).

On the other hand, if for any map τ : B → Y in a class B the square (†) is a
homotopy pull back and the map ι is in a class A, then the diagram (‡) is also a
homotopy pullback and in this case secat (A) 6 secat (B).

Proof. We can see that there is a map ϕ : G(S)→ G(R) such that g(R)◦ϕ '
f ◦ g(S), using the Join Theorem ([4, Theorem 51]) recursively in the following
diagram:

Fi(S)

yy

//

��

Ai+1

xx
ιi+1

!!

ζi+1

��

Gi(S) //

ϕi

��

Gi+1(S)

ϕi+i

��

// X

f

��

Fi(R) //

yy

Bi+1

xx

τi+1

!!
Gi(R) // Gi+1(R) // Y

beginning with ϕ0 = ζ0 and ending with ϕ = ϕn.
Assume f has a homotopy section s. If g(S) has a homotopy section σ, then

g(R) has a homotopy section ϕ ◦ σ ◦ s.
Assume the starting squares (†) are homotopy pullbacks. Then so is the front

rightmost one in the above diagram for any i < n, thus (‡) is a homotopy pullback.
If g(R) has a homotopy section σ, then g(S) has a homotopy section which is the
induced map (σ ◦ f , idX). �

Definition 1.7. There is a preorder on maps of T with same target X defined
by: ι : A → X < τ : B → X if ι factors through τ up to homotopy, i.e. there is a
map ζ : A→ B such that τ ◦ ζ ' ι.

This preorder extends to classes of maps of T with same target X: we write
A < B if each map of A factors through at least one map of B up to homotopy. We
write A ≈ B if A < B and B < A.

Remark 1.8. If Â is a subclass of A, then Â < A.
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With f = idX in Proposition 1.6 we get:

Proposition 1.9. For any classes A and B of maps in T with same target X:

B 4 A =⇒ secat (B) 6 secat (A).

Corollary 1.10. Let T be pointed. For any class A of maps in T with same
target X:

secat (A) 6 cat (X).

Corollary 1.11. For any class A of maps in T with same target X, and any
subclass Â of A, we have A 4 Â and secat (A) 6 secat (Â). If, moreover, each map

of A factors up to homotopy through at least one map of Â, then also Â < A and
secat (Â) = secat (A).

Remark 1.12. From this fact, we may often replace a class A by a smaller or a
greater one to compute secat (A). In particular, we can keep only one representative
for each homotopy class of maps of A. Conversely, we can always assume that all
maps equivalent (for the relation ≈) to some map of A are also in A.

Corollary 1.13. For any class A of maps in T with same target X, if A
contains a map τ : B → X such that each map of A factors through τ , then
secat (A) = infcat (A) = secat (τ).

Example 1.14. Let T be pointed and letA be the set of the two maps in1 : A ↪→
A∨B and in2 : B ↪→ A∨B. It is known that secat (in1) = cat (B) and secat (in2) =
cat (A); hence infcat (A) = min{catA, catB}. But secat (A) = 1 (or 0 if A ' ∗ or
B ' ∗). Indeed apply the ‘Whisker Maps inside a Cube’ Lemma ([4, Lemma 49])
to the following diagram to get the section of g(in1, in2):

∗
~~

//

��

B

zz $$
A // A ∨B

σ

��

A ∨B

F0
//

~~

B

{{ $$
A // G1 g1

// A ∨B.

This shows that secat (A) can be strictly less than infcat (A).

Example 1.15. Let A and B be the homotopy cofibres of two applications
S2 → S2 of degrees relatively prime numbers p and q respectively, let X = A×B;
let A be the set of the two maps in1 : A ↪→ A×B and in2 : B ↪→ A×B. It is known
that secat (in1) = cat (B) and secat (in2) = cat (A). But A and B are suspensions,
hence catA = catB = 1. Thus secat (A) = 1.

Now consider the map τ = g(in1, in2) which is a lower bound of A (for the
preorder 4) by construction. This is the inclusion A∨B ↪→ A×B. Then H2(A) =
Zp and H2(B) = Zq, hence by the Künneth formula, H∗(τ) is an isomorphism, and,
by Whitehead’s theorem, τ is a homotopy equivalence. Thus secat (τ) = 0.

This shows that secat τ , where τ is the join of two minimal maps of A, can be
strictly less than secat (A).
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Proposition 1.16. Let us denote by bqc the integer part of any rational number
q. For any class A of maps with same target X, consider the class Ak (respectively:
A6k) of all maps g(S) where S is any sequence of k+1 (respectively: at most k+1)
maps of A (not necessarily distinct). Then:

secat (A6k) = secat (Ak) =
⌊ secat (A)

k + 1

⌋
.

