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Orthogonal rational functions (ORFs)

fn(t) =
cnt

n + cn−1t
n−1 + . . . + c0

(1 − t/α1)(1 − t/α2) · . . . · (1 − t/αn)
, n = 1, 2, . . .

Poles
α1, α2, α3, . . .

Arbitrary complex or infinite, but outside I := [−1, 1]

Fixed in advance
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Orthogonal rational functions (ORFs)

Function spaces

Rational basis:

bk(t) =

k
∏

j=1

t

1 − t/αj

, αj ∈ CI := {t ∈ C ∪ {∞} : t /∈ I}

Space of rational functions:

Ln := L{α1, . . . , αn} = span{1, b1(t), . . . , bn(t)}

Note that...

∀j : αj = ∞ ⇒ bk(t) ≡ tk and Ln ≡ Pn = span{1, t, . . . , tn}
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Orthogonal rational functions (ORFs)

Orthonormal rational functions (ORFs) on I

Given a positive measure µ on I and inner product

〈f , g〉µ =

∫

I

f (t)g(t)dµ(t)

→ ORFs ϕk(t):

ϕk ∈ Lk \ Lk−1

ϕk ⊥µ Lk−1

‖ϕk‖µ =
√

〈ϕk , ϕk〉µ = 1
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Rational Christoffel functions

Rational Christoffel functions

rational reproducing kernels

Kn(x , y) := Kn(x , y ; dµ) =
n−1
∑

j=0

ϕj (x)ϕj (y),

have the property that 〈f (·) ,Kn(·, y ; dµ)〉µ = f (y) for every
f ∈ Ln−1

rational Christoffel functions

λn(x) := λn(x ; dµ) = K−1
n (x , x ; dµ)

= inf
R∈Ln−1

‖R‖2
µ

|R(x)|2
.
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Rational Christoffel functions

Theorem (Joris Van Deun, 2004)

Suppose

µ is absolutely continuous and µ′ > 0 a.e. in I ,

{αj}j>0 is bounded away from I

asymptotic distribution of the poles is given by measure ν

limn→∞ nλn(x) = k(x) uniformly on I

Then

k(x) = µ′(x)π
√

1 − x2

[

∫

CI

ℜ
{√

u2 − 1

u − x

}

dν(u)

]−1

, x a.e. in I ,

where the square root is positive for u > 1 and the branch cut is I .
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Rational Christoffel functions

Aim is to prove - under certain conditions on the measure µ -
uniform convergence of {nλn(x)}n>0.

Definition

µ is regular on I in the sense of Stahl and Totik iff

lim
n→∞



 sup
p∈Pn−1

(

‖p‖I

‖p‖µ

)1/n


 = 1, ‖p‖I := max
t∈I

|p(t)| .

Note: if µ′ > 0 a.e. in I , then µ is regular on I .
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Convergence

Lemma 1

Consider the Chebyshev measure of the second kind
dω(t) =

√
1 − t2dt, t ∈ I , and suppose that {αj}j>0 is bounded

away from I , with asymptotic distribution ν. Then uniformly for x

in compact subsets of (−1, 1),

lim
n→∞

nλn(x ; dω) =

ω′(x)π
√

1 − x2

[

∫

CI

ℜ
{√

u2 − 1

u − x

}

dν(u)

]−1

.
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Convergence

The proof of Lemma 1 is based on:

classical representation for the Christoffel function

λ
[P]
n (x ; dωn) for Bernstein-Szegő weights:

dωn(t) =

√
1 − t2

∣

∣

∣

∏n−1
j=1 (1 − t/αj )

∣

∣

∣

2
, t ∈ I ;

λn(x ; dω) = λ
[P]
n (x ; dωn)

∣

∣

∣

∏n−1
j=1 (1 − x/αj )

∣

∣

∣

2
, x ∈ R.
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Convergence

Lemma 2

Suppose

µ, ω are regular on I , and µ is absolutely continuous w.r.t. ω
on (a, b) ⊂ I ,
dµ
dω is positive and continuous at x ∈ (a, b)

{αj}j>0 is bounded away from I , with asymptotic distribution
ν,

uniformly in some neighborhood of x ,

lim
ǫ→0+

(

lim sup
n→∞

∣

∣

∣

∣

λn(x ; dω)

λn±[ǫn](x ; dω)
− 1

∣

∣

∣

∣

)

= 0.

