Tensor decompositions à la Steinberg for representations of additive categories

Aurélien DJAMENT

CNRS, Laboratoire Paul Painlevé, Lille

30 April 2021

-∢ ⊒ ▶

Online talk for the second meeting of ANR AlMaRe http://massuyea.perso.math.cnrs.fr/meeting2.html

Report on a joint work with Antoine Touzé and Christine Vespa https://hal.archives-ouvertes.fr/hal-02103934

Original french version of these notes: https://math.univlille1.fr/~djament/expose_AIMaRe_avril2021.pdf

1 Two theorems of Robert Steinberg

- 2 Representations of small categories
 - (Hom-)polynomial functors
 - Antipolynomial functors
- 3 Global decomposition à la Steinberg
- 4 Tensor decomposition of simple polynomial functors

5 Strategy of the proof of the global decomposition theorem

A first theorem due to R. Steinberg

Theorem (R. Steinberg)

Let $n \geq 3$ be an integer. A finite-dimensional complex representation of the group $\operatorname{SL}_n(\mathbb{Z})$ is irreducible if and only if it is isomorphic to the tensor product of an irreducible representation factorising through the morphism $\operatorname{SL}_n(\mathbb{Z}) \twoheadrightarrow \operatorname{SL}_n(\mathbb{Z}/i)$ induced by reduction modulo an integer i > 0 and of an irreducible polynomial representation (that is: whose action is given by polynomials in the coefficients of matrices) of $\operatorname{SL}_n(\mathbb{Z})$. Moreover, two such irreducible representations are isomorphic if and only if their tensor decompositions are isomorphic.

Steinberg tensor product Theorem

Let p be a prime number, $q = p^r$ a power of p and $n \in \mathbb{N}$. One can associate to each p-restricted (that is: whose each part is repeated no more than p - 1 times) partition whose parts are $\leq n - 1$ an irreducible representation of the algebraic group SL_n in characteristic p. The representations of the finite groups $\mathrm{SL}_n(\mathbb{F}_q)$ obtained by taking points over the field \mathbb{F}_q are called *elementary representations*.

(Another definition, in terms of functors, of elementary representations will be given later.)

Steinberg tensor product Theorem (2)

Theorem (R. Steinberg)

A representation of the finite group $SL_n(\mathbb{F}_q)$ over a field containing \mathbb{F}_q is irreducible if and only if it is isomorphic to a tensor product

$$M_0 \otimes M_1^{(1)} \otimes \cdots \otimes M_{r-1}^{(r-1)}$$

where M_i are elementary representations and the exponent ⁽ⁱ⁾ denotes *i*-th iteration of Frobenius twist.

Moreover, two such representations are isomorphic if and only if their decompositions are isomorphic.

Functor categories

Let C be an (essentially) small category and K be a field. We denote by $\mathcal{F}(C; K)$ the category of functors from C to K-vector spaces. One may think of it as the category of representations over K of C (which may be thought as a monoid with several objects).

The category $\mathcal{F}(\mathcal{C}; K)$ is a nice abelian category: it has enough projectives and injectives and arbitrary (co)limits. It is a Grothendieck category.

We will be interested with the case when the source category is *additive*. A fundamental instance is the category P(R) of finitely-generated projective left modules over a ring R.

Non-additive representations of additive categories

Let \mathcal{A} be an (essentially) small additive category. One is often interested with the category Add(\mathcal{A} ; \mathcal{K}) of *additive* functors from \mathcal{A} to \mathcal{K} -vector spaces, especially in representation theory, from Auslander's work. It is also a nice abelian category.

Add $(\mathcal{A}; \mathcal{K})$ is a thick (that is: stable under subquotients and extensions) subcategory of $\mathcal{F}(\mathcal{A}; \mathcal{K})$, which is stable under all limits and colimits. Nevertheless, $\mathcal{F}(\mathcal{A}; \mathcal{K})$ is generally much harder to understand than Add $(\mathcal{A}; \mathcal{K})$.

For example, Add(P(R); K) is equivalent to the category of (K, R)-bimodules, but the structure of $\mathcal{F}(P(R); K)$ remains widely unknown when R = K is a finite field.

An historical motivation

Let *i* and *n* be natural numbers and *V* an abelian group. The Eilenberg-MacLane space K(V, n) (that is: a pointed topological space whose homolopy is *V* in degree *n* and zero elsewhere) gives rise, by taking singular homology, to functors $V \mapsto H_i(K(V, n); K)$ which one may see as objects of $\mathcal{F}(Ab^{fg}; K)$ (where Ab^{fg} is the category of finitely generated abelian groups), which were studied by Eilenberg and MacLane during the 1950's.

