Rational Gauss-type quadrature formulas with a prescribed node anywhere on the real line

Karl Deckers1, Adhemar Bultheel1, and Joris Van Deun2

1Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium

2Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.

1 Jaen Conference on Approximation Theory
July 8th, 2010
Outline

1 Preliminaries
 - Orthonormal rational functions
 - Rational interpolatory quadrature formulas

2 Rational Gauss-type quadrature with one fixed node
 - First kind
 - Second kind
Outline

1 Preliminaries
 - Orthonormal rational functions
 - Rational interpolatory quadrature formulas

2 Rational Gauss-type quadrature with one fixed node
 - First kind
 - Second kind
Outline

1 Preliminaries
 - Orthonormal rational functions
 - Rational interpolatory quadrature formulas

2 Rational Gauss-type quadrature with one fixed node
 - First kind
 - Second kind
Orthonormal rational functions (ORFs)

Notation

$I = [-1, 1]$, $X \subseteq \mathbb{C}$: $\overline{X} = X \cup \{\infty\}$ and $X_I = \{x \in X : x \notin I\}$

Rational functions

$b_k(x) = \prod_{j=1}^{k} \frac{x}{1-x/\alpha_j}, \quad \alpha_j \in \overline{C}_I$

$L_n = \mathcal{L}\{\alpha_1, \ldots, \alpha_n\}$

$= \text{span}\{1, b_1(x), \ldots, b_n(x)\}$

Polynomials

$\forall j : \alpha_j = \infty \Rightarrow b_k(x) \equiv x^k$

$L_n \equiv \mathcal{P}_n = \text{span}\{1, x, \ldots, x^n\}$

Orthonormal rational functions (ORFs)

Given a positive measure μ on I and inner product

$\langle f, g \rangle_\mu = \int_I f(x)g(x)\overline{d\mu(x)}$

\rightarrow ORFs: $\varphi_k(x)$

$\varphi_k \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}$, $\varphi_k \perp \mu \mathcal{L}_{k-1}$, and $\|\varphi_k\|_\mu = \sqrt{\langle \varphi_k, \varphi_k \rangle_\mu} = 1$.

Karl Deckers, Adhemar Bultheel, and Joris Van Deun
Preliminaries

Rational Gauss-type quadrature with one fixed node

Orthonormal rational functions (ORFs)

Notation

\[
I = [-1, 1], \quad X \subseteq \mathbb{C} : \overline{X} = X \cup \{\infty\} \text{ and } X_I = \{x \in X : x \notin I\}
\]

Rational functions

\[
b_k(x) = \prod_{j=1}^{k} \frac{x}{1-\frac{x}{\alpha_j}}, \quad \alpha_j \in \overline{C}_I
\]

\[
\mathcal{L}_n = \mathcal{L}\{\alpha_1, \ldots, \alpha_n\} = \text{span}\{1, b_1(x), \ldots, b_n(x)\}
\]

Polynomials

\[
\forall j : \alpha_j = \infty \Rightarrow b_k(x) \equiv x^k
\]

\[
\mathcal{L}_n \equiv \mathcal{P}_n = \text{span}\{1, x, \ldots, x^n\}
\]

Orthonormal rational functions (ORFs)

Given a positive measure \(\mu\) on \(I\) and inner product

\[
\langle f, g \rangle_\mu = \int_I f(x)\overline{g(x)}d\mu(x)
\]

\(\rightarrow\) **ORFs:** \(\varphi_k(x)\)

\[
\varphi_k \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}, \varphi_k \perp_\mu \mathcal{L}_{k-1}, \text{ and } \|\varphi_k\|_\mu = \sqrt{\langle \varphi_k, \varphi_k \rangle_\mu} = 1.
\]
Orthonormal rational functions (ORFs)

Notation

\[I = [-1, 1], \quad X \subseteq \mathbb{C} : \overline{X} = X \cup \{\infty\} \text{ and } X_I = \{x \in X : x \notin I\} \]

Rational functions

\[b_k(x) = \prod_{j=1}^{k} \frac{x}{1-x/\alpha_j}, \quad \alpha_j \in \overline{\mathbb{C}} \]
\[\mathcal{L}_n = \mathcal{L}\{\alpha_1, \ldots, \alpha_n\} \]
\[= \text{span}\{1, b_1(x), \ldots, b_n(x)\} \]

Polynomials

\[\forall j : \alpha_j = \infty \Rightarrow b_k(x) \equiv x^k \]
\[\mathcal{L}_n \equiv \mathcal{P}_n = \text{span}\{1, x, \ldots, x^n\} \]

Orthonormal rational functions (ORFs)

Given a positive measure \(\mu \) on \(I \) and inner product

\[\langle f, g \rangle_\mu = \int_I f(x)g(\overline{x})d\mu(x) \]

\[\rightarrow \text{ ORFs: } \varphi_k(x) \]
\[\varphi_k \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}, \varphi_k \perp_\mu \mathcal{L}_{k-1}, \text{ and } \|\varphi_k\|_\mu = \sqrt{\langle \varphi_k, \varphi_k \rangle_\mu} = 1. \]
Orthonormal rational functions (ORFs)

Theorem (Recurrence)

The ORFs φ_k, $k > 0$, satisfy a three-term recurrence relation:

$$\varphi_k(x) = E_k \cdot F(\varphi_{k-2}(x), \varphi_{k-1}(x), \alpha_{k-2}, \alpha_{k-1}, \alpha_k, D_k)$$

with initial conditions $\varphi_{-1}(x) \equiv 0$, $\varphi_0(x) \equiv \eta_0 \|1\|^{-1}_{\mu}$, $|\eta_0| = 1$, and $\alpha_{-1} = \alpha_0 = \infty$.

