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Abstract

In this paper, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential

equations describing miscible displacement in porous media. This system is made of two coupled equations: an

anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration.

We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the

compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the

sequence of approximate solutions is a weak solution to the problem under study.
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1. Introduction

The Peaceman model has been introduced by Bear in [7] and Douglas in [19]. It describes the single-phase

displacement of one fluid by another in a porous medium; the fluids are assumed incompressible and the gravity

is neglected. This model is constituted of an anisotropic diffusion equation on the pressure of the mixture and a

convection-diffusion-dispersion on the concentration of the invading fluid. We refer to the work [30] by Feng for the

theoretical analysis of this system of partial differential equations.

Many different schemes have already been proposed for the Peaceman model, since the beginning of the 1980’s:

finite element schemes for both equations [20, 21, 35], finite element schemes for the pressure combined with method

of characteristics for the concentration [39, 26, 25], or combined with Eulerian Lagrangian Localized Adjoint Method

for the concentration [40, 41]. The first finite volume scheme scheme proposed for the Peaceman model is a Mixed

Finite Volume scheme [9]. In this paper, Chainais-Hillairet and Droniou establish the convergence of the MFV scheme

for the Peaceman model. In [6], Bartels, Jensen and Müller provide the convergence analysis of a combined Mixed

Finite Element method for the pressure and a Discontinuous Galerkin method for the concentration.

The discrete duality finite volume (DDFV) schemes are devoted to the numerical approximation of anisotropic

diffusion operators. They are based on two fundamental ideas: integration of the equations on a primal and a dual

meshes, as suggested by Hermeline [32, 33], reconstruction of discrete gradients on a diamond mesh, as in the work

by Coudière, Vila and Villedieu [15]. Developing these two ideas, Domelevo and Omnes in [18] introduced the

DDFV schemes for the Laplace equation and established the fundamental duality property between discrete gradient

and discrete divergence. Since ten years, the DDFV strategy has then been applied for several linear and nonlinear

problems: convection-diffusion problems in [4, 12]; the nonlinear diffusion equations for Leray-Lions operators in

[5, 8]; Stokes equations in [36, 37, 17]. We can also mention [13] where the DDFV method is adapted to solve

numerically a bi-domain problem arising in electrocardiology. We have proposed in a recent work [10] some discrete
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duality finite volume schemes for the Peaceman model. In [10], we have focused on the a priori estimates satisfied by

the schemes and on the study of the numerical efficiency. The numerical experiments showed the good convergence

behaviour of the schemes and also good qualitative results. In the present paper, we will now consider the convergence

analysis (when time and space steps go to 0) of a DDFV scheme for the Peaceman model.

1.1. Presentation of the problem

Let assume thatΩ is a connected polygonal domain of R2 and let T > 0. We denote by ∂Ω the boundary ofΩ. The

unknowns of the Peaceman model are the pressure in a fluid mixture, p̄, its Darcy velocity Ū and the concentration of

some invading fluid c̄. As proposed by Chainais-Hillairet and Droniou in [9], we consider a synthesized form of the

Peaceman model. It writes:

div
(
Ū
)
= q+ − q− in ]0, T [×Ω, (1a)

Ū = −A(·, c̄)∇p̄ in ]0, T [×Ω, (1b)

Ū · n = 0 on ]0, T [×∂Ω, (1c)
∫

Ω

p̄(·, x) dx = 0 on ]0, T [, (1d)

Φ∂tc̄ − div(D(·, Ū)∇c̄) + div(c̄Ū) + q−c̄ = q+ĉ in ]0, T [×Ω, (2a)

D(·, Ū)∇c̄ · n = 0 on ]0, T [×∂Ω, (2b)

c̄(0, ·) = c0 on Ω. (2c)

In this system, q+ and q− denote the injection and production terms, ĉ the injected concentration, Φ the porosity of

the porous medium. The tensor A contains the effect of the permeability of the porous medium and the viscosity

of the fluid mixture. The tensor D is the diffusion-dispersion tensor; it includes molecular diffusion and mechanical

dispersion. The dependency of A with respect to permeability and viscosity and the dependency of D with respect to

diffusion and dispersion will be detailed in Section 6, with the presentation of numerical experimentations. For the

theoretical analysis of the scheme, we need the follow assumptions on the data:

(q+, q−) ∈ L∞(0, T ; L2(Ω)) are nonnegative functions such that∫

Ω

q+(·, x) dx =

∫

Ω

q−(·, x) dx a.e. on ]0, T [,
(3)

A : Ω × R→M2(R) is a Caratheodory matrix-valued function satisfying:

∃αA > 0 such that A(x, s)ξ · ξ ≥ αA|ξ|2 for a.e. x ∈ Ω, all s ∈ R and all ξ ∈ R2,

∃ΛA > 0 such that |A(x, s)| ≤ ΛA for a.e. x ∈ Ω and all s ∈ R,
(4)

D : Ω × R2 →M2(R) is a Caratheodory matrix-valued function satisfying:

∃αD > 0 s.t. D(x,W)ξ · ξ ≥ αD(1 + |W|)|ξ|2 for a.e. x ∈ Ω, all W ∈ R2 and all ξ ∈ R2,

∃ΛD > 0 such that |D(x,W)| ≤ ΛD(1 + |W|) for a.e. x ∈ Ω and all W ∈ R2,
(5)

Φ ∈ L∞(Ω) and there exists Φ∗ > 0 such that Φ∗ ≤ Φ ≤ Φ−1
∗ a.e. in Ω, (6)

ĉ ∈ L∞(]0, T [×Ω) satisfies: 0 ≤ ĉ ≤ 1 a.e. in ]0, T [×Ω, (7)

c0 ∈ L∞(Ω) satisfies: 0 ≤ c0 ≤ 1 a.e. in Ω. (8)

The following definition (similar to the one in [30]) of weak solution to (1)—(2) makes sense.

Definition 1.1. Under assumptions (3)—(8), a weak solution to (1)—(2) is a triple ( p̄, Ū, c̄) satisfying

p̄ ∈ L∞(0, T ; H1(Ω)) , Ū ∈ L∞(0, T ; L2(Ω))2 , c̄ ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ,
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∫

Ω

p̄(t, ·) = 0 for a.e. t ∈]0, T [ , Ū = −A(·, c̄)∇p̄ a.e. on ]0, T [×Ω ,

∀ϕ ∈ C∞([0, T ] × Ω̄) , −
∫ T

0

∫

Ω

Ū · ∇ϕ =
∫ T

0

∫

Ω

(q+ − q−)ϕ , (9)

∀ϕ ∈ C∞c ([0, T [×Ω̄) , −
∫ T

0

∫

Ω

Φc̄∂tϕ +

∫ T

0

∫

Ω

D(·, Ū)∇c̄ · ∇ϕ −
∫ T

0

∫

Ω

c̄Ū · ∇ϕ +
∫ T

0

∫

Ω

q−c̄ϕ

−
∫

Ω

Φc0ϕ(0, ·) =
∫ T

0

∫

Ω

q+ĉϕ.

(10)

1.2. Aim of the paper and outline

Different development of new finite volume schemes for diffusion equations have been done since twenty years.

Their aim is to reconstruct some discrete gradient which has no serious restriction on meshes and strong enough

convergence for handling the nonlinear coupling of the equations. Let us cite for instance the Multi Points Flux Ap-

proximation schemes by Aavatsmark, Barkve, Boe and Mannseth [1, 2], the Discrete Duality Finite Volume (DDFV)

schemes by Domelevo and Omnes [18, 5], the Mixed Finite Volume schemes by Droniou and Eymard [24, 22], the

Scheme Using Stabilization and Hybrid Interfaces by Eymard, Gallouët and Herbin [28, 29]. We refer to [23] where

Droniou presents a review on finite volume methods for diffusion equations, with a focus on coercivity and minimum-

maximum principles.

In [10], we have proposed a DDFV scheme for the Peaceman system (1)-(2). The DDFV scheme requires un-

knowns on both vertices and “centers” of control volumes. These two sets of unknowns allow to define a two-

dimensional discrete gradient (piecewise constant on new geometric elements called diamonds) and a discrete di-

vergence operator. These two operators satisfy a duality property in a discrete sense, which gives its name to the

method.

In order to prove the convergence of the scheme, we need to add a penalization operator in the discretization of the

convection-diffusion-dispersion equation. Such a penalization operator has already been introduced by Andreianov,

Bendahmane and Karlsen in the numerical approximation of a degenerate hyperbolic-parabolic equation [4]. It ensures

that both reconstructions of the concentration, either on the primal mesh or on the dual mesh, converge to the same

limit. It is crucial when passing to the limit in the concentration equation. However, the numerical experiments will

show that the penalization operator is not necessary in practice.

In Section 2, we present the different meshes and the associated notations. After having introduced the different

discrete operators, we present the DDFV scheme in Section 2.5. The main result of the paper (convergence of the

DDFV scheme) is stated in Theorem 2.6.

In order to prove this Theorem, we apply a similar strategy as [30] on our numerical approximation instead of the

regularization of the Peaceman model. We establish in Section 3 some a priori estimates satisfied by the numerical

solution to the scheme. These first estimates lead to the well-posedness of the scheme and provide first results of

compactness in space. In order to get the compactness in space and time of the sequences of approximate solution,

we will apply a discrete counterpart of Aubin-Simon Theorem, proved by Gallouët and Latché in [31]. Therefore we

prove an estimate on the discrete time derivative in Section 3 and some properties satisfied by the discrete functional

spaces in Section 4. Then, the proof of Theorem 2.6 is concluded by passing to the limit into the scheme in Section 5.

In Section 6, we provide some numerical experiments. The efficiency of the DDFV scheme has already been shown in

[10]. In this last Section, we focus on the effect of the penalization term introduced in the scheme. We show that the

penalization operator, necessary for the proof of convergence, can be set to 0 in practice. We give also some results

concerning the overshooting and the undershooting effects observed on different meshes.

2. Presentation of the numerical scheme and of the main results

2.1. Meshes and notations

In order to define a DDFV scheme, as for instance in [18, 5], we need to introduce three different meshes – the

primal mesh, the dual mesh and the diamond mesh – and some associated notations.
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The mesh construction starts from the partitionM, the partition of the computational domainΩ, with disjoint open

polygonal control volumesK ⊂ Ω such that ∪K̄ = Ω̄. This partitionM is called the interior primal mesh. We denote

by ∂M the set of boundary edges, which are considered as degenerate control volumes. Then, the primal mesh is

composed of M ∪ ∂M, denoted by M. To construct the two others meshes, we need to associate at each primal cell

K ∈M, a point xK ∈ K , called the center of the primal cell. Notice that for K a degenerate control volume, the point

xK is necessarily the midpoint of K . This family of centers is denoted by X = {xK ,K ∈ M} and these will determine

the two others meshes.

Let X∗ denote the set of the vertices of the primal control volumes inM. Distinguishing the interior vertices from

the vertices lying on the boundary, we split X∗ into X∗ = X∗
int
∪X∗ext. To any point xK∗ ∈ X∗

int
, we associate the polygon

K∗, whose vertices are {xK ∈ X/xK∗ ∈ K̄ ,K ∈M}. The set of these polygons defines the interior dual mesh denoted by

M
∗. To any point xK∗ ∈ X∗ext, we then associate the polygonK∗, whose vertices are {xK∗ }∪{xK ∈ X/xK∗ ∈ K̄ ,K ∈M}.

The set of these polygons is denoted by ∂M∗ called the boundary dual mesh and the dual mesh isM∗ ∪ ∂M∗, denoted

byM∗.
In order to define the diamond mesh, we first introduce the notion of edges. For all neighboring primal cells

K and L, we assume that ∂K ∩ ∂L is a segment, corresponding to an edge of the mesh M, denoted by σ =

K|L. Let E be the set of such edges. We similarly define the set E∗ of the edges of the dual mesh M∗: E∗ ={
σ∗, σ∗ = K∗|L∗ with K∗,L∗ ∈ M∗

}
. Let us note that, if K ∈ M, all its edges belong to E and if K∗ ∈ M∗, all its

edges belong to E∗. But, ifK∗ ∈ ∂M∗, then it has edges inside the domain and also on its boundary: the interior edges

belong to E∗ while the boundary edges belong to E.

xL∗

xK∗

xL

xK τK∗,L∗

nσK

τK,L

nσ∗K∗

Vertices of the primal mesh

Centers of the primal mesh

σ = K|L, edge of the primal mesh

σ∗ = K∗|L∗, edge of the dual mesh

DiamondDσ,σ∗
xL∗

xK∗

xL
xK

Figure 2.1: Definition of the diamonds Dσ,σ∗

For each couple (σ, σ∗) ∈ E × E∗ such that σ = K|L = (xK∗ , xL∗) and σ∗ = K∗|L∗ = (xK , xL), we define the

quadrilateral diamond cellDσ,σ∗ whose diagonals are σ and σ∗. If σ ∈ E∩ ∂Ω, we note that the diamond degenerates

into a triangle. The set of the diamond cells defines the diamond mesh D. It verifies Ω̄ =
⋃
D∈DD. We have as many

diamond cells as primal edges. We can rewrite D = Dext ∪ Dint where Dext is the set of all the boundary diamonds

(associated to the boundary edges) and Dint the set of all the interior diamonds.

