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This talk reports on the preprint [3].

Warning: some of the notations used in these notes do not exactly coincide with
the notations of the corresponding preprint. Morover, these notes do not faithfully
coincide with the oral talk.

1 Main results

In the following statement, gr denotes the category of free groups of finite
rank, VecQ the category of Q-vector spaces, a : gr→ VecQ the composition of
abelianisation and rationalisation (a(G) = Gab ⊗ Q) and Λj the j-th exterior
power. As usual, Fr is a free group of rank r; gr-Mod is the category of functors
from gr to VecQ.

Theorem 1. Let F : gr → VecQ be a polynomial functor of degree d and n,
r non-negative integers such that r ≥ 2(n + d) + 3. Then there is a natural
isomorphism

Hn(Aut(Fr);F (Fr)) '
⊕

i+j=n

Extigr-Mod(Λj(a), F ).

This is equivalent to the following statement, in term of homology, which is
more suitable to present our methods.

Theorem 2. Let F : grop → VecQ be a polynomial functor of degree d and
n, r non-negative integers such that r ≥ 2(n + d) + 3. Then there is a natural
isomorphism

Hn(Aut(Fr);F (Fr)) '
⊕

i+j=n

Torgri (F,Λj(a)).

The left hand side in these theorems is called respectively n-th stable coho-
mology and n-th stable homology of automorphism groups of free groups with
coefficients in F and will be denoted by Hn

st(Aut(F∞);F ) and Hst
n (Aut(F∞);F ).

A better definition for Hst
n (Aut(F∞);F ) (which holds also for non-polynomial

∗CNRS, laboratoire de mathématiques Jean Leray (UMR 6629), Nantes, France;
http://www.math.sciences.univ-nantes.fr/˜djament/; aurelien.djament@univ-nantes.fr.

1



functors) is colim
r∈N

Hn(Aut(Fr);F (Fr)); in fact, we will sketch the proof of the-

orem 2 with this definition of stable homology. The fact that it agrees with
homology of Aut(Fr) for r ≥ 2(n+ d) + 3 is an independent stability result due
to Randal-Williams and Wahl [12].

Let us remind that a deep theorem of S. Galatius [7] implies that the stable
homology with untwisted coefficients Hst

∗ (Aut(F∞);Q) is trivial. The previous
theorem reduces to Galatius theorem for the constant functor Q, but in fact it
uses this theorem.

As a main computational consequence of theorem 2, we get, by using results
of C. Vespa [16] (see also results by N. Kawazumi [8, 9] for the multiplicative
structure):

Theorem 3. For n ≥ 2(i+ d) + 3, the cohomology group

Hi(Aut(Fn); Symd((Fn)ab)⊗Q)

is 0, except when i = d = 0 or i = d = 1, where it is isomorphic to Q.
For n ≥ 2(i+ d) + 3, the dimension of the Q-vector space

Hi(Aut(Fn); Λd((Fn)ab)⊗Q)

equals the number of partitions of d when i = d and 0 else.
Moreover, the bigraded Q-algebra of stable cohomology of automorphism

groups of free groups with coefficients in the exterior algebra over the ratio-
nalised abelianisation is a symmetric algebra on generators hn, for n a positive
integer, in bidegree (n, n).

This was conjectured by Randal-Williams ([11], corollary 6.4, proved under
several conjectures involving topological methods different from the algebraic
methods used here).

In low degree (≤ 2), some special cases were already known, due to Satoh
and Kawazumi.

2 Covariant, contravariant and bivariant coeffi-
cients for GLn(Z) and Aut(Fn)

Here we need a more general notion of stable homology of automorphism groups
of free groups with twisted coefficients.

Let G be the following category: its objects are the free groups Z∗n = Fn

(n being a non-negative integer) and the morphisms G → H are pairs (u, T )
where u : G → H is a group monomorphism and T a subgroup of H such
that H = u(G) ∗ T (∗ denoting the free product), the composition being the
obvious one. This category, introduced in [5] (following the setting of [4]), is a
homogeneous category in the sense of Randal-Williams and Wahl [12]. We have
canonical morphisms of G of the form Z∗n → Z∗n ∗ Z = Z∗(n+1) which allow to
define

Hst
∗ (Aut(F∞);F ) := colim

n∈N
H∗(Aut(Z∗n);F (Z∗n))

for each functor F from G to Ab (abelian groups).
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We have an obvious functor G → gr, which is identity on objects and maps an
arrow (u, T ) on u, but also a canonical functor Gop → gr which is also identity on

objects and maps (u, T ) : G→ H to the morphism H = u(G)∗T � u(G)
'−→ G.

