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Abstract. This is a survey paper on stable compact convex sets in
Banach spaces. Particular case of stable random zonotopes is given
main attention. One unexpected application to statistics is discussed.

1 Introduction

In the paper we present a small survey of recent results on stable convex com-
pact sets in Banach spaces. We are interested in limit theorems for sums of random
sets (summation of sets everywhere in this paper is in the sense of Minkowski),
and at once it is necessary to say that at present there exists the general theory
of summation of random sets, developed mainly in 1975-1985. During this period
there was a big international group of probabilists working on Probability in Banach
spaces, and the application of methods and results from this theory (it is necessary
to have in mind that a set of all compact convex sets in a Banach space is not a
Banach space itself) allowed to create a general theory of infinitely divisible laws
and limit theorems for sums of independent random convex compact (cc) sets (see,
for example [11], [12] and references therein).
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After the main theory of summation of random sets was created, there was some
loss of interest in random sets, but during last 5-6 years this interest arose again.
Here it is necessary to mention series of papers by G. F. Lawler, O. Schramm and W.
Werner (see, for example, [16], [17],[18]), concerning self-avoiding walks on lattices
and planar Brownian motion, which were inspired by problems and conjectures
in theoretical physics. Another topic where random sets appear is the so-called
convexification of stochastic processes, see the survey paper by Yu. Davydov and
R. Zitikis in this volume [8].

One more motivation to return to random sets was to understand more deeply
the structure of stable laws in the space of compact sets even on plane (not speaking
about general Banach spaces). What is meant by the word ”structure” now we shall
explain in more details, but at first we shall introduce some notation.

Let B denote a separable Banach space with a norm || - ||. Its dual space then
is denoted by B* and duality by f(z), f € B*, z € B. For subsets A,C C B and
a real number a Minkowski addition and homothetics, respectively, are defined by

A+C={a+c:a€ A, ceC}, aA={aa:a€ A}.

Let K(B) be the collection of nonempty compact subsets of B. It becomes a com-
plete separable metric space when endowed with the Hausdorff distance &

A,C) = inf ||a — inf ||a —
6(4,0) ma»x{jlelg inf [la —cll, Sup inf |la —c|l}
= inf{e >0: A C C*, C C A7},

where D = {z € B : §(z,D) < ¢} and 6(z,D) = inf{||lz — y|| : y € D} for
D C B. We also denote ||A|| = 6({0},4) = sup{||a|]| : a € A} for A € K(B).
Two important subsets of K(B) are the set cok(B) of cc subsets of B and the set
coKo(B), consisting of cc sets containing 0.

In a metric space S we can define atomic distribution, which prescribes all
mass to at most countable set of points, and diffuse measure, which assigns zero
mass for each point s € S. If additionally there is a linear structure in S and it is
infinite dimensional, then we shall say that a measure p is trivially diffuse, if it is
supported by one dimensional linear manifold generated by some fixed element of
S. For example, if a(t) is a fixed continuous function on [0,1] and X is a random
variable with a density, then random functions a(t)+ X and Xa(t) give us examples
of trivially diffuse measures on C([0, 1]), while the distribution of Brownian motion
is a non-trivially diffuse measure on the same space. The space K£(B) is not a linear
space, but we can define trivially diffuse measure in this space as follows. We say
that a measure p on K(B) is trivially diffuse if it is concentrated on the sets of the
form tA, t > 0 or A+ z, z € B, where A is a fixed cc set in Banach space B.
In many spaces Gaussian measures are the most simple examples of non-trivially
diffuse measures, but it is known (see, for example [11], [23]) that in K(B) Gaussian
random cc sets are of the form A + X, where A is a fixed cc set in B and X is
a Gaussian vector in B. The same is true for all stable random convex compact
sets with stability index 1 < a < 2, while in case 0 < a < 1 we can get non-
trivially diffuse measures. It is an interesting question what is the support for such
non-trivially diffuse measures, that is, how look like typical sets on which these
measures are concentrated. As in the case of Brownian motion in C([0,1]) we can
expect some irregularity. Special case of stable random cc sets are the so-called
countable stable random zonotopes, which were introduced in [7] and later studied
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in [6]. It was realized that even on plane the structure of the boundary of these
random zonotopes is rather complicated. Although at present we have no final
answer about the boundary of such random cc sets, in section 3 we will introduce
these sets and formulate several results from [4], [21], which confirms conjecture
of the authors of [6] on Hausdorfl dimension of the set of extremal points of the
boundary of stable countable random zonotopes.

