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Abstract. A finite-volume scheme for the stationary unipolar quantum drift-diffusion equa-
tions for semiconductors in several space dimensions is analyzed. The model consists of a
fourth-order elliptic equation for the electron density, coupled to the Poisson equation for
the electrostatic potential, with mixed Dirichlet-Neumann boundary conditions. The nu-
merical scheme is based on a Scharfetter-Gummel type reformulation of the equations. The
existence of a sequence of solutions to the discrete problem and its numerical convergence to
a solution to the continuous model are shown. Moreover, some numerical examples in two
space dimensions are presented.
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1. Introduction

The performance of modern ultrasmall field-effect semiconductor devices is strongly in-
fluenced by quantum confinement transport close to the device gate or by direct tunneling
through the channel potential barrier [26, 28]. In order to describe and numerically predict
these effects, two main model approaches are possible, employing either a full quantum de-
scription of the charge transport or a macroscopic model including quantum corrections. The
first approach may rely, for instance, on nonequilibrium Green’s function models [9] or Wigner
equations [16]. These models provide accurate physical results but they are computationally
very costly, in particular in multidimensional simulations. The second approach includes
quantum models derived from a Wigner-Boltzmann equation by using a moment method
and suitable closure conditions [21]. There exists a hierarchy of macroscopic quantum mo-
dels leading from quantum hydrodynamic equations [15, 18] to quantum energy-transport [10]
and quantum drift-diffusion models [1]. The quantum drift-diffusion model has the advantage
that well-established numerical methods developed for the classical drift-diffusion equations
can be adopted. It is widely employed in the engineering community (see, e.g., [4, 35, 37])
and it is implemented in commercial device simulators like ISE and Silvaco. Moreover, it
describes the correct behavior of quantum confinement and tunneling effects in MOSFET
(metal-oxide semiconductor field-effect transistor) structures [1, 3]. On the other hand, its
numerical treatment is far from being trivial since it contains an equation with fourth-order
derivatives, and a careful numerical analysis is needed.
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ential Equations”, and from the German Science Foundation (DFG), grants JU 359/6 and JU 359/7. This
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First numerical discretizations of the quantum drift-diffusion model were based on stan-
dard techniques, like finite differences [2] and standard finite elements [14]. High drain biases,
however, may lead to large electric fields and large gradients of the electron density, which
may give numerical difficulties in coarse grids when using standard techniques. These prob-
lems can be overcome by employing nonlinear schemes, such as the finite-difference nonlinear
scheme of Ancona [2] or the Scharfetter-Gummel type discretization of Pinnau [32]. Numeri-
cal convergence results for these schemes can be found in [32, 33]. For related results, we refer
to [24]. Another direction is the use of finite-volume schemes [29]. However, no numerical
analysis to show the numerical robustness of finite-volume schemes or multidimensional dis-
cretizations seems to be available in the literature. In this paper, we provide a finite-volume
analysis for the multidimensional quantum drift-diffusion model for the first time.

The (scaled) stationary equations in a bounded domain Ω ⊂ Rd (d ≤ 3) read as

div J = 0, J = −ε2n∇
(∆
√
n√
n

)
+∇n− n∇V,(1)

λ2∆V = n− C(x).(2)

The variables are the electron density n, the electron current density J , and the electrostatic
potential V . The physical parameters are the (scaled) Planck constant ε > 0 and the Debye
length λ > 0. The function C(x) represents the concentration of charged background ions
(doping profile). The nonlocality of quantum mechanics is approximated by the fact that
the equations of state do not only depend on the particle density but also on its gradient.
Therefore, equations (1)-(2) are also called the density-gradient model.

Equation (1) contains fourth-order derivatives. It is convenient to reformulate (1) as a
system of second-order equations which are numerically easier to treat than the original
formulation. Introduce the quantum Fermi potential F as the sum of the so-called Bohm
potential −ε2∆

√
n/
√
n, the thermodynamic potential log n, and the electric potential V .

Then we can write (1) as

(3) div(n∇F ) = 0, F = −ε2 ∆
√
n√
n

+ log n− V.

The model equations are supplemented with physically motivated mixed boundary condi-
tions. We assume that the boundary ∂Ω consists of contacts ΓD and insulating parts ΓN .
On the contacts, the electron density, the Fermi potential, and the electrostatic potential are
prescribed, whereas the remaining boundary parts are insulating:

n = nD, F = FD, V = VD on ΓD,

∇
√
n · ν = ∇F · ν = ∇V · ν = 0 on ΓN ,

where ν is the exterior unit normal vector to ∂Ω. The boundary density nD is usually equal
to the equilibrium density, and VD is the applied potential. The Dirichlet condition for F
is derived from the assumption that no quantum effects occur near the contacts, i.e., the
quantum Bohm potential ∆

√
n/
√
n vanishes on ΓD [20], such that FD = log nD − VD. No-

flux conditions for the electron current density and the electric field lead to homogeneous
Neumann conditions on ΓN for F and V , together with an additional homogeneous Neumann
condition for

√
n.

The quantum drift-diffusion equations (1)-(2) were derived from the Wigner-BGK equation
by a moment method and a Chapman-Enskog expansion [10]. The closure of the moment
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equations is realized by a quantum Maxwellian, which is the minimizer of the von Neu-
mann quantum entropy subject to the constraint of a given particle density. The quantum
drift-diffusion model can also be derived in the relaxation-time limit from the quantum hy-
drodynamic equations [22]. The existence of a weak solution to (2)-(3) was shown in [5].
Existence results for the one-dimensional transient equations can be found in [24, 25]. The
multi-dimensional case (without pressure and electric field) was analyzed in [19, 23].

In this paper we analyze a finite-volume scheme applied to the stationary quantum drift-
diffusion equations. Since the electron density might change by several orders of magnitude,
we employ a Scharfetter-Gummel type formulation, similar as in [32]. Such a formulation was
also utilized in the finite-volume scheme presented in [29] but with a different set of variables.
Moreover, the paper [29] does not contain any numerical analysis.

Defining the total potential as the sum of the Bohm potential and the electric potential,

G = −ε2 ∆
√
n√
n
− V,

and the Slotboom variable u = eGn, we can formulate the current balance equation as

div(e−G∇u) = 0.

This expression corresponds to the exponential fitting formulation of the classical drift-
diffusion equations [27]. Setting further ρ =

√
n, the system (2)-(3) is written in the new

variables (u,G, ρ, V ) as the following system of second-order equations,

div(e−G∇u) = 0, G = log u− 2 log ρ,(4)

−ε2∆ρ = ρ(log u− 2 log ρ+ V ),(5)

λ2∆V = ρ2 − C(x) in Ω,(6)

with the boundary conditions

u = uD, V = VD, ρ = ρD on ΓD,(7)

∇u · ν = ∇ρ · ν = ∇V · ν = 0 on ΓN ,(8)

where uD = nD exp(−VD) and ρD =
√
nD.

