Rational Krylov sequences and orthogonal rational functions

Karl Deckers

Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium.
PhD student. Supervisor: Adhemar Bultheel.

July 2008
Outline

1. Introduction
 - Problem formulation
 - Preliminaries

2. Rational Krylov subspaces
 - RKS
 - Rational approximation

3. Computational aspects
 - Computing Q_m and J_m

4. Numerical example
 - Time-periodic problem
1 Introduction
 - Problem formulation
 - Preliminaries

2 Rational Krylov subspaces
 - RKS
 - Rational approximation

3 Computational aspects
 - Computing Q_m and J_m

4 Numerical example
 - Time-periodic problem
Outline

1. Introduction
 - Problem formulation
 - Preliminaries

2. Rational Krylov subspaces
 - RKS
 - Rational approximation

3. Computational aspects
 - Computing Q_m and J_m

4. Numerical example
 - Time-periodic problem
Outline

1 Introduction
 - Problem formulation
 - Preliminaries

2 Rational Krylov subspaces
 - RKS
 - Rational approximation

3 Computational aspects
 - Computing Q_m and J_m

4 Numerical example
 - Time-periodic problem
Outline

1 Introduction
 - Problem formulation
 - Preliminaries

2 Rational Krylov subspaces
 - RKS
 - Rational approximation

3 Computational aspects
 - Computing Q_m and J_m

4 Numerical example
 - Time-periodic problem
Problem formulation

Consider:

\[
\frac{d}{dt} u(t) + Au(t) = h(t), \quad t \in [t_0, t_1], \quad u(t_0) = u_0.
\]

Suppose:

- \(A \in \mathbb{R}^{N\times N} \) is symmetric positive-definite,
- solution: \(u(t) = g(A, t)q(t) \), with \(q(t) \in \mathbb{R}^N \),
- \(t = T \in [t_0, t_1] \) is fixed \(\Rightarrow f(a) = g(a, T) \) and \(q = q(T) \).

We search for numerical approximations to

\[u = u(T) = f(A)q. \]
Problem formulation

Consider:

\[
\frac{d}{dt} u(t) + Au(t) = h(t), \quad t \in [t_0, t_1], \quad u(t_0) = u_0.
\]

Suppose:

- \(A \in \mathbb{R}^{N \times N} \) is symmetric positive-definite,
- solution: \(u(t) = g(A, t)q(t), \) with \(q(t) \in \mathbb{R}^N, \)
- \(t = T \in [t_0, t_1] \) is fixed \(\Rightarrow f(a) = g(a, T) \) and \(q = q(T). \)

We search for numerical approximations to

\[
u = u(T) = f(A)q.
\]
Consider:

\[
\frac{d}{dt} u(t) + A u(t) = h(t), \quad t \in [t_0, t_1], \quad u(t_0) = u_0.
\]

Suppose:

- \(A \in \mathbb{R}^{N \times N} \) is symmetric positive-definite,
- solution: \(u(t) = g(A, t)q(t) \), with \(q(t) \in \mathbb{R}^N \),
- \(t = T \in [t_0, t_1] \) is fixed \(\Rightarrow f(a) = g(a, T) \) and \(q = q(T) \).

We search for numerical approximations to

\[
u = u(T) = f(A)q.
\]
Consider:

\[
\frac{d}{dt} u(t) + Au(t) = h(t), \quad t \in [t_0, t_1], \quad u(t_0) = u_0.
\]

Suppose:

- \(A \in \mathbb{R}^{N \times N} \) is symmetric positive-definite,
- solution: \(u(t) = g(A, t)q(t) \), with \(q(t) \in \mathbb{R}^N \),
- \(t = T \in [t_0, t_1] \) is fixed \(\Rightarrow f(a) = g(a, T) \) and \(q = q(T) \).

We search for numerical approximations to

\[
u = u(T) = f(A)q.
\]
Problem formulation

Consider:

\[
\frac{d}{dt} u(t) + Au(t) = h(t), \quad t \in [t_0, t_1], \quad u(t_0) = u_0.
\]

Suppose:

- \(A \in \mathbb{R}^{N \times N} \) is symmetric positive-definite,
- solution: \(u(t) = g(A, t)q(t), \) with \(q(t) \in \mathbb{R}^N, \)
- \(t = T \in [t_0, t_1] \) is fixed \(\Rightarrow f(a) = g(a, T) \) and \(q = q(T). \)

We search for numerical approximations to

\[
u = u(T) = f(A)q.
\]
Outline

1 Introduction
 - Problem formulation
 - Preliminaries

2 Rational Krylov subspaces
 - RKS
 - Rational approximation

3 Computational aspects
 - Computing Q_m and J_m

4 Numerical example
 - Time-periodic problem
Krylov subspaces

- searching for polynomial approximations $u^{(m)}$ to u belonging to the Krylov subspaces

$$K_{m+1}(A, q) = \text{span}\{q, Aq, A^2q, \ldots, A^m q\}, \quad m \ll N.$$

- orthogonalize:

$$K_{m+1}(A, q) = \text{span}\{q_0, q_1, q_2, \ldots, q_m\},$$

with

$$q_j^T q_k = \begin{cases}
0, & j \neq k \\
1, & j = k
\end{cases}.$$
Preliminaries

Krylov subspaces

- searching for polynomial approximations $u^{(m)}$ to u belonging to the Krylov subspaces

$$K_{m+1}(A, q) = \text{span}\{q, Aq, A^2q, \ldots, A^m q\}, \quad m \ll N.$$

- orthogonalize:

$$K_{m+1}(A, q) = \text{span}\{q_0, q_1, q_2, \ldots, q_m\},$$

with

$$q_j^T q_k = \begin{cases} 0, & j \neq k \\ 1, & j = k \end{cases}.$$
Orthogonal polynomials (OPs)