Rather unexpectedly study of the boundary of random stable zonotopes gave
rise to the new idea how to estimate parameters of multivariate stable laws and later
on was used in estimating tail index of univariate distributions. We will present
this idea and results from papers [6], [5], [20].

The paper is organized as follows. In section 2 we give three types of description
of stable cc sets in Banach space and introduce the notion of Lévy motion with
values in (B). In section 3 we introduce countable stable random zonotopes and
present results, connected with the structure of the boundary of such zonotopes on
plane. In section 4 we formulate some recent results from [20], on estimation of
tail index and parameters of stable laws.

2 Representation of a-stable convex compact sets, 0 < a <1

A random compact set K in a Banach space B is a Borel measurable function
from a probability space (2, F, P) into K(B). If K € coK(B) a.s. then K is called
a random compact convex set (random cc set).

We shall deal with stable cc sets and use the following definition (see [11])

Definition 2.1 A random compact convex set K is called a-stable, 0 < a < 2
if for any K4, K> independent and distributed as K and for all a,b > 0 there exist
sets C, D € coK(B) such that

aKy +bKy +C 2 (a® +b*)Y/*K + D.

K is strictly a-stable if C' and D can be chosen to be {0}. If p = 2, then K is called
Gaussian.

In what follows = means equality of distributions.

We consider only the case 0 < a < 1, since it was proved in [11] that if K is
a-stable random convex compact set and 1 < a < 2, then K = {£} + D a.s., where
¢ is a-stable random element in B and D is a fixed nonrandom cc set.

Let K1 = {4 € coK(B) : ||A|| = 1} and let o be a finite Borel measure on Kj.
Without loss of generality we may assume that o is a probability distribution, that
is 0(K1) = 1. Let 6 be a real positive a-stable random variable, 0 < a < 1.

By M, we denote a positive independently scattered random measure on Borel
sets of K1 such that M,(A) Z (0(A))'/*8 for each Borel set A. Then M, is called
a positive a-stable random measure with the control measure o.

The first representation of an a-stable cc set involves stochastic integral with
respect random measure M, and was proved in [11].

Theorem 2.2 Let 0 < a < 1. A random set K (w) is a—stable compact convex
set in B if and only if

K:A—|—/ zMy(dz) a.s.,
K1

where A € coK(B) and M, is a positive a—stable random measure on K1 with a
control measure o.
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The second representation uses Poisson random measure and integral. Such
representation for the countable zonotopes in R? was obtained in [7], general case
was considered in [6]. In order to formulate this result we need some more notation.

Let (S,S,n) be a measure space, and let Sp = {4 € S : n(A) < co}. A Poi-
son random measure N on (S,S,n) is an independently scattered o-finite random
measure such that for each set A € S the random variable N(A) has a Poisson
distribution with mean n(A). Then n is called the control measure of N.

Theorem 2.3 Let Il be a random Poisson measure on K1 X Ry with control
measure o Xy, where v is the measure on R with the density x=/(+1) 0 < o < 1.
Then a random set K(w) is a—stable compact convex set in B if and only if

KZA+ / ot (dz, dt),
K1 XR+

where A € coK(B).

o will be called spectral measure of K.

Now we formulate the third representation of a-stable random cc sets. This
series representation usually is called LePage or Lévy—LePage representation, but
the name of Khinchine probably must be added, since he was the first to derive
such representation , (see [14]). We recommend J. Rosinski paper [22] for different
series representations of Lévy processes and especially for his historical remarks on
this topic.

To formulate the series representation we need some more notation. Let (1;)
be independent identically distributed (iid) random variables with exponential dis-
tribution , that is, P{n; >t} =e~*, ¢ > 0. Set T; = >_7_, m;, j > 1. The sequence
(T';) defines the successive times of jumps of a standard Poisson process.