In the next section, we introduce the finite-volume scheme and present our main results.
Furthermore, a discrete Sobolev inequality is proved. Section 3 is concerned with the proof
of the existence of a solution to the numerical scheme. The proof is based on a fixed-point
argument and the minimization of the discrete energy motivated by [5]. As a by-product, we
show L∞ estimates independent of the discretization parameter using a discrete Stampacchia
technique. A priori gradient estimates are proved in section 4. Furthermore, the convergence
of (a subsequence of) approximate solutions to a solution to the continuous problem is shown.
In Section 5, some numerical examples for a simple two-dimensional ballistic diode, resonant-
tunneling diode, and MESFET (metal semiconductor field-effect transistor) are given. Finally,
we conclude in Section 6.

2. Numerical scheme and main results

In this section, we introduce some notations and our assumptions, present the finite-volume
scheme for (4)-(6), and state our main results. Finally, we prove a discrete Sobolev inequality
needed for the L∞ estimates below.



4 C. CHAINAIS-HILLAIRET, M. GISCLON, AND A. JÜNGEL

2.1. Notations and assumptions. The domain Ω is an open bounded polygonal subset of
Rd if d = 2 (polyhedral if d = 3). Its boundary satisfies

(9) ∂Ω = ΓD ∪ ΓN ∈ C0,1, ΓD ∩ ΓN = ∅, ΓN is open in ∂Ω, meas(ΓD) > 0.

In order to define the notion of weak solution for (4)-(8), we introduce the space

H1
D(Ω) = {φ ∈ H1(Ω) : φ = 0 on ΓD}

(we note that H1
D(Ω) = H1

0 (Ω) when ΓD = ∂Ω). The boundary data are defined on the whole
domain and satisfy

(10) uD, ρD, VD ∈ H1(Ω) ∩ L∞(Ω), inf
ΓD

ρD > 0,

and the doping profile satisfies

(11) C ∈ L2(Ω).

We say that (u, ρ, V ) is a weak solution to (4)-(8) if

u ∈ uD +H1
D(Ω), ρ ∈ ρD +H1

D(Ω), V ∈ VD +H1
D(Ω)

and if for all φ ∈ H1
D(Ω), it holds∫

Ω
e−G∇u · ∇φdx = 0, G = log(u)− 2 log(ρ) in Ω,(12)

ε2

∫
Ω
∇ρ · ∇φdx =

∫
Ω
ρ
(

log u− 2 log ρ+ V
)
φdx,(13)

λ2

∫
Ω
∇V · ∇φdx = −

∫
Ω

(ρ2 − C(x))φdx.(14)

In order to introduce the numerical scheme, we consider a mesh of the domain Ω, which
must be admissible in the sense of Definition 5.1 in [12]. More precisely, the mesh is given by
a family T of control volumes (which are open and convex polygons in R2 and polyhedra in
R3), a family E of edges in R2 (or faces in R3) and a family of points (xK)K∈T which satisfies
the following condition: The straight line between two neighboring centers of cells (xK , xL)
is orthogonal to the common edge σ = K|L. Furthermore, we assume that the triangulation
is such that each edge (face) is contained in either ΓD or ΓN .

We need the following notations. The size of the triangulation is defined by

size(T ) = max
K∈T

diam(K).

The set E is split into two subsets, the set Eint of interior edges and the set Eext of boundary
edges. Furthermore, we set Eext = EDext∪ENext, where EDext contains all Dirichlet boundary edges
and ENext all Neumann boundary edges. For a control volume K ∈ T , we denote by EK the set
of its edges, EK,int the set of its interior edges, EDK,ext the set of edges included in ΓD, ENK,ext

the set of edges included in ΓN , and EK,ext = EDK,ext ∪ ENK,ext. In the following, we denote by

d the Euclidean distance in Rd and by m the measure in Rd or Rd−1. For given σ ∈ E , we
define

dσ =

{
d(xK , xL) if σ ∈ Eint, σ = K|L,
d(xK , σ) if σ ∈ Eext, σ ∈ EK,ext,

where d(xK , σ) = infy∈σ d(xK , y). We make the following regularity hypothesis on the mesh:

(15) there exists ζ > 0 such that for all K ∈ T and all σ ∈ EK : d(xK , σ) ≥ ζdσ.
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For all σ ∈ E , we introduce the transmissibility coefficient τσ = m(σ)/dσ.

2.2. Finite-volume scheme and main results. The finite-volume scheme now writes, for
all K ∈ T , as∑

σ∈EK,int,
σ=K|L

τσ(ρK − ρL) +
∑

σ∈EDK,ext

τσ(ρK − ρDσ ) =
m(K)

ε2
(log uK − 2 log ρK + VK)ρK ,(16)

∑
σ∈EK,int,
σ=K|L

τσ(VK − VL) +
∑

σ∈EDK,ext

τσ(VK − V D
σ ) = −m(K)

λ2
(ρ2
K − CK),(17)

GK = log(uK)− 2 log(ρK),(18)

∑
σ∈EK,int,
σ=K|L

τσe
−(GK+GL)/2(uK − uL) +

∑
σ∈EDK,ext

τσe
−GK (uK − uDσ ) = 0,(19)

where the Dirichlet boundary conditions and the doping profile are discretized in the following
way:

ρDσ =
1

m(σ)

∫
σ
ρD(s)ds, uDσ =

1

m(σ)

∫
σ
uD(s)ds,

V D
σ =

1

m(σ)

∫
σ
VD(s)ds, CK =

1

m(K)

∫
K
C(x)dx

for all σ ⊂ ΓD and K ∈ T . Let N be the number of control volumes in T . The scheme
(16)-(19) is a system of 4N nonlinear equations in 4N unknowns, (ρK , VK , GK , uK)K∈T , or
alternatively, in 3N unknowns, (ρK , VK , uK)K∈T .

For a given mesh, the above scheme (if it admits a solution which will be proved below)
provides some solution vectors of the form (aK)K∈T , where a = ρ, V,G, u. We denote by a
the vector (aK)K∈T and by aT the piecewise constant function, defined on Ω, which equals
aK on K. Let X(T ) be the set of functions from Ω to R which are constant on each control
volume of the mesh. With this notation, it holds aT ∈ X(T ).

In Section 3, we will establish that there exists a solution to the finite-volume scheme. Our
main result reads as follows.

Theorem 1. Let Ω be an open bounded polygonal or polyhedral subset of Rd (d ≤ 3) satis-
fying (9) and let T be an admissible mesh satisfying (15). Furthermore, we assume that the
boundary data and the doping profile satisfy (10) and (11). Then the finite-volume scheme
(16)-(19) admits a solution (ρT , VT , uT ) ∈ X(T )3 satisfying ρT ≥ ρ > 0 in Ω for some ρ
independent of the triangulation.