Finally, the DDFV mesh is made of the T = (M,M∗) and D. Let us now introduce some notations associated to

the meshes T and D. For each primal or dual cell V (V ∈ M or V ∈ M∗), we define mV the measure of V , EV the

set of the edges of V (it coincides with the edge σ = V if V ∈ ∂M), DV the set of diamonds Dσ,σ∗ ∈ D such that

m(Dσ,σ∗ ∩ V) > 0, and dV the diameter of V .

For a diamond Dσ,σ∗ , whose vertices are (xK , xK∗ , xL, xL∗), we define, as shown on Figure 2.1: xD the center of

the diamond cell D: {xD} = σ ∩ σ∗, mσ the length of the primal edge σ, mσ∗ the length of the dual edge σ∗, mD
the measure of D, dD its diameter, θD the angle between (xK , xL) and (xK∗ , xL∗). We will also use two direct basis

(τK∗,L∗ , nσK ) and (nσ∗K∗ , τK,L), where nσK is the unit normal to σ, outward K , nσ∗K∗ is the unit normal to σ∗, outward

K∗, τK∗,L∗ is the unit tangent vector to σ, oriented from K∗ to L∗, τK,L is the unit tangent vector to σ∗, oriented from
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K to L.

We introduce now the size of the mesh, size(T ) = max
D∈D

dD. We assume that the diamonds cannot be flat: there

exists a unique θT ∈]0, π2 ] such that sin(θT ) := min
D∈D

(| sin(θD)|). We also need some regularity of the mesh, as in [5].

We assume that there exists ζ > 0 such that

∑

D∈DK

mσmσ∗ ≤
mK
ζ
,∀K ∈ M, and

∑

D∈DK∗
mσmσ∗ ≤

mK∗

ζ
,∀K∗ ∈ M∗, (11a)

mD ≤
mK∩K∗

ζ
,∀D ∈ D,K ∈M,K∗ ∈M∗ such that m(D∩K) , 0 and m(D∩K∗) , 0. (11b)

2.2. Set of discrete unknowns

We need several types of degrees of freedom to represent scalar and vector fields in the discrete setting. Let us

introduce :

• R
T the linear space of scalar fields constant on the cells ofM andM∗ :

R
T =

{
uT =

(
(uK )K∈M , (uK∗)K∗∈M∗

)
, with uK ∈ R, ∀K ∈M, and uK∗ ∈ R, ∀K∗ ∈ M∗

}
.

•
(
R

2
)D

the linear space of vector fields constant on the cells of D :

(
R

2
)D
=

{
ξ
D
=

(
ξD

)
D∈D , with ξD ∈ R2, ∀D ∈ D

}
.

Similarly, we may define R
D, RD

ext

, R∂M the spaces of scalar fields constant respectively on D, Dext and ∂M and

(R2)D
ext

the space of vector fields constant on Dext. It permits to introduce two trace operators, defined respectively on

R
T and

(
R

2
)D

. The first one is γT : uT ∈ RT 7→ γT (uT ) =
(
γL(uT )

)
L∈∂M

∈ R∂M, defined by :

γL(uT ) =
uK∗ + 2uL + uL∗

4
, ∀ L = [xK∗ , xL∗] ∈ ∂M. (12)

The second one is γD : ϕD ∈ (R2)D 7→ (ϕD)D∈Dext
∈ (R2)Dext .

We define the scalar products J·, ·KT on R
T and (·, ·)D on

(
R

2
)D

by

JvT , uT KT =
1

2


∑

K∈M
mKuKvK +

∑

K∗∈M∗
mK∗uK∗vK∗

 , ∀uT , vT ∈ RT ,

(
ξ
D
,ϕ
D

)
D
=

∑

D∈D
mD ξD · ϕD, ∀ξD,ϕD ∈

(
R

2
)D
.

The corresponding norms are denoted by ‖ · ‖2,T and ‖ · ‖2,D. More generally, we set for all uT ∈ RT , ξ
D
∈

(
R

2
)D

and

1 ≤ p < +∞:

‖uT ‖p,T =


1

2

∑

K∈M
mK |uK |p +

1

2

∑

K∗∈M∗
mK∗ |uK∗ |p



1/p

,
∥∥∥ξ
D

∥∥∥
p,D
=


∑

D∈D
mD |ξD|p


1/p

,

‖uT ‖∞,T = max

(
max
K∈M
|uK |, max

K∗∈M∗
|uK∗ |

)
,

∥∥∥ξ
D

∥∥∥∞,D = max
D∈D

∣∣∣ξD
∣∣∣ .

(13)

We also define the bilinear form 〈·, ·〉∂Ω on R
Dext × R∂M by

〈φD, v∂M〉∂Ω =
∑

Dσ,σ∗∈Dext

mσφDvσ, ∀ φD ∈ RDext ,∀v∂M = (vσ)σ∈∂M ∈ R∂M.
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To a given vector uT =
(
(uK )K∈M , (uK∗)K∗∈M∗

)
∈ R

T defined on a DDFV mesh T of size h, we associate the

approximate solution:

uh =
1

2

∑

K∈M
uK1K +

1

2

∑

K∗∈M∗
uK∗1K∗ . (14)

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed,

we have uh =
1

2
(uh,M +u

h,M∗), where uh,M and u
h,M∗ are two different reconstructions based either on the primal values

or the dual values:

uh,M =
∑

K∈M
uK1K and u

h,M∗ =
∑

K∗∈M∗
uK∗1K∗ .

The space of the approximate solutions is denoted by HT :

HT =


uh ∈ L1(Ω) / ∃uT =

(
(uK )K∈M , (uK∗ )K∗∈M∗

)
∈ RT such that uh =

1

2

∑

K∈M
uK1K +

1

2

∑

K∗∈M∗
uK∗1K∗


. (15)

In the sequel, we will also need some reconstruction of the approximate solutions on the diamond cells. Therefore,

we associate to a given uh ∈ HT the piecewise constant function on diamond cells uh,D, defined by:

uh,D(x) =
∑

D∈D
uD1D with uD =

1

mD

∫

D
uh(y)dy ∀D ∈ D. (16)

2.3. Discrete operators and duality formula

In this section, we recall the definition of the discrete operators: discrete gradient, discrete divergence operator and

discrete convection operator. The discrete gradient has been introduced in [16] and developed in [18]. The discrete

divergence has been introduced in [18].

Definition 2.1. The discrete gradient is a mapping from R
T to

(
R

2
)D

defined for all uT ∈ RT by ∇DuT =
(
∇DuT

)
D∈D

,

where forD ∈ D :

∇DuT =
1

sin(θD)

(
uL − uK

mσ∗
nσK +

uL∗ − uK∗

mσ
nσ∗K∗

)
.

Definition 2.2. The discrete divergence operator divT is a mapping from
(
R

2
)D

to R
T defined for all ξ

D
∈

(
R

2
)D

by

divTξ
D
=

(
divMξ

D
, div∂Mξ

D
, divM

∗
ξ
D
, div∂M

∗
ξ
D

)
,

with divMξ
D
=

(
divKξD

)
K∈M, div∂Mξ

D
= 0, divM

∗
ξ
D
=

(
divK∗ξD

)
K∗∈M∗ and div∂M

∗
ξ
D
=

(
divK∗ξD

)
K∗∈∂M∗ such that:

∀ K ∈ M, divKξD =
1

mK

∑

D∈DK
D=Dσ,σ∗

mσ ξD · nσK ,

and analogous definitions for divK∗ξD for K∗ ∈ M∗ (see [10]).

Discrete Duality Finite Volume methods are based on the discrete duality formula recalled in Theorem 2.3 and

proved for instance in [18]. This is the discrete counterpart of the Green formula.

Theorem 2.3. For all (ξ
D
, vT ) ∈

(
R

2
)D
× RT , we have

JdivTξ
D
, vT KT = −(ξ

D
,∇DvT )D + 〈γD(ξ

D
) · n, γT (vT )〉∂Ω,

where n is the exterior unit normal to Ω.
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The discrete convection operator has been introduced in [10]. It is similar with previous definitions given by

Andreianov, Bendahmane and Karlsen in [4] and by Coudière and Manzini in [12].

Definition 2.4. The discrete convergence operator divcT is a mapping from
(
R

2
)D
× R

T to R
T defined for all ξ

D
∈

(
R

2
)D

and vT ∈ RT by

divcT (ξ
D
, vT ) =

(
divcM(ξ

D
, vT ), divc∂M(ξ

D
, vT ), divcM

∗
(ξ
D
, vT ), divc∂M

∗
(ξ
D
, vT )

)
,

with divcM(ξ
D
, vT ) =

(
divcK (ξ

D
, vT )

)
K∈M, divc∂M(ξ

D
, vT ) = 0, divcM

∗
(ξ
D
, vT ) =

(
divcK∗ (ξD, vT )

)
K∗∈M∗ and

divc∂M
∗
(ξ
D
, vT ) =

(
divcK∗ (ξD, vT )

)
K∗∈∂M∗ such that:

∀ K ∈ M, divcK (ξ
D
, vT ) =

1

mK

∑

D∈DK
D=Dσ,σ∗

mσ

((
ξD · nσK

)+
vK −

(
ξD · nσK

)−
vL

)
,

where x+ = max(x, 0) and x− = −min(x, 0) for all x ∈ R, and analogous definitions for divcK∗ (ξD, vT ) for K∗ ∈ M∗
(see [10]).

2.4. A penalization operator

Let us introduce now a penalization operator as in [4]. This operator has not been introduced in our previous work

[10]. However, we will see that it is essential when passing to the limit in the scheme, especially in the convection

term in (2a). Indeed, the penalization operator will ensure that the reconstructions of the concentration on the primal

mesh and on the dual mesh converge to the same limit.

Definition 2.5. Let β ∈]0, 2[. The penalization operator PT : RT → R
T is defined for all uT ∈ RT , by:

PTuT =
(
PMuT ,P∂MuT ,PM

∗
uT ,P∂M

∗
uT

)
,

with PMuT = (PKuT )K∈M, P∂MuT = 0, PM∗uT = (PK∗uT )K∗∈M∗ and P∂M∗uT = (PK∗uT )K∗∈∂M∗ such that

∀ K ∈ M, PKuT =
1

mK

1

size(T )β

∑

K∗∈M∗
mK∩K∗(uK − uK∗ ),

∀ K∗ ∈M∗, PK∗uT =
1

mK∗

1

size(T )β

∑

K∈M
mK∩K∗(uK∗ − uK ).

The penalization operator clearly satisfies the following property:

JPTuT , uT KT =
1

2

1

size(T )β

∑

K∗∈M∗

∑

K∈M
mK∩K∗ (uK − uK∗)

2 =
1

2

1

size(T )β
‖uh,M − u

h,M∗‖
2
L2(Ω)

. (17)

2.5. The numerical scheme

Let (T ,D) be a DDFV mesh of Ω (as presented in Section 2.1) and δt > 0 be a time step. We set NT = T/δt (we

always choose time steps such that NT is an integer) and we define tn = nδt for n ∈ {0, . . . ,NT }.
First, we discretize all the data of the problem. Therefore, we introduce PK (respectively PK∗ ) the L2 projection

over an interior primal (respectively dual) cell. We then define c0
T =

(
(PKc0)K∈M , 0, (PK∗c0)K∗∈M∗

)
∈ R

T . and

ΦT =
(
(PKΦ)K∈M , 0, (PK∗Φ)K∗∈M∗

)
∈ RT . In a similar way, for all n ≥ 1, we define (q

+,n
T , q

−,n
T , ĉn

T ) ∈ (RT )3 by taking

the mean values of q+, q− and ĉ on the primal and dual cells crossed with the time interval (tn−1, tn). For w = q+, q−, ĉ,

it writes:

wn
T =

1

δt

∫ tn

tn−1

(
(PKw(., t))K∈M , 0, (PK∗w(., t))K∗∈M∗

)
dt.