- \(q_k = \phi_k(A)q \),
 where \(\phi_k(a) = \text{orthonormal polynomial} \) of strict degree \(k \).
- three-term recurrence:

\[
Aq_{k-1} = \beta_{k-2}q_{k-2} + \alpha_{k-1}q_{k-1} + \beta_{k-1}q_k, \quad k = 1, \ldots, m
\]

with \(q_{-1} = 0 \) and \(q_0 = q/\|q\| \).
Orthogonal polynomials (OPs)

- \(q_k = \phi_k(A)q \),
 where \(\phi_k(a) = \text{orthonormal polynomial} \) of strict degree \(k \).
- three-term recurrence:
 \[
 Aq_{k-1} = \beta_{k-2}q_{k-2} + \alpha_{k-1}q_{k-1} + \beta_{k-1}q_k, \quad k = 1, \ldots, m
 \]
 with \(q_{-1} = 0 \) and \(q_0 = q/\|q\| \).
Preliminaries

OPs

\[Q_m^T A Q_m = J_m, \text{ where } Q_m = [q_0, \ldots, q_{m-1}], \text{ and} \]

\[
J_m = \begin{bmatrix}
\alpha_0 & \beta_0 & 0 & \cdots & 0 \\
\beta_0 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \beta_{m-2} \\
0 & \cdots & 0 & \beta_{m-2} & \alpha_{m-1}
\end{bmatrix}.
\]

Polynomial approximation

Eigenvalues \(\lambda_k, k = 1, \ldots, m \) of \(J_m \) are

- zeros of \(\phi_m(a) \),
- approximations for eigenvalues of \(A \).
Preliminaries

OPs

\[Q_m^T A Q_m = J_m, \text{ where } Q_m = [q_0, \ldots, q_{m-1}], \text{ and} \]

\[
J_m = \begin{bmatrix}
\alpha_0 & \beta_0 & 0 & \cdots & 0 \\
\beta_0 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \beta_{m-2} \\
0 & \cdots & 0 & \beta_{m-2} & \alpha_{m-1}
\end{bmatrix}
\]

Polynomial approximation

Eigenvalues \(\lambda_k, k = 1, \ldots, m \) of \(J_m \) are

- zeros of \(\phi_m(a) \),
- approximations for eigenvalues of \(A \).
OPs

\[Q^T_m A Q_m = J_m, \text{ where } Q_m = [q_0, \ldots, q_{m-1}], \text{ and} \]

\[
J_m = \begin{bmatrix}
\alpha_0 & \beta_0 & 0 & \cdots & 0 \\
\beta_0 & \ddots & \ddots & \ddots & \\
0 & \ddots & \ddots & \ddots & 0 \\
& \ddots & \ddots & \ddots & \beta_{m-2} \\
0 & \cdots & 0 & \beta_{m-2} & \alpha_{m-1}
\end{bmatrix}.
\]

Polynomial approximation

Eigenvalues \(\lambda_k, k = 1, \ldots, m \) of \(J_m \) are

- zeros of \(\phi_m(a) \),
- approximations for eigenvalues of \(A \).
Preliminaries

OPs

\[Q_m^T A Q_m = J_m, \text{ where } Q_m = [q_0, \ldots, q_{m-1}], \text{ and} \]

\[
J_m = \begin{bmatrix}
\alpha_0 & \beta_0 & 0 & \cdots & 0 \\
\beta_0 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \beta_{m-2} \\
0 & \cdots & 0 & \beta_{m-2} & \alpha_{m-1}
\end{bmatrix}.
\]

Polynomial approximation

Eigenvalues \(\lambda_k, k = 1, \ldots, m \) of \(J_m \) are

- **zeros** of \(\phi_m(a) \),
- **approximations** for eigenvalues of \(A \).
Preliminaries

OPs

\[Q_m^T AQ_m = \mathbf{J}_m, \text{ where } Q_m = [q_0, \ldots, q_{m-1}], \text{ and } \]

\[\mathbf{J}_m = \begin{bmatrix}
\alpha_0 & \beta_0 & 0 & \cdots & 0 \\
\beta_0 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \beta_{m-2} \\
0 & \cdots & 0 & \beta_{m-2} & \alpha_{m-1}
\end{bmatrix}. \]

Polynomial approximation

Eigenvalues \(\lambda_k, k = 1, \ldots, m \) of \(\mathbf{J}_m \) are

- **zeros** of \(\phi_m(a) \),
- **approximations** for eigenvalues of \(A \).
Polynomial approximation

\[u^{(m)} = p_m(A)q \text{ with } p_m(\lambda_k) = f(\lambda_k), \ k = 1, \ldots, m \]

\[\Rightarrow u^{(m)} = Q_m f(J_m) Q_m^T q = Q_m f(J_m) \|q\| e_1^{(N)}. \]

Problem

Polynomial approximations may converge very slowly
\[\Rightarrow \] searching for rational approximations to \(u \) belonging to rational Krylov subspaces.
Preliminaries

Polynomial approximation

\[u^{(m)} = p_m(A)q \text{ with } p_m(\lambda_k) = f(\lambda_k), \ k = 1, \ldots, m \]

\[\Rightarrow u^{(m)} = Q_m f(J_m) Q_m^T q \]
\[= Q_m f(J_m) \|q\| e_1^{(N)}. \]

Problem

Polynomial approximations may converge very slowly
\[\Rightarrow \text{searching for rational approximations to } u \text{ belonging to rational Krylov subspaces.} \]
Preliminaries

Polynomial approximation

\[u^{(m)} = p_m(A)q \text{ with } p_m(\lambda_k) = f(\lambda_k), \ k = 1, \ldots, m \]

\[\Rightarrow u^{(m)} = Q_m f(J_m) Q_m^T q \]

\[= Q_m f(J_m) \|q\| e_1^{(N)}. \]

Problem

Polynomial approximations may converge very slowly

\[\Rightarrow \text{searching for rational approximations to } u \text{ belonging to rational Krylov subspaces.} \]
Polynomial approximation

\[u^{(m)} = p_m(A)q \text{ with } p_m(\lambda_k) = f(\lambda_k), \quad k = 1, \ldots, m \]

\[\Rightarrow u^{(m)} = Q_m f(J_m)Q_m^T q = Q_m f(J_m)\|q\|e_1^{(N)}. \]