Most of the interesting coefficient systems for the groups Aut(Z∗n) factor in
fact through the group epimorphism Aut(Z∗n)� GLn(Z) induced by abeliani-
sation. So, it makes very natural to compare our problem with the one of stable
homology of general linear groups with polynomial coefficients, which was re-
lated to functor homology (for each ground ring) by the work of Scorichenko
([13]; for a published presentation of his results, see [2] § 5.2).

Let us introduce the usual category ab of finitely generated free abelian
groups (which is a full subcategory of Ab) and the (homogeneous) category
Gab with the same objects but with morphisms U → V pairs (f, C) where
f : U → V is a monomorphism of abelian groups and C a subgroup of V such
that V = f(U) ⊕ C. As before we have canonical functors Gab → ab and
Gopab → ab which are identity on objects and we can define

Hst
∗ (GL∞(Z);F ) := colim

n∈N
H∗(GLn(Z);F (Zn))

for each functor F : Gab → Ab.
Scorichenko theorem relates Hst

∗ (GL∞(Z);F ), when F : abop×ab→ Ab is
a polynomial (bi)functor 1, to Hst

∗ (GL∞(Z);Z) and homological algebra over the
category ab (to be more precise, to Hochschild homology of this category with
coefficients in F ). A corollary of this result (which was proved before by Betley
[1]) is that Hst

∗ (GL∞(Z);F ) = 0 when F is a polynomial functor ab→ Ab, or
abop → Ab, which is reduced (that is, which maps 0 to 0).

For automorphism groups of free groups, [5] proves that Hst
∗ (Aut(F∞);F ) =

0 when F : gr → Ab (covariant coefficients) is a reduced polynomial functor
(see Christine Vespa’s talk). But it does not hold for reduced polynomial func-
tors grop → Ab (contravariant coefficients). This difference with the abelian
situation illustrates that we can not find group automorphisms of Aut(Fn) mak-
ing the following diagram to commute.

Aut(Fn) //______

��

Aut(Fn)

��
GLn(Z)

g 7→ tg−1

// GLn(Z)

For polynomial bifunctors on gr (bivariant coefficients), we have still partial
results (in progress — see announcement in [3]), but the situation for con-
travariant polynomial functors — that is, Hst

∗ (Aut(F∞);F ) for F : grop → Ab
polynomial — is already rich and quite harder than Betley’s cancellation in the
abelian setting.

3 Strategy of proof

A first step is quite formal from the fact that G is a homogeneous category (see
the formalism of the beginning of [4]): for any functor F on G, we have a natural

1Here, we omit to indicate the precomposition by the canonical functor Gab → abop × ab
before F (to be consistent with the previous notation); we allow similar omissions in the
sequel.
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isormorphism
Hst
∗ (Aut(F∞);F ) ' H∗(G ×Aut(F∞);F )

where Aut(F∞) acts trivially on the right hand side; in particular, if F takes
values in Q-vector spaces, Galatius’ cancellation of H̃∗(Aut(F∞);Q) implies that
Hst
∗ (Aut(F∞);F ) ' H∗(G;F ).

After, we play with several categories of free groups. Let us remind before
some general facts about Kan extensions. For any functor φ : C → D between
small categories, the precomposition functor φ∗ = − ◦ φ : Mod-D → Mod-C,
where Mod-C (resp. C-Mod) is the category of functors from Cop (resp. C)
to k-modules, k being a ground commutative ring (Z or Q, for us), has a left
adjoint φ! : Mod-C →Mod-D which satisfies a canonical isomorphism

φ!(F )⊗
D
G ' F ⊗

C
φ∗G;

we can derive it to get a Grothendieck spectral sequence

E2
i,j = TorDi (Lj(φ!)(F ), G)⇒ TorCi+j(F, φ

∗G).

In particular, for F constant, we get a spectral sequence

E2
i,j = TorDi (Lj(φ!)(k), G)⇒ Hi+j(C;φ∗G).

We need still a general notation. Let C be a category, we denote by S(C) the
category with the same objects and

S(C)(a, b) := { (u, v) ∈ C(a, b)× C(b, a)| v ◦ u = Ida}.