7



At each time step n, the numerical solution will be given by (pn
T ,U

n
D
, cn
T ) ∈ RT ×

(
R

2
)D
× RT and the computation of

the pressure and the velocity (pn
T ,U

n
D

) will be decoupled from the computation of the concentration (cn
T ). Due to the

coupling in the Darcy law (1b), we need to reconstruct some approximate values on the diamond cells cn−1
D
= (cn−1

D )D∈D
from cn−1

T following (16). We may also introduce the approximate tensors

AD(s) =
1

mD

∫

D
A(x, s)dx ∀s ∈ R, DD(W) =

1

mD

∫

D
D(x,W)dx, ∀W ∈ R2.

It permits to define AD(cn−1
D

) =
(
AD(cn−1

D )
)
D∈D

and DD

(
Un
D

)
=

(
DD(Un

D)
)
D∈D

.

Then, the scheme for (1) writes:

divT
(
Un
D

)
= q

+,n
T − q

−,n
T , ∀1 ≤ n ≤ NT , (18a)

Un
D
= −AD(cn−1

D
)∇Dpn

T , ∀1 ≤ n ≤ NT , (18b)

Un
D · n = 0, ∀D ∈ Dext, ∀1 ≤ n ≤ NT , (18c)

∑

K∈M
mK pn

K =
∑

K∗∈M∗
mK∗ p

n
K∗ = 0, ∀1 ≤ n ≤ NT , (18d)

and the scheme for (2) writes:

ΦT
cn
T − cn−1

T
δt

− divT
(
DD

(
Un
D

)
∇Dcn

T
)
+ divcT

(
Un
D
, cn
T
)
+ q−,nT cn

T + λP
T (cn
T ) = q+,nT ĉn

T , ∀1 ≤ n ≤ NT , (19a)

DD
(
Un
D
)
∇Dcn

T · n = 0,∀D ∈ Dext, ∀1 ≤ n ≤ NT . (19b)

Note that λ is a positive constant. The scheme (18)–(19) comes down to a resolution of two linear systems: starting

from cn−1
T , (pn

T ,U
n
D

) is obtained by solving the linear system (18a)–(18d) and then cn
T is computed by solving the

linear system (19a)-(19b). Existence and uniqueness of a solution to each linear system has been proved in [10] in

the case where λ = 0. This result is based on the a priori estimates satisfied by the discrete pressure and the discrete

concentration. It remains true in the case where λ > 0 because the same a priori estimates on the pressure and the

concentration still hold (see Lemma 3.1 and Lemma 3.2 in Section 3).

2.6. Definition of the functional spaces for approximate solutions

As we are interested in the numerical analysis of the scheme (and particularly in its convergence analysis), we

need to define some functional spaces for the approximate solutions.

We have already defined in (15) the space of approximate solutions HT . For a function uh ∈ HT , we define its

approximate gradient ∇huh by

∇huh =
∑

D∈D
∇DuT 1D.

This approximate gradient is a piecewise constant function on each diamond. The space of such functions is denoted

by HD:

HD =

{
Uh ∈ (L1(Ω))2 / ∃UD ∈

(
R

2
)D

such that Uh =
∑

D∈D
UD1D

}
.

Then, we define the space-time approximation spaces HT ,δt and HD,δt based respectively on HT and HD:

HT ,δt =
{
uh,δt ∈ L1([0, T ] ×Ω) such that uh,δt(t, x) = un

h(x) ∀t ∈ [tn−1, tn), with un
h ∈ HT , ∀1 ≤ n ≤ NT

}
,

HD,δt =
{
Uh,δt ∈ (L1([0, T ] ×Ω))2 such that Uh,δt(t, x) = Un

h(x) ∀t ∈ [tn−1, tn), with Un
h ∈ HD, ∀1 ≤ n ≤ NT

}
.

We still keep the notation ∇h to define the approximate gradient of uh,δt ∈ HT ,δt:

∇huh,δt(x, t) = ∇hun
h(x) ∀t ∈ [tn−1, tn).
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Therefore, for all uh,δt ∈ HT ,δt, we have ∇huh,δt ∈ HD,δt. Furthermore, we introduce the following reconstructions

uh,δt,M(t, x) = un
h,M(x) =

∑

K∈M
un
K1K (x), ∀t ∈ [tn−1, tn), (20a)

u
h,δt,M∗(t, x) = un

h,M∗
(x) =

∑

K∗∈M∗
un
K∗1K∗ (x), ∀t ∈ [tn−1, tn), (20b)

uh,δt,D(t, x) = un
h,D(x) =

∑

D∈D
un
D 1D(x), ∀t ∈ [tn−1, tn). (20c)

We may now define some norms on HT , HT ,δt. First, we define some discrete W1,p-norms (1 ≤ p ≤ +∞) and a

discrete W1,−1-norm on HT . For all uh ∈ HT , we set

‖uh‖1,p,T =
(
‖uT ‖pp,T +

∥∥∥∇DuT
∥∥∥p

p,D

)1/p
, ∀1 ≤ p < +∞,

‖uh‖1,∞,T = ‖uT ‖∞,T +
∥∥∥∇DuT

∥∥∥∞,D ,

‖uh‖1,∞⋆,T = ‖uh‖1,∞,T + JPTuT , uT K
1
2

T ,

‖uh‖1,−1,T = max

{
JvT , uT KT ,∀vh ∈ HT verifying ‖vh‖1,∞⋆,T ≤ 1

}
,

where the norms ‖·‖p,T and ‖·‖p,D have been defined by (13) and the penalization operatorPT is given in Definition 2.5.

Then, we define some discrete L1(0, T ; W1,p(Ω)) (1 ≤ p < +∞), L∞(0, T ; W1,∞(Ω)) and L∞(0, T ; Lp(Ω))-norms on

HT ,δt. For all uh,δt ∈ HT ,δt, we set:

∥∥∥uh,δt

∥∥∥
1;1,p,T =

NT∑

n=1

δt
∥∥∥un

h

∥∥∥
1,p,T , ∀1 ≤ p < +∞,

∥∥∥uh,δt

∥∥∥∞;1,∞,T = max
n∈{1,··· ,NT }

∥∥∥un
h

∥∥∥
1,∞,T ,

∥∥∥uh,δt

∥∥∥∞;0,p,T = max
n∈{1,··· ,NT }


1

2

∑

K∈M
mK |un

K |
p +

1

2

∑

K∗∈M∗
mK∗ |un

K∗ |
p



1/p

, ∀1 ≤ p < +∞.

Let us also remark that, for all Uh,δt ∈ HD,δt and for 1 ≤ p < +∞, we have

‖Uh,δt‖(L∞(0,T ;Lp(Ω)))2 = max
n∈{1,··· ,NT }


∑

D∈D
mD|Un

h|
p


1/p

,

‖Uh,δt‖(Lp((0,T )×Ω))2 =


NT∑

n=1

δt
∑

D∈D
mD|Un

h|p


1/p

.

2.7. Main result

We may now state the main result of the paper.

Theorem 2.6. Let Ω be an open bounded connected polygonal domain of R2 and T > 0. Assume (3)–(8) hold, λ > 0

and β ∈]0, 2[. Let (Tm)m≥1 be a sequence of DDFV meshes such that hm = size(Tm) −→
m→∞

0 while the regularity

parameters ζm and θm verifying:

∃θ > 0, ζ > 0 such that,∀m, θm ≥ θ and ζm ≤ ζ. (21)

Let (δtm)m≥1 be a sequence of time steps such that T/δtm is an integer and δtm −→
m→∞

0. Then, the scheme (18)–(19)

defines a sequence of approximate solutions (pm = phm,δtm ,Um = Uhm,δtm , cm = chm,δtm ) ∈ HTm ,δtm × HDm ,δtm × HTm,δtm ,

9



there exists p̄ ∈ L∞(0, T ; H1(Ω)),Ū ∈ L∞(0, T ; L2(Ω))2 and c̄ ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)), and, up to a

subsequence, we have the following convergence results when m→ ∞:

pm → p̄ weakly-∗ in L∞(0, T ; L2(Ω)) and strongly in Lp(0, T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm pm → ∇p̄ weakly-∗ in (L∞(0, T ; L2(Ω)))2 and strongly in (L2((0, T ) ×Ω))2;

Um → Ū weakly-∗ in (L∞(0, T ; L2(Ω)))2 and strongly in (L2((0, T ) ×Ω))2;

cm → c̄ weakly-∗ in L∞(0, T ; L2(Ω)) and strongly in Lp(0, T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm cm → ∇c̄ weakly in (L2((0, T ) ×Ω))2.

Moreover, ( p̄, Ū, c̄) is a weak solution to (1)-(2).

In order to prove this result, we split the proof in different steps. Firstly, we establish some a priori estimates sat-

isfied by the scheme (Section 3). Then, thanks to these estimates and to some properties of the spaces of approximate

solution (Section 4), it allows us to apply a discrete counterpart of Aubin-Simon theorem, proved by Gallouët-Latché

[31] and to show the compactness of the sequences of approximate concentrations and of approximate pressures.

Then we can pass to the limit in the scheme for the pressure and in the scheme for the concentration.

For the sake of simplicity, we will restrict the proof of Theorem 2.6 to the case where the porosity Φ is constant

on the whole domain (Φ = Φ∗). Indeed, in this case, the proof of the compactness of the sequence of approximate

concentration is simpler and based on the paper by Gallouët-Latché [31].

3. Estimates on the approximate solution

In this Section, we first prove a priori estimates satisfied by a solution to the scheme. Lemma 3.1 gives a priori

estimates on the pressure, the gradient of the pressure and the Darcy’s velocity at the discrete level, while Lemma

3.2 gives a priori estimates on the approximate concentration and its approximate gradient. These a priori estimates

imply that the two linear systems (18)-(19) have a unique solution, as in [10]. They also provide some compactness in

space of the sequences of approximate solution. Then, Lemma 3.3 shows that the reconstructions of the concentration

on the primal and dual meshes will necessarily converge to the same limit (when convergence occurs). In Lemma 3.4,

we give an estimate on the discrete time derivatives of the approximate concentration, which will be essential to apply

the compactness result by Gallouët-Latché [31].

Lemma 3.1. Let assume the hypotheses of Theorem 2.6. If their exists a solution, denoted by (ph,δt,Uh,δt, ch,δt) ∈
HT ,δt × HD,δt × HT ,δt, to the scheme (18)–(19), then this solution satisfies

∥∥∥ph,δt

∥∥∥∞;0,2,T +
∥∥∥∇h ph,δt

∥∥∥
(L∞(0,T ;L2(Ω)))2 +

∥∥∥Uh,δt

∥∥∥
(L∞(0,T ;L2(Ω)))2 ≤ C‖q+ − q−‖L∞(0,T ;L2(Ω)). (22)

where C > 0 depends only on Ω, ζ, θ, αA and ΛA.

Proof. Inequality (22) is a direct consequence of Lemma 3.2 in [10].

Lemma 3.2. Let assume the hypotheses of Theorem 2.6. If their exists a solution, denoted by (ph,δt,Uh,δt, ch,δt) ∈
HT ,δt × HD,δt × HT ,δt, to the scheme (18)–(19), then this solution satisfies

∥∥∥ch,δt

∥∥∥2

∞;0,2,T +
∥∥∥∇hch,δt

∥∥∥2

(L2((0,T )×Ω))2 +

∥∥∥∥|Uh,δt|
1
2∇hch,δt

∥∥∥∥
2

(L2 ((0,T )×Ω))2
≤ C

(
‖c0‖2L2(Ω)

+ ‖q+‖2
L∞(0,T,L2(Ω))

)
. (23)

λ

NT∑

n=1

δtJPT (cn
T ), cn

T KT ≤ C
(
‖c0‖2L2(Ω)

+ ‖q+‖2
L∞(0,T,L2(Ω))

)
. (24)

where C > 0 depends only on Ω, T , ζ, θ, Φ∗ and αD.
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Proof. The proof is very close to the proof of Lemma 3.3 in [10]. We multiply the scheme (19a) by cn
T . It yields

t
ΦT

cn
T − cn−1

T
δt

, cn
T

|

T

−
r

divT
(
DD

(
Un
D

)
∇Dcn

T
)
, cn
T

z
T
+

r
divcT

(
Un
D
, cn
T
)
, cn
T

z
T
+

q
q−,nT cn

T , c
n
T
y
T

+ λJPT (cn
T ), cn

T KT =
q

q+,nT ĉn
T , c

n
T
y
T .