Problem

Polynomial approximations may converge very slowly
\Rightarrow searching for rational approximations to \(u \) belonging to rational Krylov subspaces.
Outline

1 Introduction
 - Problem formulation
 - Preliminaries

2 Rational Krylov subspaces
 - RKS
 - Rational approximation

3 Computational aspects
 - Computing Q_m and J_m

4 Numerical example
 - Time-periodic problem
Rational Krylov subspaces

Suppose $\mathcal{M} = \{\mu_0 = \mu_1, \mu_2, \ldots, \mu_m\} \subset \mathbb{R}^+$. Define the factors

$$Z_k(A) = (I + \mu_k A)^{-1}A = A(I + \mu_k A)^{-1}$$

$$= \frac{A}{I + \mu_k A}, \quad k = 1, 2, \ldots, m,$$

and products

$$b_0(A) \equiv I,$$

$$b_k(A) = Z_k(A)b_{k-1}(A) = b_{k-1}(A)Z_k(A),$$

$$k = 1, 2, \ldots, m.$$
Rational Krylov subspaces (RKS)

Suppose $\mathcal{M} = \{\mu_0 = \mu_1, \mu_2, \ldots, \mu_m\} \subset \mathbb{R}^+$. Define the factors

$$Z_k(A) = (I + \mu_k A)^{-1}A = A(I + \mu_k A)^{-1} = \frac{A}{I + \mu_k A}, \quad k = 1, 2, \ldots, m,$$

and products

$$b_0(A) \equiv I,$$

$$b_k(A) = Z_k(A)b_{k-1}(A) = b_{k-1}(A)Z_k(A), \quad k = 1, 2, \ldots, m.$$
Rational Krylov subspaces (RKS)

Suppose \(\mathcal{M} = \{\mu_0 = \mu_1, \mu_2, \ldots, \mu_m\} \subset \mathbb{R}^+ \).

Define the factors

\[
Z_k(A) = (I + \mu_k A)^{-1} A = A(I + \mu_k A)^{-1} = \frac{A}{I + \mu_k A}, \quad k = 1, 2, \ldots, m,
\]

and products

\[
b_0(A) \equiv I,
\]

\[
b_k(A) = Z_k(A)b_{k-1}(A) = b_{k-1}(A)Z_k(A), \quad k = 1, 2, \ldots, m.
\]
Rational Krylov subspaces

RKS

- searching for rational approximations $u^{(m)}$ to u belonging to the rational Krylov subspaces

$$K_{m+1}(A, q, M) = \text{span}\{b_0(A)q, b_1(A)q, \ldots, b_m(A)q\}, \quad m \ll N.$$

- orthogonalize:

$$K_{m+1}(A, q, M) = \text{span}\{q_0, q_1, q_2, \ldots, q_m\},$$

with

$$q_j^T q_k = \begin{cases}
0, & j \neq k \\
1, & j = k \end{cases}.$$
Rational Krylov subspaces

- searching for rational approximations $u^{(m)}$ to u belonging to the rational Krylov subspaces

$$K_{m+1}(A, q, \mathcal{M}) = \text{span}\{b_0(A)q, b_1(A)q, \ldots, b_m(A)q\},$$

$m \ll N$.

- orthogonalize:

$$K_{m+1}(A, q, \mathcal{M}) = \text{span}\{q_0, q_1, q_2, \ldots, q_m\},$$

with

$$q_j^T q_k = \begin{cases}
0, & j \neq k \\
1, & j = k
\end{cases}.$$
Orthogonal rational functions (ORFs)

- $q_k = \varphi_k(A)q$, where

 $$\varphi_k(a) = \frac{p_k(a)}{(1+\mu_1 a)\ldots(1+\mu_k a)} = \text{orthonormal rational function}.$$

- under certain conditions on the poles → three-term recurrence:

 $$Aq_{k-1} = \beta_{k-2} (I + \mu_{k-2} A) q_{k-2}$$
 $$+ \alpha_{k-1} (I + \mu_{k-1} A) q_{k-1} + \beta_{k-1} (I + \mu_k A) q_k,$$

 with $q_{-1} = 0$ and $q_0 = q/\|q\|$.

Rational Krylov subspaces
Orthogonal rational functions (ORFs)

- \(q_k = \varphi_k(A)q \),
- where \(\varphi_k(a) = \frac{p_k(a)}{(1+\mu_1 a) \cdots (1+\mu_k a)} = \text{orthonormal rational function} \).
- under \textit{certain conditions on the poles} \(\rightarrow \) three-term recurrence:

\[
A q_{k-1} = \beta_{k-2} \left(I + \mu_{k-2} A \right) q_{k-2} \\
+ \alpha_{k-1} \left(I + \mu_{k-1} A \right) q_{k-1} + \beta_{k-1} \left(I + \mu_k A \right) q_k,
\]

with \(q_{-1} = 0 \) and \(q_0 = q/\|q\| \).
Rational Krylov subspaces

ORFs

Conditions on the poles:

1. $\mathcal{M} \cap \sigma(-A^{-1}) = \emptyset$
 - OK because $\mathcal{M} \subset \mathbb{R}^+$,

2. $\forall k > 0 : q_k^T Z_k(A) q_{k-1} \neq (\mu_k - \mu_{k-1})^{-1}$
 - OK if $\mu_{k-1} \geq \mu_k$,

3. $\forall k > 1 : \varphi_{k-1}(a) = \frac{p_{k-1}(a)}{(1+\mu_1 a) \cdots (1+\mu_{k-1} a)} \Rightarrow p_{k-1}(-\mu_k^{-1}) \neq 0$
 - (or equivalently: $q_k^T Z_k(A) q_{k-1} \neq 0$)
Rational Krylov subspaces

ORFs

Conditions on the poles:

1. $\mathcal{M} \cap \sigma(-A^{-1}) = \emptyset$
 \rightarrow OK because $\mathcal{M} \subset \mathbb{R}^+$,

2. $\forall k > 0 : q_{k-1}^T Z_k(A) q_{k-1} \neq (\mu_k - \mu_{k-1})^{-1}$
 \rightarrow OK if $\mu_{k-1} \geq \mu_k$,

3. $\forall k > 1 : \varphi_{k-1}(a) = \frac{p_{k-1}(a)}{(1+\mu_1 a) \cdot \ldots \cdot (1+\mu_{k-1}a)} \Rightarrow p_{k-1}(-\mu_k^{-1}) \neq 0$
 (or equivalently: $q_k^T Z_k(A) q_{k-1} \neq 0$)
Rational Krylov subspaces

ORFs

Conditions on the poles:

1. \(\mathcal{M} \cap \sigma(-A^{-1}) = \emptyset \)
 \(\rightarrow \) OK because \(\mathcal{M} \subset \mathbb{R}^+ \),

2. \(\forall k > 0 : q_{k-1}^T Z_k(A)q_{k-1} \neq (\mu_k - \mu_{k-1})^{-1} \)
 \(\rightarrow \) OK if \(\mu_{k-1} \geq \mu_k \),

3. \(\forall k > 1 : \varphi_{k-1}(a) = \frac{p_{k-1}(a)}{(1+\mu_1a)\cdots(1+\mu_{k-1}a)} \Rightarrow p_{k-1}(-\mu_k^{-1}) \neq 0 \)
 (or equivalently: \(q_k^T Z_k(A)q_{k-1} \neq 0 \))
Rational Krylov subspaces

ORFs

Conditions on the poles:

1. \(\mathcal{M} \cap \sigma(-A^{-1}) = \emptyset \)
 \(\rightarrow \) OK because \(\mathcal{M} \subset \mathbb{R}^+ \).

2. \(\forall k > 0 : q_{k-1}^T Z_k(A) q_{k-1} \neq (\mu_k - \mu_{k-1})^{-1} \)
 \(\rightarrow \) OK if \(\mu_{k-1} \geq \mu_k \).

3. \(\forall k > 1 : \varphi_{k-1}(a) = \frac{p_{k-1}(a)}{(1+\mu_1 a) \cdots (1+\mu_{k-1} a)} \Rightarrow p_{k-1}(-\mu_k^{-1}) \neq 0 \)
 (or equivalently: \(q_k^T Z_k(A) q_{k-1} \neq 0 \))
Rational Krylov subspaces

ORFs

Conditions on the poles:

1. \(\mathcal{M} \cap \sigma(-A^{-1}) = \emptyset \)
 \(\rightarrow \) OK because \(\mathcal{M} \subset \mathbb{R}^+ \),

2. \(\forall k > 0 : q_k^T Z_k(A) q_{k-1} \neq (\mu_k - \mu_{k-1})^{-1} \)
 \(\rightarrow \) OK if \(\mu_{k-1} \geq \mu_k \),

3. \(\forall k > 1 : \varphi_{k-1}(a) = \frac{p_{k-1}(a)}{(1+\mu_1 a) \cdots (1+\mu_{k-1} a)} \Rightarrow p_{k-1}(-\mu_k^{-1}) \neq 0 \)
 (or equivalently: \(q_k^T Z_k(A) q_{k-1} \neq 0 \))
Rational Krylov subspaces

ORFs

\[
Q^T_m AQ_m = J_m(I_m - D_m J_m)^{-1} + R_m,
\]

where

\[
D_m = \begin{bmatrix}
\mu_0 & 0 & \cdots & 0 \\
0 & \mu_1 & \cdots & \vdots \\
\vdots & \cdots & \cdots & 0 \\
0 & \cdots & 0 & \mu_{m-1}
\end{bmatrix}
\]

and

\[
R_m = \beta_{m-1} \mu_m g_m h_m^T,
\]

\[
g_m = Q^T_m A q_m, \quad h_m = (I_m - J_m D_m)^{-1} e_m^{(m)}
\]

\[\Rightarrow \text{rank}(R_m) \leq 1\]
Rational Krylov subspaces

ORFs

\[Q_m^T A Q_m = J_m (I_m - D_m J_m)^{-1} + R_m, \text{ where} \]

\[
D_m = \begin{bmatrix}
\mu_0 & 0 & \cdots & 0 \\
0 & \mu_1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mu_{m-1}
\end{bmatrix}
\]

and

\[
R_m = \beta_{m-1} \mu_m g_m h_m^T,
\]

\[
g_m = Q_m^T A q_m, \quad h_m = (I_m - J_m D_m)^{-1} e_m^{(m)}
\]

\[\Rightarrow \text{rank}(R_m) \leq 1 \]
Rational Krylov subspaces

ORFs

\[Q_m^T A Q_m = J_m (I_m - D_m J_m)^{-1} + R_m, \]

where

\[
D_m = \begin{bmatrix}
\mu_0 & 0 & \cdots & 0 \\
0 & \mu_1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mu_{m-1}
\end{bmatrix}
\]

and

\[
R_m = \beta_{m-1} \mu_m g_m h_m^T,
\]

\[
g_m = Q_m^T A q_m, \quad h_m = (I_m - J_m D_m)^{-1} e_m^{(m)}
\]

\[\Rightarrow \text{rank}(R_m) \leq 1 \]
Rational Krylov subspaces

ORFs

\[Q_m^T A Q_m = J_m(I_m - D_m J_m)^{-1} + R_m, \text{ where} \]

\[
D_m = \begin{bmatrix}
\mu_0 & 0 & \cdots & 0 \\
0 & \mu_1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mu_{m-1}
\end{bmatrix}
\]

and

\[R_m = \beta_{m-1} \mu_m g_m h_m^T, \]

\[g_m = Q_m^T A q_m, \quad h_m = (I_m - J_m D_m)^{-1} e_m^{(m)} \]