Let ¢ be a positive real valued random variable such that ||(||3 = E¢® < oo
and let ({;) be independent copies of {. Throughout

1-a
(2 - a)cos(ma/2)’

Theorem 2.4 Assume that Y, is a strictly a-stable random conver compact
set in B with 0 < a < 1 and corresponding spectral probability measure o. Let (&;)
be a sequence of independent random elements on Ky having distribution o, and
assume that the sequences (T'y), () and (ex) are independent. Then the series

Cq =

callCllZt ST e, @2.1)

k=1
converges almost surely in K(B) and this series is distributed as Y.

Each of these three representations is useful in particular problems connected
with stable random elements. In the context of random cc sets the series represen-
tation is useful when one tries to define Lévy motion with values in cok(B). Here
it is appropriate to mention that X(B) is not a linear space and the difference of cc
sets A and B can be defined not for all A and B. But if there exists a set C' for which
A+ C = B, then it is easy to see that it is unique. Therefore if one considers a
process X (t), t € [0,1] with values in coXC(B), then the problem to define a process
with independent increments is not a trivial one. In [6] we proposed the following
two definitions.
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Definition 2.5 Let s < ¢, s,t € [0, 1]. The increment X (¢) — X (s) of a random
cc set process, if it exists, is such a random cc set, that

X(s)+ (X(t) — X(5)) = X(t) a.s.

It is possible to formulate (see [11]) a criterion, expressed in terms of a support
process ( we shall introduce this notion later ) and which ensures the possibility to
define increments for a process with values in £(B). Now we define Lévy motion
in coK(B).

Definition 2.6 Let 0 < a < 1. A cc set process {Y(¢), t € [0,1]} is called

a-stable cc set Lévy motion if

i) Y(0) = {0}

ii) the increments of the process (Y (t),¢ € [0, 1]) are well defined and are inde-
pendent: random compact convex sets Y (t2) — Y (t1),...,Y (tn) — Y (tn-1)
are independent for any 0 < #; < --- < t, <1;

iii) if 0 < s <t <1 then Y(t) — Y(s) has a-stable distribution and
Y(t) —Y(s) 2 (t —s)/2Y(1).

It is possible to prove (see [6]) that the process

Yalt) =ca Y Lo (Ui)Ty ek, t€10,1] (2.2)
k=1

is a-stable cc set Lévy motion. Here {Uj} are independent uniformly distributed
random variables on [0,1], {e} are iid on K;(B) with a distribution o and
0 < a < 1. All sequences (T'y), (Ug), and () are assumed to be independent.

Having defined Lévy motion in K(B), the next step is to prove the invariance
principle and this was done in [6].

An interesting (and most probably, difficult) problem is the rate of convergence
in the series representation even on X(R?) , not speaking about general case of
K(B). Namely, we would like to know how close to stable random cc set are the
partial sums of the series (2.1), that is, we would like to compare distributions of
S T ey and 2% T, /%y over some class of sets (here the terminology is a
little bit ambiguous - we speak about distribution of a random cc set as a function
on Borel o-algebra of K(B)). At present the optimal rates of convergence in series
representation are obtained only in the case of one-dimensional or finite-dimensional
random variables g;’s (see [2], [3])-

The rates of convergence in series representation of stable laws are interesting
for the following interpretation (it was not formulated explicitly in both papers
[2], [3]). For the simplicity of formulation let us consider one-dimensional case.
It is well known, that classical limit theorems and rates of convergence are quite
different in case of the Gaussian limit law (o = 2) and stable limit laws (0 <
a < 2). But if we consider the rates of convergence in series representation as the
rates in special summation scheme, then these results resemble classical summation
results in Gaussian case. In order to demonstrate this similarity better, we present
the results in parallel two columns, on the left one presenting results in series
convergence (0 < a < 2), on the right one - classical results in CLT with Gaussian
limit law (@ = 2). Let us denote

Ay = Ap(X) = supt" P{|X| > t}.
>0
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On the left column A,, stands for sup |P(S, € A) — G4(A)| and sup is taken over
all Borel subsets A, while on the right column A,, stands for the usual

sup, |P(Z, < z) — ®(x)|, where ® stands for the standard normal law (in this
column without loss of generality we assume that EX; = 0 and EX? = 1).