Following the same computations as in [10], we get

1

2δt

(q
ΦT , (c

n
T )2

y
T −

q
ΦT , (c

n−1
T )2

y
T

)
+ αD

(∥∥∥∇Dcn
T
∥∥∥2

2,D
+

∥∥∥∥|Un
D
| 12∇Dcn

T

∥∥∥∥
2

2,D

)
+ λJPT (cn

T ), cn
T KT ≤

∥∥∥q
+,n
T

∥∥∥
2,T

∥∥∥cn
T
∥∥∥

2,T .

Multiplying by 2δt and summing over n = 1, . . . ,N with 1 ≤ N ≤ NT , we get

Φ∗
∥∥∥cN
T
∥∥∥2

2,T + 2αD

N∑

n=1

δt

(∥∥∥∇Dcn
T
∥∥∥2

2,D
+

∥∥∥∥|Un
D
| 12∇Dcn

T

∥∥∥∥
2

2,D

)
+ 2λ

N∑

n=1

δtJPT (cn
T ), cn

T KT

≤ Φ−1
∗ ‖c0‖2L2(Ω)

+
2T 2

Φ∗
‖q+‖2

L∞(0,T,L2(Ω))
+
Φ∗
2

sup
1≤n≤NT

‖cn
T ‖

2
2,T . (25)

Thanks to (17), the contribution of the penalization is positive and therefore we conclude the proof of (23) by taking

the supremum over 1 ≤ N ≤ NT . Then, restarting from (25), we obtain (24).

Thanks to Lemma 3.1 and 3.2, we have the existence and uniqueness of a solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt ×
HD,δt × HT ,δt to the linear scheme (18)–(19). We refer to the proof of Theorem 3.4 in [10].

Lemma 3.3. Under the hypotheses of Theorem 2.6, there exists C > 0 depending only on Ω, T , ζ, θ, Φ∗ and αD such

that the solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt × HD,δt × HT ,δt to the scheme (18)–(19) verifies

‖ch,δt,M − c
h,δt,M∗‖

2
L2(0,T ;L2(Ω))

≤ C

λ
hβ

(
‖c0‖2L2(Ω)

+ ‖q+‖2
L∞(0,T,L2(Ω))

)
. (26)

Moreover,
NT∑

n=1

δt
∑

D∈D
mD|cn

D − cn
K |

2 → 0,

NT∑

n=1

δt
∑

D∈D
mD|cn

D − cn
K∗ |

2 → 0, when h, δt→ 0. (27)

Proof. The property (17) of the penalization operator yields

NT∑

n=1

δtJPT (cn
T ), cn

T KT =
1

2hβ

NT∑

n=1

δt
∑

K∈M

∑

K∗∈M∗
mK∩K∗ (c

n
K − cn

K∗)
2 =

1

2hβ
‖ch,δt,M − c

h,δt,M∗‖
2
L2(0,T ;L2(Ω))

.

Then, we deduce (26) from Lemma 3.2. In order to prove (27), let us rewrite cn
D:

cn
D =

1

mD

∫

D
cn

h(x)dx =
mD∩K
2mD

cn
K +

mD∩K∗

2mD
cn
K∗ +

mD∩L
2mD

cn
L +

mD∩L∗

2mD
cn
L∗

Therefore, we have

cn
D − cn

K =
mD∩L
2mD

(cn
L − cn

K ) +
mD∩L∗

2mD
(cn
L∗ − cn

K∗ ) +
1

2
(cn
K∗ − cn

K ).

Using the fact that cn
L − cn

K = mσ∗(∇Dcn
T ) · τK,L and cn

L∗ − cn
K∗ = mσ(∇Dcn

T ) · τK∗,L∗ , we obtain:

∑

D∈D
mD|cn

D − cn
K |

2 ≤3

2
h2

∑

D∈D
mD|∇Dcn

T |2 +
3

4

∑

D∈D
mD|cn

K∗ − cn
K |

2.
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Thanks to the regularity of the mesh (11b), we get:

∑

D∈D
mD|cn

K∗ − cn
K |

2 ≤ 1

ζ

∑

D∈D
mK∩K∗ |cn

K∗ − cn
K |

2 ≤ 1

ζ
‖cn

h,M − cn

h,M∗
‖2

L2(Ω)
.

We deduce that

NT∑

n=1

δt
∑

D∈D
mD|cn

D − cn
K |

2 ≤3

2
h2‖∇hch,δt‖2(L2((0,T )×Ω))2 +

3

4ζ
‖ch,δt,M − c

h,δt,M∗‖
2
L2(0,T ;L2(Ω))

.

It yields the first part of (27), thanks to (26) and (23). The second part of (27) is obtained similarly.

The a priori estimates given in Lemma 3.1 and Lemma 3.2 will lead to compactness in space of the sequences of

approximate solutions. But, as the problem is evolutive in time, we also need compactness in time for the sequence of

approximate concentration. Therefore, we need an a priori estimate on the discrete time derivatives of the approximate

concentration.

For a given function uh,δt ∈ HT ,δt, we recall that we have uh,δt(·, t) = un
h
(·) ∈ HT for all t ∈ [tn−1, tn). Let us define

the discrete time derivative ∂t,T uh,δt ∈ HT ,δt by

∂t,T uh,δt(·, t) =
un

h
(·) − un−1

h
(·)

δt
, ∀t ∈ [tn−1, tn).

Then, we note ∂t,T un
h,δt =

un
h
− un−1

h

δt
∈ HT , associated to the vector of values

∂t,T un
T =




un
K − un−1

K
δt


K∈M

,


un
K∗ − un−1

K∗

δt


K∗∈M∗

 .

Lemma 3.4. Under the hypotheses of Theorem 2.6, there exists C > 0 depending only on T , Ω, ζ, θ, q+, q−, c0, αA,

ΛA, ΛD, Φ∗ and αD such that the approximate solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt×HD,δt×HT ,δt to the scheme (18)–(19)

satisfies:
NT∑

n=1

δt
∥∥∥ΦT∂t,T cn

h,δt

∥∥∥
1,−1,T ≤ C. (28)

Proof. Let wh ∈ HT and n ∈ {1, · · · ,NT }. Multiplying the scheme (19a) by wT , we get :

t
ΦT

cn
T − cn−1

T
δt

,wT

|

T

=

r
divT

(
DD

(
Un
D

)
∇Dcn

T
)
,wT

z
T
−

r
divcT

(
Un
D
, cn
T
)
,wT

z
T
−

q
q
−,n
T cn

T ,wT
y
T

− λJPT (cn
T ),wT KT +

q
q
+,n
T ĉn

T ,wT
y
T .

We will now bound separately each term, denoted by Ti for 1 ≤ i ≤ 5, of the right-hand-side of this equality.

Using the discrete duality formula (Theorem 2.3) and the boundary conditions, we first obtain that

T1 =

r
divT

(
DD

(
Un
D

)
∇Dcn

T
)
,wT

z
T
= −

(
DD

(
Un
D

)
∇Dcn

T ,∇
DwT

)
D
= −

∑

D∈D
mDDD

(
Un
D
)
∇Dcn

T · ∇
DwT .

Then, the hypothesis (5) on D implies :

|T1| ≤ ΛD ‖wh‖1,∞,T
∑

D∈D
mD

(
1 +

∣∣∣Un
D
∣∣∣
) ∣∣∣∇Dcn

T
∣∣∣ . (29)
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The second term T2 = −
r

divcT
(
Un
D
, cn
T
)
,wT

z
T

can be split into the sum of a primal term T2,p and a dual term T2,d.

Let us consider the primal term

T2,p = −
1

2

∑

K∈M
mKdivcK (Un

D
, cn
T )wK = −

1

2

∑

K∈M

∑

D∈DK
D=Dσ,σ∗

mσ

((
Un
D · nσK

)+
cn
K −

(
Un
D · nσK

)−
cn
L

)
wK .

Rewriting T2,p as a sum on all the primal edges of the mesh and using the relations x = x+ − x−, we get:

T2,p = −
1

2

∑

Dσ,σ∗∈D
mσ

(
Un
D · nσK

)
cn
K (wK − wL) − 1

2

∑

Dσ,σ∗∈D
mσ(Un

D · nσK )−(cn
K − cn

L)(wK − wL). (30)

But, by definition, we have (wK − wL) = mσ∗∇DwT · τK,L and therefore |wK − wL| ≤ ‖wh‖1,∞,T mσ∗ . It yields:
∣∣∣∣∣∣∣∣

∑

Dσ,σ∗∈D
mσ

(
Un
D · nσK

)
cn
K (wK − wL)

∣∣∣∣∣∣∣∣
≤ ‖wh‖1,∞,T

∑

Dσ,σ∗∈D
mσ∗mσ|Un

D| |cn
K |.

For the second term in T2,p, we use the bound |wK − wL| ≤ 2 ‖wh‖1,∞,T to get:

∣∣∣∣∣∣∣∣

∑

Dσ,σ∗∈D
mσ(Un

D · nσK )−(cn
K − cn

L)(wK − wL)

∣∣∣∣∣∣∣∣
≤ 2 ‖wh‖1,∞,T


∑

Dσ,σ∗∈D
mσmσ∗ |Un

D| |∇Dcn
T |

 .

As we may treat similarly the dual term T2,d =
1

2

NT∑

n=1

δt
∑

K∗∈M∗
mK∗divcK∗ (U

n
D
, cn
T )wK∗ , we deduce that

|T2| ≤ ‖wh‖1,∞,T


∑

Dσ,σ∗∈D
mσ∗mσ|Un

D| |cn
K | + 2

∑

Dσ,σ∗∈D
mσmσ∗ |Un

D| |∇Dcn
T |

 . (31)

Let us now consider

T3 = −λJPT (cn
T ),wT KT = −

λ

2

∑

K∈M

∑

K∗∈M∗

1

hβ
mK∩K∗ (c

n
K − cn

K∗ )(wK − wK∗ ).

Using Cauchy-Schwarz inequality, equality (17) and the definition of ‖wh‖1,∞⋆,T , we obtain

|T3| ≤
λ

2hβ
‖wh,M − w

h,M∗‖L2 (Ω)‖cn
h,M − cn

h,M∗
‖L2(Ω) (32)

≤ λ
√

2h
β
2

‖wh‖1,∞⋆,T ‖cn
h,M − cn

h,M∗
‖L2(Ω). (33)

We focus now on the last two terms T4 = −
q

q
−,n
T cn

T ,wT
y
T and T5 =

q
q
+,n
T ĉn

T ,wT
y
T . They verify :

|T4| ≤ ‖wh‖1,∞,T ‖q−,nT ‖2,T
∥∥∥cn
T
∥∥∥

2,T , (34)

|T5| ≤ ‖wh‖1,∞,T ‖q+,nT ‖2,T
∥∥∥ĉn
T
∥∥∥

2,T . (35)

Finally, due to (29), (31), (33), (34) and (35), we obtain that, for all wh ∈ HT ,

t
ΦT

cn
T − cn−1

T
δt

,wT

|

T

≤ ‖wh‖1,∞⋆,T
(
ΛD

∑

D∈D
mD

(
1 +

∣∣∣Un
D
∣∣∣
) ∣∣∣∇Dcn

T
∣∣∣ +

∑

Dσ,σ∗∈D
mσ∗mσ|Un

D| |cn
K |

+ 2
∑

Dσ,σ∗∈D
mσmσ∗ |Un

D| |∇Dcn
T | +

λ
√

2h
β
2

‖cn
h,M − cn

h,M∗
‖L2(Ω) + ‖q−,nT ‖2,T

∥∥∥cn
T
∥∥∥

2,T + ‖q
+,n
T ‖2,T

∥∥∥ĉn
T
∥∥∥

2,T

)
.
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It gives the bound for
∥∥∥ΦT∂t,T cn

h,δt

∥∥∥
1,−1,T . Multiplying by δt and summing over n, we obtain that

NT∑

n=1

δt
∥∥∥ΦT∂t,T cn

h,δt

∥∥∥
1,−1,T ≤ ΛD

NT∑

n=1

δt
∑

D∈D
mD

(
1 +

∣∣∣Un
D
∣∣∣
) ∣∣∣∇Dcn

T
∣∣∣ +

NT∑

n=1

δt
∑

Dσ,σ∗∈D
mσ∗mσ|Un

D| |cn
K |

+ 2

NT∑

n=1

δt
∑

Dσ,σ∗∈D
mσmσ∗ |Un

D| |∇Dcn
T | +

λ
√

2h
β
2

NT∑

n=1

δt‖cn
h,M − cn

h,M∗
‖L2(Ω)

+

NT∑

n=1

δt‖q−,nT ‖2,T
∥∥∥cn
T
∥∥∥

2,T +
NT∑

n=1

δt‖q+,nT ‖2,T
∥∥∥ĉn
T
∥∥∥

2,T .