\[\Rightarrow \text{rank}(R_m) \leq 1 \]
Outline

1. Introduction
 - Problem formulation
 - Preliminaries

2. Rational Krylov subspaces
 - RKS
 - Rational approximation

3. Computational aspects
 - Computing Q_m and J_m

4. Numerical example
 - Time-periodic problem
Rational approximation

Note that

- $B_m \triangleq J_m(I_m - D_m J_m)^{-1} = (I_m - J_m D_m)^{-1} J_m$ is symmetric,
- eigenvalues $\tilde{\lambda}_k$, $k = 1, \ldots, m$ of B_m are zeros of $\varphi_m(a)$,
- if $\mu_k = \mu$ for $k = 0, \ldots, m$
 \Rightarrow eigenvalues of J_m are approximations for eigenvalues of
 $\frac{A}{I + \mu A}$
 \Rightarrow eigenvalues of $B_m = \frac{J_m}{I_m - \mu J_m}$ are approximations for
 eigenvalues of A.

Therefore:

- omit R_m: $Q_m^T A Q_m \approx J_m(I_m - D_m J_m)^{-1}$,
- $\tilde{\lambda}_k$, $k = 1, \ldots, m$ are approximations for eigenvalues of A.

Karl Deckers
RKS and ORFs
Rational approximation

Note that

- \(B_m \triangleq J_m (I_m - D_m J_m)^{-1} = (I_m - J_m D_m)^{-1} J_m \) is symmetric,
- eigenvalues \(\tilde{\lambda}_k, \ k = 1, \ldots, m \) of \(B_m \) are zeros of \(\varphi_m(a) \),
- if \(\mu_k = \mu \) for \(k = 0, \ldots, m \)
 \(\Rightarrow \) eigenvalues of \(J_m \) are approximations for eigenvalues of \(\frac{A}{I + \mu A} \)
 \(\Rightarrow \) eigenvalues of \(B_m = \frac{J_m}{I_m - \mu J_m} \) are approximations for eigenvalues of \(A \).

Therefore:

- omit \(R_m \): \(Q_m^T A Q_m \approx J_m (I_m - D_m J_m)^{-1} \),
- \(\tilde{\lambda}_k, \ k = 1, \ldots, m \) are approximations for eigenvalues of \(A \).
Rational approximation

Note that

- $B_m \triangleq J_m (I_m - D_m J_m)^{-1} = (I_m - J_m D_m)^{-1} J_m$ is symmetric,
- eigenvalues $\tilde{\lambda}_k$, $k = 1, \ldots, m$ of B_m are zeros of $\varphi_m(a)$,
- if $\mu_k = \mu$ for $k = 0, \ldots, m$
 \Rightarrow eigenvalues of J_m are approximations for eigenvalues of $\frac{A}{I + \mu A}$
 \Rightarrow eigenvalues of $B_m = \frac{J_m}{I_m - \mu J_m}$ are approximations for eigenvalues of A.

Therefore:

- omit R_m: $Q_m^T A Q_m \approx J_m (I_m - D_m J_m)^{-1}$,
- $\tilde{\lambda}_k$, $k = 1, \ldots, m$ are approximations for eigenvalues of A.
Rational approximation

Note that

- \(B_m \triangleq J_m(I_m - D_m J_m)^{-1} = (I_m - J_m D_m)^{-1} J_m \) is symmetric,
- eigenvalues \(\tilde{\lambda}_k, \ k = 1, \ldots, m \) of \(B_m \) are zeros of \(\varphi_m(a) \),
- if \(\mu_k = \mu \) for \(k = 0, \ldots, m \)
 \(\Rightarrow \) eigenvalues of \(J_m \) are approximations for eigenvalues of \(\frac{A}{I+\mu A} \)
 \(\Rightarrow \) eigenvalues of \(B_m = \frac{J_m}{I_m - \mu J_m} \) are approximations for eigenvalues of \(A \).

Therefore:

- omit \(R_m \): \(Q_m^T A Q_m \approx J_m(I_m - D_m J_m)^{-1} \),
- \(\tilde{\lambda}_k, \ k = 1, \ldots, m \) are approximations for eigenvalues of \(A \).
Rational approximation

Note that

- \(B_m \triangleq J_m(I_m - D_m J_m)^{-1} = (I_m - J_m D_m)^{-1} J_m \) is symmetric,
- eigenvalues \(\tilde{\lambda}_k, k = 1, \ldots, m \) of \(B_m \) are zeros of \(\varphi_m(a) \),
- if \(\mu_k = \mu \) for \(k = 0, \ldots, m \)
 \(\Rightarrow \) eigenvalues of \(J_m \) are approximations for eigenvalues of \(\frac{A}{I + \mu A} \)
 \(\Rightarrow \) eigenvalues of \(B_m = \frac{J_m}{I_m - \mu J_m} \) are approximations for eigenvalues of \(A \).

Therefore:

- omit \(R_m \): \(Q_m^T A Q_m \approx J_m(I_m - D_m J_m)^{-1} \),
- \(\tilde{\lambda}_k, k = 1, \ldots, m \) are approximations for eigenvalues of \(A \).
Rational approximation

Note that

- \(B_m \triangleq J_m(l_m - D_m J_m)^{-1} = (l_m - J_m D_m)^{-1} J_m \) is symmetric,
- eigenvalues \(\tilde{\lambda}_k, \ k = 1, \ldots, m \) of \(B_m \) are zeros of \(\varphi_m(a) \),
- if \(\mu_k = \mu \) for \(k = 0, \ldots, m \)
 \(\Rightarrow \) eigenvalues of \(J_m \) are approximations for eigenvalues of \(\frac{A}{I + \mu A} \)
 \(\Rightarrow \) eigenvalues of \(B_m = \frac{J_m}{l_m - \mu J_m} \) are approximations for eigenvalues of \(A \).