Then uniformly limn→∞
λn(x+ s

n
;dµ)

λn(x+ s
n
;dω)

= dµ
dω (x), s ∈ [−r , r ], r > 0.
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Convergence

The proof of Lemma 2 is based on:

characterization of rational Christoffel functions

λn(x ; dµ) = infR∈Ln−1

‖R‖2
µ

|R(x)|2 ;

(under the given conditions on the sequence of poles)
equivalent characterization of regular measures:

lim
n→∞



 sup
R∈Ln−1

(

‖R‖I

‖R‖µ

)1/n


 = 1, ‖R‖I := max
t∈I

|R(t)| ;
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Main result

Theorem 1

Suppose

µ is regular on I and absolutely continuous on (a, b) ⊂ I ,

µ′ is positive and continuous at x ∈ (a, b),

{αj}j>0 is bounded away from I , with asymptotic distribution
ν.

Then uniformly for s ∈ [−r , r ], r > 0,

lim
n→∞

nλn

(

x +
s

n

)

= µ′(x)π
√

1 − x2

[

∫

CI

ℜ
{√

u2 − 1

u − x

}

dν(u)

]−1

.
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Universality

Corollary 1

Suppose

µ is regular on I and absolutely continuous on (a, b) ⊂ I ,

µ′ is positive and continuous in (a, b),

{αj}j>0 is bounded away from I , with asymptotic distribution
ν.

Then for x ∈ (a, b), uniformly for r and s in compact subsets of
the real line,

lim
n→∞

Kn

(

x + r

K̃n(x ,x)
, x + s

K̃n(x ,x)

)

Kn(x , x)
ρn(x , r , s) =

sinπ(r − s)

π(r − s)
,

where K̃n(x , x) = µ′(x)1/2µ′(y)1/2Kn(x , y ; dµ), and
|ρn(x , r , s)| = 1.
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How poles of ORFs affect their Christoffel functions

In some results on asymptotics of orthogonal rational functions,
the restriction on the poles is replaced by a Blaschke type

assumption:
∑∞

j=1

(

1 −
∣

∣

∣
αj −

√

α2
j − 1

∣

∣

∣

)

= ∞; hence, {αj}j>0

does not necessarily have to be bounded away from I .
Q: Can we do the same for rational Christoffel functions?
A: No, we cannot.

However, we can ease the restrictions on the poles.
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How poles of ORFs affect their Christoffel functions

Theorem 2

Suppose

ω is the Chebyshev measure of the second kind,

the poles {αj}j>0 have asymptotic distribution ν with support
in C,

x ∈ (−1, 1) is fixed,

for every ǫ > 0 there exists δ > 0 such that
lim supn→∞

1
n

∑

j6n:|αj−x|6δ
1

ℑ{αj} < ǫ.

Then at x ,

lim
n→∞

nλn(x ; dω) = ω′(x)π
√

1 − x2

[

∫

CI

ℜ
{√

u2 − 1

u − x

}

dν(u)

]−1

.
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Example

Consider the sequence of poles

{αj}N
j=1 = {α̃k}n

k=1 ∪ {α̂l}[n1/3]
l=1 ∪ {∞}, with α̃k = α̃ = 7

24 i, and

α̂l =
1

2
(βl + β−1

l ), βl =

(

1 − 3

4(l + 1)p

)

e
3π
4 , p > 0.

Then

the Blaschke type assumption
∑∞

j=1

(

1 −
∣

∣

∣
αj −

√

α2
j − 1

∣

∣

∣

)

= ∞ is satisfied for every p > 0;

the sequence of poles is not bounded away from I due to

liml→∞ α̂l = −
√

2
2 ∈ I ;

the asymptotic distribution is given by ν = δα̃.

Karl Deckers Asymptotics for rational Christoffel functions 27/31



Orthogonal rational functions Rational Christoffel functions Convergence Influence of poles References

Example (cont.)

Graphs of NλN(x) and f (x) := π(1 − x2)
[

ℜ
{√

α̃2−1
α̃−x

}]−1

p = 3 ⇒ condition w.r.t.
∑ 1

ℑ{αj} is not satisfied in x = −
√

2/2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3 f(x)
n=1000
n=2000
n=4000
n=8000

x

N
λ

N
(x

)
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Example (cont.)
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