Christoffel-Darboux-type Formulae for Orthonormal Rational Functions and Asymptotics

Karl Deckers

Department of Mathematics, University of Lille
Labo Painlevé UMR 8524, 59655 Villeneuve d’Ascq, France

13th International Symposium on Orthogonal Polynomials, Special Functions and Applications, June 4th, 2015
Outline

1. Orthonormal rational functions
2. Christoffel-Darboux formulae
3. Asymptotics
Outline

1 Orthonormal rational functions

2 Christoffel-Darboux formulae

3 Asymptotics
Outline

1. Orthonormal rational functions
2. Christoffel-Darboux formulae
3. Asymptotics
Orthonormal rational functions

\[f_n(x) = \frac{c_n x^n + c_{n-1} x^{n-1} + \ldots + c_0}{(1-x/\alpha_1)(1-x/\alpha_2) \ldots (1-x/\alpha_n)}, \; n = 1, 2, \ldots \]

Poles

- \(\alpha_1, \alpha_2, \alpha_3, \ldots\)
- Arbitrary complex or infinite, but different from \(\alpha_\emptyset = 0\)
- Fixed in advance

Function spaces

- \(\mathcal{L}_{-1} = \{0\}, \mathcal{L}_0 = \mathbb{C}\)
- \(n > 0: \mathcal{L}_n = \mathcal{L}\{\alpha_1, \ldots, \alpha_n\} = \text{space of rational functions with poles among } \{\alpha_1, \ldots, \alpha_n\}\)
- \(\mathcal{L} = \text{closure of } \bigcup_{n=0}^{\infty} \mathcal{L}_n\)
- \(\mathcal{L}_{-1} \subset \mathcal{L}_0 \subset \mathcal{L}_1 \subset \ldots \subset \mathcal{L}_n \subset \ldots \subset \mathcal{L}\)
Orthonormal rational functions

Rational basis

\[b_k(x) = \prod_{j=1}^{k} \frac{x}{1 - x/\alpha_j}, \quad k > 0, \quad \alpha_j \in \mathbb{C}_0 \]

\[\mathcal{L}_n = \text{span}\{1, b_1(x), \ldots, b_n(x)\} \]

Polynomials

\((\forall j : \alpha_j = \infty) \Rightarrow b_k(x) \equiv x^k\)

\[\mathcal{L}_n \equiv \mathcal{P}_n = \text{span}\{1, x, \ldots, x^n\} \]
Orthonormal rational functions

Rational basis

\[b_k(x) = \prod_{j=1}^{k} \frac{x}{1 - x/\alpha_j}, \quad k > 0, \quad \alpha_j \in \overline{\mathbb{C}_0} \]

\[\mathcal{L}_n = \text{span}\{1, b_1(x), \ldots, b_n(x)\} \]

Polynomials

\((\forall j : \alpha_j = \infty) \Rightarrow b_k(x) \equiv x^k\)

\[\mathcal{L}_n \equiv \mathcal{P}_n = \text{span}\{1, x, \ldots, x^n\} \]
Orthonormal rational functions (ORFs)
Consider an inner product $\langle f, g \rangle = \mathcal{F}\{fg^c\}$, $f, g \in \mathcal{L}$, where $g^c(x) = g(\bar{x})$ and \mathcal{F} is an hermitian positive-definite linear functional:

$$\forall f, g \in \mathcal{L} : \mathcal{F}\{fg^c\} = \mathcal{F}\{f^c g\} \quad \text{and} \quad \forall f \in \mathcal{L}\{0\} : \mathcal{F}\{ff^c\} > 0$$

\rightarrow ORFs: $\varphi_k(x)$

$\varphi_k \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}$, $\varphi_k \perp \mathcal{L}_{k-1}$, and $\|\varphi_k\| = \sqrt{\langle \varphi_k, \varphi_k \rangle} = 1$.