If C is endowed with a symmetric monoidal structure ∗ whose unit 0 is a null
object (so that we get canonical maps a→ a∗t and a∗t→ a in C), we denote by
Sc(C) the subcategory of S(C) with the same objects and as morphisms a → b
the pairs (u, v) such that there exists a commutative diagram

a
u //

!!C
CC

CC
CC

C b

'
��

v // a

a ∗ t

=={{{{{{{{

The proof of theorem 2 consists now of three steps, about which a few details
are given in the last three parts of this talk:

1. a homological comparison between Sc(gr) and grop with polynomial co-
efficients. To be more precise, let β : Sc(gr) → grop be the canonical
functor. We have:

Theorem 4. If F is a polynomial functor in Mod-gr and G any functor
in gr-Mod, then the natural morphism of graded abelian groups

TorSc(gr)
∗ (β∗G, β∗F )→ Torgr∗ (F,G)

induced by β is an isomorphism.

4



2. Show that the derived Kan extension of the canonical functor γ : G →
Sc(gr) is given by

L•(γ!)(k)(A) ' H•(Ω∞Σ∞(B(A));k)

(B(A) denoting the classifying space of the group A); in particular, in
characteristic zero:

L•(γ!)(Q)(A) ' Λ•(Aab ⊗Q);

3. From the previous results, we get a natural spectral sequence

E2
i,j = Torgri (F,Λj(a))⇒ Hst

i+j(Aut(F∞);F )

(remind that a denotes the rationalised abelianisation functor) for F :
grop → VecQ polynomial. One gets the conclusion by showing that the
spectral sequence collapses at the second page and that the grading asso-
ciated to its E∞-page is trivial, what is made by a formality argument.

Before sketching the proofs of these steps, let us say a few words about
the proof of Scorichenko theorem for stable homology of general linear groups
over Z. For the same formal reasons as above, one has a natural isomorphism
Hst
∗ (GL∞(Z);F ) ' H∗(Gab × GL∞(Z);F ) (with trivial action of the linear

group on the right hand side) for any functor F in Gab-Mod. The homological
comparison between Sc(ab) and abop works in the same way as the first step
above. But here the canonical functor Gab → Sc(ab)(= S(ab)) is an equivalence:
we are done only with the comparison between Sc(ab) and abop. The second
step above has no analogue in this abelian context; in some sense, it is a way to
control how the free product (=categorical sum) of groups differs from being a
categorical product.

4 Scorichenko’s machine

The idea to prove theorem 4 is a very general, simple and powerful one, due to
Scorichenko [13].

Let C be a (small) category with finite coproducts (denoted by ∗) and a
zero object. If E is a finite set and I a subset of E, let us denote by tE the
endofunctor of C-Mod given by precomposition by a 7→ a∗E and by uIE : tE → Id
the natural transformation given by precomposition by the natural morphism
a∗E → a whose component a→ a corresponding to the factor labelled by e ∈ E
is identity if e ∈ I and 0 else. If (E, e) is a finite pointed set, one defines the
cross-effect 2 cr(E,e) as the natural transformation

cr(E,e) :=
∑

e∈I⊂E
(−1)Card(I)−1uIE : tE → Id.

A functor F of C-Mod is polynomial of degree ≤ d if and only if cr(E,e)(F ) = 0,
where E is a set of cardinality d+ 2.

2Warning: usually, cross-effects are defined as endofunctors of functor categories (and
not natural transformations). The fact that the definition of polynomial functors with cross-
effects as natural transformations is equivalent to the usual one (with usual cross-effects) is
an exercise, but this change of point of view is a key point of Scorichenko’s work.
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Let us denote by E(gr) the subcategory of gr with the same objects and
whose morphisms are epimorphisms isomorphic to an epimorphism S ∗ T � S.
If F and G are functors defined on gr, we say that a collection of morphisms
F (a)→ G(a) defined for a ∈ Ob gr is weakly natural if it is natural with respect
to E(gr).

Proposition 5. Let T ∈ gr-Mod, d ∈ N and (E, e) a pointed set of cardinality
d + 2. Assume that the natural transformation cr(E,e)(T ) : tE(T ) → T is an
epimorphism having a weakly natural splitting. Then Torgr∗ (F, T ) = 0 for all
functor F in Mod-gr polynomial of degree ≤ d.

Scorichenko’s original criterium is the same statement with gr replaced by
a (small) additive category. The proof is almost the same. Note that this does
not work with gr replaced by any small category with finite coproducts and a
zero object: we need in the proof the fact that the natural transformations uIE
defined above are already defined on E(gr), what is not completely formal (it
uses “triangular automorphisms” of free groups).