Corollary (Generalized eigenvalue problem (GEP))

The zeros $\{x_{nk}\}_{k=1}^n$ of the ORF $\varphi_n(x)$ are eigenvalues of a GEP of the form $J_n v_{nk} = x_{nk} B_n v_{nk}$, where J_n and B_n are tridiagonal matrices, and v_{nk} is the corresponding normalized eigenvector.

[J. Van Deun, Numer. Algorithms, 2007]
Orthonormal rational functions (ORFs)

Theorem (Recurrence)

The ORFs φ_k, $k > 0$, satisfy a three-term recurrence relation:

$$\varphi_k(x) = E_k \cdot F(\varphi_{k-2}(x), \varphi_{k-1}(x), \alpha_{k-2}, \alpha_{k-1}, \alpha_k, D_k)$$

with initial conditions $\varphi_{-1}(x) \equiv 0$, $\varphi_0(x) \equiv \eta_0 \|1\|_{\mu}^{-1}$, $|\eta_0| = 1$, and $\alpha_{-1} = \alpha_0 = \infty$.

Corollary (Generalized eigenvalue problem (GEP))

The zeros $\{x_{nk}\}_{k=1}^n$ of the ORF $\varphi_n(x)$ are eigenvalues of a GEP of the form $J_n v_{nk} = x_{nk} B_n v_{nk}$, where J_n and B_n are tridiagonal matrices, and v_{nk} is the corresponding normalized eigenvector.

[J. Van Deun, Numer. Algorithms, 2007]
Orthonormal rational functions (ORFs)

Theorem

The ORF \(\varphi_n \) *has* \(n \) *real distinct zeros in* \(I \) *iff* \(\alpha_n \in \mathbb{R}_I \).

[K. Deckers et al., Numer. Math., 2010 (submitted)]

Theorem (Favard Theorem)

Suppose the sequence of rational functions \(\{\hat{\phi}_k\}_{k=0}^\infty \), with \(\hat{\phi}_k \in \hat{\mathcal{L}}_k \setminus \hat{\mathcal{L}}_{k-1} \) and \(\hat{\mathcal{L}}_k = \mathcal{L}\{\hat{\alpha}_1, \ldots, \hat{\alpha}_k\} \), are generated by the three-term recurrence relation

\[
\hat{\phi}_k(x) = \hat{E}_k \cdot F(\hat{\phi}_{k-2}(x), \hat{\phi}_{k-1}(x), \hat{\alpha}_{k-2}, \hat{\alpha}_{k-1}, \hat{\alpha}_k, \hat{D}_k).
\]

Then - under certain conditions on \(\hat{E}_k \) and \(\hat{D}_k \) - the \(\hat{\phi}_k \) form an orthonormal system w.r.t. a positive measure \(\hat{\mu} \) on \(\hat{S} \subset \mathbb{R} \) and inner product \(\langle f, g \rangle_{\hat{\mu}} = \int_{\hat{S}} f(x)g(\overline{x})d\hat{\mu}(x) \).

Orthonormal rational functions (ORFs)

Theorem

The ORF φ_n has n real distinct zeros in I iff $\alpha_n \in \overline{\mathbb{R}}_I$.

[K. Deckers et al., Numer. Math., 2010 (submitted)]

Theorem (Favard Theorem)

Suppose the sequence of rational functions $\{\hat{\varphi}_k\}_{k=0}^{\infty}$, with $\hat{\varphi}_k \in \hat{L}_k \setminus \hat{L}_{k-1}$ and $\hat{L}_k = \mathcal{L}\{\hat{\alpha}_1, \ldots, \hat{\alpha}_k\}$, are generated by the three-term recurrence relation

$$\hat{\varphi}_k(x) = \hat{E}_k \cdot F(\hat{\varphi}_{k-2}(x), \hat{\varphi}_{k-1}(x), \hat{\alpha}_{k-2}, \hat{\alpha}_{k-1}, \hat{\alpha}_k, \hat{D}_k).$$

Then - under certain conditions on \hat{E}_k and \hat{D}_k - the $\hat{\varphi}_k$ form an orthonormal system w.r.t. a positive measure $\hat{\mu}$ on $\hat{S} \subset \mathbb{R}$ and inner product $\langle f, g \rangle_{\hat{\mu}} = \int_{\hat{S}} f(x) \overline{g(x)} d\hat{\mu}(x)$.