Quasi-orthogonal rational functions (qORFs)

$Q_n \in \mathcal{L}_n$ is called a qORF if $Q_n \perp \mathcal{L}_{n-1}(\alpha_n)$ where

$$\mathcal{L}_k(\alpha) := \left\{ \frac{p_k}{\pi_k} \in \mathcal{L}_k : p_k(\alpha) = 0 \right\}.$$
Orthonormal rational functions

Consider an inner product \(\langle f, g \rangle = \mathcal{F}\{fg^c\} \), \(f, g \in \mathcal{L} \), where \(g^c(x) = \overline{g(x)} \) and \(\mathcal{F} \) is an hermitian positive-definite linear functional:

\[
\forall f, g \in \mathcal{L} : \mathcal{F}\{fg^c\} = \overline{\mathcal{F}\{f^cg\}} \quad \text{and} \quad \forall f \in \mathcal{L}\setminus\{0\} : \mathcal{F}\{ff^c\} > 0
\]

\(\rightarrow \) ORFs: \(\varphi_k(x) \)

\(\varphi_k \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}, \varphi_k \perp \mathcal{L}_{k-1}, \text{ and } \|\varphi_k\| = \sqrt{\langle \varphi_k, \varphi_k \rangle} = 1. \)

Quasi-orthogonal rational functions (qORFs)

\(Q_n \in \mathcal{L}_n \) is called a qORF if \(Q_n \perp \mathcal{L}_{n-1}(\overline{\alpha}_n) \) where

\[
\mathcal{L}_k(\alpha) := \left\{ \frac{p_k}{\pi_k} \in \mathcal{L}_k : p_k(\alpha) = 0 \right\}.
\]
Orthonormal rational functions

Definitions

Let \(f_k = \frac{p_k}{\pi_k} \in \mathcal{L}_k \setminus \mathcal{L}_{k-1} \) with \(p_k \in \mathcal{P}_k \). Then \(f_k \) is

- **exceptional** iff \(p_k(\alpha_{k-1}) = 0 \)
- **degenerate** iff \(p_k(\overline{\alpha}_{k-1}) = 0 \)
- **regular** iff not exceptional and not degenerate

By convention \(p_k(\infty) = 0 \Leftrightarrow p_k \in \mathcal{P}_{k-1} \).

Auxiliary rational functions

\[
\phi_n(x) = \left(1 - \frac{x}{\alpha_n}\right)\varphi_n(x) \\
\psi_n(x) = \left(1 - \frac{x}{\overline{\alpha}_n}\right)\varphi_n(x)
\]
Orthonormal rational functions

Definitions

Let $f_k = \frac{p_k}{\pi_k} \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}$ with $p_k \in \mathcal{P}_k$. Then f_k is

- **exceptional** iff $p_k(\alpha_{k-1}) = 0$
- **degenerate** iff $p_k(\overline{\alpha}_{k-1}) = 0$
- **regular** iff not exceptional and not degenerate

By convention $p_k(\infty) = 0 \Leftrightarrow p_k \in \mathcal{P}_{k-1}$.

Auxiliary rational functions

$$
\begin{align*}
\phi_n(x) &= (1 - x/\alpha_n)\varphi_n(x) \\
\psi_n(x) &= (1 - x/\overline{\alpha}_n)\varphi_n(x)
\end{align*}
$$
Theorem (Three-term Recurrence)

Whenever \(\varphi_n \) is not exceptional, \(\varphi_{n-1} \) is regular, and \(\varphi_{n-2} \) is not degenerate, they satisfy a three-term recurrence relation:

\[
x \varphi_{n-1}(x) = \gamma_n \phi_n(x) + \rho_n \phi_{n-1}(x) + \tilde{\gamma}_{n-1} \psi_{n-2}(x),
\]

with initial conditions

\[
\varphi_{-1}(x) \equiv 0 \quad \text{and} \quad \varphi_0(x) \equiv \eta_0 \|1\|^{-1}, \quad |\eta_0| = 1,
\]

\[
\alpha_{-1} \in \overline{\mathbb{R}}_0 \quad \text{and} \quad \alpha_0 = \overline{C}_0,
\]

and \(\tilde{\gamma}_{n-1} \) depends on \(\gamma_{n-1}, \rho_n \) and \(\alpha_{n-1} \).
Reproducing kernels