Applying Cauchy-Schwarz inequality and using the a priori estimates (22), (23) and (26), we conclude the proof of

(28).

4. Spaces of approximate solutions

In order to prove the convergence of a sequence of approximate solutions given by the scheme, we need some

compactness properties on the space of approximate solutions HT .

Proposition 4.1. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm) → 0 when m → ∞ and (21).

We consider a sequence of functions (wm)m with wm = whm
∈ HTm

. If the sequence (‖wm‖1,1,Tm
)m is bounded, then there

exists w ∈ L1(Ω) such that, up to a subsequence,

wm →
m→∞

w in L1(Ω).

Proof. The convergence result of Proposition 4.1 is a consequence of an estimate on the space translates of the

sequence of approximate solutions. Such an argument is classical in the finite volume framework since [27].

Let us consider one function wh of the given sequence (wh = whm
but we omit the subscript m for ease of presen-

tation). We are looking for an upper bound of ‖wh(· + η) − wh(·)‖L1(R2). But, by construction, wh =
1

2
(wh,M + w

h,M∗ ).

Therefore, we first focus on
∥∥∥wh,M(· + η) − wh,M(·)

∥∥∥
L1(R2)

. The calculations are similar to those followed in [5, Lemma

3.8]; the main difference comes from the fact that we do not impose boundary conditions.

For each primal edge σ = K|L and for all x, η ∈ R2, we define

ψσ(x, η) =

{
1 where [x, x + η] ∩ σ , ∅,
0 elsewhere.

Then, for x ∈ R2 and η ∈ R2 \ {0}, we have

|wh,M(x + η) − wh,M(x)| ≤
∑

Dσ,σ∗ ∈Dint

ψσ(x, η)|wL − wK | +
∑

Dσ,σ∗∈Dext

ψσ(x, η)|wK |. (36)

We treat the first term of the right hand side as in [5, Lemma 3.8]:

T1(x) :=
∑

Dσ,σ∗∈Dint

ψσ(x, η)|wL − wK | ≤
∑

Dσ,σ∗∈D
mσ∗ψσ(x, η)

∣∣∣∣∣
wL − wK

mσ∗

∣∣∣∣∣ .

As

∫

R2

ψσ(x, η)dx ≤ mσ|η|, we obtain that

∫

R2

T1(x)dx ≤ |η|
∑

Dσ,σ∗∈D
mσ∗mσ

∣∣∣∣∣
wL − wK

mσ∗

∣∣∣∣∣ ≤
2

sin(θT )
|η|

∑

D∈D
mD|∇DwT | ≤

2

sin(θT )
|η| ‖wh‖1,1,T .
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For the second term of the right hand side in (36), T2(x) :=
∑

Dσ,σ∗∈Dext

ψσ(x, η)|wK |, we have

∫

R2

T2(x)dx ≤ |η|
∑

Dσ,σ∗∈Dext

mσ|wK | ≤ |η|C‖wh‖1,1,T ,

thanks to the trace Theorem 7.1 proving in Section 7. Therefore, we get:

∥∥∥wh,M(· + η) − wh,M(·)
∥∥∥

L1(R2)
≤ C|η| ‖wh‖1,1,T ,

with C depending only on Ω and the regularity parameters θ and ζ. With the same calculations on the dual mesh, we

also get ∥∥∥w
h,M∗(· + η) − w

h,M∗ (·)
∥∥∥

L1(R2)
≤ C|η| ‖wh‖1,1,T .

Therefore, since ‖wm‖1,1,Tm
is bounded, there exists C not depending on m such that

‖wm(· + η) − wm(·)‖L1(R2) ≤ C|η|, ∀η ∈ R2.

We conclude thanks to Kolmogorov Theorem: there exists a subsequence of (wm) which converges towards w ∈
L1(R2). Furthermore, as wm vanishes outside Ω for all m, w also vanishes outside Ω: w ∈ L1(Ω).

Proposition 4.2. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm) → 0 when m → ∞ and (21).

We consider a sequence of functions (wm)m with wm = whm
∈ HTm

. If

wm →
m→∞

w in L1(Ω) and ‖wm‖1,−1,Tm
→

m→∞
0,

then w = 0.

Proof. Let us consider one function wh of the given sequence (wh = whm
but we omit the subscript m for ease of

presentation). Let ψ ∈ C∞c (Ω). We define

ψK =
1

mK

∫

K
ψ(x)dx ∀K ∈M and ψK = 0 ∀K ∈ ∂M,

ψK∗ =
1

mK∗

∫

K∗
ψ(x)dx ∀K∗ ∈ M∗,

and ψT =
(
(ψK )K∈M, (ψK∗)K∗∈M∗

)
. By this way, we can associate to each function ψ ∈ C∞c (Ω) a vector ψT and a

function ψh ∈ HT . For allDσ,σ∗ ∈ D, the Taylor’s theorem implies:

|ψK − ψL| ≤ (dK + dL)‖∇ψ‖L∞(Ω) and |ψK∗ − ψL∗ | ≤ (dK∗ + dL∗)‖∇ψ‖L∞(Ω),

|ψK − ψK∗ | ≤ (dK + dK∗)‖∇ψ‖L∞(Ω).

Using the regularity of the mesh, we deduce that there exists C only depending on θ and ζ such that

‖ψh‖1,∞,T ≤ C ‖ψ‖W1,∞(Ω) ,

and

‖ψh,M − ψh,M∗‖L2(Ω) ≤ Ch ‖ψ‖W1,∞(Ω) . (37)

Then, as β < 2, we deduce, thanks to (17), that

‖ψh‖1,∞⋆,T ≤ C ‖ψ‖W1,∞(Ω) .

But, for wh ∈ HT , we have the following inequality:

JwT , ψT KT ≤ ‖wh‖1,−1,T ‖ψh‖1,∞⋆,T ≤ C ‖wh‖1,−1,T ‖ψ‖W1,∞(Ω) .
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Therefore, if ψ ∈ C∞c (Ω) and the sequence (wm) satisfies ‖wm‖1,−1,Tm
→

m→∞
0, it yields:

JwTm
, ψTm

KTm
→ 0 as m→ ∞.

Yet, by definition, we have

JwTm
, ψTm

KTm
=

1

2

∑

K∈Mm

wK

∫

Ω

ψ(x)1K (x)dx +
1

2

∑

K∗∈M∗m

wK∗

∫

Ω

ψ(x)1K∗ (x)dx

=

∫

Ω

wm(x)ψ(x)dx.

(38)

As a consequence, as wm →
m→∞

w in L1(Ω), we obtain

∫

Ω

w(x)ψ(x)dx = 0 for all ψ ∈ C∞c (Ω), hence w = 0.

Proposition 4.3. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm)→ 0 when m→ ∞ and (21). We

consider a sequence of functions (vm)m with vm = vhm
∈ HTm

such that the sequence
(
‖vm‖1,2,Tm

)
m

is bounded. Then,

there exists v ∈ H1(Ω) such that, up to a subsequence, we have the following convergence results when m→ ∞:

vm → v strongly in L2(Ω),

∇hm vm → ∇v weakly in (L2(Ω))2.

Proof. Let us set wm = vm|vm|. An adaptation of the proof of Proposition 4.1, with the ideas of [5, Lemma 3.8], leads

to

‖wm(· + η) − wm(·)‖L1(R2) ≤ C|η|,∀η ∈ R2.

It proves the convergence of (wm) in L1(Ω) and the existence of v ∈ L2(Ω) such that

vm →
m→∞

v strongly in L2(Ω).

As ‖∇hm vm‖2 ≤ C, there exists χ ∈ (L2(Ω))2 such that, up to a subsequence:

∇hm vm →
m→∞

χ weakly in (L2(Ω))2.

It remains to prove that χ = ∇v, which will also imply v ∈ H1(Ω).

Let ψ ∈ (C∞c (Ω))2, we define

Im :=

∫

Ω

∇hm vm(z) · ψ(z)dz +

∫

Ω

vm(z)div(ψ(z))dz −→
m→∞

∫

Ω

χ(z) · ψ(z)dz +

∫

Ω

v(z)div(ψ(z))dz.

ForD = Dσ,σ∗ , we define ψD, ψσ and ψσ∗ respectively as the mean values of ψ overD, σ and σ∗. We consider also

ψ̃D defined by

ψ̃D · nσK = ψσ · nσK , ψ̃D · nσ∗K∗ = ψσ∗ · nσ∗K∗ .

We have :
∫

Ω

∇hm vm(z) · ψ(z)dz =
∑

D∈Dm

mD∇DvTm
· ψD =

∑

D∈Dm

mD∇DvTm
· ψ̃D +

∑

D∈Dm

mD∇DvTm
· (ψD − ψ̃D).

But, ∑

D∈Dm

mD∇DvTm
· ψ̃D = −

1

2

∑

K∈Mm

vK
∑

D∈DK
D=Dσ,σ∗

mσψ̃D · nσK −
1

2

∑

K∗∈M∗m

vK∗
∑

D∈DK∗
D=Dσ,σ∗

mσ∗ ψ̃D · nσ∗K∗ .
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Using the definition of ψ̃D and the fact that ψ has a compact support, we get, thanks to Stokes formula,

∑

D∈Dm

mD∇DvTm
· ψ̃D = −

1

2

∑

K∈Mm

vK

∫

K
divψ(z)dz − 1

2

∑

K∗∈M∗m

vK∗

∫

K∗
divψ(z)dz = −

∫

Ω

vm(z)divψ(z)dz.

It implies that

Im =
∑

D∈Dm

mD∇DvTm
· (ψD − ψ̃D).

Since ψ is a smooth function, we have

|ψD − ψ̃D| ≤
1

sin(θT )
(|ψD − ψσ∗ | + |ψD − ψσ|) ≤

2

sin(θT )
hm‖∇ψ‖L∞ (Ω),

and we deduce that
∣∣∣∣∣∣∣
∑

D∈Dm

mD∇DvTm
· (ψD − ψ̃D)

∣∣∣∣∣∣∣
≤ ‖∇hm vm‖L2(Ω)

√
mΩ

2

sin(θT )
hm‖∇ψ‖L∞(Ω),

so that Im tends to 0. We conclude that

∫

Ω

χ(z) · ψ(z)dz = −
∫

Ω

v(z)div(ψ(z))dz,∀ψ ∈ (C∞c (Ω))2,

which ends the proof.

Proposition 4.4. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm) → 0 when m → ∞ and (21).

Let (δtm)m≥1 be a sequence of time steps such that T/δtm is an integer and δtm −→
m→∞

0. We consider a sequence of

functions (vm)m with vm = vhm,δtm ∈ HTm,δtm when m→ ∞ such that:

vm → v weakly in L2((0, T ) ×Ω) (respectively weakly-∗ in L∞(0, T ; L2(Ω)));

∇hm vm → χ weakly in (L2((0, T ) ×Ω))2 (respectively weakly-∗ in L∞(0, T ; L2(Ω)));

then, we have

∇v = χ and v ∈ L2(0, T ; H1(Ω)) (respectively L∞(0, T ; H1(Ω))).

Proof. An adaptation of the proof of Proposition 4.3, leads to prove that ∇v = χ in the distribution sense on ]0, T [×Ω,

and therefore v ∈ L2(0, T ; H1(Ω)) or v ∈ L∞((0, T ) ×Ω).

5. Proof of the convergence of the numerical scheme

5.1. Compactness of the concentration

Proposition 5.1. Under the assumptions of Theorem 2.6 and the fact that Φ is a constant Φ∗, the sequence (cm)m

defined by the scheme (18)–(19) is relatively compact in L1(0, T ; L1(Ω)). Let us note by c̄ its limit up to a subsequence.

Then, c̄ lies in L2(0, T ; H1(Ω)). Furthermore, up to a subsequence, we have, when m→ ∞

cm → c̄ weakly-∗ in L∞(0, T ; L2(Ω)) and strongly in Lp(0, T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm cm → ∇c̄ weakly in (L2(0, T ; L2(Ω)))2.

Proof. The key of the proof is the discrete Aubin-Simon lemma proved by Gallouët and Latché [31, Theorem 3.4].

The family (HTm
)m is a family of finite dimensional subspaces of L1(Ω). Each space HTm

can be equipped with the

norm ‖·‖1,1,Tm
or with the norm ‖·‖1,−1,Tm

. The following properties are satisfied:
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• Let consider a sequence (wm)mwith wm = whm
∈ HTm

. If the sequence (‖wm‖1,1,Tm
)m is bounded, then there exists

w ∈ L1(Ω) such that, up to a subsequence, (wm)m converges to w in L1(Ω). See Proposition 4.1.