Let (Th)h>0 be a sequence of admissible meshes indexed by h, the size of the mesh. These
meshes are supposed to satisfy (15) with ζ not depending on h. For a = ρ, V,G, u, we
denote by ah = aTh ∈ X(Th) an approximate solution given by the scheme on the mesh Th.
In Section 4, we define some approximate gradients ∇hah, which are piecewise constant on
diamond cells, and we prove the convergence of a sequence of approximate solution (ρh, Vh, uh)
to a weak solution to (4)-(8) as h → 0, as formulated in Theorem 2 below. For sake of
simplicity, we assume that ∂Ω = ΓD, but the result still holds for mixed Dirichlet-Neumann
boundary conditions.
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Theorem 2. Let Ω be an open bounded polygonal or polyhedral subset of Rd (d ≤ 3) satisfying
(9) with ∂Ω = ΓD and assume that the boundary data and the doping profile satisfy (10) and
(11). Let (Th)h>0 be a sequence of admissible meshes satisfying (15) and (ρh, Vh, uh)h>0 be a

sequence of approximate solutions given by the scheme (16)-(19). Then there exists (ρ̂, V̂ , û)
such that, up to a subsequence,

ρh → ρ̂, Vh → V̂ , uh → û strongly in L2(Ω),

∇hρh ⇀ ∇ρ̂, ∇hVh ⇀ ∇V̂ , ∇huh ⇀ ∇û weakly in L2(Ω),

and (ρ̂, V̂ , û) is a weak solution to the system (4)-(8) satisfying ρ̂ ≥ ρ > 0 in Ω.

2.3. A discrete Sobolev inequality. We denote by ‖ · ‖q,Ω the usual norm on Lq(Ω) (1 ≤
q ≤ ∞) and we write for aT ∈ X(T )

‖aT ‖q,Ω =
( ∑
K∈T

m(K)|aK |q
)1/q

if q <∞, ‖aT ‖∞,Ω = sup
K∈T

|aK |.

Moreover, with a sequence (aσ)σ∈EDext , we define the discrete H1-seminorm

|aT |1,T =
( ∑
σ∈Eint,
σ=K|L

τσ(aK − aL)2 +
∑
K∈T

∑
σ∈EDK,ext

τσ(aK − aσ)2
)1/2

.

By the sum over all σ ∈ Eint, σ = K|L we understand the sum of all interior edges σ each of
which is the common edge of some control volumes K and L.

Lemma 3. Let Ω ⊂ Rd (d ≤ 3) be a polygonal or polyhedral domain satisfying (9) and let T
be an admissible mesh satisfying (15). Furthermore, let 1 ≤ q <∞ if d = 2 and 1 ≤ q ≤ 6 if
d = 3. Then there exists a constant cS > 0 depending only on Ω, ζ, d, and q such that for all
aT ∈ X(T ) and (aσ)σ∈EDext satisfying aσ = 0 for all σ ∈ EDext,

‖aT ‖q,Ω ≤ cS |aT |1,T .

The discrete Sobolev inequality is shown in [8] in the special case ∂Ω = ΓD and in [6] for
q = 2. We also refer to [13] for complementary results. The proof of Lemma 3, which is
adapted from the proof in [6], is given here for completeness of the presentation.

Proof. We notice that X(T ) embeddes in the space BV (Ω) of functions of bounded variation

and the latter space embeddes continuously into Ld/(d−1)(Ω). It can be shown (see [6, Lemma
3.2] for details) that there exists a constant c(Ω) > 0 only depending on Ω such that for all
v ∈ X(T ) with vσ = 0 for all σ ∈ EDext,( ∑

K∈T
m(K)|vK |d/(d−1)

)(d−1)/d
≤ c(Ω)

( ∑
σ∈Eint,
σ=K|L

m(σ)|vK − vL|+
∑
K∈T

∑
σ∈EDK,ext

m(σ)|vK |
)
.

We take v = |aT |q(d−1)/d and employ the fundamental inequality∣∣∣|aK |q(d−1)/d − |aL|q(d−1)/d
∣∣∣ ≤ q(d− 1)

d

(
|aK |q(d−1)/d−1 + |aL|q(d−1)/d−1

)
|aK − aL|
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for q ≥ d/(d− 1). Then the Cauchy-Schwarz inequality and hypothesis (15) give( ∑
K∈T

m(K)|aK |q
)(d−1)/d

≤ 2c(Ω)q(d− 1)

d

( ∑
σ∈Eint,
σ=K|L

m(σ)|aK |q(d−1)/d−1|aK − aL|

+
∑
K∈T

∑
σ∈EDK,ext

m(σ)|aK |q(d−1)/d−1|aK |
)

≤ 2c(Ω)q(d− 1)√
ζd

|aT |1,T
( ∑
K∈T

∑
σ∈EK

m(σ)d(xK , σ)|aK |2q(d−1)/d−2
)1/2

=
2c(Ω)q(d− 1)√

dζ
|aT |1,T

( ∑
K∈T

m(K)|aK |2q(d−1)/d−2
)1/2

,

since
∑

σ∈EK m(σ)d(xK , σ) = dm(K). Applying Hölder’s inequality, we obtain( ∑
K∈T

m(K)|aK |2q(d−1)/d−2
)1/2

≤ c′(Ω, q)
( ∑
K∈T

m(K)|aK |q
)(d−1)/d−1/q

and hence,

‖aT ‖q,Ω =
( ∑
K∈T

m(K)|aK |q
)1/q

≤ cS |aT |1,T ,

where cS = 2c(Ω)c′(Ω, q)q(d−1)/
√
dζ. The application of Hölder’s inequality is possible only

if 2q(d− 1)/d− 2 ≤ q, which is true if q <∞ and d = 2 or if q ≤ 6 and d = 3. �

3. Existence of a discrete solution

In this section, we prove Theorem 1. The proof is based on Brouwer’s fixed-point theorem
and discrete Stampacchia-type estimates. We assume that hypotheses (9), (10), (11), and
(15) hold and we set

u = inf
ΓD

uD, u = sup
ΓD

uD, U = {(uK)K∈T : u ≤ uK ≤ u for all K ∈ T }.

The set U is convex and compact. The fixed-point mapping T : U → U , w 7→ u, is defined as
follows:

(1) Compute (ρ, V ) = ((ρK)K∈T , (VK)K∈T ) by solving scheme (16)-(17), where u in (16)
is replaced by w.

(2) Set GK = logwK − 2 log ρK for all K ∈ T .
(3) Compute u = (uK)K∈T by solving scheme (19).

We need to prove that the mapping T is well defined by establishing that each of the above
steps admits a unique solution and that T maps U into itself.

3.1. Existence and uniqueness of (ρ, V ). For given w ∈ U , we show the existence and
uniqueness for (16)-(17) (with u replaced by w) by minimizing a discrete energy functional.
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To this end, we denote by H the primitive of log which vanishes at the point s = 1 (H(s) =
s log(s)− s+ 1, 0 < s <∞) and define the discrete energy functional

E(ρ, V ) = ε2
∑

σ∈Eint,
σ=K|L

τσ(ρK − ρL)2 + ε2
∑
K∈T

∑
σ∈EDK,ext

τσ(ρK − ρDσ )2

+
λ2

2

∑
σ∈Eint,
σ=K|L

τσ(VK − VL)2 +
λ2

2

∑
K∈T

∑
σ∈EDK,ext

τσV
2
K

+
∑
K∈T

m(K)H(ρ2
K)−

∑
K∈T

m(K)ρ2
K logwK .