Outline

1 Preliminaries
 - Orthonormal rational functions
 - Rational interpolatory quadrature formulas

2 Rational Gauss-type quadrature with one fixed node
 - First kind
 - Second kind
Rational interpolatory quadrature rule (RIQ)

Given the set of n distinct nodes $\{x_{nk}\}_{k=1}^{n} \subset I$, there exists a unique set of weights $\{\lambda_{nk}\}_{k=1}^{n} \subset \mathbb{C}$ so that

$$\int_{I} f(x) d\mu(x) \approx \sum_{k=1}^{n} \lambda_{nk} f(x_{nk})$$

is exact for every $f \in \tilde{\mathcal{L}}_m$, with

$$\mathcal{L}_{n-1} \subseteq \tilde{\mathcal{L}}_m \subseteq \mathcal{L}\{\alpha_1, \ldots, \alpha_n, \overline{\alpha}_1, \ldots, \overline{\alpha}_n\} =: \mathcal{L}_n \cdot \mathcal{L}_n^c.$$

The space $\tilde{\mathcal{L}}_m$ is called the domain of validity.

Positive weights

- The weights $\{\lambda_{nk}\}_{k=1}^{n} \subset \mathbb{R}$ iff $\tilde{\mathcal{L}}_m = \tilde{\mathcal{L}}_m^c$;
- Positive RIQ = RIQ with weights $\{\lambda_{nk}\}_{k=1}^{n} \subset \mathbb{R}_0^+$.
Rational interpolatory quadrature rule (RIQ)

Given the set of n distinct nodes $\{x_{nk}\}_{k=1}^{n} \subset I$, there exists a unique set of weights $\{\lambda_{nk}\}_{k=1}^{n} \subset \mathbb{C}$ so that

$$
\int_{I} f(x) d\mu(x) \approx \sum_{k=1}^{n} \lambda_{nk} f(x_{nk})
$$

is exact for every $f \in \tilde{L}_{m}$, with

$$
\mathcal{L}_{n-1} \subseteq \tilde{L}_{m} \subseteq \mathcal{L}\{\alpha_{1}, \ldots, \alpha_{n}, \overline{\alpha}_{1}, \ldots, \overline{\alpha}_{n}\} =: \mathcal{L}_{n} \cdot \mathcal{L}_{n}^{c}.
$$

The space \tilde{L}_{m} is called the domain of validity.

Positive weights

- The weights $\{\lambda_{nk}\}_{k=1}^{n} \subset \mathbb{R}$ iff $\tilde{L}_{m} \equiv \tilde{L}_{m}^{c}$;
- Positive RIQ = RIQ with weights $\{\lambda_{nk}\}_{k=1}^{n} \subset \mathbb{R}_{0}^{+}$.
Rational interpolatory quadrature rule

Rational Gaussian quadrature

- \(= \) positive RIQ
- has maximal domain of validity; i.e., \(\tilde{\mathcal{L}}_m = \mathcal{L}_n \cdot \mathcal{L}_{n-1}^c \)
- exists iff \(\alpha_n \in \overline{\mathbb{R}}_I \)
- the nodes \(\{ x_{nk}^{(\mu,\alpha_n)} \}_{k=1}^n \) are zeros of the ORF \(\varphi_n \in \mathcal{L}_n \); hence, can be computed by means of the GEP

the corresponding weights \(\{ \lambda_{nk}^{(\mu,\alpha_n)} \}_{k=1}^n \) can be computed by means of the GEP too:

\[
\lambda_{nk}^{(\mu,\alpha_n)} = |v_{nk}|^2 \|1\|_\mu^2,
\]

where \(v_{nk} \) represents the first component of the eigenvector \(\underline{v}_{nk} \).
Rational Gauss-type quadrature

Definition

Rational Gauss-type quadrature = positive RIQ with \(j \) fixed nodes in \(I \), where \(0 < j < n \), and the remaining \(n - j \) nodes are such that the domain of validity is as large as possible.

Rational Gauss-type quadrature with one fixed node

- generally, for each node that is fixed in advance, the dimension of the maximal possible domain of validity decrease with one
- maximal possible domain of validity for the case of one fixed node:
 - (first kind) \(\mathcal{L}_{n-1} \cdot \mathcal{L}_{n-1}^c \Rightarrow \) existence of the quadrature rule only depends on the node that has been fixed
 - (second kind) \(\mathcal{L}_n \cdot \mathcal{L}_{n-2}^c \Rightarrow \) existence also depends on the last two poles \(\alpha_{n-1} \) and \(\alpha_n \).
- for the second kind we will assume that \(\alpha_n \neq \overline{\alpha}_{n-1} \)
Rational Gauss-type quadrature

Definition

Rational Gauss-type quadrature = positive RIQ with j fixed nodes in I, where $0 < j < n$, and the remaining $n - j$ nodes are such that the domain of validity is as large as possible.