Reproducing kernels

\[k_n(x, y) = \sum_{k=0}^{n-1} \varphi_k(x) \overline{\varphi_k(y)}. \]

which has the property that

\[\forall f \in \mathcal{L}_{n-1}, \forall y \in \overline{\mathbb{C}} : \langle f(\cdot), k_n(\cdot, y) \rangle = f(y). \]

Christoffel-Darboux formula (polynomial case)

\[k_n(x, y) = \gamma_n \left(\frac{\varphi_n(x) \overline{\varphi_{n-1}(y)} - \varphi_n(y) \overline{\varphi_{n-1}(x)}}{x - \overline{y}} \right) \]
Reproducing kernels

Reproducing kernels

\[k_n(x, y) = \sum_{k=0}^{n-1} \varphi_k(x) \overline{\varphi_k(y)}. \]

which has the property that

\[\forall f \in \mathcal{L}_{n-1}, \forall y \in \overline{\mathbb{C}} : \langle f(\cdot), k_n(\cdot, y) \rangle = f(y). \]

Christoffel-Darboux formula (polynomial case)

\[k_n(x, y) = \gamma_n \left(\frac{\varphi_n(x) \varphi_{n-1}(y) - \varphi_n(y) \varphi_{n-1}(x)}{x - \overline{y}} \right) \]
Theorem

\[c_n k_n(x, y) = \frac{b_{n-1}^c(y)}{b_{n-1}(y)} \left(\frac{\phi_n(x) \psi_{n-1}(y) - \phi_n(y) \psi_{n-1}(x)}{x - y} \right) \]

\[\bar{c}_n k_n(x, y) = \frac{b_{n-1}(x)}{b_{n-1}^c(x)} \left(\frac{\phi_n^c(x) \psi_{n-1}^c(y) - \phi_n^c(y) \psi_{n-1}^c(x)}{x - y} \right) \]

where

\[c_n = \bar{\kappa}_{n-1}^{-1} \lim_{z \to \alpha_{n-1}} \frac{\varphi_n(z)}{b_n(z)} \]

and

\[\kappa_{n-1} = \lim_{z \to \alpha_{n-1}} \frac{\varphi_{n-1}(z)}{b_{n-1}(z)}. \]
Outline of the proof:

- The second equality follows from $k_n(y, x) = k_n(x, y)$
- For the first equality we will use the connection with qORFs

Lemma

Let

$$\Phi_n(x, y) := \frac{x - y}{(1 - x/\alpha_n)(1 - y/\overline{\alpha}_n)} k_n(x, \bar{y}).$$

Then for fixed y, $\Phi_n(\cdot, y)$ is a qORF in \mathcal{L}_n.
Outline of the proof:

- The second equality follows from $k_n(y, x) = k_n(x, y)$
- For the first equality we will use the connection with qORFs

Lemma

Let

$$
\Phi_n(x, y) := \frac{x - y}{(1 - x/\alpha_n)(1 - y/\overline{\alpha_n})} k_n(x, \overline{y}).
$$

Then for fixed y, $\Phi_n(\cdot, y)$ is a qORF in L_n.
Outline of the proof (cont.):

Lemma

Let \(Q_n \in \mathcal{L}_n \) be such that

\[
(1 - x/\alpha_n)Q_n(x) = a_n\phi_n(x) + b_n\psi_{n-1}(x),
\]

with \(a_n, b_n \in \mathbb{C} \). Then \(Q_n \) is a qORF.

Conversely, suppose \(\varphi_n \) is not degenerate and let \(Q_n \in \mathcal{L}_n \) be a qORF. Then there exist constants \(a_n, b_n \in \mathbb{C} \) such that (1) holds true.
Outline of the proof (cont.):
From the previous two lemmas it follows that, if φ_n is not degenerate, then

$$\frac{x - y}{(1 - y/\alpha_n)} k_n(x, y) = a_n(y)\varphi_n(x) + b_n(y)\psi_{n-1}(x),$$

where

- $a_n, b_n \in \mathcal{L}_n^c = \mathcal{L}\{\bar{\alpha}_1, \ldots, \bar{\alpha}_n\}$
- $a_n(y)\varphi_n(y) = -b_n(y)\psi_{n-1}(y)$
- φ_n and ψ_{n-1} have common zeros iff φ_n is degenerate