The first two terms express the discrete quantum energy, the third and fourth term the discrete
electric energy, and the last two terms are related to the discrete thermodynamic energy. For
given ρ = (ρK)K∈T ∈ RN , scheme (17) admits a unique solution V = (VK)K∈T ∈ RN , thus
defining the mapping Φ : RN → RN , ρ 7→ V = Φ(ρ) (recalling that N is the number of control
volumes). We can now define the functional η : [0,∞)N → R, η(ρ) = E(ρ,Φ(ρ)).

Lemma 4. The functional η admits a unique minimizer ρ ∈ [0,∞)N , and (ρ,Φ(ρ)) is a
solution to scheme (16)-(17).

Proof. The functional η is well defined, continuous on the convex set [0,∞)N and satisfies

η(ρ) ≥
∑
K∈T

m(K)
(
H(ρ2

K)− log(u)ρ2
K

)
.

This implies that η is bounded from below and weakly coercive (η(ρ) → ∞ as |ρ| → ∞).
Therefore, η possesses a minimizer ρ satisfying the Euler-Lagrange equations ∂η/∂ρK(ρ) = 0
for all K ∈ T . The partial derivative of η is given by

(20)
∂η

∂ρK
(ρ) =

∂E

∂ρK
(ρ,Φ(ρ)) +

∑
K′∈T

∂E

∂VK′
(ρ,Φ(ρ))

∂VK′

∂ρK
(ρ),

where

∂E

∂ρK
(ρ,Φ(ρ)) = 2ε2

∑
σ∈EK,int,
σ=K|L

τσ(ρK − ρL) + 2ε2
∑

σ∈EDK,ext

τσ(ρK − ρDσ )

+ 2m(K)ρK log(ρ2
K)− 2m(K)ρK logwK ,

∂E

∂VK′
(ρ,Φ(ρ)) = λ2

∑
σ∈EK′ ,
σ=K′|L

τσ(VK′ − VL) + λ2
∑

σ∈ED
K′,ext

τσVK′ .

Then the last term in (20) can be rewritten as∑
K′∈T

∂E

∂VK′
(ρ,Φ(ρ))

∂VK′

∂ρK
(ρ) = λ2

∑
σ∈Eint,
σ=K′|L

τσ(VK′ − VL)
(∂VK′

∂ρK
− ∂VL
∂ρK

)

+ λ2
∑
K′∈T

∑
σ∈ED

K′,ext

τσVK′
∂VK′

∂ρK
.(21)
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In order to reformulate the first term on the right-hand side, we differentiate (17) (written
for K ′) with respect to ρK :

λ2
∑

σ∈EK′ ,
σ=K′|L

τσ

(∂VK′

∂ρK
− ∂VL
∂ρK

)
+ λ2

∑
σ∈ED

K′,ext

τσ
∂VK′

∂ρK
= −2m(K)ρKδKK′ for all K ′ ∈ T ,

where δKK′ denotes the Kronecker symbol. Multiplying this equation by VK′ and summing
over K ′ ∈ T yields, after a discrete integration by parts,

λ2
∑

σ∈Eint,
σ=K′|L

τσ

(∂VK′

∂ρK
− ∂VL
∂ρK

)
(VK′ − VL) + λ2

∑
K′∈T

∑
σ∈ED

K′,ext

τσ
∂VK′

∂ρK
VK′ = −2m(K)ρKVK .

Inserting this expression into (21), the derivative (20) becomes

∂η

∂ρK
(ρ) = 2ε2

∑
σ∈EK,int,
σ=K|L

τσ(ρK − ρL) + 2ε2
∑

σ∈EDK,ext

τσ(ρK − ρDσ )

+ 2m(K)ρK log(ρ2
K)− 2m(K)ρK logwK − 2m(K)ρKVK , K ∈ T .

This shows that the Euler-Lagrange equations are equivalent to scheme (16), and the mini-
mizer ρ is such that (ρ, V = Φ(ρ)) solves (16)-(17).

We prove now that the minimizer is unique. The idea is to show the pseudo-convexity
inequality

(22) η
(√

θρ2
1 + (1− θ)ρ2

2

)
< θη(ρ1) + (1− θ)η(ρ2)

holds for all 0 < θ < 1 and ρ1 6= ρ2, from which the uniqueness follows immediately. This
property has been first used in [30] for a quantum thermal equilibrium model. In order to
prove (22), we split η into three parts: the discrete quantum energy ηQ (corresponding to the
first two terms in E(ρ, V )), the discrete electric energy ηV (corresponding to the third and
fourth terms in E(ρ, V )), and the discrete thermodynamic-type energy ηH (corresponding to
the last two terms in E(ρ, V )). Since H is strictly convex, the functional ηH satisfies (22)
with η replaced by ηH . Furthermore, the mapping Φ is linear with respect to ρ2 and x 7→ x2

is convex, implying that

ηV

(√
θρ2

1 + (1− θ)ρ2
2

)
≤ θηV (ρ1) + (1− θ)ηV (ρ2)

for all 0 ≤ θ ≤ 1 and ρ1, ρ2. The functional ηQ satisfies the same inequality (with ηV
replaced by ηQ) since the following elementary inequality holds for all (x1, x2), (y1, y2) ∈ R2

and 0 ≤ θ ≤ 1:(√
θx2

1 + (1− θ)x2
2 −

√
θy2

1 + (1− θ)y2
2

)2
≤ θ(x1 − y1)2 + (1− θ)(x2 − y2)2.

Indeed, we compute(√
θx2

1 + (1− θ)x2
2 −

√
θy2

1 + (1− θ)y2
2

)2
−
(
θ(x1 − y1)2 + (1− θ)(x2 − y2)2

)
= −2

(√
θx2

1 + (1− θ)x2
2

√
θy2

1 + (1− θ)y2
2 − (θx1y1 + (1− θ)x2y2)

)
,

and an expansion of the right-hand side shows that it is nonpositive. �
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Remark 5. In Lemma 4, we have proved that the functional η admits a unique minimizer ρ
and that (ρ, V = Φ(ρ)) is a solution to the scheme (16)-(17). It implies that (16)-(17) has a
solution but it does not necessarily imply that this solution is unique. In order to define the
mapping T without ambiguity, we precise in step (1) that (ρ, V ) is obtained by minimizing η.

3.2. L∞ estimates for ρ and V . We show that ρ and V are bounded from above and below,
using a Stampacchia technique [36] as suggested in [17].

Lemma 6. Let (ρ, V ) be a solution to (16)-(17) (guaranteed by Lemma 4). Then there exist
constants V , V ∈ R, and ρ, ρ > 0 such that for all K ∈ T ,

0 < ρ ≤ ρK ≤ ρ, V ≤ VK ≤ V .

Proof. The strategy of the proof is as follows. First, we show that V is bounded from above.
This bound allows us to derive an upper bound for ρ, which provides a lower bound for V .
Finally, the lower bound for V implies the strict positivity of ρ.

First step: upper bound for V . We set x+ = max{x, 0} for x ∈ R. Let W ≥ supΓD VD.