Rational Gauss-type quadrature with one fixed node

- generally, for each node that is fixed in advance, the dimension of the maximal possible domain of validity decrease with one
- maximal possible domain of validity for the case of one fixed node:
 - (first kind) $\mathcal{L}_{n-1} \cdot \mathcal{L}_{n-1}^c \Rightarrow$ existence of the quadrature rule only depends on the node that has been fixed
 - (second kind) $\mathcal{L}_n \cdot \mathcal{L}_{n-2}^c \Rightarrow$ existence also depends on the last two poles α_{n-1} and α_n.
- for the second kind we will assume that $\alpha_n \neq \overline{\alpha}_{n-1}$
Outline

1 Preliminaries
 - Orthonormal rational functions
 - Rational interpolatory quadrature formulas

2 Rational Gauss-type quadrature with one fixed node
 - First kind
 - Second kind
Theorem

Suppose the quadrature

\[
\int_I f(x) d\mu(x) \approx \lambda_{n_1}^{(1)} f(a) + \sum_{k=2}^{n} \lambda_{nk}^{(1)} f(x_{nk}^{(1)}), \quad a \in I
\]

is exact for every \(f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-1}^c \). Then the nodes \(\{x_{nk}^{(1)}\}_{k=1}^{n} \), with \(x_{n_1}^{(1)} = a \), are zeros of the quasi-orthogonal rational function

\[
Q_{n}^{(1)}(x) = \varphi_{n}(x) + \tau_{n} \left(\frac{1 - x/\alpha_{n-1}}{1 - x/\alpha_{n}} \right) \varphi_{n-1}(x),
\]

\[
\tau_{n} = -\frac{(1 - a/\alpha_{n})\varphi_{n}(a)}{(1 - a/\alpha_{n-1})\varphi_{n-1}(a)} \in \mathbb{C}.
\]

[K. Deckers et al., Numer. Math., 2010 (submitted)]
Rational Gauss-type quadrature: First kind

Theorem

Suppose \(c_n^{(1)} := \frac{\tau_n}{E_n} \left(\frac{1}{\alpha_{n-1}} - \frac{1}{\alpha_{n-1}} \right) \neq -1 \). Then there exist poles \(\alpha \in \mathbb{C} \) (not unique), and constants \(\hat{E}_n \neq 0 \) and

\[
\hat{D}_n = \frac{D_n + \tau_n/E_n}{1 + c_n^{(1)}} \quad \text{satisfying condition Favard theorem,}
\]

so that

\[
\left(\frac{1 - x/\alpha_n}{1 - x/\alpha} \right) Q_n^{(1)}(x) = \hat{E}_n \cdot F(\varphi_{n-2}(x), \varphi_{n-1}(x), \alpha_{n-2}, \alpha_{n-1}, \alpha, \hat{D}_n);
\]

hence, there exist positive measures \(\hat{\mu} \) on \(\hat{S} \subset \mathbb{R} \) (not unique), and inner product \(\langle f, g \rangle_{\hat{\mu}} = \int_{\hat{S}} f(x)g(\overline{x})d\hat{\mu}(x) \), so that

\[
\left(\frac{1 - x/\alpha_n}{1 - x/\alpha} \right) Q_n^{(1)}(x) \perp \hat{\mu} \mathcal{L}_{n-1}.
\]
Theorem

Suppose \(c_n^{(1)} := \frac{\tau_n}{E_n} \left(\frac{1}{\alpha_{n-1}} - \frac{1}{\alpha_{n-1}^2} \right) \neq -1. \) Then there exist poles \(\alpha \in \overline{C} \) (not unique), and constants \(\hat{E}_n \neq 0 \) and

\[
\hat{D}_n = \frac{D_n + \tau_n/E_n}{1 + c_n^{(1)}} \rightarrow \text{satisfying condition Favard theorem,}
\]

so that

\[
\left(\frac{1 - x/\alpha_n}{1 - x/\alpha} \right) Q_n^{(1)}(x) = \hat{E}_n \cdot F(\varphi_{n-2}(x), \varphi_{n-1}(x), \alpha_{n-2}, \alpha_{n-1}, \alpha, \hat{D}_n);
\]

hence, there exist positive measures \(\hat{\mu} \) on \(\hat{S} \subset \mathbb{R} \) (not unique), and inner product \(\langle f, g \rangle_{\hat{\mu}} = \int_{\hat{S}} f(x)g(x)d\hat{\mu}(x) \), so that

\[
\left(\frac{1 - x/\alpha_n}{1 - x/\alpha} \right) Q_n^{(1)}(x) \perp \hat{\mu} \mathcal{L}_{n-1}.
\]
Corollary

The zeros of $Q_n^{(1)}(x)$ are all real distinct iff

$$\Im\{\hat{D}_n\} = \frac{\Im\{1/\alpha_{n-2}\}}{|E_{n-1}|^2}, \quad \alpha_{n-1} \in \mathbb{R},$$

respectively

$$\Re\{\hat{D}_n\}^2 + \left(\Im\{\hat{D}_n\} - \frac{1}{\Im\{1/\alpha_{n-1}\}}\right)^2 = \left(\frac{1}{\Im\{1/\alpha_{n-1}\}}\right)^2 \frac{1}{1 + r_n}, \quad \alpha_{n-1} \notin \mathbb{R},$$

where

$$r_n = \frac{4\Im\{1/\alpha_{k-1}\} \cdot \Im\{1/\alpha_{k-2}\}}{|E_{n-1}|^2} > -1.$$
Lemma

Suppose the zeros of $Q_n^{(1)}(x)$ are all real distinct. Then at least $n - 1$ of them are in $(-1, 1)$, and there exist τ_n (and hence, \hat{D}_n) so that all the zeros are in $[-1, 1]$.