• Let consider a sequence (wm)m with wm = whm
∈ HTm

. If wm converges towards w in L1(Ω) while (‖wm‖1,−1,Tm
)m

tends to 0, then w = 0. See Proposition 4.2.

The sequence (cm)m verifies cm(·, t) = cn
m ∈ HTm

for all t ∈ [(n − 1)δtm, nδtm). Furthermore Lemma 3.2 (with

Cauchy-Schwarz inequality) ensures that (cm)m verifies, for all m,

NT (m)∑

n=1

δtm
∥∥∥cn

m

∥∥∥
1,1,Tm

≤ C,

and Lemma 3.4 gives, for all m,
NT (m)∑

n=1

δtm
∥∥∥∂t,Tm

cn
m

∥∥∥
1,−1,Tm

≤ C, (39)

with C depending only on the data of the problem. Then, Theorem 3.4 in [31] implies that, up to a subsequence, (cm)

converges in L1(0, T, L1(Ω)) to a function c̄. Furthermore, Lemma 3.2 implies that there exists w ∈ (L2(0, T ; L2(Ω)))2,

such that, up to a subsequence, we have, when m→ ∞

cm → c̄ weakly-∗ in L∞(0, T ; L2(Ω)), weakly in L2(0, T ; L2(Ω)) and strongly in Lp(0, T ; Lq(Ω)),∀p < ∞, q < 2,

∇hm cm → w weakly in (L2(0, T ; L2(Ω)))2.

We conclude, applying Proposition 4.4:

c̄ ∈ L2(0, T ; H1(Ω)), and ∇c̄ = w.

Remark 5.2. We have used the fact that Φ is a constant function in order to get (39). Therefore the compactness of

the sequence of approximate concentration is obtained thanks to [31, Theorem 3.4]. If Φ is not a constant, we need

to establish some estimates on the time translates of the approximate concentration, as for instance in [9], in order to

get the compactness. As the proof is rather technical, we have restricted the proof to the case Φ∗.

Proposition 5.3. Under the assumptions of Theorem 2.6 and the fact that Φ is a constant Φ∗, the sequences (cm,M)m,

(c
m,M∗)m and (cm,D)m, defined by the scheme (18)–(19) and (20), are relatively compact in L1(0, T ; L1(Ω)) and converge

to the same limit c̄ ∈ L2(0, T ; H1(Ω)), defined in Proposition 5.1.

Proof. We have

‖cm,M − c̄‖L1(]0,T [×Ω) ≤ ‖cm − c̄‖L1(]0,T [×Ω) +

√
TmΩ

2

∥∥∥cm,M − c
m,M∗

∥∥∥
L2(]0,T [×Ω)

.

Lemma 3.3 and Proposition 5.1 imply that

‖cm,M − c̄‖L1(]0,T [×Ω) −→ 0, when m→ ∞.

We do similarly for the convergence of c
m,M∗ .

For the last convergence, we have

‖cm,D − c̄‖L1(]0,T [×Ω) ≤
∫ T

0

∑

D∈D

∫

D

∣∣∣∣∣∣
1

mD

∫

D
cm(s, y)dy − c̄(s, x)

∣∣∣∣∣∣ dxds

≤
∫ T

0

∑

D∈D

∫

D
|cm(s, y) − c̄(s, y)|dyds

+

∫ T

0

∑

D∈D

1

mD

∫

D

∫

D
|c̄(s, y)dy − c̄(s, x)| dydxds.
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Proposition 5.1 implies that the first term in the right hand side tends to 0. Using the regularity of the mesh and of c̄,

we have for the second term:

∫ T

0

∑

D∈D

1

mD

∫

D

∫

D
|c̄(s, y)dy − c̄(s, x)| dydxds ≤ hmC

∫ T

0

∑

D∈D

∫

D
|∇c̄(s, y)| dyds,

term which tends to 0. We deduce that when m→ ∞

‖cm,D − c̄‖L1(]0,T [×Ω) −→ 0.

5.2. Convergence of the pressure

Proposition 5.4. Under the assumptions of Theorem 2.6, and the fact that Φ is a constant Φ∗, there exists p̄ ∈
L∞(0, T ; H1(Ω)) and Ū ∈ L∞(0, T ; L2(Ω))2, such that the sequences (pm)m, (Um)m defined by the scheme (18)–(19)

have the following convergence result when m→ ∞:

pm → p̄ weakly-∗ in L∞(0, T ; L2(Ω)) and strongly in Lp(0, T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm pm → ∇p̄ weakly-∗ in (L∞(0, T ; L2(Ω)))2 and strongly in (L2((0, T ) × Ω))2;

Um → Ū weakly-∗ in (L∞(0, T ; L2(Ω)))2 and strongly in (L2((0, T ) × Ω))2;

and ( p̄, Ū) is a weak solution to (1), with c̄ defined in Proposition 5.1.

Proof. Lemma 3.1 implies that up to a subsequence, we have when m→ ∞:

pm → p̄ weakly-∗ in L∞(0, T ; L2(Ω));

∇hm pm → v weakly-∗ in (L∞(0, T ; L2(Ω)))2

and Proposition 4.4 implies

p̄ ∈ L∞(0, T ; H1(Ω)), with ∇p̄ = v.

Furthermore, we have
∫
Ω

pm(t, .)dx = 0 for all t ∈]0, T [, it gives that
∫
Ω

p̄(t, .)dx = 0 for all t ∈]0, T [. We introduce a

new sequence (čm)m defined by

čm(t, x) =c0
hm

(x) ∈ [0, 1], if t ∈ [0, δt[,

čm(t, x) =cm,D(t − δt, x), on [δt, T [×Ω,

Thanks to Proposition 5.3, (cm,D)m converges to c̄ in L1(0, T ; L1(Ω)). It implies that (čm)m converges also to c̄ in

L1(0, T ; L1(Ω)). As in [9, Section 5.2] (working on the diamond mesh instead of the primal mesh), we obtain

Um = −Am(., čm)∇hm pm →
m→∞

Ū = −A(·, c̄)∇p̄ weakly in (L2(]0, T [×Ω))2.

Let us remark that the a priori estimates (Lemma 3.1) gives

Um →
m→∞

Ū weakly-∗ in (L∞(0, T ; L2(Ω))2.

It remains to prove (9). Let ϕ ∈ C∞([0, T ] × Ω̄), we define ϕn
Tm

associated to the discrete values:

ϕn
K =

1

mKδt

∫ tn

tn−1

∫

K
ϕ(s, x)dxds,∀K ∈Mm and ϕn

K = 0,∀K ∈ ∂Mm, ∀n ∈ {1, · · · ,N},

ϕn
K∗ =

1

mK∗δt

∫ tn

tn−1

∫

K∗
ϕ(s, x)dxds, ∀K∗ ∈ M∗m, ∀n ∈ {1, · · · ,N}.
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We define also the corresponding function ϕm and Ψm = ∇hmϕm. Since pm is the solution of (18a), the discrete duality

formula (Theorem 2.3) gives

NT∑

n=1

δtJq+,nTm
− q−,nTm

, ϕn
Tm

KTm
=

NT∑

n=1

δt(ADm
(cn−1
Dm

)∇Dm pn
Tm
,∇Dmϕn

Tm
)Dm

.

But, on one hand, thanks to (38), we have

NT∑

n=1

δtJq+,nTm
− q−,nTm

, ϕn
Tm

KTm
=

∫ T

0

∫

Ω

(q+ − q−)ϕm,

and on the other hand,
NT∑

n=1

δt(ADm
(cn−1
Dm

)∇Dm pn
Tm
,∇Dmϕn

Tm
)Dm
= −

∫ T

0

∫

Ω

Um ·Ψm.

We deduce ∫ T

0

∫

Ω

(q+ − q−)ϕm = −
∫ T

0

∫

Ω

Um ·Ψm. (40)

The function ϕ is smooth and then we have the uniform convergence of ϕm and Ψm to ϕ and ∇ϕ, respectively. There-

fore, the weak convergence of Um to Ū = −A(·, c̄)∇p̄ in (L2((0, T )×Ω))2 implies (9). As in [9, Section 5.2], using the

Minty trick, we deduce the strong convergence of ∇hm pm, Um and finally of pm.

5.3. Convergence of the concentration

Proposition 5.5. Under the assumptions of Theorem 2.6, and the fact that Φ is a constant Φ∗, the function c̄, intro-

duced in Proposition 5.1, and Ū, introduced in Proposition 5.4, satisfy (10).

Proof. Let ϕ ∈ C∞([0, T ] × Ω̄), we use the same notation as in the proof of Proposition 5.4 in order to define ϕn
Tm

, ϕm

and Ψm. Since cm is the solution of (19a), we obtain

NT∑

n=1

δt
r
Φ∗∂t,Tm

cn
hm
− divTm

(
DDm

(
Un
Dm

)
∇Dm cn

Tm

)
, ϕn
Tm

z
Tm

+

NT∑

n=1

δt
r

divcTm

(
Un
Dm
, cn
Tm

)
+ λPTm cn

Tm
+ q−,nTm

cn
Tm
, ϕn
Tm

z
Tm

=

NT∑

n=1

δt
r

q+,nTm
ĉn
Tm
, ϕn
Tm

z
Tm

.

We will pass to the limit separately in each term, denoted by Ti for 0 ≤ i ≤ 5. We start with

T0 :=

NT∑

n=1

δtΦ∗J∂t,Tm
cn
Tm
, ϕn
Tm

KTm
.

It rewrites

T0 = −
NT−1∑

n=1

δtΦ∗

t
cn
Tm
,
ϕn+1
Tm
− ϕn

Tm

δt

|

Tm

−Φ∗Jc0
Tm
, ϕ1
Tm

KTm
,

since ϕNT

T = 0. Applying (38), we get

T0 = −
∫ T

0

∫

Ω

Φ∗cm(s, x)
ϕ(s + δt, x) − ϕ(s, x)

δt
dxds −

∫

Ω

Φ∗c0(x)ϕm(δt, x)dx.
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The function ϕ is smooth and then we have the uniform convergence of
ϕ(. + δt, .) − ϕ(., .)

δt
and ϕm(δt, .) respectively

to ∂tϕ and ϕ(0, ·). Therefore, the weak convergence of cm to c̄ in L∞(0, T ; L2(Ω)) implies that

T0 −→ −
∫ T

0

∫

Ω

Φ∗c̄∂tϕ −
∫

Ω

Φ∗c0ϕ(0, ·).

Using the discrete duality formula (Theorem 2.3), T1 rewrites

T1 := −
NT∑

n=1

δt

r
divTm

(
DDm

(
Un
Dm

)
∇Dm cn

Tm

)
, ϕn
Tm

z
Tm

=

NT∑

n=1

δt
(
DDm

(
Un
Dm

)
∇Dm cn

Tm
,∇Dmϕn

Tm

)
Dm

.

We deduce

T1 =

∫ T

0

∫

Ω

∇hm cm ·
(

tD(·,Um)Ψm

)
.

We have the uniform convergence of Ψm to ∇ϕ. Furthermore, we have Um → Ū = −A(·, c̄)∇p̄ in (L2((0, T ) × Ω))2,

then we get D(·,Um)→ D(·, Ū) in (L2((0, T ) ×Ω))2×2. It implies that tD(·,Um)Ψm → tD(·, Ū)∇ϕ in (L2((0, T ) ×Ω))2.

And finally, the weak convergence of ∇hm cm to ∇c̄ in (L2((0, T ) × Ω))2 implies that

T1 −→
∫ T

0

∫

Ω

∇c̄ ·
(
tD(·, Ū)∇ϕ

)
=

∫ T

0

∫

Ω

(
D(·, Ū)∇c̄

)
· ∇ϕ.

As in the proof of Lemma 3.4, T2 :=

NT∑

n=1

δt
r

divcTm

(
Un
Dm
, cn
Tm

)
, ϕn
Tm

z
Tm

can be split into the sum of a primal term T2,p

and a dual term T2,d. Using the relation ϕn
K − ϕ

n
L = mσ∗∇Dϕn

Tm
· τK,L, x+ = x + x− and (30), the primal part rewrites

T2,p =
1

2

NT∑

n=1

δt
∑

D∈Dm

mσmσ∗ (U
n
D · nσK )cn

K∇
Dϕn
Tm
· τK,L

+
1

2

NT∑

n=1

δt
∑

D∈Dm

mσmσ∗ (U
n
D · nσK )−(cn

K − cn
L)∇Dϕn

Tm
· τK,L.