We multiply scheme (17) by (VK − W )+ and sum over K ∈ T . By definition, we have
(V D
σ −W )+ = 0 for all σ ∈ EDext. Then, after a discrete integration by parts,∑

σ∈Eint,
σ=K|L

τσ(VK − VL)
(
(VK −W )+ − (VL −W )+

)
+
∑
K∈T

∑
σ∈EDK,ext

τσ(VK − V D
σ )
(
(VK −W )+ − (V D

σ −W )+
)

≤ 1

λ2

∑
K∈T

m(K)|CK |(VK −W )+.

Applying the following inequality on the left-hand side

(x− y)(x+ − y+) ≥ (x+ − y+)2 for all (x, y) ∈ R2,

and the Cauchy-Schwarz inequality on the right-hande side, we conclude that∑
σ∈Eint,
σ=K|L

τσ
(
(VK −W )+ − (VL −W )+

)2
+
∑
K∈T

∑
σ∈EDK,ext

τσ
(
(VK −W )+ − (V D

σ −W )+
)2

≤ 1

λ2

( ∑
K∈T

m(K)C2
K

)1/2( ∑
K∈T

m(K)((VK −W )+)2
)1/2

,

which is rewritten as

|(VT −W )+|21,T ≤
1

λ2
‖C‖2,Ω‖(VT −W )+‖2,Ω.

We introduce the set AW = {K ∈ T : VK ≥ W} and define m(AW ) =
∑

K∈AW m(K).
Applying Hölder’s inequality, we find that

‖(VT −W )+‖2,Ω ≤ ‖(VT −W )+‖q,Ω m(AW )1/2−1/q, q > 2.
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Hence, by the discrete Sobolev inequality (Lemma 3),

(23) ‖(VT −W )+‖q,Ω ≤ cm(AW )1/2−1/q, 2 < q ≤ 6,

where the constant c > 0 depends on Ω, ζ, d, q, ‖C‖2,Ω, and λ. Choosing Z > W and
observing that AZ ⊂ AW and (VK −W )+ ≥ Z −W for all K ∈ AZ , we infer that∑

K∈T
m(K)((VK −W )+)q ≥

∑
K∈AZ

m(K)(Z −W )q,

which is equivalent to

(24) ‖(VT −W )+‖q,Ω ≥ m(AZ)1/q(Z −W ).

Thus, (23) and (24) imply that

m(AZ) ≤ cq

(Z −W )q
m(AW )q/2−1, Z > W, 2 < q ≤ 6.

We can now apply the following lemma due to Stampacchia (see Lemma 4.1 in [36]).

Lemma 7. Let φ be a nonnegative and nondecreasing function, defined for all W ≥W0, such
that, if Z > W > W0,

φ(Z) ≤ c

(Z −W )α
φ(W )β,

where c ≥ 0, α > 0, and β > 1. Then there exists W ∗ > W0, depending only on W0, c, α,
and β, such that φ(W ∗) = 0.

We apply this lemma to the function φ(W ) = m(AW ) and q > 4. Thus, there exists V
such that m(AV ) = 0 and hence, VK ≤ V for all K ∈ T .

Second step: upper bound for ρ. We multiply (16) by (ρK −M)+, where M ≥ supΓD ρD,

and sum over K ∈ T . Observing that, by definition, (ρDσ −M)+ = 0 for all σ ∈ EDext and
integrating by parts, we obtain∑

σ∈Eint,
σ=K|L

τσ(ρK − ρL)
(
(ρK −M)+ − (ρL −M)+

)
+
∑
K∈T

∑
σ∈EDK,ext

(ρK − ρDσ )
(
(ρK −M)+ − (ρL −M)+

)
=

1

ε2

∑
K∈T

m(K)ρK(ρK −M)+(logwK − 2 log ρK + VK).

The right-hand side is nonpositive if M ≥ M0 = exp((log u + V )/2). Hence, taking ρ =
max{supΓD ρD,M0}, we arrive at |(ρ− ρ)+|21,T ≤ 0, which implies that ρK ≤ ρ for all K ∈ T .

Third step: lower bound for V . This part is similar to the first step. Multiplying (17) by
−(W − VK)+ for W ≤ infΓD VD, summing over K ∈ T , and employing the upper bound for
ρ yields

|(W − VT )+|21,T ≤
1

λ2
‖ρ+ C‖2,Ω‖(W − VT )+‖2,Ω,

and the conclusion follows as in the first step.
Fourth step: lower bound for ρ. This is similar to the second step. Setting

ρ = min
{

inf
ΓD

ρD, exp
(1

2
(log u+ V )

)}
> 0,
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we multiply (16) by (ρ − ρK)+ and sum over K ∈ T . Then we proceed as in the second
step. �

3.3. Proof of Theorem 1. In section 3.1, we have proved the well-posedness of the first
part of the definition of the fixed-point map T . In the second step, we define G by GK =
logwK −2 log ρK for K ∈ T (see (18)). The L∞ estimate for ρ and the fact that w ∈ U imply
L∞ bounds for G:

G = log u− 2 log ρ ≤ GK ≤ G = log u− 2 log ρ for all K ∈ T .
It remains to show that scheme (19) possesses a unique solution u ∈ U .

Actually, (19) is a system of linear equations. We consider the case uDσ = 0 for all σ ∈ EDK,ext,

multiply (19) by uK , and sum over K ∈ T . Then∑
σ∈Eint,
σ=K|L

τσe
−(GK+GL)/2(uK − uL)2 +

∑
K∈T

∑
σ∈EDK,ext

τσe
−GKu2

K = 0.

Since m(ΓD) > 0, this shows that uK = 0 for all K ∈ T . Therefore, the matrix of the linear
system is invertible, and the scheme admits a unique solution.

It is not difficult to derive L∞ bounds for u. Indeed, multiply (19) by (uK −u)+, sum over
K ∈ T , and argue similarly as in the proof of Lemma 6 to obtain |(uT − u)+|21,T ≤ 0 and
hence, uK ≤ u for all K ∈ T . In an analogous way, we find uK ≥ u for all K ∈ T .

Thus, the mapping T : U → U , w 7→ u, introduced at the beginning of section 3, is well
defined and continuous. The Brouwer fixed-point theorem ensures the existence of u ∈ U such
that T (u) = u. Let (ρ, V ) be the corresponding solution to (16)-(17) and define G according
to (18). Then (ρ, V,G, u) is a solution to (16)-(19). Notice that we cannot conclude from
Brouwer’s theorem the uniqueness of solutions to the full system (16)-(19).

4. Numerical convergence

This section is devoted to the proof of Theorem 2. Given a solution (ρ, V,G, u) to (16)-
(19) on a mesh of size h, we denote now by (ρT , VT , GT , uT ) ∈ X(T )4 the corresponding
approximate solution. First, we prove some discrete H1 estimates satisfied by (ρT , VT , uT ).
Then, from a sequence of meshes (Th)h>0 of size h, we can define a sequence of approximate
solutions denoted by (ρh, Vh, uh)h>0. We show the compactness of the sequences (ρh)h>0,
(Vh)h>0 and (uh)h>0 and weak compactness of some approximate gradients. These estimates
allow us to pass to the limit in the numerical scheme.