5 The classifying space of the category C(A)

For formal reasons, L•(γ!)(k)(A) identifies with H•(C(A); k) where C(A) is the
comma category associated to the functor γ∗Sc(gr)(A,−) : G → Sets.

Concretely, objects of C(A) are triples (G,A
u−→ G,G

v−→ A) where G is an
object of G (that is, a free group of finite rank), u and v are group morphisms
such that v ◦ u = IdA and there exists a commutative diagram

A
u //

""E
EE

EE
EE

E G

'
��

v // A

A ∗ T

<<yyyyyyyy

(but this diagram is not given in the structure); morphisms in C(A) are mor-
phisms in G satisfying the obvious compatibility conditions.

Let (G,A
u−→ G,G

v−→ A) be an object of C(A), consider the subgroup
K := Ker(v) of G. It comes with an action of A (conjugation through the
group monomorphism u). Moreover, K is a finitely generated free A-group:
there exists a finitely generated free group H such that

K ' F
a∈A

aH

(with the obvious A-action; in general, in the sequel, we denote with an exponent
actions of the group A on other groups) as an A-group (but there is no canonical
choice for H).

We introduce the following category, for an A-group K.

Definition 6. Let DA(K) be the category whose objects are finite (possibly
empty) sequences (T1, . . . , Tr) of non-trivial subgroups of K such that the group
K is the (internal) free product of the subgroups aTi for a ∈ A and 1 ≤ i ≤ r
and whose morphisms (T1, . . . , Tr)→ (U1, . . . , Us) consist of a set-epimorphism
ϕ : s := {1, . . . , s} → r and elements a1, . . . , as of A such that

Ti = F
ϕ(j)=i

ajUj
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for all index i.

(Here and below in similar definitions, we do not precise how to compose
morphisms: the reader can guess it or refer to [3].)

It is easy to see that this category is a partially preordered set (that is, there
is at most one morphism between two objects).

Theorem 7. If K is a finitely generated free A-group, then the category DA(K)
is contractible.

Surprisingly, the proof consists of two independent parts, one to show that
this category is connected (it relies on a variation for A-groups of Nielsen trans-
formations) and the other to show that its homotopy type is discrete (it is a
rather general argument, relying on the “rigidity” of free products).

If G = (G,A
u−→ G,G

v−→ A) is an object of C(A) and K is the A-group
defined above, let DA(G) denote the category DA(K).

One sees easily that DA defines an oplax functor from C(A) to small cate-
gories (in fact, to partially preordered sets). It allows to form the Grothendieck
construction C(A)

∫
DA. The contractibility of the values of DA implies that

the canonical functor C(A)
∫
DA → C(A) is a homotopy equivalence (see [15]).

It is quite simpler to determine the homotopy type of C(A)
∫
DA than the

one of C(A), because the category C(A)
∫
DA is equivalent (it is an easy game

between internal and external free products of groups) to another Grothendieck
construction, that one can concretely describe as follows: its objects are finite
sequences (G1, . . . , Gn) of non-trivial free groups of finite rank, and morphisms
(G1, . . . , Gn) → (H1, . . . ,Hm) consist of a partially defined surjection ϕ : m →
n, group isomorphisms Gi ' F

ϕ(j)=i

Hj for each index i and elements a1, . . . , am

of A.
We have now to show that this category has the same homotopy type (with

the right functoriality in A) as the infinite loop space Ω∞Σ∞B(A). This is made
by using general properties of Segal’s machinery [14] associating a spectrum
to each symmetric monoidal category, and Galatius theorem [7] showing that
the canonical functor from the symmetric monoidal groupoid of finite sets to
the symmetric monoidal groupoid of finitely generated free groups induces a
homotopy equivalence between the corresponding spectra. (The intervention of
Galatius theorem in this part of the proof was quite unexpected for the author,
contrary to its use at the beginning of the proof, when G ×Aut(F∞) arises.)

6 Formality argument

This final part of the proof is inspired by Pirashvili’s proof of Hodge decompo-
sition for Hochschild homology by functor homology (see [10]), which relies on
Dold’s obstruction theory for chain complexes [6]. All comes from the cancella-
tion of

Extm−n+1
gr-Mod(Λn(a),Λm(a)),

which implies the same cancellation (by an obvious variant of theorem 4) for
Ext-groups on Mod-Sc(gr) (using precomposition by γ : Sc(gr)→ grop). This
cancellation is included in Vespa’s paper [16] (in fact, the same cancellation
holds, even on Z, with tensor, instead of exterior, powers, and here we work on
Q).
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