One can say a lot of things about these functors, but it is very hard to given a complete description of them except when n and i are very small. These functors are generally not additive, but they have a fundamental property extending additivity, which was introduced by Eilenberg and MacLane: *polynomiality*.

Polynomial functions

One begins (following Eilenberg-MacLane) by defining polynomial functions between two abelian groups U and V. For $d \in \mathbb{N}$, one defines the *d*-th *deviation* of a (set-)function $f : U \to V$ as the function $dev_d(f) : U^d \to V$ given by

$$\operatorname{dev}_d(f)(x_1,\ldots,x_d) := \sum_{I \subset \{1,\ldots,d\}} (-1)^{d - \operatorname{Card}(I)} f(x_I),$$

where

$$x_I := \sum_{i \in I} x_i.$$

One says that f is *polynomial* of degree $\leq d$ if $dev_{d+1}(f)$ is the zero function.

・ 回 ト ・ ヨ ト ・ ヨ ト

(Hom-)polynomial functors

Let \mathcal{A} and \mathcal{E} be additive categories and $F : \mathcal{A} \to \mathcal{E}$ be a functor. One says that F is Hom-*polynomial* if, for all objects x and y in \mathcal{A} , the function

$$F_{x,y}: \mathcal{A}(x,y) \to \mathcal{E}(F(x),F(y))$$

giving the effect of F on morphisms is polynomial.

If all functions $F_{x,y}$ are polynomial of degree $\leq d$, one says that the functor F is *polynomial* of degree $\leq d$. (Only this last notion is classical.)

Hom-polynomial functors are generally much harder to study than polynomial functors. A Hom-polynomial functor of finite length is always polynomial.

Example : elementary functors

For each $d \in \mathbb{N}$, the *d*-th tensor power $T^d : V \mapsto V^{\otimes d}$ (where the tensor product is taken over *K*) defines an endofunctor of *K*-vector spaces which is polynomial of degree *d*. The symmetric group \mathfrak{S}_d acts on T^d . One names *elementary functor* (over *K*) each endofunctor of *K*-vector spaces of the shape

$$\mathrm{Im}\,(\,T^d\otimes M)_{\mathfrak{S}_d}\to (\,T^d\otimes M)^{\mathfrak{S}_d}$$

(the map being the norm), where M a K-linear irreducible representation of \mathfrak{S}_d . Such a functor is polynomial of degree d.

Example

The *d*-th exterior power Λ^d is an elementary functor of degree *d*.

Ideals of an additive category

An *ideal* of an additive category \mathcal{A} is a subfunctor of $\operatorname{Hom}_{\mathcal{A}} : \mathcal{A}^{\operatorname{op}} \times \mathcal{A} \to \mathsf{Ab}.$

Example

If R is a ring, the ideals of the additive category P(R) identify with two-sided ideals of R (the ideal in the usual sense is obtained by evaluating the ideal in the categorical sense on (R, R)).

If \mathcal{I} is an ideal of \mathcal{A} , one may build a category \mathcal{A}/\mathcal{I} with the same objects as \mathcal{A} , and morphisms $(\mathcal{A}/\mathcal{I})(x, y) := \mathcal{A}(x, y)/\mathcal{I}(x, y)$. One has a canonical additive functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}$ which is identity on objects.

K-cotrivial ideals

An additive category A is called *K*-*trivial* if, for all objects x and y of A, the following conditions are fulfiled:

- the abelian group $\mathcal{A}(x, y)$ is finite;
- e the tensor product A(x, y) ⊗_Z K is zero (that is: the order of A(x, y) is invertible in K).

The second condition implies that the only Hom-polynomial functors of $\mathcal{F}(\mathcal{A}; \mathcal{K})$ are constant functors.

An ideal \mathcal{I} of an additive category \mathcal{A} is called *K*-*cotrivial* if the category \mathcal{A}/\mathcal{I} is *K*-trivial.

Antipolynomial functors

Definition

A functor F of $\mathcal{F}(\mathcal{A}; K)$ is called *antipolynomial* if there is a K-cotrivial ideal \mathcal{I} of \mathcal{A} such that F factorises through the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}$.

Antipolynomial functors form a class of functors which may be thought as "orthogonal" to the one of (Hom-)polynomial functors.