n n
Sn =Y T, Xy Zy=n""?% " Xy
k=1 k=1

limit law Gy, if E|X1|* < oo limit law @, if EX? < oo
if Agys < 0 if Aogs < 0

then A,, < Cn~%/ then A, < Cn~9/?
if B|X;]*" < o0 if B|X;*" < o0

then A, = o(n"%/) then A, = o(n=%?)
? if E|X1|*¥ < 0o, k > 3, then
o

there are asymptotic expansions

Question marks on the left column mean that at present we do not know how
to construct asymptotic expansions in the series representation. There are some
additional restrictions on §, we refer to above cited papers [2], [3] for precise for-
mulations, here our aim was to show similarity between convergence to Gaussian
and stable laws: in both cases main parameters, determining convergence and con-
vergence rates, are the moments of summands.

3 Structure of the boundary of countable stable zonotopes

In this section we consider the so-called countable stable zonotopes in Banach
spaces B, which were introduced in [7] in the case of B = R¥ and general case of
Banach space B was considered in [6]. At first we shall formulate general theorem
giving the relation between limit theorems in B and limit theorems for zonotopes
in £(B). By a zonotope we call a set > ;_,[0,2;], where z;, € B, k =1,...,n.
As usual, [0,z] = {y = az, 0 < a < 1}, and summation is in the Minkowski sense.
A countable zonotope is Y oo [0, zx], if the series converges in K(B). If we take
random end points of segments, then we get a random cc set

k=1

Suppose that &;, ¢ > 1 are iid random elements in B and let us denote

Sn=_ &
k=1

It is natural to expect that limit relations for Z,, and S,, imply each other. For
0 < a <1 let us consider limit relations:

b1 Z, 25 Yy, (3.1)

by Sn = Moy (3.2)
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where Y, is a a-stable compact convex set in B and 7, is a a-stable random element
in B.

Theorem 3.1 Limit relations (3.1) and (3.2) are equivalent. Moreover, Y, is
a countable zonotope, i.e.

Ya = Z[Oaék]a

k=1
with €} being random vectors in B.

Proof The implication (3.2) = (3.1) was proved in [6], the implication (3.1) =
(3.2) seems to be a new fact, therefore we sketch its proof. Now we need a notion
of the support process of a compact random set. Let Bf = {f € B* : ||f|| < 1}.

Definition 3.2 The support function of a subset A C B is the function s4
defined on B} by the equality

s4(f) := sup f(x).

z€EA

If A is compact, then s4(f) < oo for all f € B}, moreover (see [12])
d(A,B) = [|sa — sBllw

for all A,B € coB, in particular ||A[| = ||salloc. Here [|salloo := supsem: [s4(f)]-
Let us introduce the metric d* on B}

d*(f,9) = > 27" f(w:) — g(z:)l, f,g€B;

where T1,Ta,... is a fixed dense set in the unit sphere S; := S;(B) = {z € B :
||z|| = 1}. Then it is known that T := (B}, d*) is a metric compact. Let C(T') stand
for the usual separable Banach space of continuous functions on metric compact T
with supremum norm. If K is a random cc set , then its support process sk ( we
on purpose use ”process” instead of ”function” , since this is a function with values
in a function space) is a random element with values in C(T).
Relation (3.1) means that random cc set [0, ;] belongs to the domain of the
attraction of some stable random cc set and we shall write this fact in short
[0,&1] € DAL(K(B)). Similarly, the relation (3.2) will be denoted as & € DA, (B).
Taking into account that every Banach space B is of type a-stable for a < 1
we have the following result on the DA, (B) (see, Theorem 7.11 and Corollary 6.20
in [1], where a reader can find also the definition of a-stable type space).