Boundary values \hat{D}_n^\pm for \hat{D}_n, in order to have that $
abla_{nk}^{(1)} \subset I$, are obtained by setting

$$\tau_n^\pm := -\frac{(1 \pm 1/\alpha_n)\varphi_n(\pm 1)}{(1 \pm 1/\alpha_{n-1})\varphi_{n-1}(\pm 1)}$$
the nodes \(\{x_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian nodes:
\[
x_{nk}^{(1)} = x^{(\hat{\mu},\alpha)}_{nk}, \quad k = 1, \ldots, n \text{ and } \alpha \in \mathbb{R}
\]
\(\{\varphi_0, \ldots, \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-1}^c \supset \mathcal{L}_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{\mathcal{S}}} f(x) d\hat{\mu}(x); \)
hence, the weights \(\{\lambda_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian weights:
\[
\lambda_{nk}^{(1)} = \lambda^{(\hat{\mu},\alpha)}_{nk}, \quad k = 1, \ldots, n \text{ and } \alpha \in \mathbb{R}
\]
the nodes and weights can be computed by means of a modified GEP:
\[
J_n^{(1)} v_{nk}^{(1)} = x_{nk}^{(1)} B_n^{(1)} v_{nk}^{(1)},
\]
where
\[
J_n^{(1)} = \begin{pmatrix}
J_{n-1} & 0_{n-2} \\
0_{n-2} & \ast
\end{pmatrix}, \quad B_n^{(1)} = \begin{pmatrix}
B_{n-1} & 0_{n-2} \\
0_{n-2} & \ast
\end{pmatrix}
\]
and \(v_{nk}^{(1)} \) is the corresponding normalized eigenvector.
the nodes \(\{x_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian nodes:
\[
x_{nk}^{(1)} = x_{nk}^{(\hat{\mu},\alpha)}, \ k = 1, \ldots, n \quad \text{and} \quad \alpha \in \mathbb{R}_I
\]
\(\{\varphi_0, \ldots, \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
\[
\forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-1}^c \supset \mathcal{L}_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{\Sigma}} f(x) d\hat{\mu}(x);
\]

hence, the weights \(\{\lambda_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian weights:
\[
\lambda_{nk}^{(1)} = \lambda_{nk}^{(\hat{\mu},\alpha)}, \ k = 1, \ldots, n \quad \text{and} \quad \alpha \in \mathbb{R}_I
\]
the nodes and weights can be computed by means of a modified GEP: \(J_n^{(1)} v_{nk}^{(1)} = x_{nk}^{(1)} B_n^{(1)} v_{nk}^{(1)} \), where

\[
J_n^{(1)} =
\begin{pmatrix}
J_{n-1} & 0_{n-2} \\
0_{n-2} \times & 0_{n-2} \times
\end{pmatrix}, \quad B_n^{(1)} =
\begin{pmatrix}
B_{n-1} & 0_{n-2} \\
0_{n-2} \times & 0_{n-2} \times
\end{pmatrix}
\]

and \(v_{nk}^{(1)} \) is the corresponding normalized eigenvector.
Rational Gauss-type quadrature: First kind

- the nodes \(\{x_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian nodes:
 \[
x_{nk}^{(1)} = x_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \] and \(\alpha \in \overline{\mathbb{R}} \)

- \(\{\varphi_0, \ldots, \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
 \[
 \forall f \in L_{n-1} \cdot L_{n-1}^c \supset L_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{\mathcal{S}}} f(x) d\hat{\mu}(x);
 \]
 hence, the weights \(\{\lambda_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian weights:
 \[
 \lambda_{nk}^{(1)} = \lambda_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \] and \(\alpha \in \overline{\mathbb{R}} \)

- the nodes and weights can be computed by means of a modified GEP: \(J_n^{(1)} v_{nk}^{(1)} = x_{nk}^{(1)} B_n^{(1)} v_{nk}^{(1)} \), where
 \[
 J_n^{(1)} = \begin{pmatrix}
 J_{n-1} & 0_{n-2} \\
 0_{n-2}^T & \ast
 \end{pmatrix}, \quad B_n^{(1)} = \begin{pmatrix}
 B_{n-1} & 0_{n-2} \\
 0_{n-2}^T & \ast
 \end{pmatrix}
 \]
 and \(v_{nk}^{(1)} \) is the corresponding normalized eigenvector.
the nodes \(\{x_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian nodes:
\[
x_{nk}^{(1)} = x_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \text{ and } \alpha \in \overline{\mathbb{R}}
\]
\(\{\varphi_0, \ldots, \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
\[
\forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-1}^c \supset \mathcal{L}_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{\mu}} f(x) d\hat{\mu}(x);
\]
hence, the weights \(\{\lambda_{nk}^{(1)}\}_{k=1}^n \) are rational Gaussian weights:
\[
\lambda_{nk}^{(1)} = \lambda_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \text{ and } \alpha \in \overline{\mathbb{R}}
\]
the nodes and weights can be computed by means of a modified GEP:
\[
J_n^{(1)} \phantom{\nu_{nk}} = x_{nk}^{(1)} B_n^{(1)} \nu_{nk}^{(1)}, \quad \text{where}
\]
\[
J_n^{(1)} = \begin{pmatrix}
J_{n-1} & 0_{n-2} \\
0_{n-2}^T & x
\end{pmatrix}, \quad B_n^{(1)} = \begin{pmatrix}
B_{n-1} & 0_{n-2} \\
0_{n-2}^T & x
\end{pmatrix}
\]
and \(\nu_{nk}^{(1)} \) is the corresponding normalized eigenvector.
Outline