Proof. Any sequence of n+1 maps ofAk is a sequenceR = (g(S0), . . . , g(Sn)).
By associativity of the join, g(R) ' g(S0 + · · · + Sn) where S0 + · · · + Sn is the
concatenation of the sequences Si, which is a sequence of (n+ 1)(k+ 1) maps of A.
But secat (Ak) is the least integer n such that there exists a sequence R of n + 1
maps of Ak such that g(R) has a homotopy section. Thus, if secat (A) = m, then n
will be such n(k+ 1) < m+ 1 6 (n+ 1)(k+ 1), that is m

k+1 −
k
k+1 6 n <

m
k+1 + 1

k+1 ,

hence n = b m
k+1c. Finally secat (A6k) = secat (Ak) by Corollary 1.11. �

As a particular case, when A is made of only one map ιX , then Ak is made of
the single map gk(ιX). Then:

Corollary 1.17. For any map ιX : A→ X, secat (gk(ιX)) = b secat (ιX)
k+1 c.

2. The Whitehead point of view

Definition 2.1. For any finite sequence T = (τ0 : B0 → X0, . . . , τn : Bn → Xn)
of maps of T, the Whitehead construction of T is the following sequence of homotopy
commutative diagrams (0 6 i < n):∏i

0Xj ×Bi+1

%%

(
∏i

0 idXj
)×τi+1

))
Ti ×Bi+1

ti×idBi+1

77

idTi
×τi+1 ''

Ti+1 ti+1

// ∏i+1
0 Xj

Ti ×Xi+1

88

ti×idXi+1

55

where the outside square is a homotopy pullback, the inside square is a homotopy

pushout and the map ti+1 : Ti+1 →
∏i+1

0 Xj is the whisker map induced by this
homotopy pushout. The induction starts with t0 = τ0 : B0 → X0.

We denote Tn by T (T ) and tn by t(T ).

Remark 2.2. The product symbol × means here the homotopy pullback over
the terminal object e; it is the true pullback when the objects are e-fibrant. In the
category Top or Top∗, all objects are e-fibrant, hence these are true pullbacks.

Theorem 2.3. For 0 6 i 6 n, let

Ai //

ιi

��

Bi

τi

��
X

fi

// Xi
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be homotopy pullbacks in which T = (τ0, . . . , τn) are sequences of maps in T.
Then denoting S = (ι0, . . . , ιn), the map g(S) : G(S) → X has a homotopy sec-

tion if and only if the induced map f̂ = (f0, . . . , fn) : X →
∏n

0 Xj factors through
t(T ) : T (T )→

∏n
0 Xj up to homotopy.

Keep in mind the important particular case in which fi = idX , so that ιi = τi
and f̂ is the diagonal map ∆: X → Xn+1.

Proof. It is a standard argument (following the lines of [7, Theorem 8]) to
prove that there is a homotopy pullback:

G(S) //

g(S)
��

T (T )

t(T )

��
X

f̂

// ∏n
0 Xj

and the result follows. �

We extend the notion of ‘category of a map’ by the following definition:

Definition 2.4. Let T be pointed and let be a class of maps X with same
source X. The category of X is the least integer n such that there exists a sequence

f0 : X → X0, . . . , fn : X → Xn of n+ 1 maps in X such that the induced map f̂ =
(f0, . . . , fn) : X →

∏n
0 Xj factors through t(T ) : T (T ) →

∏n
0 Xj up to homotopy,

where T = (∗ → X0, . . . , ∗ → Xn).

We denote this integer by catX .
As a particular case, when there is only one map f : X → X0 in X , we recover

the usual definition of cat f , and when this map f is the identity on X (so that

f̂ = ∆), we recover catX.

Observe that Theorem 2.3 shows that the category of a class is nothing but a
particular case of sectional category of (another) class:

Corollary 2.5. Let T be pointed and let be a class of maps X with same
source. Then

catX = secatA
where A is the class consisting of the homotopy fibers of the maps of X .

Example 2.6. Consider any A 6' ∗ and B 6' ∗ in T and let X = {pr1 : A×B →
A,pr2 : A× B → B} the set of the two projections. The set of homotopy fibers of
X is A = {in2 : B ↪→ A× B, in1 : A ↪→ A× B}. By Corollary 2.5 catX = secatA.