Let set T ∗
2
=

∫ T

0

∫

Ω

cm,DUm · Ψm. Using the convergence results, we remark that

T ∗2 −→
∫ T

0

∫

Ω

c̄Ū · ∇ϕ.

Moreover, T ∗
2

can also be split into the sum of a primal term T ∗
2,p and a dual term T ∗

2,d. The primal term is

T ∗2,p =

NT∑

n=1

δt
∑

D∈Dm

mD
sin(θD)

cn
D(Un

D · nσK )(∇Dϕn
Tm
· τK,L),

since we have Un
D =

1

sin(θD)
(Un
D · nσK )τK,L +

1

sin(θD)
(Un
D · nσ∗K∗ )τK∗,L∗ . Let us prove that T ∗

2,p − T2,p tends to 0. We

obtain

T ∗2,p − T2,p =

NT∑

n=1

δt
∑

D∈Dm

mD
sin(θD)

(Un
D · nσK )(∇Dϕn

Tm
· τK,L)(cn

D − cn
K )

−
NT∑

n=1

δt
∑

D∈Dm

mD
sin(θD)

(Un
D · nσK )−(∇Dϕn

Tm
· τK,L)(cn

K − cn
L).

(41)
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For the second term in the right hand side of (41), the relation cn
K − cn

L = mσ∗∇Dcn
Tm
· τK,L and Cauchy-Schwarz

inequality imply

∣∣∣∣∣∣∣

NT∑

n=1

δt
∑

D∈Dm

mD
sin(θD)

(Un
D · nσK)−(∇Dϕn

Tm
· τK,L)(cn

K − cn
L)

∣∣∣∣∣∣∣

≤ C
√

Thm‖∇Dmϕn
Tm
‖∞,Dm

‖Um‖(L∞(0,T ;L2 (Ω)))2‖∇hm cm‖(L2((0,T )×Ω))2 . (42)

The a priori estimates (23) and Lemma 3.5 of [5] give
∣∣∣∣∣∣∣

NT∑

n=1

δt
∑

D∈Dm

mD
sin(θD)

(Un
D · nσK )−(∇Dϕn

Tm
· τK,L)(cn

K − cn
L)

∣∣∣∣∣∣∣
≤ Chm.

This term tends to 0. For the first term in the right hand side of (41), we have similarly

∣∣∣∣∣∣∣

NT∑

n=1

δt
∑

D∈Dm

mD
sin(θD)

(Un
D · nσK)(∇Dϕn

Tm
· τK,L)(cn

D − cn
K )

∣∣∣∣∣∣∣
≤ C


NT∑

n=1

δt
∑

D∈Dm

mD|cn
D − cn

K |
2



1
2

.

We apply Lemma 3.3 to get that this term tends to 0 and finally T ∗
2,p − T2,p −→ 0. The same convergence result is

obtained for the dual part and

T2 −→
∫ T

0

∫

Ω

c̄Ū · ∇ϕ.

As in the proof of Lemma 3.4, using (32), the penalization term T3 :=

NT∑

n=1

δt
q
PTm cn

Tm
, ϕn
Tm

y
Tm

verifies

|T3| ≤
1

2

1

h
β
m

‖cm,M − c
m,M∗‖L2(0,T ;L2(Ω))‖ϕm,M − ϕm,M∗‖L2(0,T ;L2(Ω)).

Inequality (26) and (37) imply that:

|T3| ≤ Ch
1− β

2
m −→ 0,

since β < 2.

Thanks to (38), T4 :=

NT∑

n=1

δt

r
q−,nTm

cn
Tm
, ϕn
Tm

z
Tm

rewrites

T4 =
1

2

∫ T

0

∫

Ω

cm,M(s, x)ϕm,M(s, x)q−(s, x)dxds +
1

2

∫ T

0

∫

Ω

cm,M∗(s, x)ϕm,M∗(s, x)q−(s, x)dxds

The uniform convergence of ϕm,M and ϕm,M∗ to ϕ, the weak convergence of cm,M and cm,M∗ to the same c̄ lying in

L∞(0, T ; L2(Ω)) imply that

T4 −→
∫ T

0

∫

Ω

q−c̄ϕ.

Similarly, T5 :=

NT∑

n=1

δt

r
q
+,n
Tm

ĉn
Tm
, ϕn
Tm

z
Tm

rewrites

T5 =
1

2

∫ T

0

∫

Ω

ĉ(s, x)ϕm,M(s, x)q+m,M(s, x)dxds +
1

2

∫ T

0

∫

Ω

ĉ(s, x)ϕm,M∗(s, x)q+m,M∗(s, x)dxds.

The uniform convergence of ϕm,M and ϕm,M∗ to ϕ and the weak convergence of q+
m,M

and q+
m,M∗ to q+ in L2((0, T )×Ω)

imply that

T5 −→
∫ T

0

∫

Ω

q+ĉϕ.

Passing to the limit in each term, we have proved (10).
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Remark 5.6. The penalization term in the scheme is useful in order to prove that the sequences (cm,M)m, (c
m,M∗)m and

(cm,D)m converge to the same limit c̄ ∈ L2(0, T ; H1(Ω)) (Lemma 3.3). This is essential when passing to the limit in the

convection term T2 and the reaction term T4.

6. Numerical experiments

In this section, we define the tensor A, which contains the effect of the permeability K of the porous medium and

the viscosity µ of the fluid mixture:

A(·, c) =
K(·)
µ(c)

.

The viscosity µ is usually determined by the following mixing rule:

µ(c) = µ(0)

(
1 +

(
M1/4 − 1

)
c

)−4

on [0, 1], (43)

where M =
µ(0)

µ(1)
is the mobility ratio (we extend µ to R by letting µ = µ(0) on ] − ∞, 0[ and µ = µ(1) on ]1,∞[). The

tensor D is the diffusion-dispersion tensor; it includes molecular diffusion dm and mechanical dispersion:

D(x,U) = Φ(x)

(
dmI + |U|

(
dlE(U) + dt(I − E(U))

))
, (44)

where I is the identity matrix, dl and dt are the longitudinal and transverse dispersion coefficients and E(U) =(
UiU j

|U|2
)
1≤i, j≤d

.

In [10], we have presented some numerical experiments without penalization to show the efficiency of the DDFV

scheme. We have computed the numerical order of convergence of the scheme for the pressure and the concentration

equations and obtained good results when the permeability is continuous or has discontinuities supported by the edges

of the primal mesh using a modified DDFV scheme. We have also compared some qualitative results, obtained with

the m-DDFV and the Mixed Finite Volume scheme of [9], presenting the level sets of the concentration at two different

times. Here, we only focus on the influence of the penalization operator in the behavior of DDFV scheme.

The spatial domain is Ω = (0, 1000) × (0, 1000) ft2 and the time period is [0, 3600] days. The injection well is

located at the upper-right corner (1000, 1000) with an injection rate q+ = 30 ft2/day and an injection concentration

ĉ = 1.0. The production well is located at the lower-left corner (0, 0) with a production rate q− = 30 ft2/day. It means

that q− and q+ are Dirac masses, which can be taken into account with the scheme. The porosity of the medium is

specified as Φ(x) = 0.1 and the initial concentration is c0(x) = 0. The viscosity of the oil is µ(0)=1.0 cp and M = 41.

We choose Φdl = 5 ft and Φdt = 0.5 ft and there is no molecular diffusion Φdm = 0 ft2/day.

Test 1:

We choose a constant permeability K = 80 I.

We introduce a sequence of triangular meshes. For a refinement level i ∈ {1, · · · , 8}, the mesh is obtained by

dividing the domain into 2i+1 × 2i+1 equally sized squares and each square is split into 2 triangles along a diagonal.

The number of cells for the mesh i is 22i+3. We present on the left of Figure 6.1 the mesh obtained for i = 1. We

choose this sequence of structured triangular meshes because they fit together and allow the computation of numerical

errors. Let us also mention that, even though many choices are possible, we always assume in this paper that xK is

the mass center of K ∈ M. The time step is δt = 36 days.

Figures 6.2 and 6.3 present the level sets of the concentration obtained with the DDFV scheme, with the penal-

ization term and without a penalization term, on the structured triangular mesh i = 5, at two different times (3 and 10

years). The same qualitative behavior is observed.

The penalization operator is introduced in order to prove that (cm,M)m and (c
m,M∗)m have the limit. In Table 6.1,

we compute the L2-norm of the difference between (cm,M)m and (c
m,M∗)m. We observe that without penalization this

difference tends to zero with an order of convergence equal to 0.5.

Let us just mention that we obtain similar results using a sequence of square meshes.

In Table 6.2, we give some information on the overshooting and the undershooting effects of the concentration

observed on the corresponding primal and dual mesh of the triangular mesh with refinement level i = 5, without
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Figure 6.1: Triangular mesh with a refinement level i = 1 on the left and quadrangular/triangular mesh with a refinement level i = 1 on the right.

refinement level error L2 order L2

1 1.08e+03 -

2 9.39e+02 0.23

3 7.06e+02 0.45

4 5.24e+02 0.45

5 3.93e+02 0.42

6 2.92e+02 0.44

7 2.11e+02 0.47

Table 6.1: Test 1. The L2-norm ‖cm,M − c
m,M∗ ‖L2([0,T ]×Ω)without penalization term (λ = 0).
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(a) λ = 10−6 and β = 1. (b) λ = 0.

Figure 6.2: Test 1. Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the structured

triangular mesh i = 5: level sets of the concentration after 3 years.

(a) λ = 10−6 and β = 1. (b) λ = 0.

Figure 6.3: Test 1. Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the structured

triangular mesh i = 5: level sets of the concentration after 10 years.

penalization (λ = 0). The concentration on the dual mesh cM∗ satisfies the maximum principle whereas on the primal

mesh cM after 10 years the overshooting and the undershooting are around 10−3 for 13% or 7%. As shown in Table

6.3, we obtain essentially similar results on an unstructured triangular mesh.

Test 2:

We choose a discontinous permeability K = 80 I on the subdomain (0, 1000) × (0, 500) and K = 20 I on the

subdomain (0, 1000)× (500, 1000). We introduce a sequence of quadrangular/triangular meshes on the right of Figure

6.1 the mesh obtained for i = 1. Let us also mention that, even though many choices are possible, we always assume

in this paper that xK is the mass center ofK ∈M. The time step is δt = 36 days.

overshooting undershooting

max(c) − 1 percentage min(c) percentage

t = 3 years, c = cM 1.20e-14 0.09% -2.40e-06 10.65%

t = 3 years, c = cM∗ -3.77e-15 0.00% 3.61e-10 0.00%

t = 10 years, c = cM 1.62e-03 13.00% -3.76e-03 7.10%

t = 10 years, c = cM∗ 2.24e-14 3.27% 8.41e-08 0.00%

Table 6.2: Test 1. Overshooting and undershooting of concentration on the structured triangular mesh with refinement level i = 5.
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overshooting undershooting

max(c) − 1 percentage min(c) percentage

t = 3 years, c = cM -5.34e-14 0.00% -5.11e-06 10.37%

t = 3 years, c = cM∗ -8.78e-14 0.00% 1.61e-10 0.00%

t = 10 years, c = cM 5.45e-04 9.82% -5.38e-03 8.52%

t = 10 years, c = cM∗ 1.24e-14 1.53% 4.96e-09 0.00%

Table 6.3: Test 1. Overshooting and undershooting of concentration on an unstructured triangular mesh made of 5449 triangles.

(a) λ = 10−6 and β = 1. (b) λ = 0.

Figure 6.4: Test 2. Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the quadrangu-

lar/triangular mesh i = 5: level sets of the concentration after 3 years.

(a) λ = 10−6 and β = 1. (b) λ = 0.

Figure 6.5: Test 2. Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the quadrangu-

lar/triangular mesh i = 5: level sets of the concentration after 10 years.

Figures 6.4 and 6.5 present the level sets of the concentration obtained with the DDFV scheme, with the penaliza-

tion term and without a penalization term, on the quadrangular/triangular mesh i = 5, at two different times (3 and 10

years). The same qualitative behavior is observed.