Theorem 3.3 Let B be a separable Banach space, a < 1, and o - a finite
measure on unit sphere S1. Let X be a B-valued random element. The following
conditions:

i) t*P(||X|| > t) is a slowly varying function,

i) for every o-continuity set A C Sy,

oy PAX/IX] € A, [|X]| > 8} o(A)
t—o0 P{||IX]| >t} o(S1)’

are necessary and sufficient for X € DA, (B) with the a-stable limit law with
spectral measure o.
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Now, having all these preparations done, the proof of the implication
(3.1) = (3.2) is easy. Using isometry map from coK(B) to C(T'), given by A — s4
(see [11]) and the fact that [0,£1] € DAL(K(B)) we get sjo¢,) € DAL(C(T)).
Since C(T) is the separable Banach space, the condition i) for si¢,) implies that
t*P(||X|| > t) is a slowly varying function, that is, we have i) for £;. Here we used

the equalities || A| = [[salloc and [[[0, & ]Il = [|&1]-
The second condition i) for & can be obtained from the relation (see [11])
. [Oa 51]
lim at*Pq—"———-€ A, > b, =0(A4),
i ot P, € 4 6012 0} =0

where o is a spectral measure of Y, that is, a measure on the unit ball ;. From
this relation in a standard way we can derive 1) for & with ¢(C), where C is a
Borel set on the unit sphere of B and 6(C) = 0(A¢) with Ac = |J, [0, z]. Here
we use the evident relation

[0761] €1
—2=—c Ao = eCy.
{II[O,&]II } {||§1|| }
Having both conditions of Theorem 3.3 for &, from this theorem we get & €
DA, (B), that is, relation (3.2). O

On one hand, the distribution of random countable zonotopes Y, presents the
most simple example of non-trivially diffuse measures on coX(B), on the other hand,
the sets, on which these measures are concentrated, have not so simple structure.
Even on the plane still there are unanswered questions about the support of these
measures, therefore from now on we restrict ourselves to the case B = R2.

Taking into account series representation, countable stable random zonotope
can be written

Yo 23 T, V0,4, (3.3)
k=1

where , as usual, I'y = n1 +---+n and €, k > 1is a sequence of iid random vectors
on unit circle on the plane. Let o stand for the distribution of 1. Let us assume that
o is a continuous distribution. One can think of the random set (3.3) as a polygon
with countably many sides, the length of k-th side is 1“,:1/ * and the direction of this
side is given by ¢ ( to be more precise, for each k there are two parallel sides of the
same length). The structure of the boundary of such a set is rather complicated,
since between any two sides of such zonotope there is again infinitely many sides.
So if one takes the set of extremal points of the boundary, it resembles Cantor set
(from the boundary of the set from each side we remove interior points of this side,
leaving only end points). The question about Hausdorff dimension of this random
set of extremal points on the plane remains as open problem. Although it was not
stated in [6], all three co-authors of this paper conjecture that, with probability
one, the Hausdorff dimension of this set is a.

As a first step in solving this problem in [4] there was considered a non-random
Cantor set on real line, constructed by means of a sequence A\, = kP, k > 1 with
p =1/a > 1. Such sequence was chosen for the reason that the lengths of sides

of a stable countable random zonotope on plane are F;l/ “k > 1 and EI‘;I/ @

is asymptotically equivalent to k~'/® (see formula (5.5) in [19]). Therefore the
sum 27 Ay well approximates the mean value of the length of the boundary
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of countable random stable zonotope. In order to formulate the main results from
[4] we shall repeat the construction of a Cantor set obtained by a sequence. Let
A = {Ax }ren be a sequence of non-negative numbers, such that >~ Ay = K < +oc.
We can associate to any sequence A a Cantor set C'y in the following way. We start
with a closed interval Iy = [0, K] of length K. In the first step we remove from I
an open interval of length )\, getting two intervals of step 1, namely I} and I3,
and a gap of length A;. The position of this gap will be determined if we define
the length of I}, and this will be done when we explain our further steps. From
interval I} we remove Az, from I} we remove )3, and so on. The length of I} is the
sum of the lengths of all intervals which will be removed from this interval by the
construction, and it is easy to see that

oo 2"T-1 o 271
BI=Y" > Xanyy, =303 Xengy
n=1 j=0 n=1 j=9n-1

In what follows, we use the notation diam(I) = |I| for any interval.

In step k of this construction we have 2* intervals, I¥, I¥, ..., I%,  and for
each £,0 < £ < 2¥ —1, we remove from I} an open interval of length Agx 4, forming
two intervals I&*! and I} and a gap of the length Ay 4, so the following relation

o1
holds
7| = 115+ Aar e + |I§Zfl|-
It is not difficult to verify that for all kK = 0,1,... and £ =0,1,...,2%¥ — 1, we

have
co (£4+1)2"7k_1

IHED DD DI s
n=~k

j=tan—k

Let us denote

2k _1
ck= U It
i=0
then
Cr=[)C%
k=0

is the constructed set, and we shall call it Cantor set associated to the sequence .