Global decomposition (general form)

One denotes by $\mathcal{F}^{\mathrm{fd}}(\mathcal{A}; \mathcal{K})$ the full subcategory of functors of $\mathcal{F}(\mathcal{A}; \mathcal{K})$ whose values are finite-dimensional \mathcal{K} -vector spaces.

Theorem

Let F be a finitely-generated functor of $\mathcal{F}^{\mathrm{fd}}(\mathcal{A}; K)$. There is a functor B of $\mathcal{F}(\mathcal{A} \times \mathcal{A}; K)$, unique up to isomorphism, such that:

- **()** *F* is isomorphic to the composite of the diagonal $A \to A \times A$ and *B*;
- On the bifunctor B is Hom-polynomial with respect to the first variable: for each object x of A, the functor B(-,x) of F(A; K) is Hom-polynomial;
- Solution that B factorises through the canonical additive functor A × A → A × A/I (in particular, B is antipolynomial with respect to the second variable).

マヨン イラン イラン

Global decomposition (case of simple functors)

Theorem

Let F be a simple functor of $\mathcal{F}^{fd}(\mathcal{A}; K)$. There is a functor B of $\mathcal{F}(\mathcal{A} \times \mathcal{A}; K)$, unique up to isomorphism, such that:

- **§** *F* is isomorphic to the composite of the diagonal $A \to A \times A$ and *B*;
- Ithe bifunctor B is polynomial with respect to the first variable;
- So there is a K-cotrivial ideal I of A such that B factorises through the canonical functor A × A → A × A/I.

Moreover, B is simple, and F and B have the same endomorphism (skew-)field.

Conversally, if B is a simple bifunctor fulfilling conditions 2 and 3 above, its precomposition by the diagonal of A is a simple functor of $\mathcal{F}(A; K)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Case of a big enough field

Corollary

Let us assume that K contains all roots of unit. Then a functor of $\mathcal{F}^{\mathrm{fd}}(\mathcal{A}; K)$ is simple if and only if it is isomorphic to the tensor product of a simple antipolynomial functor and of a simple polynomial functor. Moreover, the decomposition is unique up to isomorphism.

This corollary is similar to the first theorem of Steinberg that we mentioned; the proofs of both statements have numerous similarities. Nevertheless, their relations are not completely understood.

Splitting field of an additive category

Definition

A field K is called a **splitting field** of the (essentially) small additive category A if the endomorphism (skew-)field of each simple functor with finite-dimensional values of Add(A; K) is reduced to K.

If R is a ring, K is a splitting field of the category P(R) if and only if it is a splitting field of the K-algabra $R^{\text{op}} \otimes_{\mathbb{Z}} K$ in the usual sense of representation theory.

Example

If K is algebraically closed, it is a splitting field of A.

< 回 > < 三 > < 三 >

Tensor decomposition of simple polynomial functors

Theorem

Let us assume that K is a splitting field of A. Then a polynomial functor of $\mathcal{F}^{\mathrm{fd}}(\mathcal{A}; K)$ is simple if and only if it is isomorphic to a tensor product

$$\bigotimes_{\pi} E_{\pi} \circ \pi$$

labelled by a complete set of representatives of isomorphism classes of simple functors with finite-dimensional values π of Add(A; K), where E_{π} are elementary endofunctors of K-vector spaces, all but a finite number isomorphic to the constant functor K.

Moreover, the functors E_{π} appearing in this decomposition are unique up to isomorphism.

Example: a theorem of N. Kuhn (1)

Let p be a prime number, r > 0 be an integer and $q := p^r$. The finite field \mathbb{F}_q is a splitting field of $P(\mathbb{F}_q)$ and, thanks to Galois theory of finite fields, a complete set of representatives of isomorphism classes of simple $(\mathbb{F}_q, \mathbb{F}_q)$ -bimodules is given by ${}^{(i)}\mathbb{F}_q$ for $0 \le i < r$, meaning \mathbb{F}_q endowed with the obvious structure of left \mathbb{F}_q -vector space, and of the structure of right \mathbb{F}_q -vector space obtained by twisting the obvious one by the *i*-th iteration of the Frobenius morphism $x \mapsto x^p$.