4.1. Discrete H1 estimates.

Lemma 8. Let Ω be an open bounded polygonal or polyhedral subset of Rd (d ≤ 3) satisfying
(9) and let T be an admissible mesh of size h satisfying (15). Furthermore, we assume (10)
and (11). Let (ρT , VT , GT , uT ) be a solution to the finite-volume scheme (16)-(19). Then,
there exists a constant c > 0, not depending on h, such that

|ρT |1,T ≤ c, |VT |1,T ≤ c, |uT |1,T ≤ c.

Proof. We follow here the proof of Lemma 4.1 in [7]. First, we define the discrete functions
ρDT , V D

T and uDT by

ρDT (x) = ρDK , V D
T (x) = V D

K , uDT (x) = uDK ∀x ∈ K,
where ρDK (respectively V D

K , uDK) is the L2 projection of ρD (respectively VD, uD) on K.
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The scheme (16) rewrites

(25)
∑

σ∈EK,int,
σ=K|L

τσ(ρK − ρL) +
∑

σ∈EDK,ext

τσ(ρK − ρDσ ) = m(K)fK

with fK = ε−2(log uK − 2 log ρK + VK)ρK . Multiplying (25) by ρK − ρDK and summing over
K ∈ T , we obtain∑

K∈T
m(K)fK(ρK − ρDK) =

∑
σ∈Eint,
σ=K|L

τσ(ρK − ρL)
(

(ρK − ρL)− (ρDK − ρDL )
)

+
∑
K∈T

∑
σ∈EDK,ext

τσ(ρK − ρDσ )
(

(ρK − ρDσ )− (ρDK − ρDσ )
)

≥ 1

2

(
|ρT |21,T − |ρDT |21,T

)
.

Applying the Cauchy-Schwarz and Young inequality, we find that for α > 0,∑
K∈T

m(K)fK(ρK − ρDK) ≤ 1

4α
‖fT ‖22,Ω + α‖ρT − ρDT ‖22,Ω.

On the one hand, the L∞ estimates on u, V and ρ ensure that ‖fT ‖22,Ω is bounded and,
on the other hand, we can apply the discrete Sobolev inequality proven in Lemma 3, giving
‖ρT − ρDT ‖22,Ω ≤ c2

S(|ρT |21,T + |ρDT |21,T ). Choosing, for instance, α = 1/(4c2
S), we arrive at the

desired estimate |ρT |1,T ≤ c.
The proof of the estimate |VT |1,T ≤ c is similar as the scheme (17) also rewrites under the

form (25) with V instead of ρ and fK = −λ−2(ρ2
K − CK). Finally, multiplying the scheme

(18) by uK − uDK , summing over K ∈ T , and using the upper bound on G, we directly obtain
|uT |1,T ≤ |uDT |1,T . �

4.2. Compactness properties. In this section, we recall that the discrete H1 estimates
satisfied by a sequence of approximate solutions imply the strong convergence in L2 of a
subsequence of approximate solutions and the weak convergence of a sequence of approximate
gradients.

Let us first define the approximate gradients. For each edge (face if d = 3) of the mesh σ,
we define the diamond Dσ (see Figure 1) by

Dσ = {txK + (1− t)y, t ∈ [0, 1], y ∈ σ} if σ ⊂ ∂Ω, σ ∈ EK,ext,

Dσ = {txK + (1− t)y, t ∈ [0, 1], y ∈ σ}
∪ {txL + (1− t)y, t ∈ [0, 1], y ∈ σ} if σ ∈ Eint, σ = K|L.

For an edge σ ∈ EK , we denote by νK,σ the normal to σ outwards K.
Let aT ∈ X(T ) and (aσ)σ∈EDext be some boundary values. As in [7] and [11], we define the

approximate gradient ∇T aT (x) for x ∈ Dσ by

(26) ∇T aT (x) =


m(σ)

m(Dσ)
(aL − aK)νK,σ if σ ∈ Eint, σ = K|L,

m(σ)

m(Dσ)
(aσ − aK)νK,σ if σ ∈ EDext,

0 if σ ∈ ENext.
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νK,σ
xK

xL

K
L

Dσ for σ = K|L

Dσ for σ ⊂ ∂Ω

Figure 1. Definition of the diamond Dσ associated to an edge σ (d = 2)

In the sequel, we will write ∇h = ∇Th . Let us consider a sequence of admissible discretizations
(Th)h>0 of an open bounded polygonal subset Ω ⊂ Rd and a sequence of functions (ah)h>0

with ah ∈ X(Th). We recall the convergence results established in [12] (for the functions) and
[11] (for the gradients): if there exists K > 0 such that |ah|1,Th ≤ K (we consider here the H1

seminorm with ΓD = ∂Ω and aσ = 0 for σ ∈ Eext) for all h > 0, then there exists â ∈ H1
0 (Ω)

such that, up to a subsequence, (ah) converges to â in L2(Ω) and (∇hah) converges weakly
to ∇â in L2(Ω)d as h→ 0. Due to the discrete H1 estimates on ρT , VT and uT , we conclude
the following convergence result.

Lemma 9. Let Ω be an open bounded polygonal or polyhedral subset of Rd (d ≤ 3) satisfying
(9) with ∂Ω = ΓD. Let (Th)h>0 be a sequence of admissible meshes satisfying (15) and
(ρh, Vh, uh)h>0 be a sequence of approximate solutions given by the scheme (16)-(19). Then

there exists (ρ̂, V̂ , û) such that ρ̂− ρD ∈ H1
0 (Ω), V̂ − V D ∈ H1

0 (Ω), û− uD ∈ H1
0 (Ω) and, up

to a subsequence, ρh → ρ̂, Vh → V̂ , uh → û strongly in L2(Ω), as h → 0, and ∇hρh ⇀ ∇ρ̂,

∇hVh ⇀ ∇V̂ , ∇huh ⇀ ∇û weakly in L2(Ω)d.

4.3. Proof of Theorem 2. To conclude the proof of Theorem 2, it remains to prove that

(ρ̂, V̂ , û) obtained in Lemma 9 is a weak solution to (4)-(8). Therefore, we prove that the
sequence of approximate solutions satisfies the weak formulation (12)-(14) with some error
terms.

Lemma 10. Let Ω be an open bounded polygonal or polyhedral subset of Rd (d ≤ 3) satisfying
(9) with ∂Ω = ΓD. Let (Th)h>0 be a sequence of admissible meshes satisfying (15) and
(ρh, Vh, uh)h>0 be a sequence of approximate solutions given by the scheme (16)-(19). For all
φ ∈ C∞c (Ω), it holds, for h > 0 small enough, Gh = log(uh)− 2 log(ρh) in Ω and∣∣∣∣∫

Ω
e−Gh∇huh · ∇φdx

∣∣∣∣ ≤ Kφh,(27) ∣∣∣∣ε2

∫
Ω
∇hρh · ∇φdx−

∫
Ω
ρh
(

log uh − 2 log ρh + Vh
)
φdx

∣∣∣∣ ≤ Kφh,(28) ∣∣∣∣λ2

∫
Ω
∇hV h · ∇φ+

∫
Ω

(ρ2
h − C(x))φdx

∣∣∣∣ ≤ Kφh,(29)

where Kφ > 0 does not depend on h.
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Proof. We focus here on the proof of (28) as the proofs of (27) and (29) are similar.
Let φ ∈ C∞c (Ω). We suppose that h = size(T ) is small enough such that suppφ ⊂ {x ∈ Ω :

d(x, ∂Ω) > h}. Multiplying (16) by φK = φ(xK) and summing over K ∈ T , we obtain the
equation ε2A−B = 0, where

A =
∑

σ∈Eint,
σ=K|L

τσ(ρK − ρL)(φK − φL) and B =
∑
K∈T

m(K)(log uK − 2 log ρK + VK)ρKφK .