Therefore:

- omit \(R_m \): \(Q_m^T A Q_m \approx J_m(l_m - D_m J_m)^{-1} \),
- \(\tilde{\lambda}_k, \ k = 1, \ldots, m \) are approximations for eigenvalues of \(A \).
Rational approximation

- $u^{(m)} = r_m(A)q$ with $r_m(\tilde{\lambda}_k) = f(\tilde{\lambda}_k)$, $k = 1, \ldots, m$
 where $r_m(a) = \frac{p_m(a)}{(1+\mu_1a)\cdots(1+\mu_ma)}$.

 $\Rightarrow u^{(m)} = Q_m f(B_m) Q_m^T q = Q_m f(B_m) \|q\| e_1^{(N)}.$

- Generalized eigenvalue problem:

 $\begin{pmatrix} I_m & J_m D_m \end{pmatrix} \tilde{\lambda}_k v_k = J_m v_k \Rightarrow B_m = V_m \Lambda_m V_m^T,$

 with $V_m = [v_1, \ldots, v_m]$ and $\Lambda_m = \text{diag}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_m)$

 $\Rightarrow u^{(m)} = Q_m V_m f(\Lambda_m) V_m^T \|q\| e_1^{(N)}.$
Rational approximation

\[u^{(m)} = r_m(A)q \text{ with } r_m(\tilde{\lambda}_k) = f(\tilde{\lambda}_k), \ k = 1, \ldots, m \]
where \(r_m(a) = \frac{p_m(a)}{(1+\mu_1 a) \cdots (1+\mu_m a)} \).

\[\Rightarrow u^{(m)} = Q_m f(B_m) Q_m^T q = Q_m f(B_m) \|q\|_e^{(N)}. \]

generalized eigenvalue problem:

\[(I_m + J_mD_m)\tilde{\lambda}_k v_k = J_m v_k \Rightarrow B_m = V_m \Lambda_m V_m^T, \]
with \(V_m = [v_1, \ldots, v_m] \) and \(\Lambda_m = \text{diag}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_m) \)

\[\Rightarrow u^{(m)} = Q_m V_m f(\Lambda_m) V_m^T \|q\|_e^{(N)}. \]
Rational approximation

\[u^{(m)} = r_m(A)q \] with \(r_m(\tilde{\lambda}_k) = f(\tilde{\lambda}_k), \ k = 1, \ldots, m \)

where \(r_m(a) = \frac{p_m(a)}{(1+\mu_1 a)\cdots(1+\mu_m a)} \).

\[\Rightarrow u^{(m)} = Q_m f(B_m)Q_m^T q = Q_m f(B_m) \|q\| e_1^{(N)}. \]

- generalized eigenvalue problem:

\[
(I_m + J_m D_m)\tilde{\lambda}_k v_k = J_m v_k \Rightarrow B_m = V_m \Lambda_m V_m^T,
\]

with \(V_m = [v_1, \ldots, v_m] \) and \(\Lambda_m = \text{diag}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_m) \)

\[\Rightarrow u^{(m)} = Q_m V_m f(\Lambda_m) V_m^T \|q\| e_1^{(N)}. \]
Rational approximation

- \(u^{(m)} = r_m(A)q \) with \(r_m(\tilde{\lambda}_k) = f(\tilde{\lambda}_k), \; k = 1, \ldots, m \)
 - where \(r_m(a) = \frac{p_m(a)}{(1+\mu_1 a) \cdots (1+\mu_m a)} \).
 - \(\Rightarrow u^{(m)} = Q_m f(B_m) Q_m^T q = Q_m f(B_m) \|q\| e_1^{(N)}. \)

- generalized eigenvalue problem:
 \[
 (I_m + J_m D_m) \tilde{\lambda}_k v_k = J_m v_k \Rightarrow B_m = V_m \Lambda_m V_m^T,
 \]
 - with \(V_m = [v_1, \ldots, v_m] \) and \(\Lambda_m = \text{diag}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_m) \)
 - \(\Rightarrow u^{(m)} = Q_m V_m f(\Lambda_m) V_m^T \|q\| e_1^{(N)}. \)
Outline

1 Introduction
 - Problem formulation
 - Preliminaries

2 Rational Krylov subspaces
 - RKS
 - Rational approximation

3 Computational aspects
 - Computing Q_m and J_m

4 Numerical example
 - Time-periodic problem
Computing Q_m and J_m

Let

$$
x_{k-1} = Z_k(A) \{ \beta_{k-2} (\mu_k - \mu_{k-2}) q_{k-2} + q_{k-1} \} - \beta_{k-2} q_{k-2},
$$

$$
y_{k-1} = [I + (\mu_{k-1} - \mu_k) Z_k(A)] q_{k-1}.
$$

Then,

$$
\alpha_{k-1} = \frac{q_i^T x_{k-1}}{q_i^T y_{k-1}}, \quad l \in \{0, \ldots, k-1\}
$$

$$
\beta_{k-1} = \| x_{k-1} - \alpha_{k-1} y_{k-1} \|
$$

$$
q_k = \beta_{k-1}^{-1} (x_{k-1} - \alpha_{k-1} y_{k-1}).
$$

For $k = 1$: $x_0 = Z_1(A)q_0$ and $y_0 = q_0$.
Computing Q_m and J_m

Let
\[
\begin{align*}
x_{k-1} &= Z_k(A) \{ \beta_{k-2} (\mu_k - \mu_{k-2}) q_{k-2} + q_{k-1} \} - \beta_{k-2} q_{k-2} \\
y_{k-1} &= [I + (\mu_{k-1} - \mu_k) Z_k(A)] q_{k-1}.
\end{align*}
\]

Then,
\[
\begin{align*}
\alpha_{k-1} &= \frac{q_I^T x_{k-1}}{q_I^T y_{k-1}}, \quad l \in \{0, \ldots, k-1\} \\
\beta_{k-1} &= \|x_{k-1} - \alpha_{k-1} y_{k-1}\| \\
q_k &= \beta_{k-1}^{-1} (x_{k-1} - \alpha_{k-1} y_{k-1}).
\end{align*}
\]