1 Preliminaries
 - Orthonormal rational functions
 - Rational interpolatory quadrature formulas

2 Rational Gauss-type quadrature with one fixed node
 - First kind
 - Second kind
Rational Gauss-type quadrature: Second kind

[K. Deckers and A. Bultheel (In progress)]

Theorem

Suppose the quadrature

\[\int_I f(x) d\mu(x) \approx \lambda_{n1}^{(2)} f(a) + \sum_{k=2}^{n} \lambda_{nk}^{(2)} f(x_{nk}^{(2)}), \quad a \in I \]

is exact for every \(f \in \mathcal{L}_n \cdot \mathcal{L}_{n-2}^c \). Then the nodes \(\{x_{nk}^{(2)}\}_{k=1}^{n} \), with \(x_{n1}^{(2)} = a \), are zeros of the quasi-orthogonal rational function

\[Q_n^{(2)}(x) = \varphi_n(x) + \tau_n \varphi_{n-1}(x), \quad \tau_n = -\frac{\varphi_n(a)}{\varphi_{n-1}(a)} \in \mathbb{C}. \]
Rational Gauss-type quadrature: Second kind

\[\alpha_{n-1} \notin \overline{\mathbb{R}} \]

- \(\alpha_n \notin \overline{\mathbb{R}} \cup \{ \overline{\alpha}_{n-1} \} \Rightarrow \{ \lambda^{(2)}_{nk} \}_{k=1}^n \not\subseteq \mathbb{R}_0^+ \)
- \(\alpha_n \in \overline{\mathbb{R}}_I \Rightarrow \{ \lambda^{(2)}_{nk} \}_{k=1}^n \subseteq \mathbb{R}_0^+ \) iff \(\tau_n = 0 \)

Rational Gaussian quadrature: \(x^{(2)}_{nk} = x^{(\mu,\alpha_n)}_{nk} \) and \(\lambda^{(2)}_{nk} = \lambda^{(\mu,\alpha_n)}_{nk} \), exact in \(\mathcal{L}_n \cdot \mathcal{L}^c_{n-1} \supset \mathcal{L}_n \cdot \mathcal{L}^c_{n-2} \)
Theorem

Let $\alpha_{n-1} \in \overline{\mathbb{R}}_I$ and suppose $c_n^{(2)} := \frac{\tau_n}{E_n} \left(\frac{1}{\alpha_{n-1}} - \frac{1}{\alpha_n} \right) \in (-1, \infty)$. Then there exist poles $\alpha \in \overline{C}_I$ (not unique), and constants $\hat{E}_n \neq 0$, $|k_n|^2 = 1 + c_n^{(2)}$, and

$$\hat{D}_n = \frac{D_n + \tau_n/E_n}{1 + c_n^{(2)}} \rightarrow \text{satisfying condition Favard theorem},$$

so that

$$\left(\frac{1-x/\alpha_n}{1-x/\alpha} \right) Q_n^{(2)}(x) = \hat{E}_n \cdot F(\varphi_{n-2}(x), k_n \varphi_{n-1}(x), \alpha_{n-2}, \alpha_{n-1}, \alpha, \hat{D}_n);$$

hence, there exist positive measures $\hat{\mu}$ on $\hat{S} \subsetneq \mathbb{R}$ (not unique), and inner product $\langle f, g \rangle_{\hat{\mu}} = \int_{\hat{S}} f(x)g(\overline{x})d\hat{\mu}(x)$, so that

$$\left(\frac{1-x/\alpha_n}{1-x/\alpha} \right) Q_n^{(2)}(x) \perp_{\hat{\mu}} \mathcal{L}_{n-1}.$$
Lemma

Suppose $c_n^{(2)} \notin (-1, \infty)$. Then there cannot exist distinct nodes $\{x_{nk}^{(2)}\}_{k=1}^n \subset I$ and weights $\{\lambda_{nk}^{(2)}\}_{k=1}^n \subset \mathbb{R}_0^+$ so that

$$\int_I f(x) d\mu(x) = \sum_{k=1}^n \lambda_{nk}^{(2)} f(x_{nk}^{(2)}), \quad \forall f \in \mathcal{L}_n \cdot \mathcal{L}_n^{c}.$$
Corollary

The zeros of $Q^{(2)}_n(x)$ are all real distinct iff

$$\Im\{\hat{D}_n\} = \frac{\Im\{1/\alpha_{n-2}\}}{|k_n|^2|E_{n-1}|^2}; \text{ i.e., iff } \Im\{\tau_nE_n\} - \Im\{1/\alpha_n\} = 0. \quad (1)$$