Indeed, in this case g(in2, in1) ' t(∗ → A, ∗ → B) : A ∨ B ↪→ A × B and f̂ =
(pr1,pr2) ' idA×B .

Example 2.7. Consider any A 6' ∗ and B 6' ∗ in T and let X = {pr1 : A∨B →
A,pr2 : A ∨ B → B} the set of the two projections. Consider the set of homotopy
fibers of X : A = {ι1 : F1 → A ∨ B, ι2 : F2 → A ∨ B}. Hence by Corollary 2.5,

catX = secatA. In this case t(∗ → A, ∗ → B) ' f̂ = (pr1,pr2) : A ∨ B ↪→ A × B
and of course f̂ factors through t(∗ → A, ∗ → B) up to homotopy. Hence, catX = 1.
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Example 2.8. Let A be a connected, CW H-space, and let D : A×A→ A the
map such that pr1 ·D ' pr2. The diagonal map ∆: A→ A×A is the homotopy fibre
of D ([10, Proposition 3.7]). Thus secat (∆) = cat (D) and secat ({in1, in2,∆}) =
cat ({pr2,pr1, D}). Note that in this case secat (∆) = cat (A) by Proposition 1.6.

3. The open covering point of view

In this section, we work in the category Top∗, even if some things can be done
in a wider context of a category T.

Proposition 3.1. Let be any sequence T = (τ0 : B0 ↪→ X0, . . . , τn : Bn ↪→ Xn)
of closed cofibrations in Top∗. Then:

T (T ) = {(x0, . . . , xn) ∈
n∏
j=0

Xj | xk ∈ Bk for some k}

and T (T )→
∏n
j=0Xj is a closed cofibration.

Proof. We have the following commutative diagram where all squares are
pullbacks, and, since the projections are fibrations, homotopy pullbacks as well:

Ti ×Bi+1��

��

// // ∏i
0Xj ×Bi+1��

��

// // Bi+1��

��
Ti ×Xi+1

��

// // ∏i
0Xj ×Xi+1

��

// // Xi+1

��
Ti // // ∏i

0Xj
// // ∗.

Since Bi+1 → Xi+1 is a closed cofibration and Ti × Xi+1 → Xi+1 is a fibration,
Ti × Bi+1 → Ti × Xi+1 is also a closed cofibration, by [13, Theorem 12]. And

similarly, assuming that Ti →
∏i

0Xj is a closed cofibration by induction hypothesis,

Ti × Bi+1 →
∏i

0Xj × Bi+1 is also a closed cofibration. But then, the homotopy

pushout Ti+1 is the true pushout. Moreover, the map Ti+1 →
∏i+1

0 Xj is closed,
by [9, Proposition 2.46], and it is a cofibration by [13, Theorem 6]. �

Definition 3.2. Let τ : B → Y and f : X → Y be maps in Top∗. A subspace
U of X is said (τ, f)-categorical if there is a map s : U → B so that the restriction
of f to U is homotopic to τ ◦ s. If the context makes it clear what τ and f are, we
say also that U is B-categorical.

Saying that τ : B → Y is a closed cofibration means that τ is an embedding
and (Y,B) is a NDR-pair; in particular there is an open subset N of Y such that
B ⊂ N ⊂ Y and N is (τ, idY )-categorical.

We have the following characterization of secatA or catX in terms of open
categorical covering:

Theorem 3.3. Let A be a class of maps with the same target X, a well-pointed
normal space. Then secatA is the least integer n, such that there exists a sequence
S = (ι0 : A0 → X, . . . , ιn : An → X) of n + 1 maps of A and there is an open
covering (Ui)06i6n of X, each Ui being Ai-categorical.
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Theorem 3.4. Let X be a class of maps with the same source X, a well-pointed
normal space, and whose targets are path-connected spaces. Then catX is the least
integer n, such that there exists a sequence (f0, . . . , fn) of n + 1 maps of X and
there is an open covering (Ui)06i6n of X, each fi|Ui

being nullhomotopic.

These theorems are consequences of the following proposition:

Proposition 3.5. Let T = (τ0 : B0 ↪→ X0, . . . , τn : Bn ↪→ Xn) be any sequence
of closed cofibrations and let f0 : X → X0, . . . , fn : X → Xn be a sequence of maps

in which X is a normal space. Then the induced map f̂ = (f0, . . . , fn) factors
through t(T ) : T (T ) →

∏n
0 Xj up to homotopy if and only if there is an open

covering (Ui)06i6n of X, each Ui being Bi-categorical.