In Table 6.4, we set the overshooting and the undershooting effects of the concentration on the corresponding

primal and dual mesh of the quadrangular/triangular mesh with refinement level i = 5 without penalization. We

observe a different behavior than for the test 1. Indeed, the concentration on the primal mesh cM almost satisfies the

maximum principle, whereas on the dual mesh cM∗ after 10 years the overshooting (respectively the undershooting)

is around 10−5 (respectively 10−3) for 13% (respectively for 3%). In this case, contrary to the test 1, the maximum

principle is better respected in the primal mesh as the dual mesh.
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overshooting undershooting

max(c) − 1 percentage min(c) percentage

t = 3 years, c = cM 2.68e-13 0.54% -9.34e-11 0.08%

t = 3 years, c = cM∗ 4.17e-14 0.26% -1.64e-06 3.55%

t = 10 years, c = cM 1.81e-13 9.98% -2.08e-19 0.01%

t = 10 years, c = cM∗ 8.44e-05 13.56% -2.52e-03 3.14%

Table 6.4: Test 2. Overshooting and undershooting of concentration on quadrangular/triangular mesh with refinement level i = 5.

In conclusion, we have presented a DDFV scheme for the Peaceman model with a penalization operator and we

have established its convergence. The numerical experiments show good qualitative properties with a small penaliza-

tion or without penalization. We can conclude that the penalization operator can be set to 0 in practice.

We have only considered here the two-dimensional case but it is worth noticing that DDFV schemes have been

successfully extended to the three-dimensional case in [11, 14, 34, 3] for linear anisotropic scalar diffusion equations

and in [38] for the Stokes problem. Generalization of the present work to the three-dimensional case would be based

on similar ideas.

Acknowledgement. The authors would like to thank R. Eymard and T. Gallouët for fruitful exchanges and

advices.

7. Appendix

First, to a given vector uT =
(
(uK )K∈M , (uK∗ )K∗∈M∗

)
∈ RT defined on a DDFV mesh T of size h, we associate the

approximate solution on the boundary:

u∂M∪∂M
∗
=

1

2

∑

K∈M
uK1K∩∂Ω +

1

2

∑

K∗∈∂M∗
uK∗1K∗∩∂Ω.

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed,

we have u∂M∪∂M
∗
=

1

2
(u∂M + u∂M

∗
), where u∂M and u∂M

∗
are two different reconstructions based either on the primal

values or the dual values:

u∂M(x) =
∑

K∈M
uK1K∩∂Ω(x) and u∂M

∗
(x) =

∑

K∗∈∂M∗
uK∗1K∗∩∂Ω(x).

Let us now define some norms

‖u∂M∪∂M∗‖1,∂Ω =
1

2
‖u∂M∗‖1,∂Ω +

1

2
‖u∂M‖1,∂Ω.

Theorem 7.1 (Trace inequality). Let Ω be a convex polygonal domain of R2 and T a DDFV mesh of this domain.

There exists C > 0, depending only on Ω, ζ and θ, such that ∀ uT ∈ RT :

‖u∂M∪∂M∗‖1,∂Ω =
1

2
‖u∂M∗‖1,∂Ω +

1

2
‖u∂M‖1,∂Ω ≤ C

(
‖uT ‖1,T +

∥∥∥∇DuT
∥∥∥

1,D

)
. (45)

Proof. The calculations are similar to those followed in [27, Lemma 10.5] especially for the primal mesh, the main

difference comes from the dual mesh. As a result we detail only this part in the following.

We have, as in [27, Lemma 10.5], by compactness of the boundary ∂Ω, the existence of a finite number of open

hyper-rectangles {Ri, i = 1 · · ·N}, and normalized vectors of R2, {ηi, i = 1 · · ·N}, such that



∂Ω ⊂ ∪N
i=1Ri,

(ηi, ~ν(x)) ≥ λ > 0 for all x ∈ Ri ∩ ∂Ω, i ∈ {1 · · ·N},
{x + tηi, x ∈ Ri ∩ ∂Ω, t ∈ R+} ∩ Ri ⊂ Ω,

27



where λ is some positive number and ~ν(x) is the normal vector to ∂Ω at x, inward to Ω (see Figure 7.1). Let {λi, i =

1 · · ·N} be a family of functions such that

N∑

i=1

λi(x) = 1, for all x ∈ ∂Ω, λi ∈ C∞c (R2,R+) and λi = 0 outside of Ri, for

all i = 1 · · ·N. Let ∂Ωi = Ri ∩ ∂Ω; we will prove that there exists Ci > 0 depending only on λ, ζ, θ and λi such that

(∫

∂Ωi

λi(x)|u∂M∗(x)|dx

)
≤ Ci

(
‖uT ‖1,T +

∥∥∥∇DuT
∥∥∥

1,D

)
.

Then, we define C =

N∑

i=1

Ci, depending only on Ω, ζ and θ, to get (45).

Ri

x + tηi

x

ν(x)

ηi

Γ = ∂Ω

Ri

Figure 7.1: Properties of the boundary ∂Ω.

As in [27] we introduce a function which determine the successive neighbours of a cell uK∗ : we define, for x, y ∈ Ω
and σ∗ ∈ E∗,

ψσ∗ (x, y) =


1 si [x, y] ∩ σ∗ , ∅,
0 si [x, y] ∩ σ∗ = ∅,

and for K∗ ∈ M∗

ψK∗ (x, y) =


1 si [x, y] ∩ K∗ , ∅,
0 si [x, y] ∩ K∗ = ∅.

Let i ∈ {1, · · · ,N} and x ∈ ∂Ωi. There exists a unique t > 0 such that x + tηi ∈ ∂Ri, let y(x) = x + tηi. For σ∗ ∈ E∗,
when [x, y(x)] ∩ σ∗ , ∅, the intersection is either reduced to a point let then zσ∗ (x) = [x, y(x)] ∩ σ∗, or a segment

[x, y(x)]∩σ∗ = [a(x), b(x)] with (
−−−−−−−→
a(x)b(x), ηi) > 0 and then let zσ∗ (x) = b(x). ForK∗ ∈ M∗, let ξK∗ (x), ηK∗(x) such that

[x, y(x)] ∩K∗ = [ξK∗ (x), ηK∗(x)], if [x, y(x)] ∩ K∗ , ∅ and (
−−−−−−−−−−→
ξK∗ (x)ηK∗(x), ηi) > 0.

Furthermore, let x ∈ K∗
0

and y(x) ∈ L∗
0

such that σ∗
0
= K∗

0
|L∗

0
(see Figure 7.2), we have two cases. Note that in the

two cases we have x = ξK∗
0
(x) and y(x) = ηL∗

0
(x) we get ηL∗

0
(x) ∈ ∂Ri, and deduce λi(ηL∗

0
(x)) = 0.

1. [x, y(x)] ∩ σ∗
0

is reduced to a point then we have ηK∗
0
(x) = zσ∗

0
(x) = ξL∗

0
(x). We obtain

λi(x)|uK∗
0
| =

(
λi(ξK∗

0
(x)) − λi(ηK∗

0
(x))

)
|uK∗

0
| +

(
λi(ξL∗

0
(x)) − λi(ηL∗

0
(x))

)
|uL∗

0
|

+ λi(zK∗
0
|L∗

0
(x))(|uK∗

0
| − |uL∗

0
|).
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K∗
0

L∗
0

x = ξK∗
0
(x)

y(x) = ηL∗
0
(x)

ηK∗
0
(x) = ξL∗

0
(x) = zσ∗

0
(x)

σ∗
0

y(x) = ηK∗
0
(x) = ηL∗

0
(x) = zσ∗

0
(x)

x = ξK∗
0
(x) = ξL∗

0
(x)

K∗
0

L∗
0

σ∗
0

Figure 7.2: (On the left) [x, y(x)] ∩ σ∗
0

is reduced to a point zσ∗
0
(x). (On the right) [x, y(x)] ∩ σ∗

0
is the segment [x, y(x)].

2. [x, y(x)] ∩ σ∗
0

is a segment, then we have ηK∗
0
(x) = y(x) and λi(ηK∗

0
(x)) = 0. We obtain

λi(x)|uK∗
0
| =

(
λi(ξK∗

0
(x)) − λi(ηK∗

0
(x))

)
|uK∗

0
|.

This point is the main difference with [27, Lemma 10.5]. In the two cases we get the same estimates

λi(x)|uK∗
0
| ≤ A(x) + B(x),

where

A(x) =
∑

D∈D
ψσ∗ (x, y(x))λi(zσ∗ (x)) ||uK∗ | − |uL∗ || ,

and

B(x) =
∑

K∗∈M∗
|λi(ξK∗ (x)) − λi(ηK∗ (x))| |uK∗ |ψK∗ (x, y(x)).

We begin with the estimate of A. Using the fact that λi is bounded, we get

A(x) ≤ ‖λi‖∞
∑

D∈D
ψσ∗ (x, y(x)) ||uK∗ | − |uL∗ || .

The following inequality ∫

∂Ωi

ψσ∗ (x, y(x))dx ≤ mσ∗
1

λ
,

implies that

A =
∫

∂Ωi

A(x)dx ≤ ‖λi‖∞
∑

D∈D

(∫

∂Ωi

ψσ∗ (x, y(x))dx

)
||uK∗ | − |uL∗ || ≤ C

∑

D∈D
mσ∗ ||uK∗ | − |uL∗ || .

Since
∣∣∣|a| − |b|

∣∣∣ ≤ |a − b|, we obtain

∑

D∈D
mσ∗

∣∣∣|uK∗ | − |uL∗ |
∣∣∣ ≤ 2

sin(θT )

∑

D∈D
mD

∣∣∣∣∣
uK∗ − uL∗

mσ

∣∣∣∣∣ .

Noting that ∣∣∣∣∣
uK∗ − uL∗

mσ

∣∣∣∣∣ ≤
∣∣∣∇DuT

∣∣∣, (46)

we deduce ∑

D∈D
mσ∗

∣∣∣|uK∗ | − |uL∗ |
∣∣∣ ≤ 2

sin(θT )

∑

D∈D
mD

∣∣∣∇DuT
∣∣∣ ≤ C‖∇DuT ‖1,D + ‖uT ‖1,T .
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Finally, we obtain

A ≤ C1‖∇DuT ‖1,D +C1‖uT ‖1,T .

Now the bound of B is as follows. Since the function λi is smooth, we have

B(x) ≤ ‖∇λi‖∞
∑

K∗∈M∗
|ξK∗ (x) − ηK∗ (x)| |uK∗ |ψK∗ (x, y(x)).

Furthermore, we have on one hand

|ξK∗ (x) − ηK∗ (x)| ≤ dK∗ ,

on the other hand ∫

∂Ωi

ψK∗ (x, y(x))dx ≤ dK∗

λ
.

It implies that ∫

∂Ωi

ψK∗ (x, y(x)) |ξK∗ (x) − ηK∗ (x)| dx ≤ CmK∗ ,

with C depending on ζ, θ and λ. We obtain

B =
∫

∂Ωi

B(x)dx ≤ C2

∑

K∗∈M∗
mK∗ |uK∗ | ≤ C2‖uT ‖1,T .

Finally, we deduce ∫

∂Ωi

λi(x)|u∂M∗(x)|dx ≤ A + B ≤ Ci(‖∇DuT ‖1,D + ‖uT ‖1,T ).
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00200833/fr/, Université Paul Sabatier, Toulouse, France, 2007.

30



[18] K. Domelevo and P. Omnes. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN Math.

Model. Numer. Anal., 39(6):1203–1249, 2005.

[19] J. Douglas. Numerical methods for the flow of miscible fluids in porous media. John Wiley, 1984.

[20] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler. The approximation of the pressure by a mixed method in the simulation of miscible

displacement. RAIRO Anal. Numér., 17(1):17–33, 1983.

[21] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler. A time-discretization procedure for a mixed finite element approximation of miscible

displacement in porous media. RAIRO Anal. Numér., 17(3):249–265, 1983.

[22] J. Droniou. Finite volume schemes for fully non-linear elliptic equations in divergence form. M2AN Math. Model. Numer. Anal. , 40(6):1069–

1100 (2007), 2006.

[23] J. Droniou. Finite volume schemes for diffusion equations: Introduction to and review of modern methods. submitted, 2013.

[24] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math., 105(1):35–71, 2006.

[25] R. E. Ewing, T. F. Russell, and M. F. Wheeler. Simulation of miscible displacement using mixed methods and a modified method of

characteristics. SPE, 12241:71–81, 1983.

[26] R. E. Ewing, T. F. Russell, and M. F. Wheeler. Convergence analysis of an approximation of miscible displacement in porous media by mixed

finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Engrg., 47(1-2):73–92, 1984.

[27] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. In Ph Ciarlet and J.L. Lions, editors, Handbook of numerical analysis, Vol.

VII, Handb. Numer. Anal., VII, pages 715–1022. North-Holland, Amsterdam, 2000.
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