- $\alpha_n \in \overline{\mathbb{R}}$: (1) holds true for every τ_n for which $c^{(2)}_n \in (-1, \infty)$
 Boundary values \hat{D}^\pm_n for \hat{D}_n, in order to have that
 $\{x^{(2)}_{nk}\}_{k=1}^n \subset I$, are obtained by setting $\tau_n^\pm := -\frac{\varphi_n(\pm 1)}{\varphi_{n-1}(\pm 1)}$.
- $\alpha_n \notin \overline{\mathbb{R}}$: (1) holds true iff $\tau_nE_{n-1} = \frac{1}{\alpha_{n-1}} - \frac{1}{\alpha_n}$
 Rational Gaussian quadrature (when changing the order of the last two poles), exact in $\mathcal{L}_n \cdot \mathcal{L}\{\overline{\alpha}_1, \ldots, \overline{\alpha}_{n-2}, \overline{\alpha}_n\} \supset \mathcal{L}_n \cdot \mathcal{L}^c_{n-2}$
Corollary

The zeros of $Q_n^{(2)}(x)$ are all real distinct iff

$$\Im\{\hat{D}_n\} = \frac{\Im\{1/\alpha_{n-2}\}}{|k_n|^2 |E_{n-1}|^2}; \text{ i.e., iff } \Im\{\tau_n E_n\} - \Im\{1/\alpha_n\} = 0. \quad (1)$$

- $\alpha_n \in \overline{\mathbb{R}}_I$: (1) holds true for every τ_n for which $c_n^{(2)} \in (-1, \infty)$
 - Boundary values \hat{D}_n^\pm for \hat{D}_n, in order to have that $\{\chi_{nk}^{(2)}\}_{k=1}^n \subset I$, are obtained by setting $\tau_n^\pm := -\frac{\varphi_n(\pm1)}{\varphi_{n-1}(\pm1)}$.

- $\alpha_n \notin \overline{\mathbb{R}}$: (1) holds true iff $\tau_n \overline{E}_{n-1} = \frac{1}{\alpha_{n-1}} - \frac{1}{\alpha_n}$
 - Rational Gaussian quadrature (when changing the order of the last two poles), exact in $\mathcal{L}_n \cdot \mathcal{L}\{\overline{\alpha}_1, \ldots, \overline{\alpha}_{n-2}, \overline{\alpha}_n\} \supset \mathcal{L}_n \cdot \mathcal{L}_c^{1-n}$.
Corollary

The zeros of $Q_n^{(2)}(x)$ are all real distinct iff

$$\mathbb{S}\{\hat{D}_n\} = \mathbb{S}\{1/\alpha_{n-2}\} / |k_n|^2 |E_{n-1}|^2; \ i.e., \ iff \ \mathbb{S}\{\tau_n E_n\} - \mathbb{S}\{1/\alpha_n\} = 0. \ (1)$$

- $\alpha_n \in \overline{\mathbb{R}}_I$: (1) holds true for every τ_n for which $c_n^{(2)} \in (-1, \infty)$

 Boundary values \hat{D}_n^\pm for \hat{D}_n, in order to have that

 $\{x_{nk}^{(2)}\}_{k=1}^n \subset I$, are obtained by setting $\tau_n^\pm := -\varphi_n(\pm 1) / \varphi_{n-1}(\pm 1)$.

- $\alpha_n \notin \overline{\mathbb{R}}$: (1) holds true iff $\tau_n E_{n-1} = 1/\alpha_{n-1} - 1/\alpha_n$

Rational Gaussian quadrature (when changing the order of the last two poles), exact in $L_n \cdot L\{\overline{\alpha}_1, \ldots, \overline{\alpha}_{n-2}, \overline{\alpha}_n\} \supset L_n \cdot L^c_{n-2}$
Rational Gauss-type quadrature: Second kind

- the nodes \(\{x_{nk}^{(2)}\}_{k=1}^n \) are rational Gaussian nodes:
 \[x_{nk}^{(2)} = x_{nk}^{(\hat{\mu}, \alpha)}, \quad k = 1, \ldots, n \text{ and } \alpha \in \mathbb{R} \]
- \(\{\varphi_0, \ldots, \varphi_{n-2}, k_n \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
 \[\forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-2}^c \supset \mathcal{L}_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{S}} f(x) d\hat{\mu}(x); \]
 hence, the weights \(\{\lambda_{nk}^{(2)}\}_{k=1}^n \) are rational Gaussian weights:
 \[\lambda_{nk}^{(2)} = \lambda_{nk}^{(\hat{\mu}, \alpha)}, \quad k = 1, \ldots, n \text{ and } \alpha \in \mathbb{R} \]
- the nodes and weights can be computed by means of a modified GEP:
 \[J_n^{(2)} \check{\nu}_{nk}^{(2)} = x_{nk}^{(2)} B_n^{(2)} \check{\nu}_{nk}^{(2)}, \]
 where
 \[J_n^{(2)} = \begin{pmatrix} J_{n-1} & 0_{n-2} \\ 0_{n-2}^T & X \end{pmatrix}, \quad B_n^{(2)} = \begin{pmatrix} B_{n-1} & 0_{n-2} \\ 0_{n-2}^T & X \end{pmatrix} \]
 and \(\check{\nu}_{nk}^{(2)} \) is the corresponding normalized eigenvector.
Rational Gauss-type quadrature: Second kind

1. The nodes \(\{x_{nk}^{(2)}\}_{k=1}^n \) are rational Gaussian nodes:
 \[
x_{nk}^{(2)} = x_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \text{ and } \alpha \in \overline{\mathbb{R}}_I
 \]