As it was noted in [4], this construction is quite general, since in fact any Cantor
set (of zero Lebesgue measure) can be obtained in this way for an appropriate choice
of the sequence. Also it is clear from the construction of the Cantor set associated
to a given sequence, that the specific order in which the gaps appear in the sequence
determines the resulting Cantor set. Let o : N — N be a bijective map, we say that
the sequence {\, (1) }ren is a rearrangement of A and denote it by o()). In general,
a rearrangement of the original sequence yields a different Cantor set. Finally,
before the formulation of the results, we recall the definitions of Hausdorff measure
and dimension (see, for example, [10]).

Definition 3.4 Let A C R be a Borel-measurable set and o > 0. For § > 0
let

HE(A) = inf{ 3 (diam(E;))® : E; open, U E; D A, diam(E;) < 5}.
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Then, the a-dimensional Hausdorff measure of A, H*(A), is defined as
H(A) = lim HE(A),
and the Hausdorff dimension of A is,
dimg(A) = sup{a : H*(A) > 0}.

If for some choice & = s, 0 < H?*(A) < oo, then A is called an s-set. As in
[4] we will use only the Hausdorff dimension therefore from now on we omit the
subscript H.

Now the main results from [4] can be stated as follows

Theorem 3.5 Let A = {\;}ren be defined by Ay = (1/k)?, p > 1. Then C, is
a 1/p-set, precisely,

D 1/p . 1/p
TESLPPIES

20 — 2 p—
and
. 1
dim Cy = —.
p
If 0(A) is any rearrangement of the sequence A = kP, k € N, with p > 1, then
1
0< dimCU(A) < 5

Furthermore, for each 0 < s < 1/p, there exists a rearrangement os(A) such that
Co,(n) 18 an s-set.

The next step is to allow for the lengths of intervals to be random, having in
mind that the length of sides of a stable zonotope is I';”, and this was done in
a recent paper [21]. We need one more notation. If A\, = p,? where p = {ux},
pur > 0, and p > 0 are such that A is summable, then C will be denoted by C,, p.

Now suppose that we have a sequence of real non-negative random variables
Xp,n > 1, defined on some probability space (Q, F, P). If series > ,-; X, con-
verges a.s. for some p > 0 then Cx ; is well defined random Cantor set associated
to the sequence X, *. The main result from [21] can be formulated as follows.

Theorem 3.6 Let a sequence X,,,n > 1 of random variables introduced above
satisfy the following condition

D P{X — k| > h(k)} < oo (3.4)

k=1
with some function h(z), which is monotone, 0 < h(z) < z, h(z)z=* | 0, as
x — oo and

D h(27)27 < co.
j=1
Then for any p > 1
P{dimH(Cx,p) = p_l} =1

and

P{0 < HYP(Cx,) < o0} =1,
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It is appropriate to mention that no assumption about independence of random
variables X} is made, the only assumption is (3.4) which means that as k — oo
random variables X; must become more and more concentrated around k. From
this general result one can derive results in the case where Xj is a sum of iid
random variables, in particular Xy = T'y. Let I' = {T'x}, with [}, = Ele M,
where 1;,7 > 1 are i.i.d. random variables with standard exponential distribution,
ie, P{m > z} = exp(—z), > 0. It is not difficult to see that {I';} satisfies
conditions of Theorem 3.6 and we have

Corollary 3.7 For anyp>1
P{dimg(Crp) =p~', 0<H/?(Cr,) < oo} =1.

All above formulated results concern sets on the line, so they only indirectly
support our conjecture about the Hausdorff dimension of the set of extremal points
of a countable stable random zonotope on the plane. And at present there is only
a small hope to investigate the boundary of such zonotopes in higher dimensions.