Proof. (⇐.) By hypothesis, there is a covering (U0, . . . , Un) of X by open
sets, and deformations Hi : Ui × I → Xi of fi|Ui

into a map with values in Bi, for
0 6 i 6 n. As X is normal, there exists a covering of X by open sets, (W0, . . . ,Wn),
such that W i ⊂ Ui, for 0 6 i 6 n. For any i, we choose a Urysohn function
ϕi : X → I such that ϕi(x) = 1 if x ∈ W i and ϕi(x) = 0 if x 6∈ Ui. We define now

a continuous map Ĥi : X × I → Xi by:

Ĥi(x, t) =

{
Hi(x, ϕi(x)t) if x ∈ Ui,

fi(x) otherwise.

We collect these maps in a continuous map H : X×I →
∏n

0 Xj defined by H(x, t) =

(Ĥ0(x, t) . . . , Ĥn(x, t)). Observe that H(x, 0) = (f0(x), . . . , fn(x)) = f̂(x).
Set r(x) = H(x, 1). Since the W ′is are a covering of X, for any point x ∈

X, there is a Wk with x ∈ Wk. By definition of Ĥk, Ĥk(x, 1) = Hk(x, 1) ∈
Bk. As the maps ιi are closed cofibrations, T (T ) = {(x0, . . . , xn) ∈

∏n
0 Xj |xk ∈

Bk for some k}, and we deduce r(X) ⊂ T (T ) and r is a lifting up to homotopy (by

the homotopy H) of f̂ .

(⇒.) By hypothesis, there is a map r : X → T (T ) and a homotopy H : X×I →∏n
0 Xi between f̂ and the composite t(T ) ◦ r.

For any 0 6 i 6 n, as (Xi, Bi) is a NDR-pair, there exists also an open set Ni,
Bi ⊂ Ni ⊂ Xi, and a deformation Gi : Ni × I → Xi of Ni ↪→ Xi into a map with
values in Bi. Let pi :

∏n
0 Xj → Xi be the i-th projection. We set hi = pi ◦ t(T ) ◦ r

and Ui = h−1i (Ni). Then, since r(X) ⊂ T (T ) =
⋃n
i=0 p

−1
i (Bi), X =

⋃n
i=0 Ui.

Hence the U ′is are a covering of X. Define Hi : Ui × I → Xi by:

Hi(u, t) =

{
piH(u, 2t) if 0 6 t 6 1/2,

Gi(hi(u), 2t− 1) if 1/2 6 t 6 1.

This is well defined since piH(u, 1) = hi(u) an Hi is a homotopy between fi|Ui and
a map with values in Bi. �

Proof of Theorem 3.3. We can use Theorem 2.3 (where fi = idX) and
Proposition 3.5 directly if the maps in A are closed cofibrations. If they are not,
we can replace them as follows:

Ai

ιi

��

}}ι′i
}}

Xi

∼ !! !!
X

id
//

fi ==

X
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decomposing first ιi in A into a closed cofibration ι′i followed by a fibration which
is a homotopy equivalence (by [14, Proposition 2]), and then choosing a section fi
of it; this section exists since X is well-pointed and thus cofibrant. For an open set
Ui of X, being (ι′i, fi)-categorical is equivalent to be (ιi, idX)-categorical, and we
can apply Proposition 3.5. �

Proof of Theorem 3.4. As in the previous proof, we make the following
change of targets:

∗

��

||τi
||

X ′i

∼ !! !!
X

fi

//

f ′
i >>

Xi.

For an open set Ui of X, fi|Ui nullhomotopic ⇐⇒ fi factors through ∗ → Xi

(since Xi is path-connected) ⇐⇒ Ui is (τi, f
′
i)-categorical, and we can apply

Proposition 3.5. �

Remark 3.6. Following the lines of [8, 1.3, 7.1 and 8.3], we can obtain lower
bounds for secat and cat of a class of maps from cohomology. Consider the singular
cohomology theory H∗, with any coefficient ring, and the corresponding reduced
theory H̃∗. Let nilR denote the nilpotency index of the ring R (this is the least
integer n such that Rn = 0).

If A is a finite set of maps ιi : Ai → X with same target:

secatA+ 1 > nil (∩ιi∈A ker ι∗i )

where ι∗i : H̃∗(X)→ H̃∗(Ai) denotes the induced homomorphism.
If X is a finite set of maps fi : X → Xi with same source:

catX + 1 > nil (∩fi∈X im f∗i )

where f∗i : H̃∗(Xi)→ H̃∗(X) denotes the induced homomorphism.