2. The set \(\{\varphi_0, \ldots, \varphi_{n-2}, k_n \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
 \[
 \forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-2}^c \supseteq \mathcal{L}_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{\Sigma}} f(x) d\hat{\mu}(x);
 \]
 hence, the weights \(\{\lambda_{nk}^{(2)}\}_{k=1}^n \) are rational Gaussian weights:
 \[
 \lambda_{nk}^{(2)} = \lambda_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \text{ and } \alpha \in \overline{\mathbb{R}}_I
 \]

3. The nodes and weights can be computed by means of a modified GEP:
 \[
 J_{\left(2\right)}^{n} \nu_{\left(2\right)}^{\left(n\right)} = x_{nk}^{(2)} B_{\left(2\right)}^{n} \nu_{\left(2\right)}^{\left(nk\right)}, \text{ where}
 \]
 \[
 J_{\left(2\right)}^{n} = \begin{pmatrix}
 J_{n-1} & 0_{n-2} \\
 0_{n-2}^T & \times
 \end{pmatrix}, \quad B_{\left(2\right)}^{n} = \begin{pmatrix}
 B_{n-1} & 0_{n-2} \\
 0_{n-2}^T & \times
 \end{pmatrix}
 \]
 and \(\nu_{\left(2\right)}^{\left(nk\right)} \) is the corresponding normalized eigenvector.
Rational Gauss-type quadrature: Second kind

- The nodes \(\{x^{(2)}_{nk}\}_{k=1}^{n} \) are rational Gaussian nodes:
 \[
x^{(2)}_{nk} = x^{(\hat{\mu}, \alpha)}_{nk}, \quad k = 1, \ldots, n \text{ and } \alpha \in \mathbb{R}_I
\]

- The set \(\{\varphi_0, \ldots, \varphi_{n-2}, k_n \varphi_{n-1}\} \) forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
 \[
 \forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-2}^c \supset \mathcal{L}_{n-1} : \int_{I} f(x) d\mu(x) = \int_{\hat{S}} f(x) d\hat{\mu}(x);
 \]
 hence, the weights \(\{\lambda^{(2)}_{nk}\}_{k=1}^{n} \) are rational Gaussian weights:
 \[
 \lambda^{(2)}_{nk} = \lambda^{(\hat{\mu}, \alpha)}_{nk}, \quad k = 1, \ldots, n \text{ and } \alpha \in \mathbb{R}_I
\]

- The nodes and weights can be computed by means of a modified GEP:
 \[
 J^{(2)}_n \mathbf{v}^{(2)}_{nk} = x^{(2)}_{nk} \mathbf{B}^{(2)}_n \mathbf{v}^{(2)}_{nk}, \text{ where}
\]

\[
J^{(2)}_n = \begin{pmatrix}
J_{n-1} & 0_{n-2} \\
0_{n-2} & X \\
0_{n-2}^T & X
\end{pmatrix}, \quad \mathbf{B}^{(2)}_n = \begin{pmatrix}
\mathbf{B}_{n-1} & 0_{n-2} \\
0_{n-2}^T & X \\
0_{n-2} & X
\end{pmatrix}
\]

and \(\mathbf{v}^{(2)}_{nk} \) is the corresponding normalized eigenvector.
the nodes \(\{x_{nk}^{(2)}\}_{k=1}^{n} \) are rational Gaussian nodes:
\[
x_{nk}^{(2)} = x_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \quad \text{and} \quad \alpha \in \mathbb{R}
\]
\{\varphi_0, \ldots, \varphi_{n-2}, k_n \varphi_{n-1}\} forms an orthonormal system for the inner product \(\langle \cdot, \cdot \rangle_{\hat{\mu}} \Rightarrow \)
\[
\forall f \in \mathcal{L}_{n-1} \cdot \mathcal{L}_{n-2}^c \supset \mathcal{L}_{n-1} : \int_I f(x) d\mu(x) = \int_{\hat{S}} f(x) d\hat{\mu}(x);
\]
hence, the weights \(\{\lambda_{nk}^{(2)}\}_{k=1}^{n} \) are rational Gaussian weights:
\[
\lambda_{nk}^{(2)} = \lambda_{nk}^{(\hat{\mu},\alpha)}, \quad k = 1, \ldots, n \quad \text{and} \quad \alpha \in \mathbb{R}
\]
the nodes and weights can be computed by means of a modified GEP:
\[
\mathbf{J}_{n}^{(2)} \mathbf{v}_{nk}^{(2)} = x_{nk}^{(2)} \mathbf{B}_{n}^{(2)} \mathbf{v}_{nk}^{(2)} , \quad \text{where}
\]

\[
\mathbf{J}_{n}^{(2)} = \begin{pmatrix}
\mathbf{J}_{n-1} & 0_{n-2}^T \\
0_{n-2} & \mathbf{X}
\end{pmatrix}, \quad \mathbf{B}_{n}^{(2)} = \begin{pmatrix}
\mathbf{B}_{n-1} & 0_{n-2}^T \\
0_{n-2} & \mathbf{X}
\end{pmatrix}
\]

and \(\mathbf{v}_{nk}^{(2)} \) is the corresponding normalized eigenvector.
References

Thank you ...