Example: a theorem of N. Kuhn (2)

Le previous theorem says us then that the simple objects of $\mathcal{F}(\mathsf{P}(\mathbb{F}_q); \mathbb{F}_q)$ are exactly the tensor products $E_0 \otimes E_1^{(1)} \otimes \cdots \otimes E_{r-1}^{(r-1)}$, where E_i are elementary functors and the exponent ${}^{(i)}$ denotes precomposition by the *i*-ème iteration of the Frobenius twist functor (that is: tensorisation with ${}^{(i)}\mathbb{F}_q$).

This result is an analogue of Steinberg's tensor product Theorem. It was already gotten by Kuhn (with different methods).

Examples of applications: tensor products (1)

The following statement is easily deduced from our theorem of polynomial decomposition à la Steinberg. No assumption on the field K is needed.

Corollary

The class of polynomial functors of finite length of $\mathcal{F}^{\mathrm{fd}}(\mathcal{A}; K)$ is stable under tensor product.

Examples of applications: tensor products (2)

The statement below uses *both* decomposition theorems à la Steinberg that we gave. To avoid a technical statement, we deal only with a source category of the shape P(R), where R is some ring. Here again, the field K may be arbitrary.

Corollary

The class of functors of finite length of $\mathcal{F}^{\mathrm{fd}}(\mathsf{P}(R); K)$ is stable under tensor product.

Global theorem: rôle of unipotents

Let *F* be a finitely-generated functor of $\mathcal{F}^{\mathrm{fd}}(\mathcal{A}; K)$. If *x* and *y* are objects of \mathcal{A} , we denote by u[f] the automorphism of $x \oplus y$ whose components $x \to x$ and $y \to y$ are identities, $f : x \to y$ and $0 : y \to x$ (the letter *u* abbreviates the word *unipotent*). A byproduct of the proof of our first theorem is the following:

Proposition

The functor F is Hom-polynomial (resp. antipolynomial) if and only if F(u[f]) is a unipotent (resp. absolutely semi-simple) automorphism for each morphism f of A.

The multiplicative Jordan decomposition of the F(u[f]) will allow to get our decomposition à la Steinberg.

Global theorem: the K-cotrivial ideal

If x and y are objects of \mathcal{A} , we denote by $\mathcal{I}(x, y)$ the set of morphisms $f \in \mathcal{A}(x, y)$ such that, for each object t of \mathcal{A} , the automorphism $F(u[f] \oplus t)$ of $F(x \oplus y \oplus t)$ is unipotent.

The key step of the proof of the theorem is to prove the following result.

Lemma

 ${\mathcal I}$ is a K-cotrivial ideal of ${\mathcal A}$

The intervention of ' $\oplus t$ ' in the previous definition is essential to establish that \mathcal{I} is an ideal of \mathcal{A} . But, once the lemma obtained, we will use only the unipotence of F(u[f]).

Continuation of the proof

Let us write the multiplicative Jordan decomposition as F(u[f]) = U(f).D(f) = D(f).U(f), where U(f) is unipotent and D(f) is absolutely semi-simple. We get a commutative diagram

We get a commutative diagram

(the top arrow being the canonical morphism of abelian groups and \overline{g} denoting the class of $g \in \mathcal{A}(x, y)$ in $(\mathcal{A}/\mathcal{I})(x, y)$).

4 周 ト 4 戸 ト 4 戸 ト -

The factorisation of F

Then, we postcompose these functions with the linear map

$$\operatorname{Hom}_{\mathcal{K}}(F(x\oplus y), F(x\oplus y)) \xrightarrow{\operatorname{Hom}_{\mathcal{K}}(F(x \hookrightarrow x \oplus y), F(x \oplus y \twoheadrightarrow y))} \operatorname{Hom}_{\mathcal{K}}(F(x), F(y))$$

which, precomposed with $f \mapsto F(u[f])$, gives the function

$$F_{x,y}: \mathcal{A}(x,y) \xrightarrow{f \mapsto F(f)} \operatorname{Hom}_{\mathcal{K}}(F(x),F(y));$$

what gives the factorisation of F.

From unipotence to polynomiality

To prove the Hom-polynomial property with respect to the first variable of this factorisation, we use the following elementary lemma:

Lemma

Let M be an abelian group, V a K-vector space of finite dimension d and $\rho: M \to E := \operatorname{End}_{\kappa}(V)$ a function such that $\rho(u + v) = \rho(u).\rho(v)$ for each $(u, v) \in M^2$. We suppose that ρ takes values in unipotent automorphisms of V. Then ρ defines a polynomial function of degree $\leq d - 1$ from M to the underlying additive group of E.

Thank you for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト

2