Example 3.7. LetA andB be two spaces, and consider the inclusions in1 : A ↪→
A×B and in2 : B ↪→ A×B. Assume A and B are ‘reasonable’ spaces, so that the in-
clusions are closed cofibrations and A×B is normal. Then secat (A) = infcat (A) =
min{catA, catB}.

Indeed, first recall that secat in1 = catB and secat in2 = catA; hence by Re-
mark 1.3, secatA 6 min{catA, catB}.

Conversely, assume that secatA = p + q − 1 and that we have a covering of
A × B formed by p open sets Ui (i = 1, 2, . . . , p) with deformations of Ui into A
and q open sets Vj (j = 1, . . . , q) with deformations of Vj into B.

If p = 0, then fix any point b0 ∈ B. The sets pr1(A× {b0}∩Vj) (pr1 being the
first projection) are contractible in A and cover A. Hence catA 6 q − 1. We can
do the same reasoning if q = 0 and conclude that catB 6 p− 1.

We now suppose that p 6= 0 and q 6= 0. As above fix a point b0 ∈ B. and
consider the sets A × {b0} ∩ Vj and their projections Oj = pr1(A × {b0} ∩ Vj)
which are contractible in A. If they cover A, we are done: catA 6 q − 1. But in
general there may be points of A which are not in these projections. These points
should lie in the projections pr1(A× {b0} ∩ Ui).
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If the projections Oi do not cover A, then for each integer i (1 6 i 6 p), there
is a point bi and an integer ji (1 6 ji 6 q) such that

pr1(A× {b0} ∩ Ui) ⊆ pr1(A× {bi} ∩ Vji).
For if this is not the case then there is a0 ∈ A with (a0, b0) ∈ Ui for some i such
that {a0} × B ∩ Vj is empty for all j. It follows that {a0} × B can be covered by
the open sets Ui and the projections pr2({a0} ×B ∩ Ui) form a covering of B by p
contractible open sets. Hence catB 6 p− 1, and since secatA 6 catB, we should
have q = 0.

From this fact, we conclude that if p 6= 0 and q 6= 0, then the parts of A which
are not possibly covered by the projections Oj (1 6 j 6 q), are covered by the
projections pr1(A × {bi} ∩ Vji) (1 6 ji 6 q). Thus we obtain a covering of A by
p+ q contractible sets. Hence catA 6 p+ q − 1 = secatA.

The same holds for B; hence secat {in1, in2} = min{catA, catB}.
Note that incidentally we proved that catA = catB whenever we need p 6= 0

and q 6= 0 in order to realize the sectional category with respect to the inclusions
in1 and in2.

4. Topological complexity

The topological complexity of a space A, as defined in [6], is the sectional
category of the diagonal map ∆: A→ A×A, i.e. TC (A) = secat (∆). It is known
that cat (A) 6 TC (A) 6 cat (A×A).

The natural question we may ask in relation with the previous sections is: what
about secat (A) where A is a class of maps with target A × A that contains the
diagonal ∆: A→ A×A? Of course secat (A) 6 TC (A); but, for instance, what is
secat (A) when A is the set of all maps from A to A×A?

Remark 4.1. For any class A of maps with target A×A, if A contains either
in1 or in2 : A → A × A, then secat (A) 6 cat (A). Indeed secat (A) 6 infcat (A) 6
secat (ini) = cat (A) (i = 1 or 2).

Proposition 4.2. For any A in T, consider the maps in1, in2,∆: A→ A×A.
Then:

secat ({∆, in1}) = secat ({∆, in2}) = secat ({in1, in2}) = cat (A).

Proof. Consider the following homotopy commutative diagram:

∗ //

��

A

in2

��

// ∗

��
A

h
// A×A

pr1
// A.

The right square is a (homotopy) pullback. If h is either in1 or ∆, which are
both sections of pr1, then the outer rectangle is a (homotopy) pullback as well;
hence the left one is also a homotopy pullback. By Proposition 1.6, with f = in2,
we get secat ({∆, in1}) > secat ({∗ → A}) = cat (A), and with f = ∆, we get
secat ({in1, in2}) > secat ({∗ → A}) = cat (A). Use Remark 4.1 to get equalities.

�

Remark 4.3. If A is a surface, or any space with cat (A) 6 2, then also
secat ({in1, in2,∆}) = cat (A). This is clear for catA 6 1. If the sectional category
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was strictly less than catA = 2, we would have a homotopy section for the join of
only 2 of the three maps in1, in2,∆, and this is in contradiction with Proposition 4.2.
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