hence, the Christoffel-Darboux formula follows.
Outline of the proof (cont.):
From the previous two lemmas it follows that, if φ_n is not degenerate, then

$$\frac{x - y}{(1 - y/\bar{\alpha_n})} k_n(x, \bar{y}) = a_n(y)\varphi_n(x) + b_n(y)\psi_{n-1}(x),$$

where

- $a_n, b_n \in \mathcal{L}_n^c = \mathcal{L}\{\bar{\alpha}_1, \ldots, \bar{\alpha}_n\}$
- $a_n(y)\varphi_n(y) = -b_n(y)\psi_{n-1}(y)$
- φ_n and ψ_{n-1} have common zeros iff φ_n is degenerate

hence, the Christoffel-Darboux formula follows.
Outline of the proof (cont.):
From the previous two lemmas it follows that, if φ_n is not degenerate, then

$$
\frac{x - y}{(1 - y/\alpha_n)} k_n(x, y) = a_n(y)\phi_n(x) + b_n(y)\psi_{n-1}(x),
$$

where

- $a_n, b_n \in \mathcal{L}_n^c = \mathcal{L}\{\overline{\alpha}_1, \ldots, \overline{\alpha}_n\}$
- $a_n(y)\phi_n(y) = -b_n(y)\psi_{n-1}(y)$
- ϕ_n and ψ_{n-1} have common zeros iff φ_n is degenerate

hence, the Christoffel-Darboux formula follows.
Outline of the proof (cont.):
From the previous two lemmas it follows that, if φ_n is not degenerate, then
\[
\frac{x - y}{(1 - y/\bar{\alpha}_n)} k_n(x, \bar{y}) = a_n(y) \phi_n(x) + b_n(y) \psi_{n-1}(x),
\]
where
- $a_n, b_n \in \mathcal{L}^c_n = \mathcal{L}\{\bar{\alpha}_1, \ldots, \bar{\alpha}_n\}$
- $a_n(y) \phi_n(y) = -b_n(y) \psi_{n-1}(y)$
- ϕ_n and ψ_{n-1} have common zeros iff φ_n is degenerate

hence, the Christoffel-Darboux formula follows.
If \(\varphi_n = \frac{p_n}{\pi_n} \) is degenerate, then

\[
\phi_n(x) \equiv \psi_n(x) - 1 \equiv \text{const}, \quad \text{hence} \quad \phi_n(x)\psi_{n-1}(\bar{y}) - \phi_n(\bar{y})\psi_{n-1}(x) \equiv 0
\]

\[
p_n(\bar{\alpha}_{n-1}) = 0, \quad \text{hence} \quad c_n = \kappa_{n-1}^{-1} \lim_{z \rightarrow \bar{\alpha}_{n-1}} \frac{\varphi_n(z)}{b_n(z)} = 0
\]

hence, the Christoffel-Darboux formula remains valid.
If $\varphi_n = \frac{p_n}{\pi_n}$ is degenerate, then

- $\frac{\phi_n(x)}{\psi_{n-1}(x)} \equiv \text{const}$, hence $\phi_n(x)\psi_{n-1}(\overline{y}) - \phi_n(\overline{y})\psi_{n-1}(x) \equiv 0$

- $p_n(\overline{\alpha}_{n-1}) = 0$, hence

$$c_n = \kappa_{n-1}^{-1} \lim_{z \to \overline{\alpha}_{n-1}} \frac{\varphi_n(z)}{b_n(z)} = 0$$

hence, the Christoffel-Darboux formula remains valid.
If $\varphi_n = \frac{p_n}{\pi_n}$ is degenerate, then