Since ∫
Ω
∇hρh · ∇φ dx =

∑
σ∈Eint,
σ=K|L

∫
Dσ

m(σ)

m(Dσ)
(ρL − ρK)∇φ · νK,σ dx,

∫
Ω

(log uh − 2 log ρh + Vh)ρhφ dx =
∑
K∈T

m(K)(log uK − 2 log ρK + VK)ρK
1

m(K)

∫
K
φ dx,

we have

A−
∫

Ω
∇hρh · ∇φ dx =

∑
σ∈Eint,
σ=K|L

m(σ)

m(Dσ)
(ρL − ρK)

∫
Dσ

(
φL − φK

dσ
−∇φ · νK,σ

)
dx,

B −
∫

Ω
(log uh − 2 log ρh + Vh)ρhφ dx

=
∑
K∈T

m(K)(log uK − 2 log ρK + VK)ρK

(
φK −

1

m(K)

∫
K
φ dx

)
.

Observing that φ ∈ C∞c (Ω) and size(T ) = h, there exists kφ > 0 depending only on φ such
that, for all K ∈ T and σ = K|L,∣∣∣∣φK − 1

m(K)

∫
K
φ dx

∣∣∣∣ ≤ kφh and

∣∣∣∣φL − φKdσ
−∇φ · νK,σ

∣∣∣∣ ≤ kφh.
Therefore, employing the Cauchy-Schwarz inequality and the discrete H1 estimate for ρh, we
find that∣∣∣∣A− ∫

Ω
∇hρh · ∇φ dx

∣∣∣∣ ≤ ch ∑
σ∈Eint,
σ=K|L

m(σ)|ρL − ρK |

≤ ch
( ∑
σ∈Eint,
σ=K|L

τσ|ρL − ρK |2
)1/2( ∑

σ∈Eint,
σ=K|L

m(σ)dσ

)1/2
≤ ch,

where c > 0 is a generic constant independent of h, and, due to the L∞ estimates on uh, ρh,
and Vh, it also holds ∣∣∣∣B − ∫

Ω
(log uh − 2 log ρh + Vh)ρhφ dx

∣∣∣∣ ≤ ch.
Since ε2A−B = 0, the above computations imply (28). �

Passing to the limit as h → 0 in (27), (28), and (29) shows that the sequence (ρ̂, V̂ , û)
obtained in Lemma 9 is a weak solution to (4)-(8), which finishes the proof of Theorem 2.
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5. Numerical examples

In this section, we present some numerical simulations of a two-dimensional ballistic diode
and a resonant tunneling diode (RTD). The ballistic GaAs n+nn+ diode, whose geometry is
shown in Figure 2, consists of a highly doped source and drain region (the doping density
equals 1024 m−3) and a moderately doped channel (doping density of 5 · 1021 m−3).

n+ n

ΓN

n+

x

y

Γ1
DΓ0

D

Figure 2. Geometry of the ballistic diode

For the scaled model this results in Ω = (0, 1)× (0, 1/3), ΓD = Γ0
D ∪ Γ1

D({0} × (0, 1/3)) ∪
({1} × (0, 1/3)), and the doping profile C(x) is given by

(30) C(x, y) =

{
5 · 10−3 if 1/3 < x < 2/3,

1 else.

x

y barriers

space layers
x

B(x)

B

0
0 1/3 2/3 1

(a) Geometry (b) Step function

Figure 3. Resonant tunneling diode

The resonant tunneling diode has the same n+nn+ structure as the ballistic diode but the
channel is replaced by a quantum well sandwiched between two AlGaAs barriers. The double
barrier structure is placed between two GaAs spacer layers, as shown in Figure 3 (a). We
stress the fact that this structure is very simplified but captures the main device geometry; we
refer to [31] for a more realistic geometry for a resonant tunneling transistor. Moreover, this
section is intended to verify the properties of the numerical scheme rather than to simulate
full-feature physical devices.

The physical effect of the barriers is a shift in the quasi-Fermi potential level, which is
modeled by an additional step function B(x, y) = B(x), depicted in Figure 3 (b), added to
the electric potential. From a numerical point of view, we replace VK in (16) by VK − BK ,



A FINITE-VOLUME SCHEME FOR THE QUANTUM DRIFT-DIFFUSION MODEL 17

where BK is the L2 projection of B on K. The step function B is a piecewise constant
function, which equals B (the barrier height) in the barriers and 0 else.

For the ballistic and the resonant tunneling diodes, the scaled boundary conditions are
nD = 1 on ΓD, VD = 0 on Γ0

D and VD = Vext on Γ1
D. With these values, it follows that

ρD =
√
nD, uD = nDe

−VD and GD = log uD − log nD in Ω.
The devices are simulated using the quantum drift-diffusion equations as discretized in

scheme (16)-(19). The first two equations (16) and (17) are numerically solved by Newton’s
method, whereas a fixed-point iteration is employed for the full scheme. The iteration pro-
cedure is coupled to a continuation in the applied voltage, i.e., the discrete system is solved
for some applied voltage Vext +4V , using the solution for Vext as an initial guess, and 4V is
the voltage increment.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

(a) Initial mesh. (b) Mesh 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

(c) Mesh 2. (d) Mesh 3.

Figure 4. Various triangular meshes.

The numerical scheme will be applied to triangular meshes satisfying the admissibility
condition. For the construction of these meshes, we start with a very simple admissible scheme
of the square [0, 1]× [0, 1] made of 56 triangles (see Figure 4 (a)), which will be reproduced on
homothetic scales and duplicated to cover the rectangle [0, 1]× [0, 1/3]. It provides a sequence
of admissible triangular meshes (the three first meshes are shown in Figure 4). Let us note
that these schemes are uniform; there is no refinement along the junctions.

5.1. A test case. First, we consider a test case presented by Pinnau in [32]. We choose a
scaled Debye length λ2 = 10−2 and a scaled biasing voltage Vext = −5. The scaled barrier
potential B is set to 0 for the ballistic diode and to 1 for the resonant tunneling diode.
Figure 5 presents the electron density for different values of the scaled Planck constant ε,
computed with the scheme (16)-(19) on a fine triangular mesh made of 10752 triangles (the
fourth mesh of our sequence of triangular meshes). For ε2 = 10−5, we notice large gradients
for the electron density close to the barriers. The profiles are similar to those obtained by
Pinnau in [32] using a finite-element scheme in one space dimension.