For $k = 1$: $x_0 = Z_1(A)q_0$ and $y_0 = q_0$.
Computing Q_m and J_m

Let

\[x_{k-1} = Z_k(A) \{ \beta_{k-2} (\mu_k - \mu_{k-2}) q_{k-2} + q_{k-1} \} - \beta_{k-2} q_{k-2} \]
\[y_{k-1} = [I + (\mu_{k-1} - \mu_k) Z_k(A)] q_{k-1}. \]

Then,

\[\alpha_{k-1} = \frac{q_l^T x_{k-1}}{q_l^T y_{k-1}}, \quad l \in \{0, \ldots, k-1\} \]
\[\beta_{k-1} = \| x_{k-1} - \alpha_{k-1} y_{k-1} \| \]
\[q_k = \beta_{k-1}^{-1} (x_{k-1} - \alpha_{k-1} y_{k-1}). \]

For $k = 1$: $x_0 = Z_1(A) q_0$ and $y_0 = q_0$.
Computing Q_m and J_m

Let

\begin{align*}
x_{k-1} &= Z_k(A) \{ \beta_{k-2} (\mu_k - \mu_{k-2}) q_{k-2} + q_{k-1} \} - \beta_{k-2} q_{k-2} \\
y_{k-1} &= [I + (\mu_{k-1} - \mu_k) Z_k(A)] q_{k-1}.
\end{align*}

Then,

\begin{align*}
\alpha_{k-1} &= \frac{q_l^T x_{k-1}}{q_l^T y_{k-1}}, \quad l \in \{0, \ldots, k - 1\} \\
\beta_{k-1} &= \|x^{k-1} - \alpha_{k-1} y_{k-1}\| \\
q_k &= \beta_{k-1}^{-1} (x_{k-1} - \alpha_{k-1} y_{k-1}).
\end{align*}

For $k = 1$: $x_0 = Z_1(A) q_0$ and $y_0 = q_0$.
Computing Q_m and J_m

Let

$$x_{k-1} = Z_k(A) \{ \beta_{k-2} (\mu_k - \mu_{k-2}) q_{k-2} + q_{k-1} \} - \beta_{k-2} q_{k-2}$$
$$y_{k-1} = [I + (\mu_{k-1} - \mu_k) Z_k(A)] q_{k-1}.$$

Then,

$$\alpha_{k-1} = \frac{q_l^T x_{k-1}}{q_l^T y_{k-1}}, \quad l \in \{0, \ldots, k-1\}$$
$$\beta_{k-1} = \|x_{k-1} - \alpha_{k-1} y_{k-1}\|$$
$$q_k = \beta_{k-1}^{-1} (x_{k-1} - \alpha_{k-1} y_{k-1}).$$

For $k = 1$: $x_0 = Z_1(A)q_0$ and $y_0 = q_0$.
Computing Q_m and J_m

Computational effort

If $\mu_k \neq 0$, we need to solve **per iteration**

- 1 system of equations whenever $\mu_k = \mu_{k-1}$ and/or $\mu_k = \mu_{k-2}$,
- 2 systems of equations whenever $\mu_k \neq \mu_{k-1}$ and $\mu_k \neq \mu_{k-2}$.

Therefore,

- use a limited number of different values in \mathcal{M},
- use a sorted list of numbers,
- use Cholesky factorization for $(I + \mu_k A)$ each time $\mu_k \neq \mu_{k-1}$.
Computing Q_m and J_m

Computational effort

If $\mu_k \neq 0$, we need to solve per iteration:

- **1 system of equations** whenever $\mu_k = \mu_{k-1}$ and/or $\mu_k = \mu_{k-2}$,
- **2 systems of equations** whenever $\mu_k \neq \mu_{k-1}$ and $\mu_k \neq \mu_{k-2}$.

Therefore,

- use a **limited number of different values** in \mathcal{M},
- use a **sorted list of numbers**,
- use Cholesky factorization for $(I + \mu_k A)$ each time $\mu_k \neq \mu_{k-1}$.
Computing Q_m and J_m

Computational effort

If $\mu_k \neq 0$, we need to solve per iteration

1. **1 system of equations** whenever $\mu_k = \mu_{k-1}$ and/or $\mu_k = \mu_{k-2}$,

2. **2 systems of equations** whenever $\mu_k \neq \mu_{k-1}$ and $\mu_k \neq \mu_{k-2}$.

Therefore,

- use a limited number of different values in \mathcal{M},
- use a sorted list of numbers,
- use Cholesky factorization for $(I + \mu_k A)$ each time $\mu_k \neq \mu_{k-1}$.
Computing Q_m and J_m

Computational effort

If $\mu_k \neq 0$, we need to solve per iteration

- 1 system of equations whenever $\mu_k = \mu_{k-1}$ and/or $\mu_k = \mu_{k-2}$,
- 2 systems of equations whenever $\mu_k \neq \mu_{k-1}$ and $\mu_k \neq \mu_{k-2}$.

Therefore,

- use a **limited** number of **different values** in \mathcal{M},
- use a **sorted list** of numbers,
- use Cholesky factorization for $(I + \mu_k A)$ each time $\mu_k \neq \mu_{k-1}$.
Computing Q_m and J_m

Computational effort

If $\mu_k \neq 0$, we need to solve per iteration

- 1 system of equations whenever $\mu_k = \mu_{k-1}$ and/or $\mu_k = \mu_{k-2}$,
- 2 systems of equations whenever $\mu_k \neq \mu_{k-1}$ and $\mu_k \neq \mu_{k-2}$.

Therefore,

- use a limited number of different values in \mathcal{M},
- use a sorted list of numbers,
- use Cholesky factorization for $(I + \mu_k A)$ each time $\mu_k \neq \mu_{k-1}$.
Computing Q_m and J_m

Computational effort

If $\mu_k \neq 0$, we need to solve per iteration

- 1 system of equations whenever $\mu_k = \mu_{k-1}$ and/or $\mu_k = \mu_{k-2}$,
- 2 systems of equations whenever $\mu_k \neq \mu_{k-1}$ and $\mu_k \neq \mu_{k-2}$.