4 A new estimator of the tail index

In this section we will formulate some results from [20] (see also [6], [5]) where
some new estimator of tail index was proposed. The idea of this new estimator came
when considering random stable zonotope. If we take random stable zonotope on
plane, it’s the largest side has the length I';’ /% and the second largest is 'y e,
Simple calculations show that

“1/a o
E(lr«jl/a) :E(m?:m)l/ - aj—l'

Since the quantity «/(a + 1) is a simple function of «, so estimating this quantity
we will get an estimate for tail index «, too.

In [6] and [5] this idea was applied to estimate parameters - index of stability
and spectral measure - of multivariate stable laws, later it was noticed that it works
in general problem of estimating the tail index for heavy-tailed distributions. We
shall formulate main result from [20].

Let us assume that we have a sample X3,..., Xy from distribution F', which
satisfies the second order asymptotic relation (as  — o)

1—F(z) =Ciz %+ Cox P +o(z ), (4.1)

with some parameters 0 < a < 8 < 0o. The case 8 = oo corresponds to Pareto
distribution, 8 = 2a — to stable distribution with exponent 0 < a < 2. Here
may be it is appropriate to mention, that in many papers, devoted to tail index
estimation, the second order asymptotic relation is used in different form with
different parameters v, p (see, for example, [13], [9] ) but both forms are equivalent
and there is a simple relation between (a, 8) and (v, p).

We divide the sample into n groups V4, .. ., V,,, each group containing m random
variables, that is, we assume that N = n -m. (In practice we choose m and then
n = [N/m], where [a] stands for the integer part of a number a > 0.) Let

Mg) = max{X;: X; € V;}
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and let Mg) denote the second largest element in the same group V;. Now let us

denote
(2)

= M S—n i, Zn=n"'S
K/nz—ma n—.ZOK'nw n="n n-
n =
To simplify the formulations, let us denote
a . -1
, = Sh.
1+a p=non
The following result was proved in [20].
Theorem 4.1 Let us suppose that F satisfies (2) with a < 3 < oo. If we
choose

p:

n = en N2G/OH20) I N1/(420)

where ey — 0, as N = oo and ( = (8 — a)/a, then

V(B = p) =>N-r00 N(0,0%),
where 0% = lim,_, 02 = a((a +1)?(a+2))7L.

Since this topic of tail estimation is rather far from convex compact random
sets, we shall not go into details, sending the interested reader to the papers [6],
[5], and especially to [20], where some simulation results are provided. Our aim
was to demonstrate, that sometimes rather abstract mathematical results give rise
to practical applications.

5 Concluding remarks

1. There are some interesting open problems, the first one, of course, is the
Hausdorff dimension of the set of extremal points of the boundary of a countable
stable zonotope on the plain, more precisely, the lower bound for this dimension,
since the upper bound (easy part) we essentially had when we were writing the
paper [6]. Most probably, the problem in higher dimensions is more difficult, but
we conjecture that the Hausdorff dimension of a-stable random zonotope is a in
all finite-dimensional spaces, provided that the spectral measure is non-atomic .
Surprisingly, it seems that the structure of the boundary of countable stable zono-
tope in infinite—-dimensional case is more simple. For the simplicity of explanation
(the same picture must be in all Banach spaces) let us assume that B = [, and a
distribution of £; is non-trivially diffuse and infinite dimensional in the sense that
P(ey € L) = 0 for any finite-dimensional subspace L C l. Then the countable
stable zonotope

o
Yo = T %00,e4,
k=1

is infinite-dimensional parallelepiped, since if we take the direction £; and denote
by Ly the subspace, generated by £;, then with probability 1 2 will be in I3\ L;.
Similarly, with probability 1 3 will be in I3\ La, where L is a subspace generated
by €1 and €2, and so on. Thus, there will be no such effect as on plane, when all
sequence of sides of a zonotope are on the same plane. But even in such compara-
tively simple situation it is not difficult to see that the set of extremal points of the
boundary of such infinite-dimensional parallelepiped is of continuum cardinality,
and the question about Hausdorff dimension of such set is non-trivial.
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2. Singularity of distributions of countable stable zonotopes was investigated in

[6] in the finite-dimensional case, the question remains open in infinite-dimensional
space B.

3. It should be interesting to study more deeply relations between random

zonotopes considered in the paper, the random zonoids, used by Koshevoy and
Mosler to generalize Lorenz curves to the multidimensional setting (see [15]) and
convexification.
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