Next, we wish to compute the convergence rates of the scheme. To this end, we compute
the numerical solution to the scheme (16)-(19) on a sequence of rectangular meshes with only
one cell in the y-direction. The coarsest grid is made of 30 rectangles and the sequence of
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ε2 = 10−1, B = 0 ε2 = 10−1, B = 1

ε2 = 10−3, B = 0 ε2 = 10−3, B = 1

ε2 = 10−5, B = 0 ε2 = 10−5, B = 1

Figure 5. Electron densities in the diode (left: ballistic, right: RTD) for
different values of ε2.
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meshes is obtained by dividing successively the rectangles by 2. The finest grid is made of
7680 rectangles and the numerical solution on the finest grid is taken as reference solution for
the computation of the L2 error for the variables n, V and G.

Figure 6 presents the error in L2 norm between the approximate solution and the reference
solution for the ballistic diode (left column) and the resonant tunneling diode (right column).
The numerical results show a convergence rate of order one for all variables, even for rather
small values of ε. However, for ε2 = 10−5, the first-order convergence rate is obtained for
sufficiently small values of h only. This fact is somehow reflected in the numerical analysis.
Indeed, the H1 estimate for ρT in Lemma 8 depends on ε−1 through the right-hand side fK
in (16), and hence, we loose the H1 bound in the limit ε→ 0.

5.2. Numerical simulation of a resonant tunneling diode. We consider now a GaAs-
AlGaAs double barrier structure. The geometry of this resonant tunneling diode is shown in
Figure 3 (a) and the doping profile is the same as above. The physical parameters and the
scaling are chosen as in [34]. More precisely, the length of the device is L = 750 Å and the
lattice temperature equals T = 77 K. The physical constants are the reduced Planck constant
~ = 1.05 · 10−34 VAs2, the Boltzmann constant kB = 1.38 · 10−23 VAsK−1, the charge of
electrons q = 1.6·10−19 As and the permittivity of GaAs, ε = 12.9ε0 = 1.14·10−10 AsV−1m−1.
In the device, the effective electron mass is assumed to be constantm = 0.126·m0 = 1.07·10−31

kg and the mobility of electrons is µ = 2.5 m2V−1s−1. Then the thermal voltage is defined
by UT = kBT/q = 6.64 · 10−3V and the scaling yields

ε2 =
~2

6kBTmL2
= 2.87 · 10−3, λ2 =

εUT
qCmL2

= 8.41 · 10−4.

Notice that the effective electron mass constant is chosen larger than the physical value for
GaAs, m = 0.067 ·m0, in order to emphasize the negative differential resistance effect in the
voltage-current characteristics (see below).

First, we compute the thermal equilibrium (applied voltage Vext = 0 V). The electron
density n and the electric potential V are shown in Figure 7 for different values of the barrier
height: B = 0 eV (ballistic case), B = 0.1 eV and B = 0.2 eV. Again we observe large
gradients of the electron density close to the barriers.

Figure 8 shows the current-voltage characteristics when the barrier height is assumed to
be B = 0.3 e V. The peak is achieved at the potential Vext = −0.18 V and the valley at
Vext = −0.245 V. The nonmonotone behavior of the current-voltage curve is called negative
differential resistance effect, which allows one to use these devices in ultra high-speed circuits.
Finally, the electron densities at the peak and the valley are presented in Figure 9.

5.3. Numerical simulation of a MESFET. Finally, we consider a two-dimensional MES-
FET (metal-semiconductor field-effect transistor) whose geometry is shown in Figure 10. It
is close to the geometry of the device studied in [14]. The size of the MESFET is 75 nm×40
nm. There are two highly doped regions around the source and drain contacts with a doping
concentration of 1024 m−3 and a moderately doped region with a density of 5 · 1021 m−3.
The channel is 15 nm long. We keep the values of the scaled parameters ε2 and λ2 from the
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ε2 = 10−1, B = 0 ε2 = 10−1, B = 1

ε2 = 10−3, B = 0 ε2 = 10−3, B = 1

ε2 = 10−5, B = 0 ε2 = 10−5, B = 1

Figure 6. Error estimates in L2 norm (left: ballistic, right: RTD) for different
values of ε2.
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B = 0 eV

B = 0.1 eV

B = 0.2 eV

Figure 7. Equilibrium densities (left) and electric potential (right) for differ-
ent values of the barrier height.
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Figure 8. Current-voltage characteristics for a barrier height B = 0.3eV.

Peak : Vext = −0.18 V Valley : Vext = −0.245 V

Figure 9. Densities at the peak current (left) and the valley current (right).

previous subsection. The boundary conditions are chosen as follows:

nD = 1024 m−3 on ΓsD ∪ ΓdD, nD = 5 · 1021 m−3 on ΓgD ∪ ΓbD,

VD = 0 on ΓsD, VD = −0.078 V on ΓgD,

VD = 0.078 V on ΓdD, VD = −0.078 V on ΓbD.

The numerical results obtained on a triangular mesh are shown in Figure 11. As in [14],
there is a boundary layer in the electron concentration at the gate contact. We notice that no
oscillations occur in the numerical solution due to the Scharfetter-Gummel-type scheme. The
electric potential is positive at the drain contact and negative at the gate (and bulk) contacts
such that we expect only a small tunneling current through the channel region. (We do not
compute this current since we are here only interested in the performance of the numerical
scheme.) The quantum Bohm potential −ε2∆ρ/ρ vanishes, as expected, at the drain, source,
and bulk contacts. It is maximal close to the gate contact and at the bulk junctions. The
peak in the Bohm potential close to the gate contact vanishes when we employ a smaller
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drain voltage of VD = 0 V at ΓdD, which indicates that the quantum current becomes smaller.
This result is expected since the electrons are flowing in the positive potential direction. The
shape of the Bohm potential in the channel region is qualitatively similar to the numerical
results of [14] (notice that the boundary conditions in [14] are different and that we use a
different sign for the Bohm potential).

ΓbD

ΓsD ΓgD ΓdD

n+ n+

n

Figure 10. Geometry of a MESFET.

6. Conclusions

In this paper, we have analyzed and numerically tested a finite-volume scheme for the
multidimensional quantum drift-diffusion equations with physically motivated boundary con-
ditions. The existence of solutions to the discrete scheme was proved employing the Brouwer
fixed-point theorem and the minimization of the discrete energy functional. As a by-product
of the minimization procedure, we obtained discrete H1 a priori estimates, which allowed us to
prove the convergence of the discrete solutions to a solution to the continuous model. Numer-
ical tests have shown that the convergence rate is of order one. Interestingly, the convergence
rates seem to be uniform in the scaled Planck constant. A finite-element scheme with such
a property was derived by Pinnau for the one-dimensional model, see [32]. Furthermore, we
have simulated a simple two-dimensional resonant tunneling diode with a slightly enlarged
effective mass constant, showing negative differential resistance, and a two-dimensional MES-
FET device, illustrating the behavior of the quantum Bohm potential. Our results show the
good performance and stability of the finite-volume scheme.
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