1. $\frac{\phi_n(x)}{\psi_{n-1}(x)} \equiv \text{const}$, hence $\phi_n(x)\psi_{n-1}(\overline{y}) - \phi_n(\overline{y})\psi_{n-1}(x) \equiv 0$
2. $p_n(\overline{\alpha}_{n-1}) = 0$, hence

$$c_n = \kappa_{n-1}^{-1} \lim_{z \to \overline{\alpha}_{n-1}} \frac{\varphi_n(z)}{b_n(z)} = 0$$

hence, the Christoffel-Darboux formula remains valid.
Asymptotics

Additional assumptions

- \(\mathcal{F}\{f\} = \int_{I} f(x) d\mu(x), \ I = [-1, 1] \)
- \(\int_{I} \frac{\log \mu'(x)}{\sqrt{1-x^2}} dx > -\infty \)
- \(\{\alpha_k\}_{k>0} \) is bounded away from \(I \)

Joukowsky transform

- \(x = \frac{1}{2}(z + z^{-1}) \) and \(y = \frac{1}{2}(u + u^{-1}) \), with \(|z| \leq 1 \) and \(|u| \leq 1 \)
- \(\alpha_k = \frac{1}{2}(\beta_k + \beta_k^{-1}) \), with \(|\beta_k| < 1 \)
- \(\hat{\mu}(E) = \mu(\{\cos \theta, \theta \in E \cap [0, \pi]\}) + \mu(\{\cos \theta, \theta \in E \cap [-\pi, 0]\}) \)
- \(\int_{I} f(x) d\mu(x) = \frac{1}{2} \int_{-\pi}^{\pi} \hat{f}(z) d\hat{\mu}(\theta), \ z = e^{i\theta} \)
Asymptotics

Additional assumptions

- $\mathcal{F}\{f\} = \int_I f(x) d\mu(x)$, $I = [-1, 1]$
- $\int_I \frac{\log \mu'(x)}{\sqrt{1-x^2}} \, dx > -\infty$
- $\{\alpha_k\}_{k>0}$ is bounded away from I

Joukowsky transform

- $x = \frac{1}{2}(z + z^{-1})$ and $y = \frac{1}{2}(u + u^{-1})$, with $|z| \leq 1$ and $|u| \leq 1$
- $\alpha_k = \frac{1}{2}(\beta_k + \beta_k^{-1})$, with $|\beta_k| < 1$
- $\hat{\mu}(E) = \mu(\{\cos \theta, \theta \in E \cap [0, \pi]\}) + \mu(\{\cos \theta, \theta \in E \cap [-\pi, 0]\})$
- $\int_I f(x) d\mu(x) = \frac{1}{2} \int_{-\pi}^{\pi} \hat{f}(z) d\hat{\mu}(\theta)$, $z = e^{i\theta}$
Asymptotics

\[c_n k_n(x, y) = \phi_n(x) \frac{b_{n-1}(y)}{b_{n-1}(y)} \psi_{n-1}(y) \left(\frac{1 - \frac{\phi_n(y)}{\psi_{n-1}(y)} \cdot \left[\frac{\phi_n(x)}{\psi_{n-1}(x)} \right]^{-1}}{x - y} \right) \]

Lemma

\[\lim_{n \to \infty} \left(\frac{1 - \frac{\phi_n(y)}{\psi_{n-1}(y)} \cdot \left[\frac{\phi_n(x)}{\psi_{n-1}(x)} \right]^{-1}}{x - y} \right) \frac{(1 - \beta_n z)(\bar{u} - \bar{\beta}_{n-1})}{2z\bar{u}(1 - \beta_n \bar{\beta}_{n-1})} = \frac{1}{1 - z\bar{u}} \]

locally uniformly in \(\overline{C}_I \times \overline{C}_I \).
Asymptotics

\[c_n k_n(x, y) = \phi_n(x) \frac{b_{n-1}(y)}{b_n(y)} \psi_{n-1}(y) \left(\frac{1 - \frac{\phi_n(y)}{\psi_{n-1}(y)} \cdot \left[\frac{\phi_n(x)}{\psi_{n-1}(x)} \right]^{-1}}{x - y} \right) \]

Lemma

\[
\lim_{n \to \infty} \left(\frac{1 - \frac{\phi_n(y)}{\psi_{n-1}(y)} \cdot \left[\frac{\phi_n(x)}{\psi_{n-1}(x)} \right]^{-1}}{x - y} \right) \frac{(1 - \beta_n z)(\bar{u} - \bar{\beta}_{n-1})}{2z\bar{u}(1 - \beta_n \bar{\beta}_{n-1})} = \frac{1}{1 - z\bar{u}}
\]

locally uniformly in \(\overline{C}_I \times \overline{C}_I \).
Consider the Blaschke products \(B_k(z) = \prod_{j=1}^{k} \frac{z-\beta_j}{1-\beta_j z}, \quad k > 0 \) and outer spectral factor \(\sigma(z) = \exp \left\{ \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log \mu'(\theta) d\theta \right\} \).