Therefore,

- use a **limited** number of different values in \mathcal{M},
- use a **sorted list** of numbers,
- use **Cholesky factorization** for $(I + \mu_k A)$ each time $\mu_k \neq \mu_{k-1}$.
Outline

1 Introduction
 • Problem formulation
 • Preliminaries

2 Rational Krylov subspaces
 • RKS
 • Rational approximation

3 Computational aspects
 • Computing Q_m and J_m

4 Numerical example
 • Time-periodic problem
Numerical example

Time-periodic problem

\[
\frac{d}{dt} u(t) + (A + 0.6I)u(t) = \exp(-0.4t)q, \quad t \in [0, T],
\]

\[
u(0) = u(T), \quad T = 0.01,
\]

where

- \(A = 2500 \times 2500 \) matrix obtained by discretization of

\[
L = -0.1 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right), \quad (x, y) \in [0, 1] \times [0, 1],
\]

with Dirichlet boundary conditions, on a uniform meshgrid, using central differences,

- \(q = \) discretization of \(q(x, y) = x(1 - x)y(1 - y) \).
Numerical example

Time-periodic problem

\[
\frac{d}{dt} u(t) + (A + 0.6I)u(t) = \exp(-0.4t)q, \quad t \in [0, T],
\]

\[
u(0) = u(T), \quad T = 0.01,
\]

where

- \(A = 2500 \times 2500 \) matrix obtained by discretization of

\[
L = -0.1 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right), \quad (x, y) \in [0, 1] \times [0, 1],
\]

with Dirichlet boundary conditions, on a uniform meshgrid, using central differences,

- \(q = \) discretization of \(q(x, y) = x(1-x)y(1-y) \).
Numerical example

Time-periodic problem

\[
\frac{d}{dt} u(t) + (A + 0.6I)u(t) = \exp(-0.4t)q, \quad t \in [0, T],
\]

\[u(0) = u(T), \quad T = 0.01,\]

where

- \(A = 2500 \times 2500\) matrix obtained by discretization of

\[
L = -0.1 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right), \quad (x, y) \in [0, 1] \times [0, 1],
\]

with Dirichlet boundary conditions, on a uniform meshgrid, using central differences,

- \(q = \) discretization of \(q(x, y) = x(1-x)y(1-y)\).
Numerical example

Exact solution

\[u(t) = g(A, t)q, \text{ with} \]

\[g(a, t) = \frac{\exp(-0.4t)}{a + 0.2} - \frac{[1 - \exp(-0.4T)] \exp(-(a + 0.6)t)}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}. \]

For \(t = 0 \) or \(t = T \):

\[f(a) = \frac{\exp(-0.4T)[1 - \exp(-(a + 0.2)T)]}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}. \]

\[\Rightarrow f(a) \text{ has singularity in } a = -3/5 \]

\[f(\infty) = 0. \]
Numerical example

Exact solution

- \(u(t) = g(A, t)q, \) with

\[
g(a, t) = \frac{\exp(-0.4t)}{a + 0.2} - \frac{[1 - \exp(-0.4T)] \exp(-(a + 0.6)t)}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}.
\]

- For \(t = 0 \) or \(t = T \):

\[
f(a) = \frac{\exp(-0.4T)[1 - \exp(-(a + 0.2)T)]}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}.
\]

\(\Rightarrow \) \(f(a) \) has singularity in \(a = -3/5 \)

\(f(\infty) = 0. \)
Numerical example

Exact solution

- \(u(t) = g(A, t)q, \) with

\[
g(a, t) = \frac{\exp(-0.4t)}{a + 0.2} - \frac{[1 - \exp(-0.4T)]\exp(-(a + 0.6)t)}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}.
\]

- For \(t = 0 \) or \(t = T \):

\[
f(a) = \frac{\exp(-0.4T)[1 - \exp(-(a + 0.2)T)]}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}.
\]

\[\Rightarrow \quad f(a) \text{ has singularity in } a = -3/5\]

\[f(\infty) = 0.\]
Numerical example

Exact solution

- \(u(t) = g(A, t)q \), with

\[
g(a, t) = \frac{\exp(-0.4t)}{a + 0.2} - \frac{[1 - \exp(-0.4T)]\exp(-(a + 0.6)t)}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}.
\]

- For \(t = 0 \) or \(t = T \):

\[
f(a) = \frac{\exp(-0.4T)[1 - \exp(-(a + 0.2)T)]}{(a + 0.2)[1 - \exp(-(a + 0.6)T)]}.
\]

\(\Rightarrow \) \(f(a) \) has singularity in \(a = -3/5 \)

\(f(\infty) = 0. \)
Numerical example

One multiple pole

optimal value: $\mu \approx T$, see:

Relative error $e = \frac{\|u^{(m)} - u\|}{\|u\|}$ for the case of $\mu = 0$, respectively $\mu = 0.01$.
Relative error $e = \|u^{(m)} - u\| / \|u\|$ for the case of $\mu = 5/3$, respectively $\mu = 0.01$.

![Graph showing relative error over iterations for different values of μ.]
Relative error $e = \|u^{(m)} - u\|/\|u\|$ for the case of $\mu_0 = \mu_1 = 5/3$ and $\mu_2 = \ldots = \mu_{40} = 0.01$, respectively $\mu = 0.01$.
Numerical example

<table>
<thead>
<tr>
<th>\mathcal{M}</th>
<th>e</th>
<th>m</th>
<th>CF</th>
<th>SOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu = 0$</td>
<td>$9.5e-12$</td>
<td>140</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu = 0.01$</td>
<td>$8.3e-12$</td>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>${5/3, 5/3, 0.01, \ldots}$</td>
<td>$9.4e-12$</td>
<td>14</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

CF = total number of Cholesky Factorizations
SOE = total number of Systems Of Equations