Lemma

\[\exists \varepsilon_n, \rho_{n-1}, \ |\varepsilon_n| = |\rho_{n-1}| = 1, \text{ such that} \]

\[\lim_{n \to \infty} \frac{\varepsilon_n \sqrt{2}z(1+\beta_n^2)}{\sqrt{1-|\beta_n|^2}(1-\beta_n z)} B_{n-1}(z) \phi_n(x) = \sigma^{-1}(z) \]

\[\lim_{n \to \infty} \frac{\rho_{n-1} \sqrt{2}u(1+\overline{\beta}_{n-1}^2)}{\sqrt{1-|\beta_{n-1}|^2}(u-\overline{\beta}_{n-1})} B^c_{n-1}(\overline{u}) \frac{b_{n-1}(\overline{y})}{b_{n-1}(\overline{y})} \psi_n(y) = \sigma^{-1}(\overline{u}) \]

_locally uniformly in \(\overline{\mathbb{C}}_I \).\]
Asymptotics

Theorem

Suppose \(\int_I \frac{\log \mu'(x)}{\sqrt{1-x^2}} \, dx > -\infty \) and assume \(\{\alpha_k\}_{k>0} \) is bounded away from \(I \). Then \(\exists \lambda_n, |\lambda_n| = 1 \), such that locally uniformly in \(\overline{C}_I \times \overline{C}_I \)

\[
\lim_{n \to \infty} C_n B_{n-1}(z) B_{n-1}(u) k_n(x,y) = \left[(1 - z\bar{u})\sigma(z)\sigma(u) \right]^{-1},
\]

where

\[
C_n = \frac{\lambda_n(1 + \beta_n^2)(1 + \bar{\beta}_{n-1}^2)c_n}{\sqrt{(1 - |\beta_n|^2)(1 - |\beta_{n-1}|^2)(1 - \beta_n\bar{\beta}_{n-1})}},
\]

\(x = \frac{1}{2}(z + z^{-1}), |z| < 1 \), \(y = \frac{1}{2}(u + u^{-1}), |u| < 1 \), and

\(\alpha_k = \frac{1}{2}(\beta_k + \beta_k^{-1}), |\beta_k| < 1 \).
Remark

Whenever at least one of α_{n-1} and α_n is real, then

$$|c_n| = |\gamma_n|^{-1}, \text{ and}$$

$$\lim_{n \to \infty} C_n = 2.$$

Whenever both α_{n-1} and α_n are not real, then certainly

$$|c_n| \neq |\gamma_n|^{-1}$$

but this does not necessarily imply that

$$\lim_{n \to \infty} C_n \neq 2.$$
Remark

Whenever at least one of α_{n-1} and α_n is real, then

\[|c_n| = |\gamma_n|^{-1}, \text{ and} \]

\[\lim_{n \to \infty} C_n = 2. \]

Whenever both α_{n-1} and α_n are not real, then certainly

\[|c_n| \neq |\gamma_n|^{-1} \]

but this does not necessarily imply that

\[\lim_{n \to \infty} C_n \neq 2. \]
Remark

Whenever at least one of α_{n-1} and α_n is real, then
\[|c_n| = |\gamma_n|^{-1}, \text{ and} \]
\[\lim_{n \to \infty} C_n = 2. \]

Whenever both α_{n-1} and α_n are not real, then certainly
\[|c_n| \neq |\gamma_n|^{-1} \]
but this does not necessarily imply that
\[\lim_{n \to \infty} C_n \neq 2. \]
References

Thank you ...